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Abstract

We report a continuous time experiment studying the classic Burdett and Judd (1983)

model, whose unique Nash equilibrium (NE) features dispersed prices. Adaptive dy-

namics predict that the NE is stable for one parameter set we use, and unstable for

another parameter set. The empirical price distribution turns out to be close to the

NE distribution for the stable parameter set overall, but for the unstable parameter

set the empirical distribution skews towards higher prices in its NE support interval.

We offer an empirical definition of price cycles in terms of changes over time in robust

measures of central tendency (median) and dispersion (interquartile range). By that

definition, the data exhibit persistent cycles in both treatments, but with larger cycles

for the unstable parameters. Results are roughly similar for professional and student

sellers and for limited information treatments.
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1 Introduction

Few laws are disobeyed more frequently than the Law of One Price (LOP). For a multitude

of goods ranging from alphabet blocks to zenon software, at a given point in time one can

find a broad range of prices for apparently identical units (e.g., Baye et al., 2004). Jensen

(2007) illustrates the major consequences such price dispersion can have for market efficiency

and welfare. At least since Stigler (1961), economists have pointed to search frictions as the

underlying cause. The now-canonical equilibrium search model of Burdett and Judd (1983)

obtains a dispersed price distribution as a (mixed strategy) best response by sellers to the

search behavior of buyers, who in turn are best responding to the dispersed prices. Varian’s

(1980) search model likewise explains LOP violations in terms of a mixed strategy Nash

equilibrium, albeit with less strategic buyers.

It is not clear how to take such equilibrium predictions to the data. Subtle heterogeneities

(e.g., in shipping, reputation, or individualized discounts) may be unobservable and are

difficult to account for properly. More fundamentally, field behavior typically consists of

asynchronous price adjustments in real time, and the proper connection to an equilibrium

mixture of prices is debatable.

Since Smith (1962), economists have used data from simple laboratory markets to help

resolve ambiguities in interpreting field data. Such markets can directly implement the

primitives of a theoretical model, and the model’s prediction successes and failures can help

guide subsequent analysis of data from more complex ongoing markets in the field. Here we

use new tools to study price dispersion dynamics in experimental markets, varying the search

frictions in a controlled manner while eliminating confounds such as subtle heterogeneities

and synchronized price changes. Thus our setting is ideally suited for initial clean tests of

dynamics and equilibrium in dispersed prices.

Broadly speaking, in a series of experimental markets inspired by the Burdett-Judd

model, we find that the equilibrium distribution is not a bad predictor for the observed

overall (time-collapsed) price distribution. However, we uncover a major role for dynamics.

Individual sellers continually move their prices around within the dispersion. Beyond that,
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the dispersion itself moves over time, and exhibits strong and persistent cycles that move

consistently in the direction predicted by adaptive dynamics.

Our project also makes several methodological contributions of interest in their own right.

We introduce nonparametric techniques for identifying cycles in price distributions; these

may be more useful than standard spectral (or time series) techniques when cycle frequencies

and amplitudes are irregular in lab or field data. Second, in contrast to the usual discrete

period lab software which enforces simultaneous pricing decisions, we use continuous time

software that enables asynchronous pricing decisions in real time. The importance of that

distinction is exemplified in Wang (2009), who finds that introducing enforced simultaneous

price setting for gasoline in Australia significantly changes behavior relative to the natural

asynchronous setting.

Third, our treatments are multidimensional. In terms of search technology, we exam-

ine stable (S) versus unstable (U) search parameters. As explained below, S theoretically

promotes convergence to equilibrium if sellers follow simple adaptive learning rules, while U

theoretically prevents convergence. We also examine immediate versus speed-limited price

changes, and high versus limited information on counterfactual profits and on other sellers’

prices. A final treatment variation is in the subject pool. Some sessions use the usual pool

of undergraduate college students, while others use professionals — executive MBAs, many

of whom have experience in setting prices for their company’s products. Those sessions

constitute an artefactual field experiment (Harrison and List, 2004) and provide an anchor

point for a bridge to future investigations of price dispersion and cycles using field data.

Before positioning our work within existing literature, we offer a few remarks on external

validity. Our primary goal is to provide clean initial evidence on foundational issues regarding

price dispersion and dynamics, giving theory its best shot; in the terminology of List (2020),

ours is a WAVE1 study and establishes that the range of applicability is not empty. No single

study, whether field or lab, can in itself guarantee generalization to any significantly different

field or lab setting. However, we would argue that price competition gives strong basic

incentives that will be the same in any other market which has the same general features, in

particular, consumers who vary in their price sensitivity. Further, a study reporting robust
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results can increase confidence that the range of applicability is broad. Thus our robust

findings for multidimensional treatments — information conditions that bracket what might

be seen in the wider world, as well as various adjustment speeds and experience levels of

subjects — shows that the basic incentive structure continues to determine behavior and

bodes well for generalizability.

The literature on price cycles goes back at least to Edgeworth (1925), who describes grad-

ually declining prices in an undercutting phase and upward jumps after capacity constraints

begin to bind. He regards the succession of phases as predictable, but not the time spent in

each phase. Capacity constraints are not relevant to our work, and Edgeworth’s cycles have

little dispersion at most points of time, but the intuition may nevertheless be helpful.

Maskin and Tirole (1988) obtain equilibrium cycles in an alternating-moves Bertrand

duopoly model on a discrete price grid. Their dynamic pricing model has many Markov-

perfect Nash equilibria, one of which is turn-taking as sellers undercut each other before

returning to a high price. The resulting cycles are very regular with minimal dispersion. It

is not clear how to generalize this equilibrium beyond two sellers. The equilibrium model

of Deneckere and Kovenock (1992) includes capacity constraints, and price cycles are also

featured in the general equilibrium literature on the Scarf example, e.g., Anderson et al.

(2004), and Goeree and Lindsay (2016). None of these papers has a role for dispersed prices.

Considerable evidence exists for cyclical pricing behavior in real world oligopolistic mar-

kets; see, for example, Slade (1998), Noel (2007), Wang (2009) or Byrne and de Roos (2019).

Some of this evidence is reminiscent of Edgeworth cycles, with episodes of slowly falling

prices often followed by a large upward jumps.

Regarding equilibrium price dispersion, a crucial question is whether in practice the

equilibrium is approachable. Given the strategic nature of the Burdett-Judd setting and the

complexity of the equilibrium in question, this might seem unlikely. Nonetheless, Hopkins

and Seymour (2002) show that simple adaptive learning rules can result in equilibrium

play emerging over time, even in this setting. In fact, depending on exogenous parameters

describing search efficacy, the Burdett-Judd equilibrium dispersion can be either stable or
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unstable under adaptive learning. In the stable case, we would therefore predict convergence

(at least at the population level) towards the equilibrium price distribution, but it is unclear

what to expect in the unstable case.

Our experiment is guided by that prediction and open question, along with previous ex-

perimental work by ourselves and others. Cason and Friedman (2003) study the comparative

static predictions of Burdett-Judd model with the best tools then available, that is, a discrete

time experiment with enforced simultaneous moves. Further, only unstable parameter sets

were used. Cason, Friedman and Wagener (2005) re-examine the same data with an eye on

dynamics, and find suggestions of Edgeworth-like price cycles; e.g., small price changes are

more likely to be downward than upward. Using this older, discrete time and simultaneous

move experimental technology, however, only one or two complete cycles could be observed

in a typical run of 30 trading periods. Morgan et al. (2006) take the Varian (1980) model

to the lab and find support for its static predictions of price dispersion. Brown Kruse et

al. (1994) earlier examined mixed strategy equilibrium in an oligopoly setting with quantity

constraints similar to Edgeworth’s.

To prepare for the present study, the current authors examined static equilibrium and

dynamics in simple bimatrix games. Cason et al. (2010) uses standard discrete time protocols

and finds that a point prediction called TASP outpredicts Nash equilibrium in a set of 4×4

bimatrix games. Cason et al. (2014) studies asynchronous real time choices and introduces

new techniques for detecting cycles in symmetric 3×3 bimatrix (Rock-Paper-Scissors style)

games. In the current study, we extend those techniques for cycle detection to much larger

action spaces of a far more realistic and complex environment. It thus addresses questions

about price dynamics and price dispersion that have intrinsic interest, as well as testing

predictions of learning theory.

New technology for conducting continuous time experiments has gained favor recently,

in part because it can enable long-run behavior to emerge in much less clock time than with

standard discrete time periods, and in part because it provides sharper and richer data.

Benndorf et al. (2016), Oprea et al. (2011) and Stephenson (2019) find substantial support

for the long run stability predictions of evolutionary game theory, albeit for simple games
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with only two alternative actions. Experiments with larger action sets are reported in Calford

and Oprea (2017) and Stephenson and Brown (2017). However, we believe that ours is the

first continuous time experiment of oligopolistic price competition, and the first to study

cycles in dispersed prices. Importantly, the continuous time technology allows observation

of hundreds of cycles per experimental session, instead of the small handful of cycles seen in

discrete time.

The next section summarizes existing theory on equilibrium in the Burdett-Judd model

and on its dynamic stability. A new discussion follows about the nature of cycles in high

(or infinite) dimensional spaces, and the section concludes with a list of testable hypotheses.

Section 3 details the experimental design, which features a novel videogame-like screen for

subjects who serve as sellers in a six-firm oligopoly played in continuous time. Experimental

treatments are explained, including stable (S) versus unstable (U) search parameter vectors,

and price adjustment speeds (almost instantaneous, medium and slow) that potentially affect

the nature of dynamic adjustment and convergence. The section also describes the subpool

of professional subjects and the high versus limited information treatments.

Section 4 presents the results. At the aggregate level, we compare overall empirical distri-

butions by treatment to the equilibrium distributions, and find impressively close agreement

in some treatments (especially S parameters, student subjects and full information) and

looser agreement in others. Regressions confirm several significant treatment effects on me-

dians (our preferred measure of central tendency) and some marginally significant effects

on dispersion (measured as the interquartile range, IQR). The section then documents the

presence and persistence of cycles in (median, IQR) space, and reports support for most (but

not all) of the testable hypotheses.

Section 5 summarizes and interprets the main findings, and suggests possible future

research. Appendix A supplements theoretical analysis, Appendix B supplements the data

analysis, and Appendix C presents the experiment instructions provided to subjects.

5

Copyright The University of Chicago 2020. Preprint (not copyedited or formatted). Please use DOI when citing or quoting. DOI: https://doi.org/10.1086/712445 



2 Theoretical Considerations

This section reviews equilibrium in the sequential search price dispersion model of Burdett

and Judd (1983), hereafter BJ83, and the stability analysis in Hopkins and Seymour (2002),

hereafter HS02. A discussion follows on how one might detect cycles in distributions sup-

ported on an interval of prices. The section concludes with a list of predictions to be tested.

2.1 Equilibrium

BJ83 explains how price dispersion — a range of prices for a homogeneous good — can be

supported in equilibrium. A continuum of firms chooses prices and a continuum of consumers

searches sequentially for low prices. An equilibrium is a distribution of prices such that all

prices in its support earn the same (maximal) profit and such that consumer search behavior

is optimal given the distribution.

Consumer search is both sequential and noisy in the BJ83 model. Each consumer initially

receives a random number of price quotations, and then either buys at the cheapest amongst

existing quotations or else sinks search cost c > 0 to obtain a fresh sample of price quotations.

