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We study relational contracts between a firm and a worker with mu-
tual uncertainty about match quality. The worker’s actions are publicly
observed and generate both output and information about the match
quality. We show that the relational contracts may be inefficient. We
characterize the inefficiency through a holdup problem on the contem-
poraneous output. In the frequent action limit, these inefficiencies per-
sist if and only if information degrades at least at the same rate at which
impatience vanishes. We characterize optimal relational contracts and
show that they involve actions that yield both a lower payoff and less
information than another action.

Two features are ubiquitous in employment relationships. First, there is mutual uncertainty about
their match quality, a crucial determinant of productivity.1 The second feature is the incomplete-
ness of contracts. Contracts are rarely conditioned on all observable aspects of an employee’s
performance: some actions can be difficult to verify in an outside court, or prohibitively costly
to contract on. However, a benefit of the dynamic nature of employment relationships is that the
parties form relational contracts—informal agreements linking good performance to bonuses and
promotion. The goal of this paper is to study the nature of relational contracts when the parties face
uncertainty about their match quality.

For example, suppose Bob and his manager, Ann, perceive that their match quality is relatively
poor. Bob is on the verge of getting fired unless he succeeds in his next project. If Bob works hard—
a costly activity for him—he is more likely to succeed. If he shirks, indeed, being successful is less
likely, but at least Bob would save his effort costs. Should Bob work hard in order to maximize
his chances of staying employed or shirk, since the relationship is likely to end? Can Ann provide
incentives for hard work?

We answer these questions by studying a standard relational contracting setting of perfect in-
formation between a Ann (the firm) and Bob (the worker) where the parties are symmetrically
uninformed about their match quality. In this framework, Bob’s work plays a dual role: it produces
immediate revenue (output) for Ann. But his output and effort also produce information about their
match quality. Our first contribution is to highlight the mechanism that leads to systematic distor-
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tions in the relational contracts between Ann and Bob. In short, if the immediate revenue is a strong
reason why Ann would have Bob work hard at the brink of separation, the outcomes are inefficient.
On the other hand, if the primary motive is to acquire information, then the outcomes are efficient.
So what should the parties do when they cannot attain efficiency? Our second contribution answers
this question by providing a full characterization of the optimal relational contract. Most notably,
this characterization reveals that Ann may assign Bob to a less ambitious project which will not
require hard work but will also reveal less information about the future prospects of the relation-
ship. These relational contracts resemble probationary periods or “performance improvement plans
(PIPs)” that we will expand upon later.

Summary of the framework and results: We study an infinite horizon, discrete time game
between a firm and a worker. In each period, the firm can fire the worker or offer him a salary.
If the worker accepts the salary, he chooses an observable action. The output is stochastically
determined by the worker’s action and a relationship-specific match quality. We study the set of all
relational contracts, i.e., Perfect Bayesian Equilibria of this game.

Notice that an action produces both output and also information about the match quality. Hence,
actions can be ranked according to their informativeness (in the Blackwell sense) and their profitability—
expected output minus the effort cost of the action. For most of the paper we analyze an environ-
ment with two actions: high and low. We assume that the high action is more informative as well
as more profitable than the low action.

We begin by studying the efficiency of relational contracts. The efficient benchmark is the so-
lution to the experimentation problem of a planner who maximizes the joint surplus of the firm
and the worker ignoring incentive constraints. It is characterized by a simple policy—terminate the
relationship below a certain cutoff belief about the match quality and choose the high action above
the cutoff.2

We obtain a full characterization of efficiency driven by the interaction between contract incom-
pleteness and learning. Consider the efficient cutoff belief where the planner is indifferent between
the outside options and experimentation. At this belief, the cost of the worker’s action is exactly
offset by the value of experimentation over and above the outside options. The value of exper-
imentation consists of two parts—contemporaneous output and the option value of learning. In
relational contracts, incentives to choose the high action are provided via the option value of learn-
ing alone. Therefore, if the contemporaneous output is larger than the outside options, the option
value of learning will not offset the costs of effort. As a result, relational contracts are inefficient.
Otherwise, they are efficient. The way we interpret this, in our original Ann and Bob example, is
that whenever the immediate revenue (contemporaneous output) is sufficiently attractive for Ann,
relational contracts are inefficient. On the other hand, if the option value of learning is sufficiently
large, relational contracts are efficient. One implication of this result is that inefficiency can be
mitigated by increaseing unemployment benefits which would strengthen the outside options.

We proceed to characterize the optimal relational contract in Proposition 3. The contract exhibits
a three-region structure (Figure 1). The players take their outside options at low beliefs. The

2This is a correlated three-arm bandit problem, the three arms being the high action, the low action and the outside option. In
general, such problems can be analytically challenging. However, since the high action unambiguously dominates the low action,
obtaining the optimal policy is straightforward.



VOL. VOL NO. ISSUE LEARNING IN RELATIONAL CONTRACTS 3

worker chooses the low action at intermediate beliefs and the high action at high beliefs. Despite
its inferior profitability and informativeness, the low action offers a better alternative to terminating
the relationship when the firm cannot credibly promise to reimburse the worker for the cost of the
high action.

Firm and worker

Efficient benchmark

Beliefs

Quit High

Quit Low High

Figure 1. Difference between the efficient benchmark and optimal relational contract

As mentioned earlier, this characterization resembles the performance improvement plans (PIPs)
that are often used in consulting firms.3 In PIPs, struggling employees are assigned less important
roles as a chance to redeem themselves and stay employed before getting fired. In the optimal
relational contract, the low action region can be interpreted as a PIP. We would like to point out
that, unlike other models of relationship building (Watson, 1999, 2002; Halac, 2014), an important
implication of our model is that the worker may move in and out of a PIP multiple times. This is a
testable implication of our model.

The intuition behind Proposition 3 is that the high action is used whenever it is incentive com-
patible, since it is more informative and more profitable. Hence, the low action is only optimal at
lower beliefs where the high action cannot be incentivized. This intuition is a correct starting point
but is incomplete. In the efficient benchmark, the low action is never used because, absent incentive
constraints, more information is always desirable. In a relational contract incentive constraints may
make information undesirable at some beliefs.4 This in turn may render the low action superior
because it is less informative.

The proof of Proposition 3 obtains the three-region structure by using the algorithmic procedure
by Abreu, Pearce, and Stacchetti (1990), APS hereafter. We adapt the APS algorithm to show that
iterative application of an operator on an appropriate initial function yields, as a fixed point, the
equilibrium surplus function (maximum achievable surplus at each belief). We demonstrate the
use of this approach in two steps—(i) Applying the operator once on the function obtained in the
efficient solution yields a three-region structure; and (ii) due to our assumptions on the ranking

3See https://www.shrm.org/resourcesandtools/tools-and-samples/how-to-guides/pages/
performanceimprovementplan.aspx

4Preference for information is equivalent to the convexity of the surplus function for the optimal relational contract. As we will
see later, the surplus function in the optimal relational contract is generally not convex. In a special case where all actions are equally
informative, such non-convexities do not pose any technical hurdles and a three-region structure is immediate. See Section VI.D for
details.
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of payoff and informativeness, we obtain that the three-region structure is preserved upon every
subsequent operation. Therefore, the three-region structure is obtained as a fixed point property.
We are optimistic that this approach could be useful in other settings.

A natural point of inquiry for our model is the effect of increasing patience. There are typically
two kinds of limits that are studied towards this goal. Folk theorems study the limit as players be-
come arbitrarily patient, leaving the rest of the environment unchanged. Another source of patience
is frequent interaction, i.e., reducing the length of each period. The literature originating in Abreu,
Milgrom, and Pearce (1991) (AMP hereafter) studies the limiting outcomes of repeated games
with imperfect monitoring as the length of a period converges to 0.5 Shorter periods increase the
effective patience of players, despite a fixed rate of time discounting. However, they have the addi-
tional effect of reducing information per period. The frequent action limit and the limit in standard
folk theorems are equivalent in settings of perfect monitoring and complete information. In our
setting—perfect monitoring with uncertainty about match quality—the two limits may no longer
be equivalent. Therefore, we have a rare opportunity to explore both limits in an environment with
perfect monitoring.

Being agnostic about which of the two limits is more natural, in Section V, we study both ap-
proaches to the patient limit in a unified framework. We consider a sequence of instances of our
model with players’ patience increasing along the sequence while the quality of information may
degrade, both measured in per-period terms. We say that the learning problem is trivial if the lim-
iting optimal policy associated with the efficient outcome involves experimentation at any positive
belief. Theorem 1 provides a sharp characterization of the limiting outcome in the efficient bench-
mark and in the optimal relational contract. First, the holdup problem characterizing inefficiency
from Proposition 2 persists in the limit if and only if the learning problem is non-trivial. Second,
the triviality of the learning problem is characterized by the relationship between the rate at which
informativeness, as measured by the variance of the posterior belief, deteriorates, and the rate at
which players become perfectly patient along the sequence of models. Whenever information de-
cays at a slower rate than the rate at which impatience vanishes, the learning problem is trivial.
Consequently, there is no holdup problem and relational contracts are efficient, consistent with a
folk theorem.6 When information decays at an equal or faster rate, the learning problem is nontriv-
ial and the holdup problem persists in the limit. Hence, the rate of information decay determines
whether inefficiency can be a robust limiting feature of our model.

The remainder of the paper proceeds as follows. Section I discusses the connection of our work
with some existing literature. In Section II, we describe our game and the equilibrium concept.
Section III sets up the preliminary analysis leading to our main results presented in Section IV. In
Section V we analyze the limit of our model as the parties become patient and information may
deteriorate. Section VI details some extensions of the model.

5AMP consider complete information and imperfect monitoring, while our setting has incomplete information and perfect moni-
toring. This distinction gives rise to qualitative differences discussed in detail in Section V.

6The closest existing folk theorem to our setting is due to Wiseman (2005) discussed in Section V.
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I. Related Literature

The early literature on relational contracts established their efficiency in various settings of com-
plete and perfect information when the parties are sufficiently patient (Bull (1987), Thomas and
Worrall (1988), MacLeod and Malcomson (1989)). This is no longer true in settings with private
information such as moral hazard and adverse selection (Levin (2003), Halac (2012)). Our paper
shows that incomplete yet public information alone can also create inefficiencies in relational con-
tracts. Hörner and Samuelson (2013) obtain a similar type of inefficiency in the version of their
model with observable actions, which is a special case of the class of frequent action models that
we consider. In Hörner and Samuelson (2013) inefficiency always obtains due to specific paramet-
ric assumptions (outside options equal to zero). Our characterization of efficiency shows that this
is not true in general and it identifies the force behind (in)efficiency.

Persistent uncertainty in relational contracts has also been studied by Thomas and Worrall (2010),
Kwon (2016) and Malcomson (2016).7 Recently, DeVaro et al. (2018) have studied relational
contracts with moral hazard where a publicly known, exogenously evolving state affects the future
value of the relationship but not the productivity of effort. They find that the effort is increasing
in the state in the optimal relational contract, similar to our three-region characterization. Unlike
these settings, the worker controls the flow of information through his effort in our environment.

Our conclusions share some similarities with the literature on relationship building that posits
that favourable outcomes are achieved by establishing trust through repeated interactions. Typi-
cally, these dynamics are driven by asymmetric information (Ghosh and Ray, 1996; Watson, 1999,
2002; Halac, 2014). McAdams (2011) studies a stochastic partnership game with an exogenously
evolving relationship capital that yields similar dynamics as our optimal relational contract. While
we discuss the contrast in detail after Proposition 3, the evolution of relationship capital is endoge-
nous in our setting.8

Symmetric uncertainty has traditionally been explored in the career concerns literature beginning
with Holmström (1999). Typically, the agent is paid his marginal product every period, which
leaves no room for dynamic incentive provision, e.g. backloaded compensation. Also, the career
concerns literature focuses on the signal jamming incentives where the worker tries to influence
the market’s beliefs. When the agent’s action is unobservable, market driven incentives can give
rise to divergent beliefs and, subsequently the ratchet effect, recently demonstrated by Cisternas
(2018). Observable action rules out both signal jamming and the ratchet effect. In a continuous
time environment without transfers, Kuvalekar and Lipnowski (Kuvalekar and Lipnowski) study a
firm-worker relationship with symmetric uncertainty about match quality and observable actions.
They show that even with observable actions, a non-trivial agency problem ensues in a world
without commitment. Besides the lack of transfers, the actions in their environment are costless
and they focus on Markovian equilibria.

Symmetric uncertainty has also garnered attention in the dynamic contracting literature. With
full commitment, the efficient outcome is trivially achieved in our setting. Hence, the dynamic

7Beyond relational contracts, in a repeated Bertrand game with persistent, private cost shocks, Athey and Bagwell (2008) show that
high persistence relative to patience leads to inefficiencies.

