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Abstract. This paper studies the supremum of chi-square processes

with trend over a threshold-dependent-time horizon. Under the assumptions

that the chi-square process is generated from a centered self-similar Gaus-

sian process and the trend function is modeled by a polynomial function, we

obtain the exact tail asymptotics of the supremum of the chi-square process

with trend. These results are of interest in applications in engineering, in-

surance, queuing and statistics, etc. Some possible extensions of our results

are also discussed.
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1. INTRODUCTION

Let {Y (t), t ­ 0} be a centered self-similar Gaussian process with almost

surely (a.s.) continuous sample paths and index H ∈ (0, 1), i.e., Var(Y (t)) = t2H

and for any a > 0 and any s, t ­ 0

Cov(Y (at), Y (as)) = a2HCov(Y (t), Y (s)).
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It has been shown that self-similar Gaussian processes such as fractional Brownian

motion (fBm), sub-fractional Brownian motion and bi-fractional Brownian mo-

tion are quite useful in applications in engineering, telecommunication, insurance,

queueing, finance, etc., see [7, 14, 17, 20, 26, 34] and the references therein.

Let β, c be two positive constants. In this paper we are interested in the tail

asymptptics of the supremum of a chi-square process with trend given by

ψT (u) = P

(
sup
t∈[0,T ]

(
n∑
i=1

b2iY
2
i (t)− ctβ

)
> u

)
, u→∞,(1.1)

where Yi, i = 1, · · · , n are independent copies of the centered self-similar Gaus-

sian process Y , and 1 = b1 = · · · = bk > bk+1 ­ bk+2 ­ · · · ­ bn > 0. Here

T > 0 can be a finite constant, infinity, and eventually we allow T = Tu, u > 0

to be a threshold-dependent positive deterministic function.

One motivation for considering (1.1) is from its applications in engineering

sciences, see [24] and the references therein. More precisely, let

X(t) = (X1(t), · · · , Xn(t)), t ­ 0

be a vector Gaussian load process. Of interest is the probability of exit

P (X(t) 6∈ Su(t), for some t ∈ [0, T ]) ,

where the time-dependent safety region Su(t), t ­ 0 is defined by

Su(t) =
{

(x1, · · · , xn) ∈ Rn :
n∑
i=1

x2
i ¬ h(t, u)

}
with h(t, u), t, u ­ 0 some positive function. Various models for X and h(t, u) (e-

specially, h(t, u) ≡ u) have been discussed in the literature (e.g., [4, 2, 28, 29, 16])

for the case that T ∈ (0,∞). In this framework, ψT (u) corresponds to the model

with X = (b1Y1, · · · , bnYn) and h(t, u) = u+ ctβ . As one of the new features of

this contribution, we shall deal with different types of T = Tu, u ­ 0; see Section

4.
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Another motivation stems from its applications in insurance. Specifically, the

surplus process of an insurance company can be modeled by

Ru(t) = u+ ctβ −
n∑
i=1

b2iY
2
i (t), t ­ 0,(1.2)

where u is the initial reserve, ctβ models the total premium received up to time t,

and
∑n

i=1 b
2
iY

2
i (t) represents the total amount of aggregated claims up to time t

from n different types of risks. In this framework, ψT (u) is called ruin probability

which is the most important measure of risk of the insurance company; see, e.g.,

[3, 32]. Note that the model in (1.2) is related with the framework of fluid queue;

see, e.g., [10].

Finally, we remark that the study of ψT (u) also gives some insight into the

study of some limiting test statistics. In [13], it is shown that a test statistic con-

verges weakly to

sup
t∈(0,1)

(
U(t)2

2t(1− t)
− C(t)− υD(t)

)
,(1.3)

where {U(t), t ∈ [0, 1]} is a standard Brownian bridge,C(t) = ln
(
1− ln(1− (2t− 1)2)

)
,

D(t) = ln(1 +C(t)2) and υ > 1. Apparently, the above process involved is a chi-

square process with trend. Asymptotical results for the tail probability of (1.3) is

very interesting from statistical point of view; see, e.g., [19]. See also [22] and the

references therein for more applications of chi-type processes in statistics.

Outline of the rest of the paper: Section 2 is concerned about some preliminary

results. In Theorem 2.1 we show the tail asymptotics of the supremum of a chi-

square process generated from a non-stationary Gaussian process which extends

some results in [28, 16]; Lemma 2.2 derives a Fernique-type inequality for certain

Gaussian random fields. In Section 3 we concentrate on the asymptotics of (1.1)

over an infinite-time horizon (i.e., T =∞). Under a local stationary condition on

the correlation of the self-similar process Y (see (3.5)), in Theorem 3.1 we derive

the asymptotics of ψ∞(u). Section 4 is devoted to the symptotics of (1.1) over a
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threshold-dependent-time horizon (i.e., T = Tu a positive deterministic function).

As a corollary, we also obtain approximations of the conditional first passage time

of the process defined in (1.2). Finally, in Section 5 possible extensions of our

results are discussed. We show that general results can also be obtained for the

model where Yi’s are independent but not necessarily identical and for the model

with a more general correlation structure (for Y ) than that in (3.5).