The optimal policy is to adopt a particular reservation price p∗ and to search again if and

only if no current price quote is equal to or below p∗.

Sellers thus face buyers who vary ex post in the quality of their information. Some

buyers will randomly receive multiple quotations and will buy from a lower priced seller,

while others will only see one price and will take it even if it is only slightly below p∗.

This has two consequences. First, there is a non-trivial range of prices [0, p) that sellers

will never choose because these prices are dominated by p∗, a price at which demand is

positive due to the positive fraction of buyers who see only one price. Second, demand is

decreasing in price, because low prices attract relatively informed consumers as well as the

lucky uninformed while high prices attract only unlucky, relatively uninformed consumers.

With decreasing demand (and, for analytical convenience, zero production cost), sellers get

the same payoff at a high price in [p, p∗] that yields a few highly profitable sales as they do
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at a lower price that yields a larger volume of less profitable sales.

This leads to the main BJ83 result: given a positive fraction q1 of consumers who see

only one price, there exists a unique equilibrium. The relevant equal payoff condition yields

a specific distribution of prices with continuous cumulative distribution function F (p) with

support interval [p, p∗]. The main exogenous variables, which determine the shape and

support of the equilibrium distribution, are the cost of search c > 0 and the number of

quotations received by consumers. In particular, assume that each consumer with probability

qk receives k = 1, 2 or 3 iid quotations from F . Then the information conditions can be

summarized by a point in the 2-D simplex, i.e., by a nonnegative vector q = (q1, q2, q3) with

q3 = 1− q1 − q2.

It is not hard to see that a seller of rank u ∈ [0, 1] in the price distribution (the highest

priced seller has rank u = 1) faces demand

D(u) = µ
(
q1 + 2q2(1− u) + 3q3(1− u)2

)
, (1)

where µ is the number of buyers per seller. Imposing the equal payoff condition (see Appendix

A), one can then show that the inverse equilibrium distribution is

F−1(u) =
p∗q1

q1 + 2q2(1− u) + 3q3(1− u)2
, (2)

on the support interval [p, p∗] with

p = F−1(0) =
p∗q1

q1 + 2q2 + 3q3
and p∗ = F−1(1) =

c

1− q1
. (3)

Note that in equilibrium sellers are indifferent over choosing any price in the equilibrium

support [p, p∗] since they all generate the same profit, p∗µq1. Note also that in this model,

all buyers consume a single indivisible unit of the good, so total demand is the same for all

prices (below p∗); there is no welfare loss from demand restriction as in textbook models of

monopoly. Higher prices simply imply higher transfers from buyers to sellers.
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2.2 Stability

The model of BJ83 implies strategic interaction amongst sellers, with the best response

of each seller depending on the distribution of prices amongst other sellers. In such com-

plex situations of strategic uncertainty, it is unclear whether players realistically can play

equilibrium in a one-shot setting. Evolutionary game theory and adaptive learning theory

investigate whether equilibrium can be reached if players continually play the same game,

adjusting their strategies over time using simple rules.

HS02 identify parameters for which this equilibrium distribution is dynamically stable or

unstable under such evolutionary or adaptive dynamics. We can explain intuitively in terms

of the relative size of wins, draws and losses. In our oligopoly games, a “win” is where a seller

has the lowest price and attracts lots of customers (D(0) in equation (1)), a “loss” is where

a seller has the highest price and only can sell to buyers who receive a single price quote

(D(1)), and a “draw” is where the seller has the median price amongst sellers (D(0.5)).

Mixed Nash equilibria are unstable in games for which draws are almost as good as

wins because then learning dynamics tend to spend more time near pure states where prices

are less dispersed and spend less time near the mixed equilibrium. By contrast, a mixed

equilibrium tends to be stable where draw payoffs are only slightly better than loss payoffs

and are far below win payoffs; here adaptive learners take on more dispersion in their prices

to try to get wins. As shown in Appendix A, this analogy allows us to characterize stability

in terms of the convexity of the demand function D(u) given in equation (1). Simply put,

convexity leads to very high sales from low prices and thus big win payoffs and so stability,

whereas concavity implies a big loss penalty due to a significant reduction in sales from

having the highest price and hence instability. Following HS02, the following result is stated

in terms of PDA (positive definite adaptive) learning dynamics, a class that contains various

forms of reinforcement learning and imitation and evolutionary dynamics as special cases.

Proposition 1. A dispersed price equilibrium is stable under all PDA learning dynamics if

and only if D(u) is log convex; it is unstable under all PDA learning dynamics if and only

if D(u) is log concave.
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Figure 1: Regions of search parameter space for which the unique equilibrium of BJ83 is
stable or unstable under PDA dynamics. The red (resp. blue) dot shows the parameter
values U (resp. S) used in the experiment. Adapted from HS02, Figure 1.

Figure 1 illustrates this result. Recall that q = (q1, q2, q3), a point in the 3-simplex,

summarizes the information available to consumers. The function D(u) is log convex in the

region labelled Stable near the q1 = 1 corner, where losses and draws are less painful. In

this region, all PDA dynamics converge to the unique Nash dispersed price equilibrium. In

contrast, D(u) is log concave in the region labeled Unstable, which includes a large neighbor-

hood of the q2 = 1 corner; here all PDA dynamics move away from the equilibrium. In the

unlabeled intermediate region, D(u) is neither log concave nor log convex and consequently

the equilibrium could be stable under some PDA dynamics but unstable under others.

Our experiment employs two particular parameter vectors highlighted in the figure, and

summarized in Table 1. These were chosen for their simplicity and focality: the U vector

was the principal case analyzed in Cason and Friedman (2003), and we chose the S vector

to be as similar as possible while lying well within the Stable region identified in Figure 1.
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Unstable Parameter Vector: Red dot U in Figure 1 at qU = (2/3, 1/3, 0); consumer

search cost is c = 0.6. Figure 2 shows the equilibrium price cumulative distribution function

FU(p) = 2 − 9/5p on support interval [p, p∗] = [0.9, 1.8]. Here the mean price is 1.25, and

expected profits are 120 per seller.

Stable Parameter Vector: Blue dot S in Figure 1 at qS = (0.8, 0.1, 0.1), with c = 0.36.

The equilibrium cdf is FS(p) = 1 − ((−p +
√
p
√

24(p∗ − p) + p)/3p) on [p, p∗] = [1.11, 1.8],

with mean price 1.47 and expected profits 144 per seller.

Figure 2: Nash equilibrium price density functions (panel a) and cumulative distribution
functions (panel b) for Stable (orange dashed) and Unstable (blue) parameters. A uniform
distribution (green) is provided for contrast.

Figure 2 shows that the two equilibrium distributions are somewhat different, despite

(by construction) having the same upper bound p∗ = 1.8. The unique mode of FU is at its

lower bound p = 0.9, while FS has a mode at its upper bound as well as at its lower bound

p = 1.1. Further, FS stochastically dominates FU . Finally, the two equilibrium distributions

are quite distinct from a simple uniform distribution which is also plotted in Figure 2 for

contrast. Thus, equilibrium demands a very specific distribution of prices in each case.

2.3 Cycles

As explained in Appendix A, price choices of a continuum of agents at a given moment t (or,

in our experiment, mixed choices of a finite number of agents) are represented by a point

F t in the space F of all cumulative distributions over the relevant price interval. Over time
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Figure 3: Detecting limit cycles in high dimensions. Given a point P on a stable limit cycle

with tangent vector N , take the intersection of the hyperplane orthogonal to N with a ball of radius

ε around P . This Poincaré section, PS = {z ∈ B(P, ε) : z ·N = 0}, is the cycle detector.

t > 0, agents adjust prices and the distribution F t moves around in that infinite dimensional

space. The movement could be quite complicated, even chaotic. In such a high dimensional

space, how could we tell if the price distribution eventually approached the equilibrium

distribution, or if it converged to a nice limit cycle?

Figure 3 illustrates a classic technique, due to Poincaré (1890), for detecting cycles and

convergence in finite (n ≥ 2) or infinite dimensional spaces. Suppose that we have a point

P that may be on a limit cycle, and a hyperplane through P that is transversal to the cycle.

(E.g., the hyperplane could be the vectors orthogonal to the tangent vector N at P .) The

intersection PS of that hyperplane with a ball of radius ε around P is called a Poincaré

section, and it is our cycle detector.

The detector works as follows. At a sequence of times 0 ≤ t1 < t2 < ..., the evolving

price distribution {F t : t ≥ 0} intersects PS. At each such time tk, assign the sign +1 if the

price path goes in the predicted direction (e.g., if the tangent to {F t : t ≥ 0} at t = tk has

a positive dot product with N) and −1 if in the opposite direction. If, for k = 1, 2, ..., the
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points xk = F tk ∈ PS all have the same sign and converge to some point F ∗ ∈ PS, then we

have a (stable) limit cycle.

Appendix A explains how to deal with some technical issues in applying this method,

but practical difficulties remain. How do we find a point P on (or near) a limit cycle if there

is noise in the system? Which dynamics should we use to compute the tangent vector at P?

How big should ε be? With noise, we would see too few observations xk if ε is too small,

but if it is too large we might pick up other pieces of a limit cycle, going the wrong way.

In the background is a metaphysical question: what is a cycle? Physicists and chemists

traditionally think of cycles as oscillators with regular frequencies that can be analyzed

nicely using spectral techniques. Oscillation may persist at a finite amplitude, or may be

damped and ultimately disappear. By contrast, economists (and some biologists) tend to

think of cycles as processes that never settle down, but that have distinct phases that recur

in a particular sequence. They would likely exclude damped oscillations, but might include

somewhat irregular recurrence as in some noisy or chaotic systems.1 We suspect that most

economists would not recognize as cycles any process with subtle periodic movements in the

price distribution that change neither the central location nor the degree of dispersion.

From that perspective, it makes practical as well as intuitive sense for economists to work,

not with the infinite dimensional space F , but rather with a two dimensional projection that

tracks the central tendency of the price distribution and its degree of dispersion. Our data

analysis therefore will look for cycles in median price (a robust measure of central tendency)

and interquartile range (IQR = 75th minus 25th percentile prices, a robust measure of

dispersion). The obvious alternatives, mean and variance, are less robust to extreme behavior

by an individual subject. Nevertheless, as we document in Appendix B, all of our qualitative

conclusions regarding cycles still remain when we use mean and variance.

Figure 4 uses simulations to illustrate what we might see if players gradually adapt

their prices towards the current best response. The blue line tracks the median price and

1Zhijian Wang (private communication) reminds us that in the last 25 years, since the Fluctuation
Theorem became widely recognized, physical scientists also take a more statistical approach to describing
cycles.
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Figure 4: Simulated (perturbed) BR dynamics. Sample trajectories under slightly smoothed
best response dynamics for U (blue) and S (orange) parameters generate clockwise cycles
in median price and interquartile range (IQR) space. Labeled dots show Nash equilibrium
values.

the interquartile range as the distribution evolves under perturbed best response dynamics

for U parameters. (Specifically, the simulations use equation (16) in Appendix A: logit-

perturbed best response dynamics with precision parameter λ = 4.) Starting at an initial

distribution with median price near 1.45 and IQR near 0.55, the dynamics for U soon bring

the median price and IQR down to near their NE values of (1.20, 0.41). But they don’t stay

there. Instead, the distribution’s median and IQR cycle clockwise around a tilted trapezoid

surrounding the NE. Starting at the top right corner of the trapezoid, prices fall as the best

response is to undercut slightly, and the IQR decreases as prices cluster more tightly. Then,

near the bottom left corner of the trapezoid, the best response jumps to 1.8, the maximum

price. Dispersion increases as more low-price sellers move quickly towards high prices. When

most sellers charge high prices, dispersion again decreases, The blue line heads back towards

the top right corner of the trapezoid, and then undercutting resumes.