8McAdams (2011) also considers a general version where the relationship capital evolves endogenously. However, he does not
obtain a three-region structure as in our Proposition 3.
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contracting literature is often concerned with moral hazard. Prat and Jovanovic (2014) analyzed a
continuous time model with Brownian learning, and found that in order to avoid the ratchet effect
(as in Laffont and Tirole (1988) and Bhaskar (2014)) the contract induces the agent to shirk early
on, and when the information about his ability is more precise, the rewards are more tightly linked
to the output. These dynamics are similar to our findings–under limited commitment a relationship
with perceived low match quality results in low effort and transitions to high effort as prospects
improve. Due to the binary state of the match quality in our model, the signals’ precision does not
improve over time, and we can see switches between high and low effort due to streaks of luck,
while Prat and Jovanovic (2014) obtained a permanent shift to high effort.

Uncertainty about match quality naturally leads to an experimentation problem connecting us
with Keller et al. (2005), Bolton and Harris (1999) who also have underexperimentation in the
strategic interaction. However, in our setting there is no free-rider effect, which is the main driver
of inefficiencies in that literature.

II. Model

We consider an infinitely repeated interaction between a firm (she) and a worker (he), both risk-
neutral. The productivity of their relationship is determined by the quality of their match, which
can be either good or bad. The parties are symmetrically uninformed: they begin with a common
prior p1 ∈ (0, 1) that the match quality is good. Time is discrete and denoted by t = 1, 2, ... The
firm and the worker have outside options of v and u per period, respectively. Let s = u + v be the
sum of their outside options.

The timing within a period t is shown in Figure 2. At the beginning of the period the firm and
the worker share a common belief pt that the match quality is good. The firm decides whether to
continue interacting with the worker (d f

t = 1) or to terminate the relationship by firing the worker
(d f

t = 0). If she interacts, she offers a wage wt to the worker. The worker decides whether to
accept the offer (dw

t = 1) or terminate the relationship by quitting the firm (dw
t = 0). If the parties

terminate the relationship, they receive their outside options in all remaining periods, starting from
the current one.9 If, instead, a wage offer is accepted, the wage is paid to the worker and he chooses
a level of effort (et), which can be High (H) or Low (L) and is observed by the firm.10 Effort is not
contractible, so the worker is free to choose any level of effort, regardless of the wage he accepted.
The cost of H to the worker is c > 0, while the cost of L is 0.

The outcome of the worker’s effort is either a success (high output) (yt = yh) or a failure (low
output) (yt = yl < yh). The probability of success when the worker’s effort is e is given by γe when
the match quality is good and βe when the match quality is bad, as shown in Table 1. Given a prior
p and effort e ∈ {H, L}, let πe(p) and Re(p) denote, respectively, the expected probability of success

9Allowing the parties to suspend the relationship for a finite number of periods, instead of terminating it, would not affect the
equilibrium outcome. This follows from the existence of an equilibrium where both parties receive their outside options in all periods.

10Allowing the firm to pay a bonus at the end of the period does not change the model, as the bonus can be factored into the next
period’s wage.
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Effort

Match
quality Good Bad

High γH βH
Low γL βL

Table 1—Probability of a success given effort and match quality.

and the expected output in the current period. Then

πe(p) = pγe + (1 − p)βe

Re(p) = πe(p)yh + (1 − πe(p))yl

Since all actions are publicly observable, the firm and the worker form a common posterior pt+1
at the end of period t. Let φ+

e (p) (resp. φ−e (p)) be the posterior belief following effort e and success
(failure) when the prior at the beginning of the period was p. According to Bayes’ rule,

φ+
e (p) =

pγe

pγe + (1 − p)βe
φ−e (p) =

p(1 − γe)
p(1 − γe) + (1 − p)(1 − βe)

.(1)

In addition, we allow for public randomization. Formally, at the beginning of each period the
parties observe the realization xt of a random variable uniformly distributed on [0, 1]. This is a
common convenience in the literature, as it convexifies the equilibrium set of payoffs.

Prior p

F offers
wage wt

W accepts
or rejects
the offer.

F pays
wage wt

W chooses an
action- High or
Low.

Move to the
next period
with posterior
p′

F decides
whether to
fire or not.

Output is realized
Posterior updated
to p′.

Figure 2. Timeline of one period

A. Assumptions

The following assumptions define our baseline model and will be maintained throughout Sec-
tions III, IV, and V. They are visualized in Figure 3

ASSUMPTION 1: RH(1) − c > s > RH(0) − c > RL(0) and s > RL(1) > RL(0).
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ASSUMPTION 2: If βH = βL = 0, then γH > γL. Otherwise, γH
βH

>
γL
βL

.

0 1

βH − c

βL

s

γH − c

γL

RH(p) − c

RL(p)

p

Figure 3. Myopic surplus as a function of beliefs.

The assumptions imply the following:

1) H generates more expected surplus (output net of cost of effort) than L regardless of the
match quality.

2) H generates more (less) expected surplus than the outside options when the match quality is
good (bad).

3) L generates less expected surplus than the outside options regardless of the match quality.

4) H is more informative than L in the sense of Blackwell (1953), which means that

φ+
H(p) ≥ φ+

L(p) ≥ p ≥ φ−L(p) ≥ φ−H(p) for all p.

Finally, we assume that players are patient enough to sustain H in equilibrium when the match
quality is good. Without this assumption the unique equilibrium would involve the players taking
the outside option at every belief.

ASSUMPTION 3: δ
[
RH(1) − c − s

]
≥ (1 − δ)c.

B. Discussion of the model

In the baseline model we assume that the match quality, realized at the beginning of the rela-
tionship, is static. This need not be the case. The match quality can change when firms undergo
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technology shocks, changes in management, or market conditions. To model these scenarios we
could assume that the match quality evolves exogenously according to some Markov process. Such
evolution would not change the structure of our analysis and the results. This is because, even
though the environment is changing, the players observe the same signals regarding its evolution.
Therefore, they share the same beliefs regarding match quality at all points in time.

Our model can also accommodate a setting, wherein the worker is assigned projects by the
firm. Suppose the firm can assign either a big or a small project to the worker each period. Big
projects carry more responsibility, e.g. managing teams, dealing with clients etc. Small projects
can be back-office jobs. The worker chooses his effort on the project. Big projects, due to greater
responsibility, can succeed only if the worker exerts high effort. In that case, the probabilities of
success are γH and βH respectively depending on whether the match is good or bad. The probability
of success for the small projects is γL and βL depending on whether the match is good or bad
regardless of the choice of action. In this framework, the analysis and the results remain identical
to the baseline model.

C. Strategies and Equilibrium

We denote by ht := {xt,wt, et, yt} the history in stage t if the relationship has not been termi-
nated. Let ht := {hτ}t−1

τ=1 be the history at the beginning of period t if the relationship has not been
terminated. LetH t be the set of histories up to time t.

A strategy for the firm is a sequence of functions {D f
t ,Wt}

∞
t=1, where D f

t : H t × [0, 1] → {0, 1}
and Wt : H t × [0, 1]→ R determine the interaction decision and the wage offer as a function of the
history in previous stages and the public random variable in the current stage. Similarly, a strategy
for the worker is a sequence of functions {Dw

t , Et}
∞
t=1, where Dw

t : H t × [0, 1] × R → {0, 1} and
Et : H t × [0, 1]×R→ {H, L} determine his interaction decision and effort level as a function of the
history in the previous stages, the current public random variable, and the firm’s wage offer.

Let Dt := d f
t dw

t . Following history ht and a posterior belief pt, the respective continuation payoffs
to the firm and the worker from strategies (σP, σA) are given by

vt(pt|ht, (σP, σA)) := E

(1 − δ) ∞∑
τ=t

δτ−t
(
Dt(yt − wt) + (1 − Dt)

v
1 − δ

)
ut(pt|ht, (σP, σA)) := E

(1 − δ) ∞∑
τ=t

δτ−t
(
Dt(wt − c1et=H) + (1 − Dt)

u
1 − δ

)
where the expectation is taken over nonterminal histories that are continuations of ht given the

belief pt and the continuations of strategies (σP, σA).11

Following the literature, we define a relational contract as a Perfect Bayesian Equilibrium (PBE)
with public randomization of the dynamic game with the restriction that beliefs are updated re-
cursively according to Bayes rule (1) after every period (henceforth referred to as equilibrium).

11Note that if the relationship is terminated at time t (Dt = 0), the game ends and no histories of length greater than t occur in
equilibrium. The players receive u

1−δ and v
1−δ at time t, which is equivalent to receiving their outside options in each subsequent period.
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This means that the public beliefs are updated only through the realization of the output given the
worker’s action on and off path. The motivation behind this is that in a PBE we can assign arbitrary
beliefs off the equilibrium path. For example, if the worker chose the high action when he was
supposed to choose the low action, the posterior belief can be arbitrary and unrelated to the output
realization. This is obviously unsatisfactory given the structure of our game. Ideally, we want to
embed the notion that players cannot signal what they do not know.12 Our restriction achieves this
purpose.

Let E(p) denote the set of equilibrium payoffs of the game starting at prior belief p.

III. Equilibrium Characterization

A. Efficiency benchmark

The sole conflict in our environment is the separation between the entity exerting effort (worker)
and the entity collecting the output (firm). Therefore, our natural notion of efficiency is one where
effort is contractible. Alternatively, we could view this as an experimentation problem wherein a
planner, possessing the same information about match quality as the firm and the worker, chooses
effort to maximize the total surplus of the firm and the worker. This is a multi-armed bandit problem
with two correlated arms (H and L), and one safe arm given by the outside options.

Given a value function f , let Te f denote the surplus from choosing an effort e ∈ {H, L} today and
drawing continuations from f according to the probabilty distribution induced by e.

Te f (p) := (1 − δ)(Re(p) − 1e=Hc) + δEe[ f (p)]
where Ee[ f (p)] = πe(p) f (φ+

e (p)) + (1 − πe(p)) f (φ−e (p)) ∀e ∈ {H, L}

The optimal policy for this problem specifies an effort level or the outside options at each belief
p. Let G(p) denote the payoff associated with the optimal policy. The value function G is the
unique fixed point of the following operator T : B[0, 1] → B[0, 1] where B[0, 1] denotes the set of
bounded real-valued functions on [0, 1]:

T f (p) = max{TH f (p),TL f (p), s}.(2)

Proposition 1 uses standard dynamic programming arguments to establish that G is convex. Thus,
the planner prefers more informative arms. Since H offers more information and more surplus than
L, the planner never chooses the latter. Hence, the optimal policy has a simple structure. There is a
cutoff belief pFB above which the planner uses H and below which the planner chooses the outside
options.

PROPOSITION 1: The efficient value function is given by the unique fixed point G of the operator
T . G is increasing and convex. There exists a unique belief pFB ∈ (0, 1) such that the optimal policy
is to choose H above pFB and the outside options below pFB.

12As Battigalli (1996) pointed out, this implies a notion of strategic independence.
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All proofs are presented in the appendix.

B. Recursive Characterization

We proceed to analyse E(p), the set of equilibrium payoffs of the game starting with prior
p ∈ [0, 1]. Techniques from Abreu, Pearce, and Stacchetti (1990) (APS) are easily adapted to
show that equilibria admit a recursive structure with the belief acting as a state variable. Any equi-
librium payoff (u, v) ∈ E(p) can be decomposed into an action profile for the current period and
continuation payoffs subject to incentive constraints. Continuation payoffs must belong to E(p′),
where p′ is the updated belief. For each (u, v) ∈ E(p), the payoffs are decomposed in one of the
following three ways.

• (High effort) There exist continuation payoffs (u+, v+) ∈ E(φ+
H(p)), (u−, v−) ∈ E(φ−H(p)) and

a wage w such that,

v = (1 − δ)(RH(p) − w) + δ[πH(p)v+ + (1 − πH(p))v−]
u = (1 − δ)(w − c) + δ[πH(p)u+ + (1 − πH(p))u−]
v ≥ v, u ≥ u

δ
[
πH(p)u+ + (1 − πH(p))u− − u

]
≥ (1 − δ)c(3)

• (Low effort) There exist continuation payoffs (u+, v+) ∈ E(φ+
L(p)), (u−, v−) ∈ E(φ−L(p)) and a

wage w such that

v = (1 − δ)(RL(p) − w) + δ[πL(p)v+ + (1 − πL(p))v−]
u = (1 − δ)w + δ[πL(p)u+ + (1 − πL(p))u−]
v ≥ v u ≥ u

• (Termination) The firm does not interact or the worker rejects the offer.

v = v u = u

The above characterization relies on the fact that players act sequentially and publicly, and that
there is an equilibrium that gives both parties their outside options (see Lemma 2 in the appendix).
This equilibrium is used to threaten deviators.

In light of this punishment, the incentive constraint for the firm is straightforward. Suppose the
firm deviates by offering w′. If w′ ≥ u, the worst continuation equilibrium for the firm is one where
the worker accepts and exerts L and the outside options are taken in the following period. The
resulting payoff for the firm is strictly less than v. If w′ < u, then the worker quits giving the firm a
payoff of v. Therefore, the firm’s incentives amount to a participation constraint.