2. PRELIMINARIES

Let {X(t), t ­ 0} be a centered non-stationary Gaussian process with a.s.

continuous sample paths. In the following, unless otherwise stated T is considered

to be a positive finite constant. We impose the following typical assumptions on

the Gaussian process X (see [29]):

Assumption I: The standard deviation function σX(·) :=
√

Var(X(·)) of X

attains its maximum (assumed to be 1) over [0, T ] at the unique point t = t0 ∈

[0, T ]. Further, there exist some positive constants µ, a such that

σX(t) = 1− a|t− t0|µ(1 + o(1)), t→ t0.

Assumption II: There exist some ν ∈ (0, 2], d > 0 such that

rX(s, t) = Corr(X(s), X(t)) = 1− d|t− s|ν(1 + o(1)), s, t→ t0.

Assumption III: There exist some positive constants G, γ and ρ such that

E
(
(X(t)−X(s))2

)
¬ G|t− s|γ

holds for all s, t ∈ [t0 − ρ, t0 + ρ] ∩ [0, T ].

For such a centered non-stationary Gaussian process X , it is known that (see,

e.g., [30], Theorem D.3 in [29] or Theorem 2.1 in [6])
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P

(
sup
t∈[0,T ]

X(t) > u

)
(2.1)

= Mν,µ,d,a
1√
2π
u

(
2
ν
− 2
µ

)
+
−1

exp

(
−u

2

2

)
(1 + o(1)), u→∞,

where (x)+ = max(0, x), and, with I(·) denoting the indicator function,

Mν,µ,d,a(2.2)

=


d1/νa−1/µΓ(1/µ+ 1)(1 + I(t0 6∈{0,T}))Hν , if ν < µ,

P
a
d
ν , if ν = µ,

1, if ν > µ.

HereHν ∈ (0,∞) is the Pickands constant defined by

Hν = lim
S→∞

1

S
E

(
exp
(

sup
t∈[0,S]

(√
2Bν(t)− tν

)))
with {Bν(t), t ∈ R} a standard fBm defined on R with Hurst index ν/2 ∈ (0, 1];

and P
a
d
ν ∈ (0,∞) is the Piterbarg constant defined by

P
a
d
ν = P̂

a
d
ν I(t0∈(0,T )) + P̃

a
d
ν I(t0∈{0,T}) ∈ (0,∞)(2.3)

with

P̂λν = lim
S1,S2→∞

Pλν [−S1, S2], P̃λν = lim
S→∞

Pλν [0, S] = lim
S→∞

Pλν [−S, 0],

Pλν [−S1, S2] = E

(
exp

(
sup

t∈[−S1,S2]

(√
2Bν(t)− (1 + λ)|t|ν

)))
,

withλ > 0,max(S1, S2) > 0.

We refer to [29, 7, 9, 12] for the properties and generalizations of the Pickands-

Piterbarg and related constants.

Let {χ2
n,b(t), t ­ 0} be a chi-square process with n degrees of freedom de-

fined by

χ2
n,b(t) =

n∑
i=1

b2iX
2
i (t), t ­ 0,(2.4)
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where bi > 0, 1 ¬ i ¬ n and {Xi(t), t ­ 0}, 1 ¬ i ¬ n, are independent copies

of the centered Gaussian process X satisfying assumptions I–III. As an analogue

of (2.1), [16] derived the following tail asymptotics for χ2
n,1:

P

(
sup
t∈[0,T ]

χ2
n,1(t) > u

)
(2.5)

= Mν,µ,d,au

(
1
ν
− 1
µ

)
+Υn(u)(1 + o(1)), u→∞,

where

Υn(u) := P
(
χ2
n,1(0) > u

)
=

2(2−n)/2

Γ(n/2)
un/2−1 exp

(
−u

2

)
, u ­ 0.

The result in (2.5) was derived by using a similar double-sum method as in [28].

As shown in [28, 16] the usage of the double-sum method for the chi-square pro-

cess is usually technical, since we have to deal with the supremum of a Gaussian

random field with variance function attaining its maximum on an infinite set; see

also [5] for a recent result in this direction. Below, we present a general result on

the tail asymptotics of χ2
n,b allowing for different bi’s. The next result may not be

surprising (see [28, 16]), but it turns out that the proof is far from trivial. As we

will see the following result is crucial when dealing with the tail asymptotics of the

supremum of the chi-square process with trend; two other extensions of Theorem

2.1 will be discussed in Section 5.

THEOREM 2.1. Let {χ2
n,b(t), t ­ 0} be a chi-square process defined as above

with generic X satisfying assumptions I–III. If 1 = b1 = · · · = bk > bk+1 ­

bk+2 ­ · · · ­ bn > 0, then, as u→∞,

P

(
sup
t∈[0,T ]

χ2
n,b(t) > u

)
(2.6)

=
n∏

i=k+1

(1− b2i )−1/2Mν,µ,d,au

(
1
ν
− 1
µ

)
+Υk(u)(1 + o(1)).
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We conclude this section with a Fernique-type inequality, which will be used

in the proof of our main result. The proof of it is quite similar to the classical

Fernique’s inequality (see, e.g., [23]). We refer to [25] for new developments on

the Fernique-type inequality.