The orange line in the same Figure shows, starting from a nearby initial distribution, a

simulated time path for S parameters, using the same perturbed best response dynamics.

This time path indeed converges to (1.48, 0.37), the NE median and IQR.
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Note that Edgeworth’s best response cycle would not look the same. In discrete time, if

all sellers were simply to play a best response to prices of the previous period, then prices

would steadily descend in small steps from 1.8 to 0.9 in the U case, or to 1.11 in the S case,

and then jump to 1.8. Price dispersion would almost always be nearly zero.

2.4 Testable Hypotheses

Since a continuum of sellers cannot fit in a laboratory, we follow Cason and Friedman (2003)

in implementing the Burdett and Judd model with a finite number of sellers, in this case,

six. One can write F (p) = u = 1 − ( ri−1
5

) or 1 − u = ( ri−1
5

) where ri ∈ {1, 2, ..., 6} is the

rank of firm i with the convention that the highest priced seller has rank 1 and the lowest

has rank 6. Recall that demand s(pi) = 0 whenever pi > p∗ = 1.8; to avoid trivialities we

allow only choices pi ≤ p∗. Thus by equation (1), seller i faces demand

d(pi) = µ

(
q1 + 2q2(

ri − 1

5
) + 3q3 max[0, (

ri − 1

5
)(
ri − 2

4
)]

)
(4)

where µ = 100 is the ratio of (automated) buyers to sellers in our experiment. If two or more

sellers post exactly the same price, then demand is shared by those sellers. For example, if

two sellers tie for lowest price then they both obtain the average of the sales of rank 6 and

rank 5. Since production costs are zero and qU = (2/3, 1/3, 0), sellers’ payoff function in the

U treatment is

πU(pi, p−i) = 100pi

(
2

3
+

2

3
(
ri − 1

5
)

)
(5)

and is

πS(pi, p−i) = 100pi

(
4

5
+

1

5
(
ri − 1

5
) +

3

10
max[0, (

ri − 1

5
)(
ri − 2

4
)]

)
(6)

in the S treatment, where qS = (0.8, 0.1, 0.1). This 6-player game approximates the BJ83

model; indeed, it is easy to see that its unique symmetric NE is for each player to use the

mixed strategy described by FU(p) in the U treatment and by FS(p) in the S treatment.2

2Given the results of Baye et al. (1992) for a related model, we suspect that the 6-player game also has
numerous asymmetric NE whose composite distributions approximate FU (p) (or FS(p)). Since our focus is
the predictive power of the original BJ83 model, we will not pursue that conjecture.
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Table 1: Nash Equilibrium (NE) predictions for Stable (S) and Unstable (U) parameters

Variable Symbol U S
Distribution of Price Quotes q (2/3, 1/3, 0) (0.8, 0.1, 0.1)
Search Cost c 0.60 0.36
Buyers per Seller µ 100 100
Max NE Price p∗ 1.80 1.80
Min NE Price p 0.90 1.11
Average NE Price m 1.25 1.47
Median NE Price med 1.20 1.48
NE Price Interquartile Range IQR 0.41 0.37
NE Price Standard Deviation σ 0.25 0.21
Average Seller NE Profit π 120 144

It has been suggested to us that the static NE is implausible in this setting, since the

calculations are simply too demanding. We have some sympathy with this view, but point

out that BJ83 is far from unique in relying on complex equilibria. To give the original

theory a fair shot, our high information treatment gives subjects extensive information about

prices and profits. All our treatments give subjects substantial opportunities to learn from

experience, as explained in the next section.

If they do learn, then learning theory makes several predictions. First, as set out in

Section 2.2, behavior in the stable and unstable settings should be very different. Second,

our simulations of adaptive dynamics (Figure 4) show clockwise motion in (median, IQR)

price space. Thus, we predict cycles in our experiment also to be clockwise and not counter-

clockwise. Finally, adaptive dynamics in theory can work in both high and low information

settings, so there is no predicted effect from changing the information given to subjects.

Another consideration is that human subjects might try to collude, e.g., all sellers might

simply charge p∗. This concern led to our decision to have groups of six, where collusion is

more difficult than in smaller groups.

Initially we had another behavioral concern — in continuous time, subjects might make

so many large and frequent price changes that the payoff landscape would seem a random

blur, discouraging systematic adaptive learning or evolutionary dynamics. Therefore we

include adjustment speed as treatment variable, as detailed in the next section. Along with
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fast (virtually instantaneous) price change, we consider slow and medium speed limits, which

may affect the focus and quality of subjects’ learning processes. We have no sound theoretical

basis for predicting how that treatment will affect overall price distributions or the strength

of cycles, but the treatment clearly affects the minimum time to complete a cycle, and thus

the maximum frequency.

These theoretical considerations lead to the following testable hypotheses.

I. Nash Equilibrium: For all subject pools (professionals and students), all informa-

tion conditions and all adjustment speeds, the empirical distributions of prices will be

stationary and equal to the NE distribution, FS(p) for Stable parameters and FU(p)

for Unstable parameters. Table 1 gives numerical values.

II. Price cycles: For all subject pools, all information conditions and all adjustment

speeds,

(a) Cycles will be clockwise in (median, IQR) space.

(b) Cycle amplitude will converge to 0 for S parameters.

(c) Cycle amplitude will converge to a positive number bounded away from 0 for U

parameters.

(d) Cycle frequency will be highest for the Fast adjustment speed, and lowest for the

Slow adjustment speed.

3 Experimental Design

In our within-subjects design, each session of the experiment has some market periods with

the S parameters and other periods with the U parameters specified in Table 1. For example,

qU = (2/3, 1/3, 0) means that drawing one price has twice the likelihood of drawing two prices

with U parameters, while with S parameters qS = (0.8, 0.1, 0.1), a single price draw is very

likely but drawing three prices is also possible. Given those parameters, in each period a

continuum of buyers is simulated to behave optimally given the search costs and their price
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draws. The continuum eliminates sampling variance, so current payoff is a deterministic

functions of sellers’ price profile.

Between 12 and 24 human subjects participate as sellers in each session. Each subject

is assigned permanently to a market with six sellers, and each session has at least two such

markets. Sellers are physically interspersed and spread widely throughout a 30 station lab

with partitions that obscure subjects’ identities and assignments.

We used only business professionals as sellers in 9 of our 39 markets. These subjects were

25 to 54 years old (average age 36), and averaged 13.4 years of work experience. Nearly half

(42.4%) report price-setting experience in their occupation.3 The remaining 30 markets (180

subjects) use only subjects from the usual pool of undergraduate students.

As illustrated in Figure 5 and in the instructions included in Appendix C, sellers select

and adjust their prices in continuous time using a horizontal slider restricted to the interval

[0, 1.80]. The corresponding profit flow given in equations (5 - 6) is shown as the vertical

height of the green circle above the current slider position.

In the “high information” condition, we provide two additional visual cues. Each seller

sees differently-colored circles on the horizontal axis indicating the price choices (but not

the profit flow) of the other five sellers in the market. This corresponds to the perfect price

monitoring available in some markets (e.g., Byrne and de Roos, 2019). The same display also

includes a black line showing the seller’s own counterfactual profit flow at every feasible price,

given the prices currently offered by the other sellers. The highest point on this line shows the

player the best response to the current price distribution; the sawtooth shape seen in Figure

5 is typical. Of course, the line is constantly in motion as sellers continuously adjust their

prices. The purpose is to give subjects an impression of the profit opportunities available to

them, and we believe that our subjects find it far more useful than detailed mathematical

formulas. Twenty-three of the 39 markets, including all 9 markets with professionals, provide

this counterfactual profit (or ”payoff landscape”) line.

3These professionals were enrolled in Executive or Weekend MBA programs at Purdue University. One
market with professionals had only five sellers.
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Figure 5: Example Seller Price Choice and Feedback Screen

To study how such contemporary information may affect pricing behavior, we also con-

ducted sessions where it is suppressed. In 8 “limited info–prices only” markets the display

eliminates the payoff landscape line, but still shows other sellers’ prices on the horizontal axis.

Another 8 “limited info–no prices” markets eliminates both cues and provide no information

about other sellers’ current or past prices. An example screen is included in Appendix C.4

The two panels on the right of sellers’ screens have elapsed time as the horizontal axis.

The large lower panel shows the seller’s accumulating profit as the green area swept out by

the vertical height of the green circle. The narrow upper panel’s line graphs show all six

sellers’ prices chosen so far; this panel is suppressed in the “no prices” condition.

Besides the primary S vs U parameter treatment, we have a secondary within-subject

treatment, adjustment speed, with three alternative conditions. When a subject moves the

price slider or clicks on a new target price, her actual price moves from its old value to the

new target at a constant speed. In the Fast condition, the move is virtually instantaneous

(0.072 seconds for a typical adjustment spanning 10% of the available price range). In the

4All 16 of these limited information markets began with 4 periods of the high information display so that
sellers could learn how their payoffs depend on all sellers’ prices. We do not analyze these “training” periods.
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Slow adjustment condition the same adjustment takes 3.6 seconds to complete, and in the

Medium condition it takes 0.72 seconds.

Each session with undergraduate student subjects is divided into 32 trading periods.

Initial prices are randomly assigned each period. Trading periods each last 90 seconds,

except for Slow adjustment periods after the first three sessions. Those periods last 150

seconds, in order to permit more cycles.

The 32 trading periods in each student pool market are divided into eight blocks of four

periods each. The within-subjects treatments (i.e., S vs. U parameters and price adjustment

speed) are held constant within each four-period block and varied in a balance fashion across

blocks in each session, as detailed in Table 18 in Appendix B. Due to time constraints for

the business professionals, their sessions last only 16 periods so each market provides data

for only 4 of the 6 within-subject treatment combinations. Since assignment of subjects

to separate six-seller markets is permanent in each session, the 233 subjects provide 36

independent sets of observations for each treatment combination.

Sessions were conducted at Purdue University between October 2017 and February 2020.

The student subject sessions took about 80 to 90 minutes and earnings per subject (including

a $5.00 participation payment) averaged $28.95, with a standard deviation of $1.80. We

increased the exchange rate for the business professionals, so their 40 to 50 minute sessions’

earnings averaged $44.24 with a standard deviation of $2.31.

4 Results

Our data consist of prices posted by subjects sampled at 400ms intervals, i.e., 2.5 times per

second. Initial prices in the first six markets were drawn randomly without replacement

from the set {0.50, 0.75, ..., 1.75}; the data analysis drops the first 15 seconds of each period

when sellers are adjusting prices towards the narrower range where they typically operate

for the rest of the period. In the remaining 33 markets we used the narrower set {1.10,

1.20, ..., 1.60} of initial prices, enabling us to reduce the excluded initial adjustment time to
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the first 10 seconds of each period. The nonparametric tests reported below all employ the

conservative convention that the unit of observation is the independent 6-seller market.