For the worker, an additional constraint (3) is that he needs to be compensated through future
continuation value if he is exerting H. If he deviates by choosing L, he still collects the wage, saves
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on the cost c and is punished by receiving u tomorrow.

C. Optimal Relational Contracts through Surplus Maximization

Notice that the contemporaneous wages can be used to redistribute surplus without affecting
incentives, as in Levin (2003). Hence, an optimal relational contract maximizes the sum of the
firm’s and the worker’s payoffs and is characterized by a surplus function S defined below.

S (p) := max
(u,v)∈E(p)

{u + v}

In a surplus-maximizing relational contract, it is without loss of generality to keep the firm to
its outside option and give the worker the entire future surplus over and above the firm’s outside
option by shifting the current wage in the firm’s favour. This offers the strongest incentives for the
worker without impacting the incentives of the firm. This observation helps us characterize S as a
fixed point of the operator T∗ defined in Lemma 1 below. T∗ resembles the operator T in (2) used
to obtain the efficient surplus, but with the addition of an incentive constraint (4) for using H.

LEMMA 1: S is a fixed point of the operator T∗ : B[0, 1]→ B[0, 1] given by

T∗ f (p) :=

 max{TH f (p),TL f (p), s} if δ
(
EH[ f (p)] − s

)
≥ (1 − δ)c(4)

max{TL f (p), s} otherwise

and

S = lim
n→∞

T n
∗G

where T n
∗G ≥ T n+1

∗ G and the limit is taken pointwise.

The incentive constraint in T∗ implies that T∗ is not a contraction.13 Despite this, we can still
obtain S by iteratively applying T∗ on the efficient surplus function G. This result exploits the
algorithmic result of APS. The APS algorithm obtains the equilibrium payoff set by an iterative
application of a set-valued operator on a large enough payoff set. Since our setting has a separate
equilibrium payoff set for each belief, we adapt the algorithm to operate on payoff correspondences.
Then we exploit the fact that the equilibrium set at any belief p can be characterized entirely by
S (p). Thus, the APS algorithm can be reduced to operating on surplus functions. This characteri-
zation, stated in Lemma 1 below, will let us establish a number of key properties of S , including a
complete characterization of the optimal relational contract.

13To see this, note that S is only one of many fixed points of T∗. Another fixed point is a function which equals s for all beliefs in
[0, 1).
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IV. Results

A. (In)efficiency of relational contracts

We say that relational contracts are inefficient if the optimal relational contract cannot achieve
the efficient surplus at some belief i.e. S (p) < G(p) for some p ∈ [0, 1]. In the absence of any
private information, the only tension is the separation between the entity incuring the cost of effort
(worker) and the entity collecting the output (firm). In an environment with known match quality,
MacLeod and Malcomson (1989) showed that when the players are sufficiently patient, relational
contracts are efficient. The uncertainty about match quality, even though symmetric, may overturn
this result. Proposition 2 provides a necessary and sufficient condition for inefficiency.

PROPOSITION 2: Relational contracts are inefficient if and only if RH(pFB) > s.

We proceed to illustrate the argument. Since every belief admits an equilibrium where the parties
receive their outside options, the efficient solution can be replicated in a relational contract at every
belief p < pFB. Hence, to establish efficiency, it suffices to show that every belief p ≥ pFB admits
an equilibrium where the worker chooses H. This amounts to showing that H can be incentivized
at pFB since relational contracts generate more surplus at higher beliefs. Since G(pFB) = s, we
have

(1 − δ)
(
RH(pFB) − c

)
+ δEH[G(p)] = s.

This means that the cost of H is exactly compensated by the sum of two terms: the contemporane-
ous output and continuation surplus in excess of the sum of the outside options:

(1 − δ) c︸   ︷︷   ︸
Today’s cost

= (1 − δ)(RH(pFB) − s)︸                    ︷︷                    ︸
Today’s excess surplus

+ δ(EH[G(p)] − s)︸              ︷︷              ︸
Tomorrow’s excess surplus

.

In equilibrium, the firm cannot commit to rewarding the worker with the output in the current
period. This creates a holdup problem when today’s excess surplus must be used to compensate
the worker for his effort in the efficient solution. The worker can be incentivized to choose H
only when tomorrow’s excess surplus exceeds today’s cost, as evidenced by (4). If RH(pFB) > s,
tomorrow’s excess surplus must be less than today’s cost, i.e., the incentive constraint (4) at pFB

fails even if the continuation surplus in relational contracts S equals the efficient surplus G. Since
S ≤ G, relational contracts are inefficient. Conversely, if RH(pFB) ≤ s, then the incentive constraint
at pFB is satisfied assuming that the continuation surplus is given by G. A fixed point argument
using Lemma 1 then establishes that relational contracts are efficient.14

Since the source of inefficiency is a holdup problem on today’s excess surplus, one might think
that the introduction of output-contingent spot contracts would restore it. However, as we show in
Section VI, as long as the worker is protected by limited liability, the inefficiency persists. Thus, the

14The nature of the holdup problem is not tied to the specific information structure we consider. The argument generalises to a
setting with continuous output under sufficient regularity.
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inefficiency is not a direct consequence of unknown match quality but rather its subtle interaction
with incomplete contracts.

While Proposition 2 places a condition on the cutoff belief in the efficient outcome which is an
endogenous object, Corollary 1 below gives a sufficient condition for inefficiency, based only on
the primitives of the model.

COROLLARY 1: If RH(0) ≥ s, then relational contracts are inefficient.

Moreover, if the condition above fails, i.e. RH(0) < s, then, relational contracts are efficient for a
sufficiently high δ. When δ is fixed, it is also possible to generate sets of parameters with positive
measures for which relational contracts are efficient or inefficient.

B. Optimal relational contracts

We now give a characterization of the optimal relational contracts.

PROPOSITION 3: An optimal relational contract is described by two cutoff beliefs: p and p̄ such
that p̄ ≥ p ≥ pFB. At any belief p

• The firm and the worker interact if and only if p ≥ p.

• The worker exerts L if p ∈ [p, p̄).

• The worker exerts H if p ≥ p̄.

The structure of optimal relational contracts can be interpreted as follows. When the players are
sufficiently pessimistic about the match quality, the (expected) value of the relationship is low and
learning has a high opportunity cost, so it is optimal to fire the worker. When the players are highly
optimistic, the future value of the relationship is sufficient to incentivize the worker to exert H. At
intermediate beliefs there is not enough surplus to provide incentives, but the firm would like to
retain the worker, as it is reasonably likely that the match quality is good. This is accomplished by
the worker choosing L which is cheaper to incentivize and also offers some learning.

The structure of the optimal relational contracts resembles PIPs mentioned in the introduction.
Typically, a worker not meeting the performance standards is placed on a PIP where he is monitored
closely. In the event that his performance improves, the worker is moved out of a PIP; otherwise, he
is fired. In our model, this corresponds to a belief that dips below p̄ and climbs back above it. These
dynamics are different from the ideas of “starting small” (Ghosh and Ray, 1996; Watson, 1999,
2002; Halac, 2014). In these models, parties build up the value of their relationship monotonically
as long as it is not terminated. In our model, beliefs do not evolve monotonically so the value of the
relationship may not improve with time. The parties realise that a drop in beliefs may happen even
if the match quality is good, so the worker is given a chance to improve his performance, instead of
being fired immediately. Hence, our model explains why a worker in good standing can be placed
on a PIP, complete it successfully and continue his career with the firm.

While Proposition 3 does not guarantee that L is used in an optimal relational contract, Proposi-
tion 4 below gives a condition on the parameters of the model, under which this is the case. This
condition implies the sufficient condition for inefficiency in Corollary 1.



VOL. VOL NO. ISSUE LEARNING IN RELATIONAL CONTRACTS 15

Figure 4. Plot of G and S

PROPOSITION 4: If RL(0) − s + δπL(0)(RH(0) − s) ≥ 0 then p < p̄ in Proposition 3.

We proceed to give an overview of the proof of Proposition 3. A starting intuition is that H
should be preferable to L at any belief, so that the worker exerts L only if the incentive constraint
for H cannot be satisfied. Incentive provision being easier at higher beliefs (as there is more future
surplus to promise the worker), the three-region structure should result. However, this intuition is
precluded by the nonconvexity of S , the surplus function in the optimal relational contract (Fig-
ure 4).15,16 Hence, more informative actions are not necessarily preferable. Recall that L is never

15The parameters used for the plot are γH = 0.7, βH = 0.45, γL = 0.35, βL = 0.226, c = 0.22, δ = 0.85, u = 0.15, v = 0.2.
16S exhibits a jump at p̄ where the optimal effort switches from L to H. The reason is that the surplus from H exceeds the surplus

from L at any belief, which will be shown as part of the proof of Proposition 3. Even though H would create more surplus than L at
beliefs lower than p̄, the incentive constraint precludes its use, resulting in the jump. Consequently, there are jumps at beliefs, whose
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used in the efficient benchmark because more information is better, and H dominates L on both the
informativeness and payoff dimensions. In a relational contract, L may be preferred to H at some
beliefs where the gains from the inferior information in L outweigh the payoff losses. Therefore,
we cannot dismiss the possibility of multiple switches between L and H as the beliefs improve.

The key to overcoming this obstacle lies in the APS algorithm as seen in Lemma 1. As S
can be obtained through iterative application of T∗ to the efficient surplus function G, S inherits
the properties of G that are preserved under T∗. While T∗ does not preserve convexity (or even
continuity), it preserves the weaker property that, barring incentive constraints, H is preferred to L.

DEFINITION 1: A function f : [0, 1]→ R exhibits a monotone policy if TH f ≥ TL f .

If an increasing function f exhibits a monotone policy, then the optimal policy associated with f
will exhibit the three-region structure of Proposition 3. Therefore, the proof boils down to showing
that if an increasing function f exhibits a monotone policy, then T∗ f is also an increasing function
that exhibits a monotone policy. The details of this argument are provided in the appendix.

Proposition 3 resembles the characterization in the infinitely repeated stochastic partnership
game studied by McAdams (2011). Therein, the state, which evolves exogenously, captures the
temptation to cheat. Though outwardly different, these two models have a similar intuition behind
obtaining the three-region characterization: providing incentives is difficult when future prospects
of the relationship look grim. In such situations, parties interact but indulge in inefficient activities,
hoping that the relationship could drift towards an optimistic regime. In our model, the state vari-
able that affects the incentives is the belief about the match quality which evolves endogenously.

V. Asymptotic Behavior

In this section we explore the limit of our baseline model as the parties become arbitrarily pa-
tient. There are two typical approaches. Folk theorems analyze the limit as δ→ 1, ceteris paribus.
It is also possible to consider a frequent action limit in which the length of each period is reduced
to 0 without changing patience per unit of time. In a seminal paper, Abreu, Milgrom, and Pearce
(1991) (AMP) showed that these two approaches can produce radically different results in games
of imperfect monitoring. In repeated games of perfect monitoring the two approaches are equiv-
alent when information is complete. This equivalence breaks down in our richer setting due to
incomplete information about match quality. For example, if information accumulates with calen-
dar time, shortening the period length degrades the quality of information. Therefore, the presence
of learning about match quality is a unique opportunity to explore differences between these two
approaches in a game of perfect monitoring.

We do this by studying a sequence of (discrete time) instances of our model with δ converging
to 1 along the sequence. As δ grows, the quality of information per period may (but need not)
degrade. The main result of this section, Theorem 1, shows that the speed at which information
degrades relative to the speed at which impatience vanishes is crucial for the limit behavior of our
model. If information degrades at a slower rate, a folk theorem obtains and relational contracts are
efficient in the sense that the sup norm of G − S converges to 0 as δ→ 1. Wiseman (2005) obtains

posteriors reach p̄, or can be reached from p̄.
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a similar result when information is unchanged along the sequence by proving a folk theorem in
general repeated games with learning.17,18 Our result can be seen as a mild extension of this folk
theorem to a case in which information can degrade, but it does so more slowly than the rate at
which players become patient.

On the other hand, if information degrades at a rate equal to or higher than the rate of decay of
impatience, relational contracts can be inefficient in the limit – the holdup problem of Proposition 2
persists even with patient players. This result stands in contrast to the folk theorem of Peski and
Wiseman (2015) where the probability of a state change vanishes with period length. In our setting
it is possible that the probability of a substantial change in state (beliefs) vanishes with period
length, yet the belief always changes and a folk theorem may or may not hold.