LEMMA 2.2. Let {ξ(t), t ∈ [0, 1]n} be a centered Gaussian process with a.s.

continuous sample paths and Var(ξ(0)) = σ2 ­ 0. Suppose that

E
(

(ξ(t)− ξ(s))2
)
¬ Q

n∑
i=1

|ti − si|αi(2.7)

holds for all t, s ∈ [0, 1]n, with some constants Q > 0, αi > 0, 1 ¬ i ¬ n. Then,

for all x > 0

P

(
sup

t∈[0,1]n
ξ(t) > x

)
¬ 2n+1 exp

(
−c
∗x2

Q

)
+ 2−1 exp

(
− x2

8σ2

)
,

where c∗ =
(
2n
∑∞

p=0

(
(p+ 1)2−(p+1) min1¬i¬n αi+1

)1/2)−2
, and if σ2 = 0 then

the second term on the right-hand side disappears.

3. INFINITE-TIME HORIZON

In this section we shall focus on the asymptotics of

ψ∞(u) = P

(
sup

t∈[0,∞)

n∑
i=1

b2iY
2
i (t)− ctβ > u

)
, u→∞,(3.1)

with Yi’s are the centered self-similar Gaussian processes as discussed in Section

1. Throughout the paper, for technical reasons we assume that β > 2H . As demon-

strated in [17, 18] it is useful to define, for β > 2H and c > 0

Zi(t) =
Yi(t)√
1 + ctβ

, t ­ 0, 1 ¬ i ¬ n.(3.2)

Indeed, by self-similarity of Yi’s, for any u > 0

ψ∞(u) = P

(
sup
t­0

n∑
i=1

b2iZ
2
i (t) > u

1− 2H
β

)
.(3.3)
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Let σZ(t) =
√

Var(Z1(t)) . It is noted that σZ(t) attains its maximum on [0,∞)

at the unique point

t0 =

(
2H

c(β − 2H)

) 1
β

and

σZ(t) = A−1/2

(
1− B

4A
(t− t0)2(1 + o(1))

)
, t→ t0(3.4)

with

A =

(
2H

c(β − 2H)

)−2H/β β

β − 2H
, B = 2

(
2H

c(β − 2H)

)−2(H+1)/β

Hβ.

In the rest of the paper we assume local stationarity for the standardized Gaus-

sian process Y (t) := Y (t)/tH , t > 0 in a neighborhood of the point t0, i.e.,

lim
s→t0,t→t0

E
(
(Y (s)− Y (t))2

)
|s− t|α

= Q > 0(3.5)

holds for some α ∈ (0, 2). Condition (3.5) is common in the literature; most of the

known self-similar Gaussian processes (such as fBm, sub-fBm, and bi-fBm) satisfy

(3.5), see e.g., [16]. Note that the local stationarity at t0 and the self-similarity of

the process Y imply the local stationarity at any point r ∈ (0,∞).

Next we present our main result concerning the tail asymptotics of the supre-

mum of the self-similar chi-square process with trend over an infinite-time horizon.

THEOREM 3.1. Suppose that the generic process {Y (t), t ­ 0} is a centered

self-similar Gaussian process with index H ∈ (0, 1) and correlation function sat-

isfying (3.5). If β > 2H , then

ψ∞(u) = 21−1/αQ1/αA1/αB−1/2π1/2Hα
n∏

i=k+1

(1− b2i )−1/2

×u(1−2H/β)(1/α−1/2)Υk(Au
1−2H/β)(1 + o(1)), u→∞.
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4. THRESHOLD-DEPENDENT-TIME HORIZON

In this section we are concerned about the asymptotics of

ψTu(u) = P

(
sup

t∈[0,Tu]

n∑
i=1

b2iY
2
i (t)− ctβ > u

)
, u→∞.

Throughout this section we shall adopt the same notation as in Section 3. In addi-

tion, define

B(u) = 21/2B−1/2u
H+1
β
− 1

2 , u > 0.

In what follows, the following two scenarios of Tu > 0 will be discussed:

i) The short time horizon: limu→∞
Tu
u1/β

= s0 ∈ [0, t0);

ii) The long time horizon: limu→∞
Tu−t0u1/β

B(u) = x ∈ (−∞,∞].

Clearly, T =∞ is included in scenario ii) and T ∈ (0,∞) is covered by scenario

i). We present below our main result of this section.

THEOREM 4.1. Suppose that the generic process {Y (t), t ­ 0} is a centered

self-similar Gaussian process with index H ∈ (0, 1) and correlation function sat-

isfying (3.5). Assume further that β > 2H . We have, as u→∞,

i) If limu→∞
Tu
u1/β

= s0 ∈ [0, t0), then

ψTu(u) =
n∏

i=k+1

(1− b2i )−1/2M
α,1,Q

2
tα0 ,D

(
u+ cT βu
T 2H
u

)( 1
α
−1)

+

×Υk

(
u+ cT βu
T 2H
u

)
(1 + o(1)),

where the constantM
α,1,Q

2
tα0 ,D

is given as in (2.2) with D =
2H−c(β−2H)sβ0

2(1+csβ0 )
.

ii) If limu→∞
Tu−t0u1/β

B(u) = x ∈ (−∞,∞], then

ψTu(u) = ψ∞(u)Φ(x)(1 + o(1)),

where the asymptotics of ψ∞(u) is given in Theorem 3.1 and Φ(·) denotes the

standard normal distribution function.
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As a corollary of Theorem 4.1 we derive an approximation of the first passage

time of the chi-square process with trend, which goes in line with e.g., [18, 8, 15].

Precisely, define

τu = inf{t ­ 0 : Ru(t) ¬ 0} (with inf{∅} =∞)

to be the first passage time to 0 of the process {Ru(t), t ­ 0} defined in (1.2).