4.1 Overview

The top panels of Figure 6 compare overall observed cumulative price distributions in Stable

treatments to the Nash equilibrium of the BJ83 model. The prediction seems right on target

except for a clump of prices right at the upper endpoint p∗ = 1.80 (about 9% of choices with

high information but up to 14% with limited information), and a few prices a little below

the predicted lower endpoint p = 1.11 of the predicted support interval. The corresponding

Unstable NE prediction shown in the lower half of Figure 6 is almost first-order stochastically

dominated by each of the empirical cumulative price distributions, due mainly to fewer low

prices than predicted. In each panel, adjustment speed seems to have little impact.
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Figure 6: Cumulative distributions of observed vs NE prices in Stable (top panels) and
Unstable (bottom panels) treatments. Samples exclude first 10 - 15 seconds of each period.

Table 2 presents summary statistics for pooled subject pools, with other treatments
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disaggregated.5 The upper left side shows that the median prices observed for the Stable

treatment are remarkably close to the equilibrium prediction of 1.48, and they are not sig-

nificantly different from this benchmark in the high information condition.6 As predicted,

median prices are lower in the Unstable treatment, but they nevertheless are significantly

greater than the equilibrium prediction of 1.20. The lower half of Table 2 indicates that me-

dian prices are greater when sellers have more limited price information and payoff feedback.

This is consistent with the price CDFs shown on the right side of Figure 6, which have a

larger mass of prices on the maximum price.

Table 2: Mean of Summary Price Statistics (and standard errors across periods)

High Information (Pooled) Median Price Interquartile Range
Nash Equilibrium (Stable) 1.48 0.37
Stable-Fast Adjust 1.482 (0.007) 0.433** (0.006)
Stable-Medium Adjust 1.496 (0.009) 0.447** (0.009)
Stable-Slow Adjust 1.469 (0.009) 0.398* (0.007)
Nash Equilibrium (Unstable) 1.20 0.41
Unstable-Fast Adjust 1.324** (0.008) 0.411 (0.009)
Unstable-Medium Adj. 1.339** (0.011) 0.403 (0.008)
Unstable-Slow Adjust 1.317** (0.010) 0.377 (0.008)

Limited Information (Pooled) Median Price Interquartile Range
Nash Equilibrium (Stable) 1.48 0.37
Stable-Fast Adjust 1.528** (0.006) 0.426** (0.007)
Stable-Medium Adjust 1.550** (0.007) 0.411** (0.006)
Stable-Slow Adjust 1.548** (0.006) 0.393 (0.006)
Nash Equilibrium (Unstable) 1.20 0.41
Unstable-Fast Adjust 1.356** (0.009) 0.447* (0.006)
Unstable-Medium Adj. 1.387** (0.013) 0.439* (0.007)
Unstable-Slow Adjust 1.364** (0.011) 0.399 (0.007)
Notes: First 10 or 15 seconds omitted from each 90 or 150 second period;
* and ** denote significant differences from Nash equilibrium at .05 and
.01 levels for 2-tailed Wilcoxon signed-rank test, using Holm-Bonferroni
p-value correction to adjust for family-wise error rate.

The right side of Table 2 reports predicted and observed dispersion as measured by the

5Table 7 and Figures 9 and 10 in Appendix B summarize data disaggregated by subject pool and infor-
mation condition.

6These and other unconditional tests in this study employ Holm-Bonferroni p-value correction, as in
Andreoni et al. (2019), to adjust for the family-wise error rate (e.g., see List et al., 2019).
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Table 3: OLS Regressions of Summary Price Statistics

Variable Median Price Interquartile Range
Unstable Market -0.163** (0.008) -0.008 (0.007)
Professionals 0.014 (0.015) 0.045* (0.020)
No Counterfactual Projection 0.052** (0.012) 0.019 (0.012)
No Information on Others’ Prices 0.057** (0.016) 0.022* (0.010)
Fast Adjustment Speed -0.019* (0.007) 0.004 (0.005)
Slow Adjustment Speed -0.018* (0.007) -0.034** (0.006)
Intercept 1.494** (0.011) 0.413** (0.006)
Observations (clusters) 216 (39) 212 (38)
R-squared 0.707 0.203
Notes: Standard errors (in parentheses) adjusted for clustering on markets; *
and ** denote significant differences from 0 at .05 and .01 levels (2-tail tests)

interquartile range of prices. Observed dispersion is often as predicted and sometimes smaller

in the Unstable treatment; differences from equilibrium are insignificant except for some price

adjustment speeds in the limited information condition. In the Stable treatment observed

dispersion is consistently larger than predicted and often significantly larger. This is due

mainly to the sprinkling of price choices below p = 1.11 and the clump at the maximum

p∗ = 1.80. Table 8 in Appendix B shows that neither the median price nor the IQR dispersion

measure change much between the first and second halves of the trading period in any

treatment. Thus the time-average price distributions seem not to be trending towards a

different location or degree of dispersion.

Table 3 reports OLS regressions of median prices and interquartile range, averaged for all

4 periods in each block, on a series of dummy variables for exogenous treatments. Consistent

with Hypothesis I, median prices are significantly lower with the Unstable parameter vector.

Relative to High information (the omitted condition), median prices are significantly higher

without the counterfactual payoff projection, whether or not display of other sellers’ prices

is also suppressed. Median prices are slightly lower for the fast and slow adjustment speed

relative to the intermediate (omitted) medium adjustment speed condition. Notably, the use

of professional businesspeople as subjects has no significant impact on median prices.

The rightmost column of Table 3 shows some small differences in dispersion, with de-
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creases for the slow adjustment speed and increased dispersion for professionals and when

price information is suppressed.7 Dispersion is not significantly different between the Stable

and Unstable market parameters, but our design deliberately set similar Nash equilibrium

dispersion across the treatments (0.37 for Stable and 0.41 for Unstable) in order to focus on

identification of differences in cycles.

In sum, we have mixed support for Hypothesis I. Nash equilibrium correctly predicts the

comparative statics for median prices. Despite slightly underpredicting IQR, it is reasonably

accurate in predicting the overall distribution in the S treatment, at least when sellers can

observe other sellers’ contemporaneous prices. The NE prediction in the U treatments is less

accurate; although roughly correct, particularly for the level of dispersion, it significantly

underpredicts the observed median price.

4.2 Price Cycles

Might the observed skew towards higher-than-NE prices in the U treatments be due to price

cycles? Figure 7 illustrates observed price dynamics in (median, IQR)-space in two trading

periods. Time progresses downward, beginning at second 10 at the top of the vertical axis

and ending in the horizontal plane at second 90 (or 150). The red ‘pole’ in the center of

each figure denotes the time averaged (median, IQR) for the period. The two panels are

representative in that we see rough cycles in all speed and stability treatments, although

there is considerable heterogeneity within and across treatments.

To test Hypothesis II on price cycles, we implement a version of Poincaré’s technique in

(median, IQR) space. Of course, in any two-dimensional space, a Poincaré section is just

a line segment, i.e., a “tripwire.” As detailed in Appendix B, our tripwire connects the

center of the (median, IQR) observations to the horizontal axis, and each period we count

the number CW of tripwire crossings in the predicted clockwise direction and the number

CCW in the opposite (counterclockwise) direction. We define the Cycle Rotation Index for

7To avoid redefining dispersion, we exclude from the interquartile range regressions the one market with
5 rather than 6 sellers; thus these regressions use 212 rather than 216 observations.
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Figure 7: Examples of median-IQR dynamics in Stable-Fast treatment (Panel a) and
Unstable-Slow treatment (Panel b) treatments. The straight red line plots the time av-
eraged (median, IQR) for the period. Samples exclude first 10 seconds of each period.

each six seller market each period by

CRI =
CW − CCW
CW + CCW

. (7)

By construction, CRI ∈ [−1, 1], with positive values indicating mostly clockwise transits.

As noted earlier, the best-response cycles in median-IQR space rotate clockwise around the

cycle center, so Hypothesis IIa entails positive CRI values.

Table 4 displays the average number of both kinds of transits and the average CRI

per period, disaggregated by treatment condition and separately for the high and limited

information cases. As per Hypothesis IId, transits are less frequent when prices adjust to

sellers’ target prices more slowly. This is unsurprising, as the minimum time to complete a

given cycle is longer in the slower adjustment treatments.

More importantly, the Cycle Rotation Index is significantly positive in every treatment

condition according to the conservative Wilcoxon signed-rank test consistent with Hypothesis
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Table 4: Mean Transits and Cycle Rotation Index

CW CCW Cycle Rota-
High Information (Pooled) Transits Transits tion Index
Stable-Fast Adjust 9.47 (0.69) 2.68 (0.28) 0.59** (0.04)
Stable-Medium Adj. 7.56 (0.48) 2.13 (0.17) 0.59** (0.04)
Stable-Slow Adjust 4.18 (0.29) 1.25 (0.14) 0.58** (0.04)
Unstable-Fast Adjust 8.32 (0.49) 1.97 (0.32) 0.64** (0.05)
Unstable-Medium Adj. 6.83 (0.44) 1.64 (0.20) 0.65** (0.04)
Unstable-Slow Adjust 3.80 (0.19) 1.05 (0.17) 0.66** (0.05)

Limited Information (Pooled)
Stable-Fast Adjust 6.44 (0.49) 2.86 (0.27) 0.40** (0.05)
Stable-Medium Adj. 5.67 (0.29) 2.81 (0.26) 0.39** (0.05)
Stable-Slow Adjust 4.23 (0.31) 1.64 (0.17) 0.48** (0.04)
Unstable-Fast Adjust 6.17 (0.47) 2.58 (0.33) 0.46** (0.06)
Unstable-Medium Adj. 4.78 (0.37) 2.17 (0.25) 0.46** (0.05)
Unstable-Slow Adjust 3.20 (0.18) 0.84 (0.13) 0.66** (0.05)
Notes: Standard error of the means in parentheses. Double asterisks (**)
indicate two-tailed Wilcoxon signed-rank test significantly different from
zero, at the one-percent significance level, using Holm-Bonferroni p-value
correction to adjust for family-wise error rate.

IIa. Cycles are noisy, of course, and not every transit is in the predicted clockwise direction.

Cycles are somewhat less frequent when sellers have limited information about their potential

payoffs or other sellers’ prices, but the CRI averages across periods are remarkably consistent

within information treatments. The CRI calculated separately for the first half and second

half of the trading periods are also very similar; see Table 13 in Appendix B. Thus, contrary

to Hypothesis I, the price distribution remains nonstationary in all treatments. Controlling

for the adjustment speed and information condition, however, the CRI is always larger in the

Unstable than the Stable condition. We provide a statistical test for this difference below.

Amplitude is another important aspect of price cycles. As the observed (median, IQR)

moves around, its path might typically stay in a smaller or larger neighborhood of the center.