The case where information and impatience degrade at the same rate is reminiscent of AMP. They
study a two player prisoner’s dilemma with imperfect monitoring. A key takeaway in the frequent
action limit is that the sustainability of cooperation crucially depends on the nature of information.
In their “good news” environment, signals arrive according to a Poisson distribution, and their rate
is higher when players cooperate than when they defect. In the “bad news” environment, the rate
of Poisson signals is higher when the players defect than when they cooperate. The bad news
environment facilitates full cooperation when the players are sufficiently patient, while the good
news environment offers no hope thereof. The source of this difference is imperfect monitoring,
where information is used to statistically infer the actions played in the past. In our environment
– learning with perfect monitoring – actions are public, and the information is only used to learn
about future prospects. Therefore, regardless of the environment (good news or bad news), the
holdup problem of Proposition 2 gives rise to inefficiencies when information degrades at the same
rate as patience. Qualitatively there is no distinction between the two environments, in contrast to
AMP. We illustrate this point with a simple example at the end of this section.

Formally, we consider a sequence of models (Mk)∞k=1 with parameters indexed by k and cutoffs
pFB

k , p
k
, p̄k as in Proposition 1 and Proposition 3, such that:

1) δk → 1 as k → ∞

2) None of ck,Rk
H ,R

k
L, uk, vk vary with k.

3) The limits pFB
∗ = limk→∞ pFB

k and p̄∗ = limk→∞ p̄k exist, as well as the (possibly infinite)

limits of γk
H
βk

H
, 1−γk

H
1−βk

H
, and γk

H−β
k
H

1−δk
as k → ∞.

The second assumption is merely a normalization of per-period payoffs.19 Henceforth, payoffs
will not be indexed by k, in order to economize on notation. The last assumption involves no loss
of generality, as it amounts to considering a subsequence.

17Technically, the folk theorem of Wiseman (2005) does not apply to our setting because the set of individually rational payoffs in
the game where match quality is known to be bad has an empty interior.

18For further work on folk theorems with learning see Fudenberg and Yamamoto (2010), Fudenberg and Yamamoto (2011), Wiseman
(2012), and Yamamoto (2019). Well-known folk theorems for stochastic games (e.g. Hörner et al. (2011)) do not apply to our setting
because the space of beliefs is not an irreducible state space due to the option of quitting.

19It is possible to normalize payoffs per unit of time to the same effect.
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In addition, we assume that either the limiting posterior belief following H and success exceeds
any interior prior or the limiting posterior belief following H and failure is below any interior prior.
This is formally stated in Assumption 4 below.

ASSUMPTION 4: At least one of the following holds:

(a) limk
γk

H
βk

H
∈ (1,∞]

(b) limk
1−γk

H
1−βk

H
∈ [0, 1).

We measure the informativeness of H via the variance of the posterior belief:

Vark
H(p) = πk

H(p)
(
φ+

H,k(p) − p
)2

+ (1 − πk
H(p))

(
φ−H,k(p) − p

)2
.

The limit of the ratio Vark
H(p)

1−δk
measures the rate of decay of information per period relative to the

rate at which impatience vanishes, when the prior belief is p. In the proof of Theorem 1 we show
that this limiting ratio exists and is either finite for all p ∈ (0, 1) or infinite for all p ∈ (0, 1). The
relative rate of information decay plays a key role in the characterization of the limiting outcome
presented below.

THEOREM 1: The following are equivalent:

(i) limk→∞
Vark

H(p)
1−δk

is finite for all p ∈ (0, 1)

(ii) pFB
∗ > 0.

(iii) p̄∗ > 0.

In addition, if RH(pFB
∗ ) > s then (i)-(iii) are also equivalent to

(iv) p̄∗ > pFB
∗ .

Notice that RH(pFB
∗ ) > s is an analogue of the condition in Proposition 2, which characterizes

the holdup problem in the baseline model.
The centerpiece of Theorem 1 is the class of models where the informativeness of H per period

decays at the same rate as the players’ discounting. These models approximate a natural envi-
ronment in which information about match quality arrives in continuous time, but the players act
at discrete points in time, with actions becoming arbitrarily frequent. Under this interpretation,
information is proportional to the length of the period and Theorem 1 shows that the tensions of
the baseline model persist in the limit: First, the learning problem is nontrivial, since the efficient
solution exhibits an interior cutoff that separates outside options and experimentation through H.
Second, there is an incentive problem associated with the use of H in relational contracts. The
holdup problem from Proposition 2 which characterizes inefficiency in the baseline model also
characterizes inefficiency in the limit. Two natural examples, outlined at the end of this section, are
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models in which success or failure are realized with probability proportional to the length of the
period.

In addition to characterizing the limiting outcome of these frequent action models, Theorem 1
shows that they are at the boundary of two qualitatively different environments. When information
decays faster than the rate of impatience, the holdup problem highlighted in Proposition 2—and
thereby the resulting inefficiency—persists in the limit. On the other hand, when information
decays at a comparatively slower rate, or does not vanish at all, we obtain a folk theorem: At any
positive belief, the efficient solution and the optimal relational contract involve experimentation
through H when the discount factor is high enough. The reason is that the opportunity cost of
learning vanishes relative to its benefit.

In our baseline model, one consequence of inefficiency is that the use of L may increase the
surplus of an optimal relational contract. However, this property is not preserved in the limit. Let S
denote the pointwise limit of (S k), taking a subsequence, if necessary.20 Proposition 5 below states
that L does not create any surplus in the limit.

PROPOSITION 5: Let p̂ = inf{p|S (p) > s}. Then p̄∗ ≤ p̂.

A. Example: Good and bad news Poisson models

We illustrate the results of this section with an example of a good news Poisson model in which
the players become patient at the same rate as the rate of information decay. Consider a sequence
∆k of period lengths converging to 0. The discount factor is δk = e−∆k . The probabilities of success
with known match quality in modelMk are given by

γk
H = γH∆k γk

L = γL∆k

βk
H = βH∆k βk

L = βL∆k.

This approximates a Poisson arrival of success as ∆k → 0. Such an information structure is inter-
preted as a “good news” model because the rare signal makes players more optimistic about their
match quality causing their belief to jump upwards.21

The values of success and failure are yh
k = 1

∆k
and yl

k = 0 respectively, so the revenue from effort
e is Re(p) = pγe + (1 − p)βe..

The proof of Theorem 1 shows that the variance of the posterior is proportional to γk
H − β

k
H

which is of the order of ∆. Hence, limk→∞
Vark

H(p)
1−δk

is finite for all p ∈ (0, 1). Theorem 1, therefore,
implies that the learning problem in the efficient solution is nontrivial. In addition, the inefficiency
of relational contracts can persist in the limit, whenever the holdup problem of Proposition 2 arises.
A sufficient condition for inefficiency is RH(0) > c, similarly to Corollary 1.

Alternatively, we can consider a bad news model where the probability of failure is proportional
to ∆. To be more precise, the probabilities of failure with known match quality in modelMk are

20The limit exists by Helly’s selection theorem and Lemma 6.
21In the experimentation literature “good news” and “bad news” is often conclusive, i.e. one signal establishes the match quality.

This is a special case of our model when βH = βL = 0.
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given by

1 − γk
H = γH∆k 1 − γk

L = γL∆k

1 − βk
H = βH∆k 1 − βk

L = βL∆k.

The value of a success and failure are yh
k = 0, yl

k = − 1
∆

respectively.
Unlike the good news model, here the “news” is a failure and, upon its arrival the posterior

jumps discretely downward. Also, in contrast to the imperfect monitoring setting of AMP—both
the models exhibit inefficiencies due to a holdup problem even asymptotically.

Lastly, a very special case of the good news model is the “fully revealing good news” model
where βH = βL = 0. Here, any success conclusively establishes that the match quality is good. This
model parallels Hörner and Samuelson (2013) and similar inefficiencies arise in this environment
as in theirs.

VI. Extensions

Our model can be extended in various directions. We briefly discuss some natural directions in
which our results generalize.

A. Spot contracts contingent on output

As we saw in Section IV.A, the source of inefficiency is a holdup problem arising from the
separation between the firm that collects the output and the worker, who exerts effort. A natural
question is whether this inefficiency would disappear if the parties could write one period contracts
contingent on output. As we show below, limited liability plays a key role in the answer. If the
worker is protected by limited liability, output contingent contracts cannot achieve efficiency unless
it was already achievable with constant wages. But, when the worker is not protected by limited
liability, relational contracts achieve efficiency by spreading the wages for success and failure to
induce high effort.

PROPOSITION 6: Suppose the firm can commit to one-period output-contingent contracts. Then
efficiency can be achieved if the worker is not protected by limited liability. If the minimum wage
the firm must offer the worker for any level of output is u, then relational contracts are inefficient
iff RH(pFB) > s.

B. Combination of verifiable and non-verifiable actions

In most organizations, there are some contractible aspects of a worker’s behavior. Hence, the
lack of contractibility in our model may seem extreme. However, it is also common that some
aspects of the worker’s behavior are not verifiable in court. For example, a teaching assistant’s
wage can be contingent on the number of sections she teaches but not on how well she answers
questions. As we show here, the holdup problem from the baseline model remains as long as there
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is some non-contractibility of the worker’s actions. Moreover, in any optimal relational contract,
the parties can find the use of dominated actions beneficial for reasons similar to Proposition 3.

We model a mix of contractible and non-contractible actions by considering two-dimensional
effort e ∈ {L,H} × {L,H}. We assume that the first component of e is verifiable in court, while the
second is not. The cost of effort is separable in the two components, and H is more costly than L
on each of them. Effort is ranked informationally as well as in payoff as follows:

(H,H) � (H, L) � (L,H) � (L, L)

Naturally, the efficient outcome involves using (H,H) above a certain cutoff belief and taking the
outside option below. The argument for inefficiency in Proposition 2 is virtually unchanged, as the
same holdup problem arises on the non-contractible dimension. Moreover, an analogous result to
our Proposition 4 holds, showing that an optimal relational contract would involve using L on the
non-contractible dimension.

C. Continuous effort

So far we have analyzed a setting with only two efforts, one of which is both more informative
and more profitable. A natural question is whether a continuous choice of effort would produce
similar inefficiencies. In this section we enrich the model by making the choice of effort continuous.
Also, a more informative effort may not necessarily be more profitable. As mentioned previously,
such correlated bandit problems are very difficult to analyze in discrete time once the information
and payoffs ranking do not coincide. However, we show that our central findings are true in this
model as well: (i) relational contracts can be inefficient and (ii) efforts that are worse for both
information and payoff are used in an optimal relational contract.

To this end, consider a modification of the baseline model where effort lies in [0, 1]. Let there be
two strictly increasing, concave functions γ and β defining the probability of success conditional
on the choice of effort (e) and match quality (θ) as follows:

γ(e) = Prob(yh|θ = G, effort = e)

β(e) = Prob(yh|θ = B, effort = e).

Let c(e) be the cost of effort e where c is strictly increasing and convex. The myopic profit from
effort e at prior p is given by

h(p, e) := p[γ(e)yh + (1 − γ(e))yl] + (1 − p)[β(e)yh + (1 − β(e))yl] − c(e).

We assume that γ, β, and c are differentiable and satisfy the following assumption.

ASSUMPTION 5: 1) γ(e)
β(e) is increasing in e, and γ′(e) > β′(e)

2) c(0) = c′(0) = 0.

3) γ′(1) < c′(1)
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The myopically efficient action at belief p is denoted by ê(p) given by,

∂h(p, ê(p))
∂e

= [pγ′(ê(p)) + (1 − p)β′(ê(p))][yh − yl] − c′(ê(p)) = 0.

Assumption 5 implies that ê is increasing and 0 < e := ê(0) < ê(1) =: ē < 1. That is, conditional on
the match quality being good (bad), the efficient action is ē (e) which is strictly less than 1 (larger
than 0).

The measure of informativeness for an effort e is the fraction γ(e)
β(e) , which is increasing due to

Assumption 5. Hence, higher effort levels are more informative, but not necessarily more profitable.
As in the baseline model, the optimal policy for the efficient outcome is characterized by a cutoff

pFB, below which the outside options are taken. Also, the value function is convex. Therefore,
efforts dominated in both payoff and informational content are not used. In particular, efforts lower
than e are never used.

p

Effort

Optimal Relational Contract

Efficient Solution

Figure 5. Plot of effort in the planner’s and agency problem.

Parameters: γ(e) = 0.95e, β(e) = 2
7
√

e, c(e) = 0.9e2 − 0.009, e ∈ [0.1, 1].

The holdup problem in the baseline model arises because the action chosen at the efficient cutoff

is costly to the worker. Here too, since the lowest effort chosen is e, the choice of effort at pFB will
involve a cost to be borne by the worker. Therefore, the qualitative nature of the holdup problem
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is identical to the case of two efforts resulting in efficiency not being achievable in any relational
contract. Moreover, a condition analogous to our Proposition 4 shows that efforts that are worse
for both information and payoff will be used in the optimal relational contract.