Denote by d→ convergence in distribution when the argument tends to infinity, and

let E be a unit mean exponential random variable and N be a standard normal

random variable. We have:

COROLLARY 4.2. Under the conditions and notation of Theorem 4.1

i) If limu→∞
Tu
u1/β

= s0 ∈ [0, t0), then

(2H − cβsβ0
1+csβ0

)(u+ cT βu )

2T 2H+1
u

(Tu − τu)
∣∣(τu ¬ Tu)

d→ E, u→∞.

ii) If limu→∞
Tu−t0u1/β

B(u) = x ∈ (−∞,∞], then

τu − t0u1/β

B(u)

∣∣(τu ¬ Tu)
d→ N

∣∣(N ¬ x), u→∞.

5. EXTENSIONS & DISCUSSIONS

In Section 3 and Section 4, we have derived asymptotical results for the case

where the chi-square process is generated from a self-similar Gaussian process. In

this section, we shall discuss two possible extensions: (a) instead of independent

copies of a self-similar Gaussian process we shall consider independent but non-

identical self-similar Gaussian processes; (b) instead of polynomial function |t −

s|α in (3.5) we consider a regularly varying function K2(|t − s|) with index α ∈

(0, 2].

As we have seen, Theorem 2.1 and Theorem 6.1 are fundamental for the proofs

of our results in the last two sections. Asymptotical results for the extended chi-

square processes (as in the cases (a) and (b)) with trend will follow similarly if
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corresponding extended results for Theorems 2.1 and 6.1 are available. Therefore,

it is sufficient at this point to present only an extension of Theorem 2.1; corre-

sponding extension for Theorem 6.1 can also be obtained.

5.1. Non-identical Gaussian processesXi’s. Let {Xi(t), t ­ 0}, 1 ¬ i ¬ k be

independent copies of the a.s. continuous Gaussian process X satisfying assump-

tions I–III with the parameters therein, and let {Xi(t), t ­ 0}, k + 1 ¬ i ¬ n be

independent copies of another a.s. continuous Gaussian process X(1) satisfying

assumption III with parameter γ1 instead of γ. Moreover, we suppose that the

standard deviation function σX(1)(·) attains its maximum 1 over [0, T ] at t0 as

well. Besides, {Xi(t), t ­ 0}, 1 ¬ i ¬ k, and {Xi(t), t ­ 0}, k + 1 ¬ i ¬ n are

assumed to be independent. Define also

χ2
n,b(t) =

n∑
i=1

b2iX
2
i (t), t ­ 0,

with 1 = b1 = · · · = bk ­ bk+1 ­ · · · ­ bn > 0.

THEOREM 5.1. Let {χ2
n,b(t), t ­ 0} be a chi-square process defined as above.

If γ ­ ν and γ1 ­ ν, then we have, as u→∞,

P

(
sup
t∈[0,T ]

χ2
n,b(t) > u

)
=

n∏
i=k+1

(1− b2i )−1/2Mν,µ,d,au

(
1
ν
− 1
µ

)
+Υk(u)(1 + o(1)).

REMARKS 5.2. a) Suppose that the generic processes X and X(1) are both

fBm with indexes H ∈ (0, 1) and H1 ∈ (0, 1), respectively. If H1 ­ H , then the

conditions of the last theorem are fulfilled.

b) From the proof of the last theorem we can see the assumption that {Xi(t), t ­

0}, k+ 1 ¬ i ¬ n are identical (in distribution) is not really necessary; here to sim-

plify the notation we chose to work under this assumption.

5.2. General correlation structure. First, we formulate the general assump-

tion about the correlation structure of the generic Gaussian process X .
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Assumption II’: There exists some K(·), a regularly varying function at 0 with

index ν/2 ∈ (0, 1], such that

rX(s, t) = Corr(X(s), X(t)) = 1−K2(|t− s|)(1 + o(1)), s, t→ t0.

Next, we introduce some further notation. Let q(u) =
←−
K(u−1/2) be the inverse

function of K(·) at point u−1/2 (assumed to exist asymptotically). It follows that

q(u) is a regularly function at infinity with index −1/ν which can be further ex-

pressed as q(u) = u−1/νL(u−1/2), with L(·) a slowly varying function at 0. Ac-

cording to the values of L(u−1/2) as u → ∞, we consider the following three

scenarios:

C1: µ > ν, or µ = ν and limu→∞ L(u−1/2) = 0;

C2: µ = ν and limu→∞ L(u−1/2) = L ∈ (0,∞);

C3: µ < ν, or µ = ν and limu→∞ L(u−1/2) =∞.

We present below our second extension of Theorem 2.1.

THEOREM 5.3. Under the assumptions and conditions of Theorem 2.1 with

assumption II replaced by assumption II’, we have, as u→∞,

P

(
sup
t∈[0,T ]

χ2
n,b(t) > u

)

=
n∏

i=k+1

(1− b2i )−1/2M̃ν,µ,1,a(u)u

(
1
ν
− 1
µ

)
+Υk(u)(1 + o(1)),

where

M̃ν,µ,1,a(u) =


a−1/µΓ(1/µ+ 1)(1 + I(t0 6∈{0,T}))Hν

←−
L (u−1/2), for C1,

PaLνν , for C2,

1, for C3.