We therefore also compare the cycles in terms of their amplitude, defined as the mean distance

from the center at which the trajectory crosses the tripwire. Table 5 shows that average

amplitude is always greater with the Unstable parameter vector than the Stable vector

holding other treatments constant. The relative differences are substantial, ranging from 17
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Table 5: Mean (across Periods and Markets) of Median (within Period) Cycle Amplitude

Fast Medium Slow
High Information (Pooled) Adjustment Adjustment Adjustment
Stable 0.087 (0.006) 0.092 (0.005) 0.103 (0.006)
Unstable 0.145 (0.008) 0.122 (0.007) 0.121 (0.007)
p-value for MW Test < 0.001** 0.003** 0.050*
(Stable vs. Unstable)

Limited Information (Pooled)
Stable 0.085 (0.006) 0.082 (0.006) 0.094 (0.008)
Unstable 0.134 (0.010) 0.120 (0.011) 0.110 (0.009)
p-value for MW Test < 0.001** 0.011* 0.072
(Stable vs. Unstable)
Notes: Standard error of the means shown in parentheses. Indicated p-values
are for one-tailed tests, using Holm-Bonferroni p-value correction, and * and
** highlight the five- and one-percent significance thresholds.

to 67%, and the differences are highly significant except for slow adjustment (which has fewer

cycles). The consistently positive cycle amplitudes in all Stable conditions enable us to reject

Hypothesis IIb. The systematic, larger amplitude cycles in the Unstable condition support

Hypothesis IIc. Appendix B shows that these conclusions are robust to other definitions of

the cycle tripwire (Tables 11 and 12) and for an alternative definition of central tendency

and dispersion (mean, standard deviation; see Tables 14 and 15).

Table 6 reports OLS regressions of these cycle measures, averaged across all 4 periods of

each treatment within each session, on a dummy variable for the Unstable parameters. These

estimates control for the other experimental conditions using additional dummy variables.

Consistent with Hypothesis II, both cycle measures are significantly higher for Unstable. The

use of business professionals lowers the CRI but does not significantly affect cycle amplitude.

Other than stability, the only factor significantly affecting amplitude is the availability of

information about other sellers’ prices. The CRI is also affected by how much information

is provided to sellers.
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Table 6: OLS Regressions of Cycle Rotation Index and Cycle Amplitude

Variable Cycle Rotation Index Cycle Amplitude
Unstable Market 0.080** (0.020) 0.034** (0.004)
Professionals -0.156** (0.042) -0.012 (0.007)
No Counterfactual Projection -0.110** (0.037) 0.003 (0.007)
No Information on Others’ Prices -0.262** (0.004) -0.024* (0.004)
Fast Adjustment Speed -0.002 (0.003) 0.009 (0.004)
Slow Adjustment Speed 0.007* (0.003) 0.003 (0.004)
Intercept 0.598** (0.026) 0.094** (0.004)
Observations (clusters) 212 (38) 212 (38)
R-squared 0.305 0.344
Notes: Standard errors (in parentheses) adjusted for clustering on markets; *
and ** denote significant differences from 0 at .05 and .01 levels (2-tail tests)

4.3 Price Changes

Recall that, although sellers could change prices at any time, for data analysis we recorded

the actual price vector at 400ms intervals, and at the same time also recorded the vector of

prices targeted by each seller. The two price vectors are usually quite close together in the

Medium and Fast adjustment data, but they can differ substantially when price adjustment

is Slow. In this subsection, we focus on the changes in target price between successive

observations.

After excluding the initial 10 or 15 adjustment seconds for the 38 markets with 6 sellers,

we have 1,213,674 adjacent 400ms intervals to consider for possible price changes by indi-

vidual sellers. Sellers changed their target price in 622,725 of these intervals, or 51%. One

reason for this high percentage is that our interface made price changes very easy: when

sellers dragged the price slider around, as they often did, our data indicate a constantly

moving target price.

Target price changes are most common in the Fast adjustment condition (59.3%), and

less frequent in the Medium (55.1%) and Slow adjustment conditions (44.2%). More impor-

tantly, price changes are systematically more frequent in the Unstable markets than in Stable

markets. Overall, price changes occur 55.0% of the time in the Unstable periods, compared

to 47.6% for the Stable periods. For 34 of 38 independent markets, target price changes are
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less frequent in Stable than in Unstable periods. The relevant Wilcoxon signed-rank test

establishes that the difference is significant at p < 0.001. However, Table 16 in Appendix B

shows that the frequency of price changes hardly declines from the early to late parts of the

trading period in any type of market.

Considerable heterogeneity exists in the frequency of price changes across individual sell-

ers. Only 13 of 228 sellers change prices in more than three-fourths of successive observations,

and 37 of 228 sellers leave prices unchanged in more than two-thirds of successive observa-

tions. The interquartile interval for target price change frequency is [0.399, 0.645] across

sellers. Average price change frequency is lower among professionals (0.488) and in mar-

kets with limited payoff and price feedback (0.476), relative to markets with student sellers

and high information (0.573). This is due, in part, to professionals and sellers in limited

information markets more frequently leaving prices unchanged at the maximum level.

Profits do not vary much across sellers because, as we have seen, the overall price distri-

bution is close to the NE distribution where (within its support) profits are equal for all price

choices. The lowest average earning rate among sellers is 126.3 and the highest is 164.4, with

an interquartile range [135.3, 144.2]. Despite this compressed range, we find that sellers who

changed their target price frequently earned greater profits; the Spearman rank correlation

of average payoff rate with price change frequency across sellers is ρ = 0.37. This correlation

is highly significant based on a cross-sectional regression that clusters standard errors at the

market level (p < 0.001).

How do target prices compare to the contemporaneous best response (BR) price? More

often than not, sellers move their targets in the right direction: 61% of price changes are up-

ward when the BR exceeds the current price, and 58% are downward when it is below. There

is, however, an interesting asymmetry in how often sellers keep price targets unchanged: 43%

of the time when the BR exceeds the current price, but 53% of time when it is below. This

relative reluctance to respond to the incentive to lower prices might be due to the fact that

the local profit gradient is typically positive. That is, as can be visualized in Figure 5, a

seller’s counterfactual profit declines as she reduces price until her rank in the price distribu-

tion falls below a rival seller’s. In other words, while simple (myopic) payoff-based learning
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would facilitate directional learning (Selten and Stoecker, 1986) in the case of upward ad-

justments, it does not in the case of downward adjustments as subjects need to have some

patience/foresight.8,9

Finally, we note that when sellers move their target towards the BR price, they tend to

undershoot; see Table 17 in Appendix B. Overshooting (setting the target more than 0.05

beyond the BR, as a seller might do in anticipation that the BR will soon change) is rare,

less than 5% of cases, and setting the target within 0.05 of the BR is definitely less common

than setting it short of that. This behavioral inertia might suggest lack of foresight, but it

might also simply be a mechanical artifact of the user interface, since most sellers drag their

slider towards their true target rather than clicking on it directly.

5 Discussion

Our experiment investigates price dispersion in the sequential search model of Burdett and

Judd (1983). That model predicts parameter-specific distributions of prices, and our aggre-

gate data largely bear out those predictions. For “Stable” parameters, student subjects and

high information treatments, the prediction is remarkably close to the empirical distribution

that we observe when aggregating over sellers and over time. Predicted distributions are

in the right ballpark for all treatments, and key comparative statics predictions are correct,

e.g., median observed price is indeed lower with the Stable parameters.

Disaggregated data reveal much more activity than suggested by static equilibrium pre-

dictions. In all treatments, most individual sellers continually adjust prices throughout the

trading period. Our data thus rule out several plausible hypotheses: that individual sellers’

prices stabilize, that price dispersion fades away, and that dispersion is not systematically

8The asymmetry in the rate of price changes when the BR is above rather than below the current price
is larger in the Slow and Medium adjustment conditions (11%) than with Fast adjustment (8%), which is
consistent with this patience/foresight conjecture. With Fast price adjustment, patience is not required since
movement to the (recent) BR is nearly instantaneous.

9See Nax and Pradelski (2015), Nax et al. (2016) for recent theory and experimental evidence of myopic
directional learning.
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related to search technology.

In our view, the most important finding is that individual sellers’ price adjustments do

not tend to cancel out as in some stochastic equilibrium (in which the equilibrium distribu-

tion holds at the population level, but not at the individual level); instead, there are strong

and persistent cycles in the price distribution. Consistent with learning and evolutionary dy-

namics, we see that, starting at relatively high values, dispersion and median price both tend

to fall as sellers get pulled into intense price undercutting. Dispersion continues to fall as

the median price begins to stabilize at a low level. Then a few sellers abandon undercutting

and jump to high prices. As more follow, the median increases sharply and dispersion also

increases until the undercutting phase resumes. This process produces irregular but persis-

tent clockwise cycles in (median, IQR) space, where IQR is a robust measure of dispersion,

implying price dispersion is higher when prices are rising.

In each treatment allowing timely price adjustment, we see on average 5-10 clockwise

cycles per trading period. Of course, cycles are less frequent when we enforce very gradual

price adjustment (slow treatment), but the cycle rotation index still shows very significant

clockwise cycling. Cycle amplitudes are significantly smaller with Stable than with Unstable

parameters, but (contrary to our initial hypothesis) they remain significantly positive.

One might ask how is it possible for the overall empirical distribution to be close to

the equilibrium, even while persistent cycles keep the distribution some distance away from

equilibrium. To explain, consider someone constantly driving on a ring road outside of a city.

An average of this driver’s GPS coordinates would give the center of the ring somewhere

in downtown, but the driver never was downtown, just as our subjects are never in equilib-

rium. Theory formally outlining this possibility is in Benäım et al. (2009). Further, this

phenomenon, persistent cycles but averages close to equilibrium, is also reported in Cason

and Friedman (2003) and earlier in Brown Kruse et al. (1994).

Our results are robust in some important directions. First, to conduct an artefactual field

experiment, we ran additional sessions with a different subject pool, business professionals

enrolled in executive MBA programs, many of whom had field experience setting prices.
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One might conjecture that such subjects would be more successful in finding equilibrium

or, alternatively, in managing to collude or otherwise altering dynamic behavior. Although

we detect some interesting differences — cycles are slightly more dispersed and slightly less

regular — all major conclusions are confirmed when business professionals set prices.

A second robustness check was to relax our full information baseline condition, which

was intended to give Nash equilibrium its best shot. Sellers in baseline always see other

sellers’ current prices and can easily find the best response to those prices. Sellers in many

real-world situations do not have optimization tools and/or timely access to rivals’ prices,

so we tested the impact of going to the other extreme. One limited information treatment

removed access to counterfactual payoffs (including best response), and a further treatment

also removed access to other sellers’ current prices. The impact turns out to be less than we

expected. Under either of these limited information conditions, median prices are somewhat

higher and cycles are slightly less consistent in direction and slightly lower in amplitude.

However, in all settings we still observe strong cycles that show no tendency to fade away.

What might the results tell us about pricing in the wider world? Online sellers can easily

and quickly adjust price offers whenever they desire, although actionable feedback typically

takes hours or days to accumulate. Taking into account the different effective time scales,

we see no insurmountable barrier to generalizing the theory and results presented here.

Certainly field data present major challenges — e.g., in accounting for subtle heterogeneities

in products and for endogenous selection of search technology — but robust results from

tightly controlled settings such as ours can help isolate and cope with those additional

challenges. In particular, empirical economists might consider looking for irregular cycles

(perhaps using Poincaré sections) in field data. They could investigate whether the degree

of dispersion, and the amplitude and frequency of cycles, varies with changes in the search

technology, such as recommender systems or search engines, in a manner consistent with our

laboratory findings.

Many questions also remain for future lab experiments. What happens if periods run for

a very long time — would the cycle amplitude eventually fall in the Stable condition? How

exploitable are the cycles — could an algorithm that tracks cycles make substantial excess
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profit? Would sellers’ behavior change if buyers were human subjects who could adapt their

search behavior or could substitute intertemporally?