While we have highlighted the form of inefficiency resulting in the use of efforts that are inferior
for information as well as payoff, in this richer model, the optimal relational contract may involve
the worker choosing an inefficiently higher effort. This can be seen numerically as shown in Fig-
ure 5. Notice that, for a range of beliefs in the middle, the worker chooses an effort that is higher
than the efficient benchmark. Also, as we can see, the optimal effort is non-monotonic in both the
efficient benchmark and the optimal relational contract. This non-monotonicity arises because the
informational and payoff rankings do not coincide. This is precisely why correlated bandits are
difficult to analytically understand in such problems.

D. Exogenous Learning

The three-region structure obtained in Proposition 3 suggests that higher effort is used at higher
beliefs when efforts have the same informational and profitability rankings. Although this property
does not generalize to a setting with more than two effort levels, monotonic effort can be recovered
in a simpler model where each effort is equally informative.22

To formalize this model, suppose the set of effort levels is [0, 1] and the probabilities of success
given good and bad match quality are γ and β, respectively, regardless of the effort. Let g : [0, 1]→
R+ and c : [0, 1] → R+ be strictly increasing, C2 functions describing the revenue from success
and the cost of effort, respectively. We assume g is concave and c is convex with c(0) = 0. The
revenue from failure is 0, regardless of the effort. Hence, the myopic profit of effort e at a prior p,
is given by

h(p, e) = [pγ + (1 − p)β]︸             ︷︷             ︸
π(p)

g(e) − c(e).

In particular, if we assume that π(p)g′(1) − c′(1) > 0 for all p, then the efficient solution would
naturally involve the outside options below a cutoff pFB and effort e = 1 above it.

Now consider the surplus from effort e at prior p in a relational contract:

(1 − δ)h(p, e) + δEeS (p).

Since all efforts are equally informative, they all bring the same expected continuation surplus
Ee[S (p)]. Hence, higher effort is more profitable. Its use is precluded only by the incentive con-
straint:

δ[EeS (p) − s] ≥ (1 − δ)c(e).

22McAdams (2011) also considers exogenous learning with relational contracts set in a partnership game with two effort levels and
and shows a similar monotonicity of effort.
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Since the cost of effort is increasing, the set of incentive compatible effort levels at prior p is an
interval [0, ē(p)] where ē is increasing. The optimal relational contract involves the outside options
below a threshold belief p and effort ē(p) at any higher belief. Hence, the effort is smoothly
increasing in the belief. As in the continuous effort model in the previous section, our main results
regarding inefficiency and the use of dominated efforts in equilibrium can be shown to hold.

VII. Conclusion

In this paper, we studied a dynamic firm-worker relationship with symmetric uncertainty about
match quality and limits to contractibility. There are two main takeaways. First, despite the absence
of private information, uncertainty about the match quality can preclude efficiency. Second, the
presence of actions that produce both worse information and worse payoffs offer a partial remedy,
as they may be cheaper to incentivize. The inefficiency is robust to various extensions of the
model, and persists in a frequent action limit. Moreover, separating the effects of higher patience
and shorter period length reveals that limiting efficiency depends on the relationship between the
rates of decay of information and impatience.

In our view, the two key features in our environment – unknown match quality and incomplete-
ness of contracts – are pervasive. Therefore, our model could serve as a building block toward
studying various other economically important scenarios, such as obtaining the nature of relational
contracts when there is partial contractibility in the form of spot contracts on output or even long
run contracts on output. Another natural direction is to endogenize the outside option by embed-
ding our model in a labor market with search frictions. Also, as mentioned in Section II.B, our
model is formally equivalent to a setting where the firm assigns jobs to the worker. This interpre-
tation relates us to Pastorino (2018) who finds, in a setting with worker not being strategic, that
learning about ability accounts for one quarter of cumulative wage growth of a worker. We believe
that our framework can be used to understand the effect of learning on wages when the worker is
strategic.
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VIII. Appendix

Proofs from Section III.A

PROOF OF PROPOSITION 1:
G is the unique solution of the Bellman equation f = T f . Standard contraction mapping argu-

ments establish that G is increasing. To establish the convexity of G, let f ∈ B[0, 1] be convex. It
suffices to show that TH f and TL f are convex, since a maximum of convex functions is convex. To
this end, let p1, p2 ∈ [0, 1], λ ∈ [0, 1] and p̃ = λp1 + (1 − λ)p2 and notice that

f (π+
H( p̃)) = f

(
λπH(p1)
πH(p̃)

γH p1

πH(p1)
+

(1 − λ)πH(p2)
πH(p̃)

γH p2

πH(p2)

)
≤
λπH(p1)
πH( p̃)

f
(
π+

H(p1)
)

+
(1 − λ)πH(p2)

πH(p̃)
f
(
π+

H(p2)
)

and f (π−H( p̃)) ≤
λ(1 − πH(p1))

1 − πH( p̃)
f
(
π−H(p1)

)
+

(1 − λ)(1 − πH(p2))
1 − πH( p̃)

f
(
π−H(p2)

)
.

It follows that

TH f ( p̃) = (1 − δ)(RH( p̃) − c) + δ
(
πH( p̃) f (π+

H( p̃)) + (1 − πH( p̃)) f (π−H( p̃))
)

≤ (1 − δ)(RH( p̃) − c) + δ
(
λπH(p1) f (π+

H(p1)) + (1 − λ)πH(p2) f (π+
H(p2))

)
+ δ

(
λ(1 − πH(p1)) f (π−H(p1)) + (1 − λ)(1 − πH(p2)) f (π−H(p2))

)
= λ

(
(1 − δ)(RH(p1) − c) + δEH[ f (p1)]

)
+ (1 − λ)

(
(1 − δ)(RH(p2) − c) + δEH[ f (p2)]

)
= λTH f (p1) + (1 − λ)TH f (p2)

as required. The argument for the convexity of TL f is analogous.
The convexity and monotonicity of G imply that THG > TLG, so L is never used in the optimal

policy. By Assumption 1, RH(1) > s > RH(0), so G(1) = γH − c and G(0) = s > THG(0). By
continuity of G, there exists a maximal belief pFB ∈ (0, 1) such that G(pFB) = s. Since THG is
strictly increasing, G(p) > s for all p > pFB. Hence, the optimal policy is to take the outside
options at beliefs p ≤ pFB and to choose H at higher beliefs. Clearly, pFB is unique. �

Proofs from Section III.B

Here, we adapt the results of APS to our setting. We begin by obtaining the worst equilibrium
payoffs.

LEMMA 2: (u, v) ∈ E(p) for all p.

PROOF:
Let p ∈ [0, 1]. Consider the following strategies:
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• The firm never interacts with the worker.

• The worker accepts wage offer w if and only if w ≥ u and always chooses L.

As the worker is never rewarded for choosing H, he chooses L whenever he accepts the wage offer.
Since he expects to receive his outside option in the future he only accepts wage offers above u.
Given that the worker chooses L, the firm does not get enough expected output to justify paying
the worker u since RL(p) ≤ RL(1) < s. Hence, the strategies constitute a PBE with payoffs (u, v) at
belief p. �

Let C0 denote the set of bounded payoff correspondences W : [0, 1] ⇒ R2. Let C denote the set
of compact-valued, upper hemicontinuous correspondences W ∈ C0 such that (u, v) ∈ W(p) for all
p.

We say payoffs (u, v) are enforceable with respect to W ∈ C0 at belief p ∈ [0, 1] if they can
be decomposed by an action profile in the initial period and continuation payoffs as described in
the recursive formulation in Section III.B except that the continuation payoffs are drawn from W
instead of E.

DEFINITION 2: Let BW(p) be the convex hull of the set of payoffs (u, v) which are enforceable
with respect to W ∈ C at belief p.

It is straightforward to check that BW ∈ C whenever W ∈ C.

DEFINITION 3: A correspondence W ∈ C0 is self-generating if W(p) ⊆ BW(p) for all p.

PROPOSITION 7 (Self-generation): If W ∈ C0 is self-generating, then BW(p) ⊆ E(p) for all p.

PROOF:
Let p ∈ [0, 1] and (u, v) ∈ BW(p). If (u, v) = (u, v) then Lemma 2 implies (u, v) ∈ E(p). Oth-

erwise, (u, v) is enforced by effort e, wage w and continuation payoffs (u+, v+) ∈ BW(φ+
e (p)) and

(u−, v−) ∈ BW(φ−e (p)) since W is self-generating. Construct inductively equilibrium strategies as
follows: in the initial period, the firm offers wage w, the worker accepts and exerts effort e. Contin-
uation strategies after any deviations follow the PBE in Lemma 2 with payoffs (u, v). Continuation
strategies on the equilibrium path are constructed by decomposing the continuation payoffs in-
ductively in the same manner. An application of the one-shot deviation principle shows that the
strategies form an equilibrium. Boundedness of W guarantees that the resulting equilibrium payoffs
equal (u, v), as required. �

PROPOSITION 8 (Factorization): BE(p) = E(p) for all p.

PROOF:
Since equilibrium payoffs are bounded by the outside options and the production technology,
E ∈ C0. Let p ∈ [0, 1], (u, v) ∈ E(p). By Proposition 7 it suffices to show that (u, v) ∈ BE(p). If
(u, v) = (u, v), this is trivial. Otherwise, consider without loss of generality a PBE σ at belief p with
payoffs (u, v) without public randomization in the initial period. The payoffs (u, v) are enforceable
with respect to W at p, since they can be decomposed by the first-period effort and wage, and the
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on-path continuation payoffs following success and failure in σ. To see this, note that (u, v) ≥ (u, v)
since the players are free to exercise their outside options. Moreover, the incentive constraint for
H given by (3) holds, since otherwise the agent can profitably deviate from σ in the first period by
exerting L and taking his outside option in the next period. Hence, (u, v) ∈ BE(p), as required. �

PROPOSITION 9 (APS algorithm): Let W0 ∈ C satisfy W0(p) ⊇ BW0(p) and W0(p) ⊇ E(p) for
all p. Inductively define Wn = BWn−1 for all n ∈ N. Let W∗(p) = ∩n∈NWn(p) for all p. Then
W∗(p) = E(p) for all p.

PROOF:
Observe that B is monotonic: any correspondences U,U′ ∈ C0 with U(p) ⊆ U′(p) for all

p satisfy BU(p) ⊆ BU′(p) for all p. Hence Wn−1(p) ⊇ Wn(p) for all n, p and consequently,
W∗(p) ⊇ E(p). To show the converse inclusion it suffices to show W∗ is self-generating. To this end,
let p ∈ [0, 1] and (u, v) ∈ W∗(p). Then (u, v) ∈ BWn(p) for all n. We want to show (u, v) ∈ BW∗(p).
It is sufficient to consider (u, v) , (u, v). Then, there exists an effort level e such that (u, v) ∈ BWn(p)
for infinitely many n. Along this subsequence, let wn denote the wage offered, (u+

n , v
+
n ) and (u−n , v

−
n )

be the continuation payoffs following success and failure respectively. Without loss of generality
these sequences converge to w, (u+, v+) and (u−, v−) respectively. Compactness of Wn(φ+

e (p)) and
Wn(φ−e (p)) and monotonicity in n imply (u+, v+) ∈ W∗(φ+

e (p)) and (u−, v−) ∈ W∗(φ−e (p)). Hence,
(u, v) is enforceable with respect to W∗ at belief p through wage w and continuation payoffs (u+, v+)
and (u−, v−), that is (u, v) ∈ BW∗(p). �

COROLLARY 2: E is compact-valued and upper hemicontinuous.

PROOF:
This follows from the fact that each Wn in the statement of Proposition 9 is compact-valued and

upper hemicontinuous. �

Proofs from Section III.C

It will be useful to operate on payoff correspondences that, like the equilibrium correspondence,
are fully described by the maximum sum of payoffs that can be achieved at every belief.

DEFINITION 4: LetD be the set of all correspondences W ∈ C such that

W(p) = {(u, v)|(u, v) ≥ (u, v), u + v ≤ S W(p)} for all p

for some S W : [0, 1]→ [s, γH − c].

LEMMA 3: If W ∈ D, then BW ∈ D.

PROOF:
Let

S BW(p) = max
(u,v)∈BW(p)

u + v for all p.
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Let p ∈ [0, 1]. Notice that S BW(p) ≥ s by definition of the operator B. Moreover, RH(1) − c is an
upper bound on the sum of payoffs in a single period so S BW(p) ∈ [s,RH(1)− c]. It only remains to
show that if (u, v) ≥ (u, v) and u+v = S BW then (u, v) ∈ BW(p) (the rest follows from taking convex
combinations of (u, v) and efficient payoffs in BW(p)). The statement clearly holds if S BW(p) = s
so suppose S BW(p) > s and consider any such (u, v). There exists a payoff (u′, v′) ∈ BW(p) with
u′ + v′ = S BW(p) which does not involve public randomization, since BW(p) is a compact, convex
subset of [u,∞) × [v,∞). The payoff (u, v) can be supported by the same effort and continuation
payoffs as (u′, v′) through an adjustment of the wage. �

Lemma 4 states that in any optimal relational contract it is without loss of generality to give the
worker the highest equilibrium continuation payoff. This can only improve the incentives for the
worker to exert H, and the wage can be used to redistribute the surplus without violating incentives
for the firm. The same result holds when L is enforced but is not needed.