The proof of the last theorem follows by similar arguments as in the proof of

Theorem 2.1, and thus we only give some remarks. Note that the difference from

the classical results in [29] is that for the case µ = ν three sub-cases should be
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considered differently (depending on the property of L(·)). This is not observed

in the study of some other Gaussian random fields, e.g., [31] and [11], where it

is shown that the substitution of a polynomial function d|t − s|ν by a regularly

varying function K2(|t − s|) in the correlation structure of the Gaussian random

fields does not influence much on the asymptotics. However, it seems not surprising

to have these sub-cases if one examines the proof of Theorem 8.2 in [29].

6. FURTHER RESULTS & PROOFS

This section is devoted to the proofs of Theorems 2.1, 3.1, 4.1 and 5.1 and

Corollary 4.2. Let in the following Q,Qi, i = 1, 2, ... denote positive constants

whose values may change from line to line.

First, we present a lemma concerning the tail asymptotics of the supremum

of a chi-square process over a threshold-dependent time interval, which turns out

to be crucial for the proofs of Theorem 2.1, Theorem 4.1 and Corollary 4.2. The

technical proof of it is deleted in the published version to reduce the pages and the

readers who are interested in it can find the proof at arXiv:1407.6501.

THEOREM 6.1. Let {χ2
n,b(t), t ­ 0} be a chi-square process given as in (2.4)

with generic X satisfying assumptions I–II, and 1 = b1 = · · · = bk > bk+1 ­

bk+2 ­ · · · ­ bn > 0. Let further ∆x(u) = [t0 − x1(u)u−2/µ, t0 + x2(u)u−2/µ]

with functions xi(u), i = 1, 2 such that

lim
u→∞

xi(u) = xi ∈ [−∞,∞], lim
u→∞

xi(u)u−1/µ = 0, i = 1, 2.

If −x1 < x2, then

P

(
sup

t∈∆x(u)
χ2
n,b(t) > u2

)
(6.1)

=
n∏

i=k+1

(1− b2i )−1/2M̂ν,µ,d,a(x1, x2)u

(
2
ν
− 2
µ

)
+Υk(u

2)(1 + o(1))
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as u→∞, where

(6.2)

M̂ν,µ,d,a(x1, x2) =


d1/νa−1/µHν

(
Gµ(a1/µx2)−Gµ(−a1/µx1)

)
, if ν < µ,

P
a
d
ν [−d1/νx1, d

1/νx2], if ν = µ,

1, if ν > µ,

with Gµ(x) =
∫ x
−∞ e

−|t|µdt, x > 0 for any µ > 0.

P r o o f o f T h e o r e m 2.1. Without lose of generality we shall only con-
sider the case that t0 ∈ (0, T ). As in the proof of Theorem 6.1, we consider the
Gaussian random field

Yb(t,v) =
n∑
i=1

biXi(t)vi

defined on GT = [0, T ] × Sn−1, where Sn−1 stands for the (n − 1)-dimensional
unit sphere. Furthermore, following the arguments as in [28] we conclude that σYb
and the correlation function rYb of Yb have the following asymptotic expansions:

σYb(t,v) = 1− a|t− t0|µ(1 + o(1))−
n∑

i=k+1

1− b2i
2

v2
i (1 + o(1))(6.3)

as t→ t0 and v2
k+1 + · · ·+ v2

n → 0, and

rYb(t,v, t′,v′)(6.4)

= 1− d|t− t′|ν(1 + o(1))−
n∑
i=1

b2i
2

(vi − v′i)2(1 + o(1))

as t, t′ → t0, v
2
k+1 + · · ·+ v2

n → 0, and v′2k+1 + · · ·+ v′2n → 0.
In addition, there exist δ > 0,Q > 0 such that

E
((
Yb(t,v)− Yb(t′,v′)

)2) ¬ Q(|t− t′|γ +
n∑
i=1

(vi − v′i)2)(6.5)

holds for all (t,v) ∈ ([t0 − ρ, t0 + ρ] ∩ [0, T ])× Sn−1. It follows that

P

(
sup
t∈[0,T ]

χ2
n,b(t) > u2

)
= P

(
sup

(t,v)∈GT
Yb(t,v) > u

)
.

Therefore, we shall focus on the tail asymptotics of

P

(
sup

(t,v)∈GT
Yb(t,v) > u

)
, u→∞.
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Next define ∆u = [t0 − (lnu/u)2/µ, t0 + (lnu/u)2/µ], Cu = {v ∈ Sn−1 : vi ∈
[− lnu/u, lnu/u], k + 1 ¬ i ¬ n} and let

π1(u) := P

(
sup

(t,v)∈∆u×Cu
Yb(t,v) > u

)
.

We have, for any u > 0 and any small ρ > 0

π1(u) ¬ P

(
sup

(t,v)∈GT
Yb(t,v) > u

)
(6.6)

¬ π1(u) + P

(
sup

(t,v)∈GT /([t0−ρ,t0+ρ]×Cu)
Yb(t,v) > u

)

+P

(
sup

(t,v)∈([t0−ρ,t0+ρ]/∆u)×Cu)
Yb(t,v) > u

)
.