We hope that our results also provoke new theoretical developments. Appendix A raises

as many questions as it answers about how economists might identify cycles in higher dimen-

sions. Our results are broadly consistent with simple models of adaptive learning, but also

highlight issues in applying existing learning models to realistically rugged payoff landscapes.

For example, in our setup (and in some real world situations), a seller’s payoff typically in-

creases with small price increases, but the global best response often is to jump to a much

lower price. How should economists model and identify adjustment dynamics in that sort of

environment?
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Appendix A: Theory

Equilibrium. We now review some details of equilibrium calculations in BJ83 sequential

search model with a continuum of sellers and a continuum of buyers. Each buyer receives

k ≥ 1 random price quotations with given probabilities qk, with qk = 0 for k > 3, and

purchases at the lowest of these prices if at or below the endogenous reservation price p∗.

For an arbitrary cdf of seller prices F , each individual seller therefore faces demand

D(p) = µ
(
q1 + 2q2(1− F (p)) + 3q3(1− F (p))2

)
(8)

on [0, p∗] and zero elsewhere, where µ is the buyer/seller mass ratio. The mixed equilibrium

distribution F (p) solves π(p) ≡ pD(p) = p∗µq1 ≡ π(p∗) for all p ∈ [p, p∗]. That is, the profit

at each price in the support interval of the equilibrium distribution is equal to the profit

earned when charging the reservation price, where the seller’s customers see only one price

quotation. One can write D(p) as D(u) where u = F (p) one’s rank in the price distribution,

giving equation (1) in the text. The equilibrium condition therefore can be rewritten as

F−1(u)D(u) = p∗D(1). (9)

This implies that the inverse equilibrium price distribution has the explicit form

F−1(u) =
p∗D(1)

D(u)
. (10)

This leads directly to equation (2) for F−1, and to equation (3) for p = F−1(0). The

reservation price p∗ equates the incremental cost of another search to the expected price

reduction, i.e., it solves

c =

∫ 1

0

(p∗ − F−1(u)) dG(u) =

∫ 1

0

G(u)
dF−1(u)

du
du = p∗(1− q1), (11)

where G(u) = q1u+ q2(1− u)2 + q3(1− u)3, the distribution of lowest prices. This gives the

result that p∗ = c/(1− q1).
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Stability. Following HS02, we now give some results on stability under adaptive dynamics.

Let the price range [p, p̄] be approximated by an evenly-spaced finite grid of size n.10 That

is, the strategy set is [p, p + ε, p + 2ε, ..., p̄] = [p1, ..., pn] where ε = (p̄ − p)/(n − 1). Let x

be a point in the n-simplex so that it represents the relative frequencies of strategies and let

X(pi) = Xi =
∑

j≤i xj be the associated cumulative distribution. From this we construct a

finite approximation to the BJ83 continuous profit function

πn(x) = (p1D(X1), ...., pnD(1)) . (12)

We then consider PDA evolutionary dynamics of the form

ẋ = Q(x)πn(x) (13)

where Q(x) is a positive definite matrix and πn(x) is the vector of payoffs to the different

prices. The best-known dynamics of this form are the evolutionary replicator dynamics,

where the relative growth rate of frequency of strategies is proportional to relative payoffs.

HS02 find that the linearization of these dynamics at a mixed equilibrium x∗ will be

Q(x∗)π′n(x∗) (14)

where π′n(x) = dπn(x)/dx is a n × n matrix. HS02 show that the mixed equilibrium will

be asymptotically stable (unstable) under all dynamics of form (13) if π′n(x) is negative

(positive) definite. Proposition 4 in HS02 then shows that the definiteness of π′n(x) depends

on the function,

Θ(u) = D′′(u)D(u)−D′(u)2 = 6q1q3 − 4q22 − 12q2q3(1− u)− 18q3(1− u)2. (15)

If Θ(u) > 0 (and thus D(u) is log convex) for u = 0 then Θ > 0 for all u ∈ [0, 1] and π′n(x) is

negative definite and the equilibrium is asymptotically stable, but if Θ(u) is negative (and

10It is possible to extend these results to allow for prices below p and or above p̄ at the cost of additional
notation. However, as these prices are dominated strategies, the population shares for these strategies would
quickly approach zero.
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Figure 8: Win bonus versus loss penalty.

thus D(u) is log concave) for u = 1 then π′n(x) is positive definite. The curve in Figure

1 surrounding the Stable area is thus Θ(0) = 0 and Θ(1) = 0 bounds the Unstable area.

Proposition 4 of HS02 then implies both the earlier Proposition 1 and the following.

Proposition 2. The mixed equilibrium FS in the game S is asymptotically stable under the

PDA dynamics (13), but the mixed equilibrium FU in the game U is unstable.

To illustrate the intuition, consider D(0.5), the demand from being at the midpoint of

the price distribution, to be the tie payoff. Take D(1) and D(0) to be the loss and win

payoffs from being the highest/lowest priced seller respectively. So, the win premium is

D(0)−D(0.5) and the loss penalty is D(0.5)−D(1). Then one can see in Figure 8 that our

Stable parameterization gives rise to convex demand so that the win premium is bigger than

the loss penalty. However, in the unstable case, demand is linear so that they are equal.

Thus, as HS02 write, stability requires “sufficient ignorance”; that is, a large number of

poorly informed buyers. The Stable game S has some highly informed consumers but many

poorly informed consumers. This both raises the payoff to wins (because the highly informed

buyers successfully find the lowest priced seller) and reduces the size of losses (the mass of

poorly informed buyers still buy from you even if you are high priced). This is what gives

convexity in demand and hence stability. However, the unstable game U does not have as

many poorly informed consumers and so losses are quite painful.

(Perturbed) Best Response Dynamics.
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The text sometimes refers specifically to BR or Perturbed BR dynamics, which are de-

scribed by the ordinary differential equation,

ẋ = φ(x)− x (16)

where the function φ(·) is a perturbed choice function such as the logit. These PBR dynamics

are discussed in detail in Hopkins (1999). The fixed point x̂ of the PBR dynamics is not in

general identical to the Nash equilibrium but instead is Quantal Response (QRE) or Logit

(LE) equilibrium. PBR choice functions such as the logit are usually parameterized with

a precision parameter λ, which is the inverse of the noise affecting the individual’s choice.

Thus, the PBR dynamics approach the (exact) BR dynamics analyzed in, for example,

Gaunersdorfer and Hofbauer (1995), as λ becomes large. The results of Hopkins (1999)

imply that the linearization of the PBR dynamics at x̂ is

λQ(x̂)π′n(x̂)− I, (17)

where λ is the precision parameter. Proposition 1 of Hopkins (1999) then implies the fol-

lowing:11

Proposition 3. The perturbed equilibrium (QRE) x̂ of the game S is globally asymptotically

stable under the PBR dynamics for all λ ≥ 0.

The equivalent result for the unstable equilibrium is somewhat different. The perturba-

tions have a stabilizing effect. The unstable equilibrium is only unstable under the perturbed

dynamics if the precision is high enough, equivalent to the level of noise being sufficiently

low. The value λ∗ is found through numerical calculation.

Proposition 4. In game U , the perturbed equilibrium (LE) x̂ is unstable under the logit

form of the PBR dynamics for all λ > λ∗ ≈ 0.69.

11See also Lahkar (2011).
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Detecting Cycles.

What sort of behavior should we expect when the fixed point is unstable? In two di-

mensions, if the unique equilibrium point is dynamically unstable, then the classic Poincaré-

Bendixson Theorem tells us that any sort of continuous dynamics must have a limit cycle

in a generalized sense. The nature of that cycle can depend on the specific dynamics. For

example, when the NE is unstable in an asymmetric Rock-Paper-Scissors game, we get con-

vergence to a stable interior Shapley polygon under BR dynamics, but get convergence to

a heteroclinic cycle (i.e., to the edges of the simplex) under replicator dynamics. The Hopf

bifurcation is a textbook example of how behavior in two dimensions can transition from

convergence to an equilibrium point to regular cycles as parameters change in a two dimen-

sional system. Continuous time dynamics in systems of dimension 3 and higher can be much

more complicated. Cycles can be quite intricate, and chaos (or convergence to a strange

attractor) is possible.

Our dynamical system can be formalized as a system of ordinary differential equations

in the infinite dimensional space F of probability measures (or cumulative distribution func-

tions) whose support is contained within a fixed interval [p, p̄]. One can deal (as in the pre-

vious subsection) with approximations of arbitrarily large finite dimension, or (as a literal

interpretation of our experiment with six sellers using pure strategies) of fixed finite dimen-

sion. In the latter case, one begins with the hypercube [p, p̄]6, and then recognizes that the

theory treats the sellers symmetrically so that only the distribution of prices matter, not the

identity of the sellers. The proper domain for dynamics (or state space) thus is the 1
6!

= 1/320

slice of the hypercube that satisfies the order statistics condition p ≤ x1 ≤ x2 ≤ ... ≤ x6 ≤ p̄.

That state space is still 6 dimensional, of course.

Whether the state space is infinite dimensional or 6 dimensional, it seems that very

complex behavior is possible. It is also possible that behavior settles down to a nice limit

cycle, plus perhaps some residual behavioral noise. To detect nice cycles, we can construct

a Poincaré section of co-dimension 1, as in Figure 3 in any state space of dimension of two

or larger, including infinite dimensional state spaces.
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Given data consisting of observations of dispersed prices (z1, z2, ..., zt, ..., zT ) sampled on

fine time grid, suppose that we have constructed a Poincaré section PS at point P with

tangent vector N .12 A positive transit (+1) through PS is detected when zt · N < 0 and

zt+1 · N ≥ 0, i.e., successive dot products go from negative to positive, i.e., the trajectory

passes through the section normal to the tangent vector between times t and t+ 1.

A major advantage of this approach for us is that it works even if the cycle is a bit irregular

or has a small but persistent stochastic component. Better known spectral techniques deal

less effectively with such complications. See Wang et al. (2017) for descriptions of other

possible methods such as velocity fields and angular momentum. For some purposes, our

method has the disadvantage that it will not distinguish between limit cycles and some sorts

of chaotic behavior (such as Lorenz attractors) that are almost periodic.

As noted in the paper, we chose for practical and metaphysical reasons to work with a two

dimensional projection such as (median, IQR); Appendix B notes similar results with (mean,

standard deviation.) Nevertheless, it should be acknowledged that such a low dimensional

projection can be misleading. Non-cyclic behavior can project to cyclic behavior, e.g., a

helix projected orthogonally to its axis looks like a cycle. Conversely, cyclic behavior can

project to something that looks noncyclic, e.g., a narrow ellipse projected along its major

axis looks like negligible vibration around a fixed point.

12In the infinite dimensional case, each zs is a probability measure with cdf F , so the tangent vector N is
defined by some test function φ with integral 0 on the price interval [0, p∗]. The inner product thus is the

Stieltjes integral zt ·N =
∫ p∗

0
φ(x)F (dx, t).
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Appendix B: Supplementary Data Analysis

This appendix describes the steps taken to document price cycles, and also presents supple-

mentary tables and robustness checks for the results presented in the main text.