LEMMA 4: Let W ∈ D, p ∈ [0, 1]. Consider a payoff (u, v) such that

u + v = max{u′ + v′|(u′, v′) ∈ BW(p) is enforced by H}.

Then (u, v) can be enforced by effort H and continuation payoffs û+ = S W(φ+
H(p)) − v and û− =

S W(φ−H(p)) − v for the worker.

PROOF:
By definition, (u, v) is enforced by some wage w and continuation payoffs (ui, vi) ∈ W(φi

H(p)) for
i ∈ {+,−}. Let v̂i = v for all i. Since W ∈ D we have (ûi, v̂i) ∈ W(φi

H(p)) for all i. Consider a wage

ŵ = w −
δ

1 − δ
[πH(p)(v+ − v) + (1 − πH(p))(v− − v)].

We want to show that (u, v) is also enforced by H, wage ŵ and continuation payoffs (û+, v̂+) and
(û−, v̂−) following success and failure respectively.

Efficiency of (u, v) implies that ui + vi = S (φi
H(p)) for all i so the promise keeping constraints

readily hold:

v = (1 − δ)[RH(p) − ŵ] + δ[πH(p)v̂+ + (1 − πH(p))v̂−]
u = (1 − δ)[ŵ − c] + δ[πH(p)û+ + (1 − πH(p))û−].

It remains to check the incentive constraints. Clearly, (u, v) ≥ (u, v) so we only need to check the
incentive constraint for effort. For any i we have

S W(φi
H(p)) = ui + vi = ûi + v

so vi ≥ v implies ûi ≥ ui. Since the incentive constraint holds in the original decomposition with
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continuation payoffs u+ and u− we have

πH(p)û+ + (1 − πH(p))û− − u

≥πH(p)u+ + (1 − πH(p))u− − u ≥
1 − δ
δ

c

which completes the proof. �
The following result follows directly from Lemma 3 and Proposition 9.

COROLLARY 3: E ∈ D.

Now we are ready to show the equivalence of operating on the frontier of the equilibrium set
through the APS operator B and operating on the maximum equilibrium surplus function through
T∗.

LEMMA 5: S BW(p) = T∗S W(p) for all p.

PROOF:
It suffices to show that, for any belief p

• The maximum sum of payoffs in BW(p) decomposed by L, if it exists, is equal to TLS W(p).
If no payoffs in BW(p) are decomposed by L we have TLS W(p) < s.

• The maximum sum of payoffs in BW(p) decomposed by H, if it exists, equals THS W(p) and
the incentive constraint below holds.

πH(p)S W(φ+
H(p)) + (1 − πH(p))S W(φ−H(p)) ≥ s +

1 − δ
δ

c(5)

If no payoffs in BW(p) are decomposed by H we have either THS W(p) < s or the incentive
constraint (5) does not hold.

Let p ∈ [0, 1]. The maximum sum of payoffs in BW(p) decomposed by e, if it exists, is given
by TeS W(p); the effort pins down the flow payoff as the wage transfer cancels out and maximality
implies that the players share the maximum future surplus, as higher payoffs do not hurt incentives.
Moreover, in the case of e = H, Lemma 4 states that this maximum sum of payoffs can be achieved
by setting continuation payoffs ui = S W(φi

H(p))−u for i ∈ {+,−}. Therefore, the incentive constraint

πH(p)u+ + (1 − πH(p))u− ≥ u +
1 − δ
δ

c

becomes equivalent to (5).
Hence, it remains to show that when TeS W(p) ≥ s, and, in the case of e = H, (5) holds, there exist

payoffs in BW(p) decomposed by effort e. This can be achieved by setting continuation payoffs
vi = v and ui = S (φi

e(p)) − v for all i and adjusting the wage to ensure that each player receives at
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least his outside option. In the case of e = H, this composition of continuation payoffs implies that
(5) is equivalent to the incentive constraint for effort. This completes the proof. �

Now we have all the ingredients to the proof of Lemma 1.
PROOF OF LEMMA 1:

Since E ∈ D and S ≡ S E, Lemma 5 and Proposition 8 imply S (p) = T∗S (p) for all p. Thus, S
is a fixed point of T∗.

Let f : [0, 1] → R be a bounded function satisfying f ≥ S and f ≥ T∗ f and W0(p) = {(u, v) ≥
(u, v)|u + v ≤ f (p)} for all p. Hence, W0 ∈ D. Lemma 5 and f ≥ T∗ f imply W0(p) ⊇ BW0(p),
whereas f ≥ S implies that W0(p) ⊇ E(p) for all p. Thus, W0 satisfies the conditions in Propo-
sition 9. In the notation of Proposition 9, we have Wn ∈ D for all n by an inductive applica-
tion of Lemma 3. Thus, S Wn(p) = T n

∗S
W0(p) for all n and p by Lemma 5. Since E ∈ D and

Wn(p) converges to E(p) for all p, we have that limn→∞ S Wn(p) = S (p) for every p. Moreover,
Wn(p) ⊇ Wn+1(p) implies T n

∗ f ≥ T n+1
∗ f .

Finally, we can take f = G since the equilibrium cannot improve upon the efficient outcome
(G ≥ S ) and G = max{THG,TLG, s} ≥ T∗G. �

Proofs from Section IV.A

PROOF OF PROPOSITION 2:
Rearranging

G(pFB) = s = (1 − δ)(RH(pFB) − c) + δEH[G(pFB)]

we obtain

(6) (1 − δ)c = (1 − δ)(RH(pFB) − s) + δ(EH[G(pFB)] − s).

Consider the application of T∗ to G. If RH(pFB) ≤ s, (6) implies

δ(EH[G(pFB)] − s) ≥ (1 − δ)c

so the incentive constraint in the definition of T∗ is satisfied at all beliefs p ≥ pFB. Hence, T∗G(p) =

max{THG(p),TLG(p), s} = G(p) for all p ≥ pFB. Moreover, s ≤ T∗G(p) ≤ G(p) = s for all
p ≤ pFB. Hence, T∗G = G. The algorithmic part of Lemma 1 implies S = G so relational contracts
are not inefficient.

If, instead, πH(pFB) > s, (6) implies

δ(EH[G(pFB)] − s) < (1 − δ)c.

By continuity of G and the belief updates φ+
H and φ+

L , the above strict inequality holds for some
p > pFB, at which the incentive constraint for H is not satisfied. Then T∗G(p) = max{TLG(p), s}.
Since G(p) = THG(p) > TLG(p), Lemma 1 implies S (p) < G(p). Hence, relational contracts are
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inefficient. �

Proofs from Section IV.B

To prove Proposition 3 we first establish some properties of S similar to, but weaker than, the
properties of G in Proposition 1.

LEMMA 6: S is increasing and upper semicontinuous with S (0) = s and S (1) = RH(1)−c. There
exists a unique belief p∗ ∈ (0, 1] such that S (p) = s for p < p∗ and S (p) > s for p > p∗.

PROOF:
The upper semicontinuity of S follows directly from the upper hemicontinuity of E established

in Corollary 2. We now turn to establishing that S is increasing. Since G is increasing, Lemma 1
implies it is sufficient to show that T∗ maps increasing functions to increasing functions. Let f
be one such function. Notice that the incentive constraint for H in the definition of T∗ f can be
rewritten as h(p) ≥ A where A is a constant and h is increasing and usc. Moreover, other things
equal, T∗ f is larger if the incentive constraint is satisfied. Hence, it is sufficient to show TH f and
TL f are increasing and usc. This follows directly from the fact that f has the same properties.

The algorithmic part of Lemma 1 also implies that the values of S at 0 and 1 can be found by
showing that T∗G(0) = s and T∗G(1) = RH(1)−c. The former follows from s ≤ T∗G(0) ≤ TG(0) =

G(0) = s, while the latter is a consequence of Assumption 3.
Since RH(1) − c > s, the monotonicity of S implies there exists a maximal belief p∗ such that

S (p) = s if p < p∗ and S (p) = max{THS (p),TLS (p)} if p ≥ p∗. That p∗ is unique follows from
the strict monotonicity of THS , TLS and h.

�
Next, we establish that the three-region structure in Proposition 3 is obtained if the surplus func-

tion exhibits a monotone policy.

LEMMA 7: If S exhibits a monotone policy there exist beliefs p, p̄ such that

S (p) =


s if p < p
TLS (p) if p ≤ p < p̄
THS (p) if p ≥ p̄

PROOF:
By Lemma 6 there is a threshold belief p∗ such that the players take their outside options at

beliefs p < p∗ and interact if p ≥ p∗. The monotonicity of S implies that if the incentive constraint
is satisfied at some belief it is satisfied for all higher beliefs. Let pIC be the minimum belief at which
the incentive constraint for H is satisfied. Note that such a belief exists due to S (1) = RH(1) − c
and the infimum is attained due to the upper semicontinuity of S . Hence, T∗ f (p) = TH f (p) iff
p ≥ max{p∗, pIC}. Putting p = p∗ and p̄ = max{p∗, pIC} completes the proof. �

The final piece of the proof of Proposition 3 is the following lemma which ensures that the
monotone policy property is preserved under T∗.



32 AMERICAN ECONOMIC JOURNAL MONTH YEAR

LEMMA 8: Let f be an increasing function that exhibits a monotone policy. Then T∗ f is increas-
ing and exhibits a monotone policy.

PROOF:
The proof of Lemma 6 showed that T∗ f is increasing when f is increasing. Hence, there exists a

maximal belief p∗ such that T∗ f (p) = s ∀p < p∗. It remains to show that T∗ f exhibits a monotone
policy. Let p ∈ [0, 1]. We will show that TH(T∗ f )(p) > TL(T∗ f )(p). We examine two cases
depending on where the posterior beliefs lie relative to the cutoff p∗.

Firstly, if p∗ > φ−L(p), we have T∗ f (φ−L(p)) = s. Also, φ−L ≥ φ−H implies that T∗ f (φ−H(p)) = s
since T∗ f is increasing. Hence,

TH(T∗ f )(p) − TL(T∗ f )(p)
≥(1 − δ)(RH(p) − c) + δ[πH(p)T∗ f (φ+

H(p)) + (1 − πH(p))s]
− (1 − δ)RL(p) − δ[πL(p)T∗ f (φ+

L(p)) + (1 − πL(p))s]
≥(1 − δ)(RH(p) − c − RL(p)) > 0.

where the second inequality follows from RH(p) > RL(p) and T∗ f (φ+
H(p)) ≥ T∗ f (φ+

L(p)) ≥ s.
Secondly, suppose p∗ ≤ φ−L(p). Then T∗ f (q′) ∈ {TH f (q′),TL f (q′)} for any q′ ∈ {φ+

L(p), φ−L(p)}
which implies T∗ f (q′) ≤ TH f (q′) since f exhibits a monotone policy. Thus, TL(T∗ f )(p) ≤
TL(TH f )(p) and it follows that

TH(T∗ f )(p) − TL(T∗ f )(p)
≥TH(TL f )(p) − TL(TH f )(p)

=(1 − δ)(RH(p) − c) + δ(1 − δ)(EH[RL(p)]) + δ2EH,L[ f (p)]

−
(
(1 − δ)(RL(p)) + δ(1 − δ)(EL[RH(p) − c]) + δ2EL,H[ f (p)]

)
=(1 − δ)(RH(p) − c) + δ(1 − δ)RL(p)

−
(
(1 − δ)(RL(p) − c) + δ(1 − δ)(RH(p) − c)

)
=(1 − δ)2(RH(p) − c − RL(p)) > 0

where

Ee1,e2[ f (p)] = πe1(p)Ee2[ f (π+
e1

(p))] + (1 − πe1(p))Ee2[ f (π−e1
(p))]

for any e1, e2 ∈ {H, L}. This completes the proof. �
PROOF OF PROPOSITION 3:

We know from Lemma 1 that S = limn→∞Gn where Gn = T n
∗G. Since G is increasing and

exhibits a monotone policy (Proposition 1), Lemma 8 implies that Gn exhibits a monotone policy
for all n. Taking limits yields THS (p) ≥ TLS (p) for all p, so S exhibits a monotone policy.
Lemma 7 completes the proof. �
PROOF OF PROPOSITION 4:
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Suppose, for the sake of contradiction, that p = p̄. Consider some belief p = p̄ − ε for some
small ε > 0. It suffices to show that L generates more surplus than the outside options.