Further, in view of Theorem 6.1

π1(u)(6.7)

=
n∏

i=k+1

(1− b2i )−1/2M̂ν,µ,d,a(−∞,∞)u

(
2
ν
− 2
µ

)
+Υk(u

2)(1 + o(1))

as u→∞. By (6.3) and the Borell-TIS inequality (see, e.g., [1])

P

(
sup

(t,v)∈GT /([t0−ρ,t0+ρ]×Cu)
Yb(t,v) > u

)
(6.8)

¬ Q exp

(
−(u−Q1)2

2(1− δ0)

)
holds for all u large, with some constants Q > 0,Q1 > 0 and δ0 ∈ (0, 1). Further,
in the light of (6.3), (6.5) and the Piterbarg inequality given in Theorem 8.1 in [29]

P

(
sup

(t,v)∈([t0−ρ,t0+ρ]/∆u)×Cu)
Yb(t,v) > u

)
(6.9)

¬ Q2u
2(n+1)
γ∧2 −1

exp

(
− u2

2(1− (lnu/u)2Q3)2

)
holds for all u large, with some positive constants Q2,Q3. Consequently, the claim
for the case that t0 ∈ (0, T ) follows from (6.6)–(6.9). This completes the proof. �
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P r o o f o f T h e o r e m 3.1. Let T > t0 be some fixed large enough inte-
ger, and let

π(u) = P

(
sup
t∈[0,T ]

n∑
i=1

b2iZ
2
i (t) > u1−2H/β

)
,

π1(u) = P

(
sup

t∈[T,∞)

n∑
i=1

b2iZ
2
i (t) > u1−2H/β

)
.

Clearly

π(u) ¬ ψ∞(u) ¬ π(u) + π1(u).

By the definition of Zi’s we have that there exist some constants Q > 0, ρ ­ 0
such that

E
(
(Z1(t)− Z1(s))2

)
¬ Q|t− s|α

holds for any t, s ∈ [t0 − ρ, t0 + ρ]. Thus, in view of (3.4), (3.5) and Theorem 2.1
we conclude that as u→∞,

π(u) =
n∏

i=k+1

(1− b2i )−1/2M
α,2,Q

2
, B
4A

(A(u))
2
α
−1 Υk((A(u))2)(1 + o(1)),

where A(u) = A1/2u
1/2−H

β . Therefore, to complete the proof it is sufficient to
show that

π1(u) = o(π(u)), u→∞.

To this end, let Ỹb(t,v) =
∑n

i=1 biA
1/2Zi(t)vi, (t,v) ∈ [T,∞) × [−1, 1]n. We

have

π1(u) = P

(
sup

(t,v)∈[T,∞)×Sn−1

Ỹb(t,v) > A(u)

)
.

We split the interval [T,∞) into subintervals [k, k + 1), k ­ T. For every k ­ T ,

we have (set Y ∗b (t,v) =

√
1+ctβ

tH
Ỹb(t,v))

P

(
sup

(t,vv)∈[k,k+1)×Sn−1

Ỹb(t,v) > A(u)

)

¬ P

(
sup

(t,v)∈[k,k+1)×[−1,1]n
Y ∗b (t,v) >

√
1 + c(k − 1)β

(k − 1)H
A(u)

)
.(6.10)
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In addition, there exists some global constant Q such that for any k ­ T

E
(
Y ∗b (t,v)− Y ∗b (t′,v′)

)2
¬ 2AnE

(
Y (t)− Y (t′)

)2
+ 2A

n∑
i=1

(vi − v
′
i)

2

¬ Q

(
|t− t′|α +

n∑
i=1

(vi − v
′
i)

2

)

holds for all t, t′ ∈ [k, k + 1),v,v′ ∈ [−1, 1]n. Next we split [−1, 1]n into 2n sub-
sets of the form

∏n
i=1 ∆ji

i , ji = 1, 2, where ∆1
i = [−1, 0] and ∆2

i = [0, 1]. By
using Lemma 2.2 we derive, for k ­ T

P

 sup
(t,v)∈[k,k+1)×

∏n

i=1
∆
ji
i

Y ∗b (t,v) >

√
1 + c(k − 1)β

(k − 1)H
A(u)


¬ 2n+2e

−Q1
1+c(k−1)β

(k−1)2H
(A(u))2

,

with Q1 = min( c
∗

Q ,
1

8A). This together with (6.10) yields that

P

(
sup

(t,v)∈[k,k+1)×Sn−1

Ỹb(t,v) > A(u)

)
¬ 22n+2e

−Q1
1+c(k−1)β

(k−1)2H
(A(u))2

.

Consequently, since T was chosen large enough

π1(u) ¬
∞∑
k=T

22n+2e
−Q1

1+c(k−1)β

(k−1)2H
(A(u))2

¬ 22n+2
∞∫
T−2

e−Q2(A(u))2yβ−2H
dy

¬ Q3(A(u))−2e−Q2(T−2)β−2H(A(u))2 = o(π(u))

as u→∞, where Q3 is a constant depending on T and Q2 = cQ1. This completes
the proof. �

P r o o f o f T h e o r e m 4.1. Case i). We introduce a deterministic function
m(u) = u+cTβu

T 2H
u

, u > 0, and centered Gaussian processes

Wu,i(t) =
Yi(t)√

1− cu
1+cu

(1− tβ)
, t ­ 0, 1 ¬ i ¬ n,
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with cu = cT βu /u, u > 0 such that limu→∞ cu = csβ0 =: c0. By the self-similarity
of Y we have

ψTu(u) = P

(
sup
t∈[0,1]

n∑
i=1

b2iW
2
u,i(t) > m(u)

)
.