Figures 9 and 10 reproduce the empirical CDFs for subsets of the data based on subject

type (students versus professionals) and the type of feedback sellers receive. Table 2 in

the main text summarizes the price data (median and interquartile range) for the entire

trading period after excluding some seconds for sellers’ initial adjustment. Table 7 reproduces

these statistics in the columns labeled Pooled, and also subdivides the data into different

seller types and the information feedback condition. Dispersion tends to be higher with

professionals, but other differences do not appear to be systematic. Table 8 pools across

all markets, and also subdivides the trading periods into first and second halves. Although

median prices rise by one or two cents between the early and later phases of the trading

period, otherwise the summary statistics are similar across the two phases.
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Figure 9: Cumulative distributions of observed vs NE prices in treatments with High Infor-
mation, by Subject Pool. Samples exclude first 10 - 15 seconds of each period.
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Table 7: Mean of Summary Price Statistics (and standard errors across periods) for different
information feedback and subject types

Median Price Interquartile Range
High Information Pooled Students Professionals Pooled Students Professionals
Nash Equilibrium (Stable) 1.48 0.37
Stable-Fast Adjust 1.482 1.488 1.470 0.433 0.422 0.462

(0.007) (0.008) (0.015) (0.006) (0.006) (0.018)
Stable-Medium Adjust 1.496 1.505 1.475 0.447 0.423 0.505

(0.009) (0.009) (0.019) (0.009) (0.004) (0.024)
Stable-Slow Adjust 1.469 1.457 1.497 0.398 0.394 0.408

(0.009) (0.010) (0.017) (0.007) (0.007) (0.017)
Nash Equilibrium (Unstable) 1.20 0.41
Unstable-Fast Adjust 1.324 1.321 1.331 0.411 0.392 0.463

(0.008) (0.009) (0.016) (0.009) (0.007) (0.024)
Unstable-Medium Adj. 1.339 1.312 1.404 0.403 0.397 0.420

(0.011) (0.011) (0.019) (0.008) (0.007) (0.020)
Unstable-Slow Adjust 1.317 1.321 1.309 0.377 0.366 0.402

(0.010) (0.011) (0.019) (0.008) (0.006) (0.020)

Limited Information Pooled No Prices No Pay Proj. Pooled No Prices No Pay Proj.
Nash Equilibrium (Stable) 1.48 0.37
Stable-Fast Adjust 1.528 1.532 1.525 0.426 0.444 0.409

(0.006) (0.009) (0.007) (0.007) (0.011) (0.009)
Stable-Medium Adjust 1.550 1.559 1.533 0.411 0.416 0.406

(0.007) (0.010) (0.010) (0.006) (0.008) (0.009)
Stable-Slow Adjust 1.548 1.549 1.546 0.393 0.381 0.405

(0.006) (0.008) (0.009) (0.006) (0.007) (0.010)
Nash Equilibrium (Unstable) 1.20 0.41
Unstable-Fast Adjust 1.356 1.350 1.361 0.447 0.450 0.444

(0.009) (0.013) (0.013) (0.006) (0.008) (0.010)
Unstable-Medium Adj. 1.387 1.377 1.398 0.439 0.448 0.430

(0.013) (0.019) (0.018) (0.007) (0.008) (0.011)
Unstable-Slow Adjust 1.364 1.374 1.354 0.399 0.387 0.411

(0.011) (0.016) (0.014) (0.007) (0.010) (0.011)
Notes:. First 10 or 15 seconds omitted from each 90 or 150 second period.
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Table 8: Mean of Summary Price Statistics (and standard errors across periods) for First
and Second Halves of the Trading Periods

Median Price Interquartile Range
Treatment All Period 1st Half 2nd Half All Period 1st Half 2nd Half
Nash Equilibrium (Stable) 1.48 0.37
Stable-Fast Adjust 1.503* 1.497 1.508* 0.430** 0.435** 0.424**

(0.009) (0.009) (0.009) (0.009) (0.010) (0.008)
Stable-Medium Adjust 1.518** 1.509 1.527** 0.431** 0.439** 0.423**

(0.010) (0.011) (0.010) (0.008) (0.009) (0.08)
Stable-Slow Adjust 1.504 1.492 1.516* 0.396** 0.397* 0.395**

(0.010) (0.010) (0.011) (0.006) (0.008) (0.006)
Nash Equilibrium (Unstable) 1.20 0.41
Unstable-Fast Adjust 1.338** 1.338** 1.338** 0.427 0.433 0.422

(0.008) (0.008) (0.010) (0.010) (0.011) (0.009)
Unstable-Medium Adj. 1.361** 1.357** 1.365** 0.419 0.420 0.419

(0.014) (0.014) (0.014) (0.008) (0.009) (0.009)
Unstable-Slow Adjust 1.338** 1.330** 1.347** 0.387 0.382 0.392

(0.011) (0.010) (0.012) (0.009) (0.010) (0.008)
Notes:. First 10 or 15 seconds omitted from each 90 or 150 second period; * and ** denote
significant differences from Nash equilibrium at .05 and .01 levels for 2-tailed Wilcoxon
signed-rank test, using Holm-Bonferroni p-value correction to adjust for family-wise error
rate.
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Figure 10: Cumulative distributions of observed vs NE prices in treatments with Limited
Information. Samples exclude first 10 seconds of each period.

In Section 4.2, we implement the Poincaré procedure for each group of six sellers and

each market period as follows.

1. Sample. Observe the vector of subjects’ posted prices at 400ms intervals, beginning

at second 10 (or 15) and ending at second 90 (or 150).

2. Two-dimensional summary. For each observation t, compute the two-dimensional

summary statistic zt, the median and interquartile range (IQR) of the posted price

vector.

3. Center. Compute the mean of zt. This time-average defines the Center C = (Cmed, Ciqr)

about which we may observe cycling.

4. Poincaré Sections. Construct the Vertical Tripwire as the line segment connecting C

to the point V = (Cmed, 0) on the horizontal (median price) axis. To check robustness,

also construct the Horizontal Tripwire as the line segment connecting C to the point
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H = (0, Ciqr) on the vertical (IQR) axis. See Appendix A for a general discussion of

Poincaré sections.

5. Counting Transits. A transit occurs when the line segment connecting successive

zt’s intersects a tripwire. If the crossing is clockwise (e.g., for the vertical tripwire, if

zt ≥ 0 > zt+1), then increment CW by 1; otherwise increment the counter-clockwise

count CCW by 1.

6. Cycle Rotation Index. This index is defined, following Cason et al. (2014), for each

period and market as the difference in the number of CW transits and the number of

CCW transits, as a fraction of total transits in the period.

7. Cycle Amplitude. At every point where the price median and interquartile range

trajectory crosses a tripwire in the predicted clockwise direction, record the Euclidean

distance from the cycle center. For each period and market, define the cycle amplitude

as the median recorded distance.

Tables 4 and 5 in the main text report the average number of cycle transits, the cycle

rotation index, and the average cycle amplitudes based on the vertical Poincaré section

tripwire, defined as the line segment connecting the empirical cycle center to the point

V = (Cmed, 0) on the horizontal (median price) axis. Tables 9 and 10 report these statistics

disaggregated by seller type and information feedback. The lower cycle rotation index when

sellers receive no information about other sellers’ prices indicates that cycles are less regular

in this information condition.

To check robustness of the conclusions to an alternative tripwire definition, Tables 11 and

12 report cycle statistics pooled over all markets, with those based on the vertical tripwire

shown on the left, and on the right their counterparts based on the horizontal tripwire, the

line segment connecting C to the point H = (0, Ciqr) on the vertical (IQR) axis. Cycle

amplitude for the horizontal tripwire is again greater in the Unstable than the Stable case,

although the differences are smaller and they are only marginally significant for two of the

three adjustment speeds.
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The main difference between the tripwires is that Horizontal sees consistently more CW

transits as well as more CCW transits. This reduces the CRI somewhat, but it always

remains very highly significant. This difference may be due to slower movements and/or

more noise in the cycle phase near the horizontal tripwire. That is, there seems to be

relatively less noise in the cycle phase when median price decreases at low dispersion (near

the vertical tripwire) than at the phase when dispersion increases at middling median price

(near the horizontal tripwire).

As noted in the text, the cycle frequency and CRI are similar in the early and late

halves of each trading period, providing no evidence of convergence even for the Stable

environment. This is documented in Table 13 for the Vertical Tripwire. Comparing each

treatment condition across rows does not suggest any systematic change between the early

and the late halves, for either the Stable or Unstable markets.

The cycles are constructed using robust measures of central tendency (median) and dis-

persion (interquartile range). As a further robustness check, Tables 14 and 15 reproduce

the CRI and cycle amplitude calculations based on an alternative two dimensions of central

tendency and dispersion: price mean and standard deviation. Comparison with Tables 11

and 12 indicates that all of our conclusions regarding cycles are robust to this alternative.

Although the number of transits is slightly lower (Table 14), the CRI is very similar for both

versions. Cycle amplitudes are lower in the (mean, standard deviation) space (Table 15),

but the key conclusion continues to hold: cycles are systematically larger in the Unstable

than the Stable case.
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Table 9: Mean Transits and Cycle Rotation Indexes, for different information feedback and
subject types

Students Professionals
CW CCW Cycle Rota- CW CCW Cycle Rota-

High Information Transits Transits tion Index Transits Transits tion Index
Stable-Fast Adjust 9.66 2.48 0.61 8.95 3.25 0.51

(0.71) (0.3) (0.04) (1.86) (0.69) (0.08)
Stable-Medium Adj. 8.20 1.96 0.65 6.08 2.50 0.44

(0.47) (0.18) (0.03) (0.95) (0.33) (0.08)
Stable-Slow Adjust 4.05 1.14 0.60 4.55 1.55 0.53

(0.31) (0.16) (0.04) (0.73) (0.27) (0.10)
Unstable-Fast Adjust 8.89 1.66 0.70 6.70 2.85 0.47

(0.56) (0.21) (0.03) (0.60) (1.01) (0.14)
Unstable-Medium Adj. 7.11 1.55 0.68 6.05 1.90 0.56

(0.52) (0.24) (0.04) (0.81) (0.43) (0.08)
Unstable-Slow Adjust 3.82 0.84 0.72 3.75 1.54 0.53

(0.26) (0.2) (0.05) (0.26) (0.23) (0.09)

No Prices No Payoff Projection
CW CCW Cycle Rota- CW CCW Cycle Rota-

Limited Information Transits Transits tion Index Transits Transits tion Index
Stable-Fast Adjust 5.81 3.47 0.27 7.06 2.25 0.53

(0.65) (0.39) (0.07) (0.70) (0.25) (0.05)
Stable-Medium Adj. 5.16 3.06 0.28 6.19 2.56 0.50

(0.37) (0.30) (0.06) (0.38) (0.42) (0.07)
Stable-Slow Adjust 3.59 1.50 0.47 4.88 1.78 0.50

(0.18) (0.19) (0.06) (0.52) (0.29) (0.06)
Unstable-Fast Adjust 6.50 3.41 0.32 5.84 1.75 0.60

(0.68) (0.43) (0.07) (0.68) (0.31) (0.05)
Unstable-Medium Adj. 4.50 2.59 0.34 5.06 1.75 0.58

(0.51) (0.38) (0.05) (0.55) (0.28) (0.06)
Unstable-Slow Adjust 3.16 0.72 0.71 3.25 0.97 0.60

(0.29) (0.14) (0.05) (0.25) (0.21) (0.07)
Notes: Standard error of the means shown in parentheses.
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Table 10: Mean (across Periods and Markets) of Median (within Period) Cycle Amplitude,
for different information feedback and subject types

Students Professionals
High Information Fast Adj. Med. Adj. Slow Adj. Fast Adj. Med. Adj. Slow Adj.
Stable 0.087 0.092 0.107 0.086 0.098 0.088

(0.007) (0.005) (0.007) (0.008) (0.006) (0.006)
Unstable 0.147 0.130 0.125 0.142 0.094 0.109

(0.007) (0.006) (0.005) (0.021) (0.011) (0.018)

No Prices No Payoff Projection
Limited Information Fast Adj. Med. Adj. Slow Adj. Fast Adj. Med. Adj. Slow Adj.
Stable 0.074 0.077 0.74 0.097 0.086 0.114

(0.003) (0.006) (0.005) (0.009) (0.011) (0.012)
Unstable 0.118 0.107 0.095 0.150 0.133 0.125

(0.011) (0.014) (0.014) (0.015) (0.017) (0.008)
Notes: Standard error of the means shown in parentheses.