We know that S (φ+
L(p)) ≥ S ( p̄) whenever ε is small enough. So the joint surplus from L at belief

p is at least

(1 − δ)RL(p) + δ
[
πL(p)S ( p̄) + (1 − πL(p))s

]
≥(1 − δ)RL(p) + δ

[
πL(p)

(
(1 − δ)RH(p̄) + δs

)
+ (1 − πL(p))s

]
=(1 − δ)RL(p) + δ

[
πL(p)(1 − δ)

(
RH(p̄) − s

)
+ s

]
=s + (1 − δ)

[
RL(p) − s + δπL(p)(RH( p̄) − s)

]
This exceeds s whenever

RL(0) − s + δπL(0)(RH(0) − s) ≥ 0

as required. �

Proofs from Section V

PROOF OF THEOREM 1:
Any limit in this proof is taken as k → ∞.
We begin with some preliminaries regarding the efficient solution, which are a direct conse-

quence of Proposition 1. For any k, define G+
k (p) := Gk(φ+

H,k(p)) and G−k (p) := Gk(φ−H,k(p)). We
have that p ≥ pFB

k if and only if

(1 − δk)(RH(p) − c) + δk
[
πk

H(p)G+
k (p) + (1 − πk

H(p))s
]
≥ s

which can be rearranged as

δkπ
k
H(p)

(1 − δk)
(G+

k (p) − s) ≥ s − (RH(p) − c)(7)

and (7) holds at equality if p = pFB
k . Since Gk is increasing, convex and Gk(p) ≥ RH(p) − c, each

subgradient of Gk at any p is bounded above by RH(1)−RH(0). Hence, the family (Gk) is equicon-
tinuous and, by the Arzela-Ascoli theorem, it has a subsequence which converges uniformly. In
what follows, we will assume that this is the original subsequence and use G to denote the limiting
function.23 In addition, notice that RH(1) − c > s and Gk(p) ≥ RH(p) − c for all p, k imply that
pFB
∗ < 1 and G(p) > s for some p < 1.

23This is without loss of generality, since the only properties of the sequence we will need are pFB
k → pFB

∗ and p̄k → p̄∗, which hold
at any subsequence.



34 AMERICAN ECONOMIC JOURNAL MONTH YEAR

In the optimal relational contract, the following incentive constraint holds:

δk
(
πk

H( p̄k)(S +
k ( p̄k) − s) + (1 − πk

H( p̄k))(S −k ( p̄k) − s)
)
≥ (1 − δk)c

where S +
k (p) := S k(φ+

H,k(p)) and S −k (p) := S k(φ−H,k(p)). A sufficient condition is

δkπ
k
H(p̄k)

(
S +

k ( p̄k) − s
)
≥ (1 − δk)c.(8)

Lemma 6 and Helly’s selection theorem imply that (S k) has a subsequence which converges
pointwise to some function S . Without loss of generality, we take the subsequence to be the original
sequence.

We continue by describing the relationship between both parts of Assumption 4 and lim Vark
H(p)

1−δk
.

The variance of the posterior at prior p can be expressed as

Vark
H(p) =

(
p(1 − p)

)2 (γk
H − β

k
H)2

πk
H(p)(1 − πk

H(p))
.

where

γk
H − β

k
H

πk
H(p)

=
1

p + 1
γk

H
βk

H
−1

and
γk

H − β
k
H

1 − πk
H(p)

=
1

1

1−
1−γk

H
1−βk

H

− p
.(9)

Suppose both parts of Assumption 4 hold. Then the limits of γk
H−β

k
H

πk
H(p)

and γk
H−β

k
H

1−πk
H(p)

are finite for

all interior p. Hence lim Vark
H(p)

1−δk
= ∞. In addition, Bayesian updating necessitates that 0 <

lim inf πk
H(p) ≤ lim sup πk

H(p) < 1 for all p.

Suppose Assumption 4(a), holds, but Assumption 4(b) does not. Then (9) implies that γk
H−β

k
H

πk
H(p)

converges to a finite limit for all interior p. Moreover, Bayes rule implies πk
H(p) → 0 for all

interior p, which implies βk
H → 0. Hence, lim Vark

H(p)
1−δk

is finite for all interior p iff the limit of

γk
H − β

k
H

1 − δk
=

γk
H

1 − δk

1 − βk
H

γk
H

 =
1 − βk

H

1 − δk

1 − 1 − γk
H

1 − βk
H

(10)

is finite. Let π∗ = lim γk
H

1−δk
. Hence, lim Vark

H(p)
1−δk

is finite for all interior p iff π∗ is finite iff lim πk
H(p)

1−δk
is

finite for all p.

If Assumption 4(b) holds but Assumption 4(a) does not hold, (9) implies that γk
H−β

k
H

1−πk
H(p)

converges

to a finite limit for all interior p. Bayes rule implies πk
H(p) → 1 for all p and βk

H → 1. Hence,
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lim Vark(p)
1−δk

is finite iff lim γk
H−β

k
H

1−δk
is finite iff lim 1−βk

H
1−δk

is finite (see (10)).
We proceed to give separate proofs for the cases when parts (a) and (b) of Assumption 4 hold.
Proof of Theorem 1 under Assumption 4(a). Suppose Assumption 4(a) holds. The preliminary

arguments establish that, if Assumption 4(b) holds, lim Vark
H(p)

1−δk
= ∞ for all interior p and π∗ = ∞

since the probability of success is bounded below. If Assumption 4(b) does not hold, (i) holds iff π∗

is finite. Hence, we conclude that (i) holds iff π∗ is finite, regardless of whether Assumption 4(b)
holds.

(i)⇒ (ii), (iii): Suppose π∗ is finite and pFB
∗ = 0. Then the RHS of (7) converges to s−RH(0)+c,

which is positive by Assumption 1. Hence, when π∗ is finite, we can show pFB
∗ > 0 by showing

that the LHS of (7) at pFB
k converges to 0. This implies p̄∗ > 0.

If lim γk
H
βk

H
< ∞, φ+

H,k(pFB
k )→ 0, and, by the uniform convergence of (Gk), we have G+

k (pFB
k )→ s.

Since π∗ is finite, this implies that the LHS of (7) at pFB
k converges to 0.

If lim γk
H
βk

H
= ∞, the finiteness of π∗ implies that lim βk

H
1−δk

= 0. Thus, πk
H(p)

1−δk
→ pπ∗ for all p. It

follows that the LHS of (7) converges to 0, as required.

(i)⇒ (iv): Suppose π∗ is finite, RH(pFB
∗ ) > s, and p̄∗ = pFB

∗ . There exist ε > 0 and K1 such that

δkπ
k
L(pFB
∗ + ε)

1 − δk

(
S k(φ+

L,k(pFB
∗ + ε)) − s

)
≤
δkπ

k
H(pFB

∗ + ε)
1 − δk

(
Gk(φ+

L,k(pFB
∗ + ε)) − s

)
≤ lim δk

πk
H(pFB

k )
1 − δk

(
Gk(φ+

L,k(pFB
k )) − s

)
+ ε

≤s − (RH(pFB
∗ ) − c) + ε

<s − RL(pFB
∗ + ε).

for all k ≥ K1. The first inequality follows from S k ≤ Gk and Assumption 1.The second inequal-
ity holds for any ε > 0 small enough due to three limit results: Gk(φ+

L,k(pFB
k )) → G(φ+

L,k(pFB
∗ )),

lim
πk

H(pFB
k )

1−δk
= lim πk

H(pFB
∗ )

1−δk
< ∞, and δk → 1. The first follows from the uniform convergence of φ+

L,k,
and the uniform convergence of (Gk) to G. Towards the second limit, notice that

πk
H(p) = βk

H

1 − p + p
γk

H

βk
H


so Assumption 4(a) implies that limk

πk
H(pFB

k )
πk

H(pFB
∗ )

= 1. Since π∗ is finite, limk
πk

H(pFB
∗ )

1−δk
exists, giving the

desired result. The penultimate equality follows from (7) and φ+
L,k ≤ φ

+
H,k. The final inequality is a

result of Assumption 1 for an appropriate choice of ε.
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The resulting inequality can be rearranged to show

(1 − δk)
(
RL(p) − s)

)
+ δk

(
πk

L(p)S k(φ+
L,k(p)) + (1 − πk

L(p))s
)
< s

for all p ≤ pFB
∗ + ε, k ≥ K1.(11)

Let K2 be such that p̄k < pFB
∗ + ε for all k ≥ K2 and let K = max{K1,K2}. Suppose that there is

a region where L is used in an optimal relational contract for some k ≥ K. By Proposition 3 there
exists p ≤ pFB

∗ + ε, at which the surplus from L is no less than s and S k(φ−L,k(p)) = s. This is a
contradiction to (11). Hence, for all k ≥ K, the optimal relational contract does not use L and the
incentive constraint implies

lim
k→∞

δkπ
k
H( p̄k)

1 − δk
(G+

k ( p̄k) − s) ≥ c(12)

Since π∗ is finite, δkπ
k
H( p̄k)

1−δk
converges to a finite number. Hence, the uniform convergence of (Gk)

and (7) imply that the LHS of (12) converges to s− (RH(pFB
∗ )− c). A contradiction to RH(pFB

∗ ) > s.
Hence, we conclude that pFB

∗ < p̄∗.

(ii) ⇒ (i): Suppose π∗ = ∞. We want to show that pFB
∗ = 0. Let p̂ = sup{p|G(p) = s} < 1.

Suppose for a contradiction, that p̂ > 0. By Assumption 4 there exists ε > 0 such that φ+
H,k( p̂−ε) ≥

p̂+ε for all k large enough. Hence, G+
k ( p̂−ε) ≥ s+η for some η > 0. Then (7) implies pFB

k ≤ p̂−ε
for high k and it follows that

Gk(p) = (1 − δk)(RH(p) − c) + δk
[
πk(p)G+

k (p) + (1 − πk(p))G−k (p)
]

Gk(p) −G−k (p)
p − φ−H,k(p)

=
1 − δk

p − φ−H,k(p)
(RH(p) − c −G−k (p)) + δk

πk
H(p)

p − φ−H,k(p)
(G+

k (p) −G−k (p))

for any p ∈ ( p̂ − ε, p̂). Notice that

πk
H(p)

p − φ−H,k(p)
=
πk

H(p)(1 − πk
H(p))

p(1 − p)(γk
H − β

k
H)
.

Assumption 4(a) and (9) imply that lim πk
H(p)

γk
H−β

k
H

is positive and finite. The preliminaries of the proof

show that if Assumption 4(b) holds, then 1 − πk
H(p) is bounded away from 0. If Assumption 4(b)

does not hold, 1 − πk
H(p)→ 1 for all interior p. Hence, there exists a constant ζ > 0 such that

1
p(1 − p)

ζ ≤
πk

H(p)
p − φ−H,k(p)

≤
1

p(1 − p)
1
ζ
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for all interior p. Hence, π∗ = ∞ implies

lim
1 − δk

p − φ−H,k(p)
= lim

1 − δk

πk
H(p)

πk
H(p)

p − φ−H,k(p)
= 0

for all p ∈ ( p̂ − ε, p̂). Since RH(p) − c −G−k (p) is uniformly bounded, we have

lim
Gk(p) −G−k (p)

p − φ−k (p)
= lim δk

πk
H(p)

p − φ−k (p)
(G+

k (p) −G−k (p))

Hence, there exists K such that for all k ≥ K and p ∈ ( p̂ − ε, p̂) we have

Gk(p) −G−k (p)
p − φ−k (p)

>
1
2
ζη min

p′∈[ p̂−ε, p̂]

1
p′(1 − p′)

.

Consequently, there exists a constant µ > 0 such that Gk( p̂− ε2 ) > s+µ for all k ≥ K, in contradiction
to G( p̂ − ε

2 ) = s.
We conclude that p̂ = 0. Hence, for any p > 0, there exists K such that Gk(p) > s for all k ≥ K.

It follows that pFB
k → 0, as required.

(iii) ⇒ (i): Suppose π∗ = ∞. We want to show that p̄∗ = 0. The strategy follows the argument
for (ii)⇒ (i) with some modifications.

Let p̂ = sup{p|S (p) = s}. Our first goal is to show that p̂ < 1. Let

f (p) =

 s if p < p1

s + (RH(1) − c) p−p1
1−p1

if p ≥ p1

where p1 is large enough to ensure RH(p) − c ≥ f (p) for all p ≥ p1. Let T k
∗ denote the operator T∗

within modelMk. Consider the function T k
∗ f at belief p1. Assumption 4(a) implies there exists a

constant η > 0 such that S +
k (p1) ≥ s + η for k large enough. Hence, π∗ = ∞ and (8) imply that the

incentive constraint holds at all p ≥ p1 for high k. The convexity of f implies that EH
k [ f (p)] ≥ f (p)

for all such k and p, where EH
k denotes the EH operator in modelMk. Hence,

T k
∗ f (p) ≥ (1 − δk)(RH(p) − c) + δkE

H
k [ f (p)] ≥ f (p).

for all p ≥ p1. It follows that T k
∗ f (p) ≥ f (p) for all p ∈ [0, 1] and k large enough. Hence, the

correspondence

W f (p) = {(u, v)|(u, v) ≥ (u, v), u + v ≤ f (p)} for all p

is self-generating and Proposition 7 implies that S k ≥ f for all k large enough. Hence, p̂ < 1.
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Suppose that p̂ > 0. Define ε and η as in the proof of (ii)⇒ (i), so that S +
k ( p̂ − ε) ≥ s + η. Since

π∗ = ∞, the incentive constraint (8) holds for all k large enough. It follows that p̄k ≤ p̂− ε for high
k. Replicating the remaining part of the argument for (ii) ⇒ (i) shows that we must have p̂ = 0. It
follows that p̄∗ = 0, as required.