Let further c±ε0 = max(c0 ± ε, 0) and define

W±εi (t) =
Yi(t)√

1− c±ε0

1+c±ε0

(1− tβ)

, t ­ 0, 1 ¬ i ¬ n,

for any sufficiently small ε > 0. Thus we have, for u large enough

P

(
sup
t∈[0,1]

n∑
i=1

b2i
(
W−εi (t)

)2
> m(u)

)
¬ ψTu(u)

¬ P

(
sup
t∈[0,1]

n∑
i=1

b2i
(
W+ε
i (t)

)2
> m(u)

)
.

Next we consider the upper bound of ψTu(u). It follows that σW+ε
1

(t) attains its
maximum over [0, 1] at the unique point t0 = 1 and further

σW+ε
1

(t) = 1− 2H − (β − 2H)c+ε
0

2(1 + c+ε
0 )

|t− 1|(1 + o(1)), t→ 1,

Corr(W+ε
1 (t),W+ε

1 (s)) = 1− tα0Q

2
|t− s|α(1 + o(1)), s, t→ 1.

In addition, there exists some Q > 0 such that

E
(
(W+ε

1 (t)−W+ε
1 (s))2

)
¬ Q|t− s|α

holds for all s, t ∈ [1/2, 1]. Therefore, in view of Theorem 2.1

P

(
sup
t∈[0,1]

n∑
i=1

b2i
(
W+ε
i (t)

)2
> m(u)

)

=
n∏

i=k+1

(1− b2i )−1/2M
α,1,Q

2
tα0 ,D+ε

(m(u))(
1
α
−1)

+ Υk(m(u))(1 + o(1))

as u → ∞, with D+ε =
2H−(β−2H)c+ε0

2(1+c+ε0 )
. Similar arguments give the same lower

bound as above (with +ε replaced by −ε) for ψTu(u), and thus letting ε→ 0 the
claim in i) follows.
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Case ii). Again, using the self-similarity we derive

ψTu(u) = P

(
sup

t∈[0,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
,

where A(u) = A1/2u1/2−H/β . Let tu = t0 − u−1/2+H/β lnu, and define

πtu(u) = P

(
sup

t∈[0,tu]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
.

Clearly,

P

(
sup

t∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
¬ ψTu(u)

¬ P

(
sup

t∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
+ πtu(u).

In the following, we shall first derive the asymptotics of the common term on
both sides of the above formula, which will give the exact asymptotics of ψTu(u).
Then we show that πtu(u) is asymptotically negligible. In view of (3.4), (3.5) and
Theorem 6.1, we have, for any x ∈ (−∞,∞)

P

(
sup

t∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
= ψ∞(u)Φ(x)(1 + o(1)), u→∞.

Next we show that the last formula is also valid for x = ∞. Since, for any fixed
y ­ 0,

P

(
sup

t∈[tu,t0+yB(u)]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)

¬ P

(
sup

t∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
¬ ψ∞(u),

we obtain from Theorem 6.1 that

Φ(y) ¬ limu→∞

P
(

supt∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
ψ∞(u)

¬ limu→∞

P
(

supt∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
ψ∞(u)

¬ 1.
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Therefore, letting y →∞ we conclude that

P

(
sup

t∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
= ψ∞(u)(1 + o(1)), u→∞.

To complete the proof we prove that πtu(u) = o(ψ∞(u)) as u→∞. We have

P

(
sup

t∈[0,tu]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
= P

(
sup

(t,v)∈[0,tu]×Sn−1

Ỹb(t,v) > A(u)

)
,

where Ỹb(t,v) =
∑n

i=1 biA
1/2Zi(t)vi, (t,v) ∈ [0, t0 + 1] × Sn−1. Further, there

exist some constants δ ∈ (0, 1),Q > 0 such that

E
(

(Ỹb(t,v))2
)
¬ 1− δ < 1, t ∈ [0, t0 − ρ],v ∈ Sn−1,

E
(

(Ỹb(t,v)− Ỹb(t,v))2
)
¬ Q(|t− s|α +

n∑
i=1

(vi − v
′
i)

2), t ∈ [t0 − ρ, t0 + ρ],v ∈ Sn−1

hold. Therefore, as in the proof of Theorem 2.1, by the Borell-TIS inequality we
have

P

(
sup

t∈[0,t0−ρ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
(6.11)

¬ e
− (A(u)−Q0)

2

2(1−δ)2 = o(ψ∞(u)), u→∞,

with Q0 = E
(

sup(t,v)∈[0,t0−ρ]×Sn−1
Ỹb(t,v)

)
<∞, and by the Piterbarg inequal-

ity and (3.4) (or by a direct application of [33], Proposition 3.2) we have

P

(
sup

t∈[t0−ρ,tu]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
(6.12)

¬ Q1(A(u))2(n+1)/αΨ

(
A(u)

1−Q2(A(u)−1 lnA(u))2

)
= o(ψ∞(u))

as u → ∞, where Q1 and Q2 are two positive constants. Consequently, we con-
clude from (6.11) and (6.12) that

πtu(u) = o(ψ∞(u)), u→∞.

This completes the proof. �
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P r o o f o f T h e o r e m 4.2. Case i). For notational simplicity, we let

f(u) =
2T 2H+1

u

(2H − cβsβ0
1+csβ0

)(u+ cT βu )
, u > 0.

By definition, for any x > 0

P
(
Tu − τu
f(u)

> x
∣∣τu ¬ Tu) =

ψTu−xf(u)(u)

ψTu(u)
.

Further, it follows from Theorem 4.1 that

lim
u→∞

ψTu−xf(u)(u)

ψTu(u)
= lim

u→∞
e
u+cT

β
u

2T2H
u
−u+c(Tu−xf(u))

β

2(Tu−xf(u))2H = e−x,

establishing the claim in i).
Case ii). Similarly as above, in the light of Theorem 4.1 we have, for any

y ¬ x

lim
u→∞

P

(
τu − t0u1/β

B(u)
< y
∣∣τu ¬ Tu) = lim

u→∞

ψt0u1/β+yB(u)(u)

ψTu(u)
=

Φ(y)

Φ(x)
.

Thus, the proof is complete. �

P r o o f o f T h e o r e m 5.1. One approach is to follow a similar proof as
Theorem 2.1 by using the double-sum method. Here, we give another proof based
on the ideas and results in [16], [28] and [27]. We first show that

P

(
sup
t∈[0,T ]

χ2
n,b(t) > u

)
(6.13)

= P

(
sup
t∈[0,T ]

χ2
k,1(t) +

n∑
i=k+1

b2iX
2
i (t0) > u

)
(1 + o(1))

holds as u→∞, which in view of Lemma 2.1 in [27] is sufficient. Indeed, letting
G(u) = P

(
supt∈[0,T ] χ

2
k,1(t) ¬ u

)
we have from (2.5) that

lim
u→∞

1−G(u+ y)

1−G(u)
= exp

(
−1

2
y

)
, ∀y ∈ R.

Further let H(u) = P
(∑n

i=k+1 b
2
iX

2
i (t0) ¬ u

)
. It is known (cf. Example 2 in

[21]) that

1−H(u) = O

(
ur exp

(
− u

2bk+1

))
= o(1−G(u))
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for some r ∈ N. Moreover, by choosing some θ ∈ (1/2, 1/(2bk+1)) we have that

∞∫
0

eθxdH(x) <∞.

Therefore, by Lemma 2.1 in [27] the claim in (2.6) follows from (6.13).
It remains to show (6.13). To this end, we introduce the following two Gaussian
random fields: for t ­ 0, vkv ∈ Rn,

Yb(t,v) =
n∑
i=1

biviXi(t), Zb(t,v) =
k∑
i=1

viXi(t) +
n∑

i=k+1

biviXi(t0).

As in the proof of Theorem 2.1 it is sufficient that

P

(
sup

(t,v)∈GT
Yb(t,v) > u

)
(6.14)

= P

(
sup

(t,v)∈GT
Zb(t,v) > u

)
(1 + o(1))

holds as u→∞. Next we have that the standard deviations σYb(t,v) and σZb
(t,v)

attain their absolute maximum (equal to 1) over GT at all points of C0 given as

C0 = {t0} × {v ∈ Sn−1 : v2
1 + · · ·+ v2

k = 1} ⊂ GT .

Further we consider the expansions of the standard deviations and the correlations
of the Gaussian random fields Yb and Zb around the sphere C0. By direct calcula-
tions we have

σYb(t,v) = 1− a|t− t0|µ(1 + o(1))− 1

2

n∑
i=k+1

(1− b2i )v2
i (1 + o(1)),(6.15)

σZb
(t,v) = 1− a|t− t0|µ(1 + o(1))− 1

2

n∑
i=k+1

(1− b2i )v2
i (1 + o(1))

hold as t→ t0 and
∑n

i=k+1 v
2
i → 0. Further, since γ > ν, γ1 ­ ν,

(6.16)

rYb(t,v, s,u) = Corr(Yb(t,v), Yb(s,u))

= 1− d|t− s|ν(1 + o(1))− 1

2

n∑
i=1

b2i (vi − ui)2(1 + o(1)),

rZb
(t,v, s,u) = Corr(Zb(t,v), Yb(s,u))

= 1− d|t− s|ν(1 + o(1))− 1

2

n∑
i=1

b2i (vi − ui)2(1 + o(1))
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hold as s, t → t0,
∑n

i=k+1 v
2
i → 0 and

∑n
i=k+1 u

2
i → 0. The technical proof of

(6.16) is omitted here and it can be found in arXiv:1407.6501.
Define a neighborhood Cu of C0 as

Cu = {(t,v) : a|t− t0|µ +
1

2

n∑
i=k+1

(1− b2i )v2
i < lnu/u} ∩ GT .

By an application of Borell inequality and Piterbarg inequality as in the proof of
Lemma 8.1 in [29] we can show that

P

(
sup

(t,v)∈GT
Yb(t,v) > u

)
= P

(
sup

(t,v)∈Cu
Yb(t,v) > u

)
(1 + o(1)),(6.17)

P

(
sup

(t,v)∈GT
Zb(t,v) > u

)
= P

(
sup

(t,v)∈Cu
Zb(t,v) > u

)
(1 + o(1))(6.18)

hold as u → ∞. Moreover, since we are concerned about the asymptotic results
it follows that the expansions of the standard deviations and the correlations of
the Gaussian random field Yb (or Zb) around the sphere C0 are the only necessary
properties influencing the asymptotics of (6.17) (or (6.18)); this is due to the fact
that Yb and Zb are Gaussian and Cu → C0 as u→∞. Therefore, it follows from
(6.15) and (6.16) that (6.14) is established. This completes the proof. �

ȩ
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