(iv) ⇒ (i): Consider a sequence of models where all parameters, except for δk are constant and
RH(0) > s. Then π∗ = ∞, which implies p̄∗ = pFB

∗ , but RH(pFB
∗ ) = s. Hence π∗ = ∞ implies that

statement (iv) is false, as required.
Proof of Theorem 1 under Assumption 4(b). Suppose Assumption 4(b) holds. In light of the

previous part of the proof, we will assume without loss of generality that Assumption 4(a) does not

hold. Then πk
H(p) → 1 for all p. Let λ = lim γk

H−β
k
H

1−δk
. It follows from the preliminary discussion

that (i) holds iff λ is finite iff lim 1−βk
H

1−δk
is finite. Notice that Assumption 4(b) implies that lim 1−γk

H
1−δk

is finite whenever lim 1−βk
H

1−δk
is finite.

(i)⇒ (ii), (iii): Suppose λ is finite and pFB
∗ = 0. Since

φ+
H,k(p) − p = p(1 − p)

γk
H − β

k
H

πk
H(p)

and the bound on the subgradient of Gk implies that

G+
k (pFB

k ) − s

φ+
H,k(pFB

k ) − pFB
k

≤ RH(1) − RH(0)

for all k, it follows that

δkπ
k
H(p)

1 − δk

(
G+

k (pFB
k ) − s

)
≤

(
RH(1) − RH(0)

)
δk pFB

k (1 − pFB
k )

γk
H − β

k
H

1 − δk

≤
(
RH(1) − RH(0)

)
(λ + ε)pFB

k (1 − pFB
k )

for large k. Hence, pFB
∗ = 0 implies that the LHS of (7) at pFB

k converges to 0, while the RHS
converges to s− (RH(0)−c) > 0. A contradiction. Hence, pFB

∗ > 0 and p̄∗ > 0, whenever λ is finite.

(i) ⇒ (iv): Suppose pFB
∗ = p̄∗ = p∗ and RH(p∗) > s. There exists p̂ > p∗ such that φ−L,k(p) < p∗

for all p ∈ [p∗, p̂]. Hence, for k high enough, the incentive constraint at p̄k is given by

δkπ
k
H( p̄k)

1 − δk
(S +

k ( p̄k) − s) ≥ c(13)
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For any p ≥ p̄k, we have

S (p) = (1 − δk)(RH(p) − c) + δk
[
πk

H(p)S +
k (p) + (1 − πk

H)S −k (p)
]

= S +
k (p) − (1 − πk

H(p))(S +
k (p) − S −k (p))

+ (1 − δk)
(
(RH(p) − c) −

(
πk

H(p)S +
k (p) + (1 − πk

H(p))S −k (p)
))

Hence, the following holds for all k high enough:

S +
k ( p̄k) − s

1 − δk
=

1 − πk
H( p̄k)

1 − δk
(S +

k ( p̄k) − s)

− (RH( p̄k) − c) +
(
πk

H( p̄k)S +
k ( p̄k) + (1 − πk

H( p̄k))s
)
.(14)

Since Assumption 4(b) does not hold, φ+
H,k(p) → p for all p. Hence, the uniform convergence of

G implies that G+
k ( p̄k) → s. It follows that S +

k ( p̄k) → s. Since lim 1−βk
H

1−δk
and lim 1−γk

H
1−δk

are finite,

lim 1−πk
H( p̄k)

1−δk
is finite. Hence, taking limits of (14), we obtain

lim δkπ
k
H( p̄k)

S +
k ( p̄k) − s

1 − δk
= lim

S +
k ( p̄k) − s

1 − δk
= s − (RH(p∗) − c) < c

which contradicts the limit of the incentive constraint (13).

(ii)⇒ (i): Suppose λ = ∞. Let ∆k satisfy δk = e−∆k . L’Hospital’s rule implies γk
H−β

k
H

∆
→ ∞.

Let p̂ = inf{p|G(p) > s}. Suppose, for the sake of contradiction, that p̂ > 0. There exists ε such
that for all k high enough G( p̂ + ε) ≥ s + ε. Suppose the belief is p̂ − ε and we want to find the
number of consecutive successes needed to reach p̂ + ε. Since

φ+
H,k(p) − p =

p(1 − p)
πk

H(p)
(γk

H − β
k
H)

this number will be at most

N(k) =
2ε

γk
H − β

k
H

max
p∈[ p̂−ε, p̂+ε]

p(1 − p)
πk

H(p)
=

ξ

γk
H − β

k
H

for high k, where ξ is a positive constant (since πk
H → 1). Consider the following policy at p̂ − ε:

in the next N(k) periods, exert H and, if failure occurs, take the outside options in the following
period. If N(k) successes occur, continue with the optimal policy at the posterior belief, which must
generate surplus of at least s + ε. For k high enough, it must be that the value of this policy does
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not exceed the value of the outside options. Hence,

s ≥ δN(k)
k

[
π̂k(s + ε) + (1 − π̂k)s

]
+ (RH(0) − c)(1 − δN(k)

k )

where π̂k is the probability of getting N(k) successes in a row, starting from p̂−ε. The flow payoffs
during the first N(k) periods are either RH(p) − c when H is exerted, or s, both of which are more
valuable that RH(0) − c by Assumption 1. Rearranging, we obtain

(1 − δN(k)
k )s ≥ δN(k)

k π̂kε + (RH(0) − c)(1 − δN(k)
k )

We will violate this inequality for high k by showing that the LHS converges to 0, while the RHS
converges to a positive constant. This follows from two limiting results: δN(k)

k → 1 and lim inf π̂k >
0. Towards the first, notice that

δN(k)
k = exp

− ∆

γk
H − β

k
H

ξ


converges to 1 since γk

H−β
k
H

∆
→ ∞. Towards the second result, notice that

π̂k ≥
(
πk

H( p̂ − ε)
)N(k)

and let

Bk =

log
[(
πk

H( p̂ − ε))
)N(k)

]
ξ

=
log

[
βk

H + (γk
H − β

k
H)( p̂ − ε)

]
γk

H − β
k
H

=
log

[
1 − (1 − βk

H) −
(
(1 − γk

H) − (1 − βk
H)

)
( p̂ − ε)

]
(1 − βk

H) − (1 − γk
H)

Given any ε > 0 small enough, we have

(1 − βk
H)(λ − ε) ≤ (1 − γk

H) ≤ (1 − βk
H)(λ + ε)

for all k high enough. Hence,

Bk ≥
log

[
1 − (1 − βk

H)(1 − (λ + ε − 1)(p̂ − ε))
]

(1 − βk
H)(1 − λ + ε)
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Since lim βk
H = 1, L’Hospital’s rule implies

lim inf Bk ≥ −
1 − (λ + ε − 1)(p̂ − ε)

1 − λ + ε

Thus, we conclude that

lim inf π̂k ≥ lim inf exp(Bkξ) > 0

as required. Hence, pFB
∗ = 0.

(iii) ⇒ (i): Suppose λ = ∞. Let p̂ = inf{p|S (p) > s}. We can show p̂ < 1 as in the proof
under Assumption 4(a). Suppose p̂ > 0. Define ε and N(k) as in the previous part of the proof
and recall the strategies considered at p̂ − ε: the worker exerts H for N(k) periods, unless a failure
occurs which is followed by the outside options. In the event of N(k) consecutive successes, an
efficient continuation equilibrium is played with surplus of at least s + ε. As previously shown,
these strategies create higher surplus than the outside options for high k. Hence, it only remains
to show that the incentive compatibility constraint is satisfied in each of the initial N(k) periods.
Since H is exerted only if success occurred in all of the previous periods, the expected continuation
surplus from H in excess of s in the n-th period is at least

δπk
H( p̂ − ε)

[
δN(k)−n

k

(
πk

H( p̂ − ε)
)N(k)−n

ε + (1 − δN(k)−n
k )(RH(0) − c − s)

]
which is strictly positive for k high enough. Hence, we conclude that p̂ = 0. Hence p̄∗ = 0.

(iv)⇒ (i): The proof of this part is identical to the proof under Assumption 4(b).
�

PROOF OF PROPOSITION 5:
If π∗ = ∞, the proof of (iii)⇒ (i) in Theorem 1 shows that p

k
= p̄k for all k large enough. Hence,

surplus above the outside options can only arise from H and we have p̄∗ ≤ p̂.
Suppose π∗ is finite and let p > p̂. Since πk

H(p) → 0, we have φ−H,k(p) → p as k → ∞. Hence,
there exists ε such that p− ε > p̂ and φ−H,k(p) > p− ε for all k large enough. Moreover, there exists
η > 0 such that S k(p − ε) ≥ s + η for large k. This implies the incentive constraint for H holds at p
for all k large enough. Since δk → 1, the surplus from H at p exceeds s for large k. Hence, p̄∗ ≤ p.
Since p > p̂ was arbitrary, the proof is complete. �

Proofs from Section VI.A

PROOF OF PROPOSITION 6:
Let wh and wl be the wages upon success and failure and let E[u′] be the expected continuation
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value of the worker. The worker’s incentive constraint to choose H over L is given by

(1 − δ)
[
πH(p)wh + (1 − πH(p))wl − c

]
+ δE[u′] ≥ (1 − δ)

[
πL(p)wh + (1 − πL(p))wl

]
+ δu

(1 − δ)(wh − wl)(πH(p) − πL(p)) + δ(E[u′] − u) ≥ (1 − δ)c

Without limited liability, the firm can always increase the spread between wh and wl to satisfy the
above incentive constraint without affecting the expected wage payment πH(p)wh + (1 − πH(p))wl.
Hence, the incentive constraint for H can be satisfied whenever the relationship yields more surplus
than s. Therefore, the equilibrium is efficient.

With limited liability, however, the firm can no longer create an arbitrary wage spread since
wh,wl ≥ u. To tackle the first case in the characterization of efficiency, suppose RH(pFB) ≤ s. It
suffices to show that H is enforceable at belief pFB when continuations are drawn from G. Equation
(6) implies

δ
(
EH[G(pFB)] − s

)
≥ (1 − δ)c

so we can set the worker’s continuation payoffs u+, u− ≥ u following success and failure so that

δ
(
πH(pFB)(u+ − u) + (1 − πH(pFB))(u− − u)

)
= (1 − δ)c

which makes the continuation payoffs for the firm given by v+ = G(π+
H(pFB)) − u+ and v− =

G(π−H(pFB))− u− greater than or equal to v. By setting wh = wl = u the overall payoff of the worker
is u and the firm’s payoff is v since G(pFB) = s and the path of play is the same as in the first best.
Hence, all the incentive constraints for H are satisfied at pFB and we are done.

We now show that whenever RH(pFB) > s the incentive constraint cannot be satisfied at pFB. Sup-
pose, for a contradiction, that it can be satisfied. Without loss of generality wl = u, otherwise the
difference between wages for success and failure can be increased without affecting the expected
wage while still satisfying the incentive constraint for H. Since S (π−H(pFB)) ≤ G(π−H(pFB)) = s
the continuation payoffs following H and failure must be equal to the outside options. Let (u+, v+)
denote the continuation payoffs following H and success. Equation (6) and the incentive constraint
for H imply

(1 − δ)(πH(pFB) − πL(pFB))(wh − u) + δπH(pFB)(u+ − u)

≥(1 − δ)(RH(pFB) − s) + δ
(
EH[G(pFB)] − s

)
and we obtain

(1 − δ)(πH(pFB) − πL(pFB))(wh − u) ≥ (1 − δ)(RH(pFB) − s) + δπH(pFB)(v+ − v).(15)
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Notice that RH(pFB) > s implies wh − u > 0. Now consider the firm’s payoff:

v = (1 − δ)[πH(pFB)(yh − wh) + (1 − πH(pFB))(yl − u)] + δ[πH(pFB)v+ + (1 − πH(pFB))v]

v − v = (1 − δ)[RH(pFB) − s − πH(pFB)(wh − u)] + δπH(pFB)(v+ − v)].

Using equation (15) we obtain

v − v ≤ −(1 − δ) − πL(pFB)(wh − u)] < 0

which is a contradiction since the firm’s payoff must exceed his outside option in any equilibrium.
By continuity, the same argument can be extended to show that the incentive constraint cannot be
satisfied at some belief p > pFB so relational contracts are inefficient. �
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