Table 11: Mean Transits and Cycle Rotation Indexes, Pooled Markets

Vertical Tripwire Horizontal Tripwire
CW CCW Cycle Rota- CW CCW Cycle Rota-

Treatment Transits Transits tion Index Transits Transits tion Index
Stable-Fast Adjust 8.06 2.76 0.50** 9.49 4.16 0.40**

(0.50) (0.20) (0.03) (0.49) (0.31) (0.04)
Stable-Medium Adj. 6.72 2.43 0.50** 7.37 3.10 0.44**

(0.33) (0.16) (0.04) (0.38) (0.24) (0.04)
Stable-Slow Adjust 4.21 1.43 0.54** 4.53 1.57 0.54**

(0.21) (0.11) (0.03) (0.24) (0.13) (0.03)
Unstable-Fast Adjust 7.34 2.25 0.56** 10.26 5.04 0.36**

(0.38) (0.23) (0.04) (0.41) (0.32) (0.03)
Unstable-Medium Adj. 5.89 1.89 0.56** 7.14 3.04 0.45**

(0.34) (0.16) (0.03) (0.32) (0.21) (0.03)
Unstable-Slow Adjust 3.53 0.96 0.66** 4.28 1.42 0.57**

(0.14) (0.11) (0.03) (0.19) (0.12) (0.03)
Notes: Standard error of the means in parentheses. Double asterisks (**) indicate two-tailed
Wilcoxon signed-rank test significantly different from zero, at the one-percent significance
level, using Holm-Bonferroni p-value correction to adjust for family-wise error rate.
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Table 12: Mean (across Periods and Markets) of Median (within Period) Cycle Amplitude,
Pooled Markets

Crossing Vertical Tripwire Crossing Horizontal Tripwire
Treatment Fast Adj. Med. Adj. Slow Adj. Fast Adj. Med. Adj. Slow Adj.
Stable 0.086 0.088 0.098 0.110 0.106 0.097

(0.004) (0.004) (0.005) (0.004) (0.004) (0.003)
Unstable 0.140 0.120 0.116 0.126 0.117 0.109

(0.006) (0.006) (0.005) (0.006) (0.005) (0.005)
p-value for
MW Test < 0.001** < 0.001** 0.018* 0.008** 0.098 0.067
Notes: Standard error of the means shown in parentheses. Indicated p-values are for one-
tailed tests, using Holm-Bonferroni p-value correction, and * and ** highlight the five- and
one-percent significance thresholds.

Table 13: Mean Transits and Cycle Rotation Indexes, by Period Halves

1st Half 2nd Half
CW CCW Cycle Rota- CW CCW Cycle Rota-

Treatment Transits Transits tion Index Transits Transits tion Index
Stable-Fast Adjust 3.95 1.26 0.58** 4.13 1.50 0.49**

(0.24) (0.15) (0.04) (0.26) (0.13) (0.05)
Stable-Medium Adj. 3.18 1.13 0.54** 3.54 1.30 0.50**

(0.18) (0.08) (0.03) (0.20) (0.11) (0.04)
Stable-Slow Adjust 2.14 0.81 0.54** 2.06 0.62 0.63**

(0.12) (0.08) (0.04) (0.13) (0.07) (0.04)
Unstable-Fast Adjust 3.38 0.96 0.62** 3.96 1.29 0.57**

(0.21) (0.11) (0.05) (0.22) (0.15) (0.05)
Unstable-Medium Adj. 2.88 0.96 0.60** 3.01 0.93 0.59**

(0.20) (0.11) (0.04) (0.19) (0.10) (0.04)
Unstable-Slow Adjust 1.82 0.53 0.66** 1.71 0.42 0.72**

(0.18) (0.08) (0.05) (0.19) (0.14) (0.06)
Notes: Standard error of the means in parentheses. Double asterisks (**) indicate two-tailed
Wilcoxon signed-rank test significantly different from zero, at the one-percent significance
level, using Holm-Bonferroni p-value correction to adjust for family-wise error rate.
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Table 14: Mean Transits and Cycle Rotation Indexes based on Price Mean and Standard
Deviation

Vertical Tripwire Horizontal Tripwire
CW CCW Cycle Rota- CW CCW Cycle Rota-

Treatment Transits Transits tion Index Transits Transits tion Index
Stable-Fast Adjust 7.12 2.69 0.47** 8.13 3.69 0.40**

(0.49) (0.22) (0.04) (0.45) (0.25) (0.03)
Stable-Medium Adj. 5.35 1.93 0.50** 6.34 2.95 0.41**

(0.29) (0.15) (0.03) (0.28) (0.21) (0.03)
Stable-Slow Adjust 3.18 1.09 0.54** 3.94 1.63 0.47**

(0.17) (0.09) (0.03) (0.19) (0.11) (0.03)
Unstable-Fast Adjust 6.21 1.96 0.55** 8.93 4.32 0.37**

(0.38) (0.20) (0.04) (0.33) (0.30) (0.04)
Unstable-Medium Adj. 4.60 1.25 0.63** 5.93 2.51 0.46**

(0.27) (0.13) (0.04) (0.226) (0.20) (0.03)
Unstable-Slow Adjust 2.58 0.81 0.61** 3.44 1.40 0.49**

(0.12) (0.09) (0.04) (0.16) (0.09) (0.03)
Notes: Standard error of the means in parentheses. Double asterisks (**) indicate two-tailed
Wilcoxon signed-rank test significantly different from zero, at the one-percent significance
level, using Holm-Bonferroni p-value correction to adjust for family-wise error rate.

Table 15: Mean (across Periods and Markets) of Median (within Period) Cycle Amplitude,
based on Price Mean and Standard Deviation

Crossing Vertical Tripwire Crossing Horizontal Tripwire
Treatment Fast Adj. Med. Adj. Slow Adj. Fast Adj. Med. Adj. Slow Adj.
Stable 0.034 0.034 0.032 0.072 0.064 0.057

(0.002) (0.003) (0.002) (0.002) (0.003) (0.003)
Unstable 0.068 0.057 0.053 0.089 0.088 0.083

(0.004) (0.004) (0.004) (0.004) (0.005) (0.005)
p-value for
MW Test < 0.001** < 0.001** < 0.001** < 0.001** 0.001** < 0.001**
Notes: Standard error of the means shown in parentheses. Indicated p-values are for one-
tailed tests, using Holm-Bonferroni p-value correction, and * and ** highlight the five- and
one-percent significance thresholds.
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�

Table 16: Price Change Frequency (Percent)

Throughout First Half of Second Half of
Trading Period Trading Period Trading Period

All Treatments 51.3 51.6 51.0
Fast Adjustment Speed 59.3 59.1 59.4
Medium Adjustment Speed 55.1 55.4 54.7
Slow Adjustment Speed 44.2 44.8 43.6
Unstable Markets 55.0 55.0 54.9
Stable Markets 47.6 48.2 47.0
Note: All percentages exclude the first 10 or 15 seconds of the trading period.

�

Table 17: Price Target Adjustments (Percentages of Cases)

Towards BR
Away from BR Small Towards BR Near BR Beyond BR

Fast Adjustment Speed
BR above Current Price 37.5% 44.8% 13.4% 4.4%
BR below Current Price 39.8% 36.3% 19.5% 4.4%
Medium Adjustment Speed
BR above Current Price 37.4% 45.5% 13.2% 3.9%
BR below Current Price 40.6% 36.8% 18.4% 4.3%
Notes: Small Towards BR denotes movements in the direction of the best response but at
least five cents short of it; Near BR denotes target within 5 cents of the best response; Beyond
BR denotes movements at least 5 cents beyond the best response. This table only considers
the Fast and Medium adjustment speeds, since the actual price often lags considerably behind
the target price with Slow adjustment.
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Table 18: Treatment Condition Ordering for Each Session (39 total markets)

Block Number (Each Block Consists of 4 Trading Periods)
Session Label 1 2 3 4 5 6 7 8
101817 U-CS S-CI U-CM S-D U-CI S-CS U-D S-CM
110117A S-CS U-CM S-D S-CM U-CS S-CI U-D U-CI
110117B U-CI S-CS S-CI U-D U-CM S-D U-CS S-CM
021918A U-D U-CM S-CS S-CI U-CI U-CS S-D S-CM
021918B S-CI S-CS U-D U-CM S-CM U-CI U-CS S-D
022018A S-CS U-CM U-CS U-D S-D S-CM U-CI S-CI
022018B U-D S-CS S-D S-CI S-CM U-CI U-CM U-CS
060119A U-CI S-CM U-CS S-CI
060119B* S-CI U-CM S-CS U-CI
073019A U-CI S-CS U-CM S-CI
073019B S-CM U-CS U-CM S-CS
082419A* U-CM S-CI S-CM U-CS
082419B* S-CM U-CI U-CS S-CS
011720 U-CS S-D U-CM S-CI U-CI S-CS U-D S-CM
012320A U-D U-CM S-CS S-CI U-CI U-CS S-D S-CM
012320B S-D S-CM U-CS U-CI S-CI S-CS U-D U-CM
012320C U-D U-CM S-CS S-CI U-CI U-CS S-D S-CM
012320D S-D S-CM U-CS U-CI S-CI S-CS U-D U-CM
020620 S-CI S-CS U-D U-CM S-CM U-CI U-CS S-D
020720A S-D U-CM S-CI U-CS U-CI S-CS U-D S-CM
020720B U-D S-CM U-CI S-CS S-CI U-CS S-D U-CM
Notes: Each session configuration included two markets of six sellers each, except
for those indicated with * that had only 1 market. Markets with business pro-
fessionals only had 4 blocks (16 periods) U denotes Unstable, S denotes Stable,
and CS, CM, CI and D denote Continuous Slow Price Adjustment, Continu-
ous Medium Price Adjustment, Continuous Fast Price Adjustment, and Discrete
Pricing Rounds, respectively.
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Appendix C: Instructions to Subjects

Welcome! This is an economics experiment. If you pay close attention to these instructions,

you can earn a significant amount of money, which will be paid to you in cash at the end of

the last round.

Please remain silent, turn off your cell phone, and do not look at other participants’ screens.

If you have any questions, or need assistance of any kind, please raise your hand and we will

come to you. If you disrupt the experiment by talking, laughing, etc., you may be asked to

leave and may not be paid. We expect and appreciate your cooperation today.

The Basic Idea

The experiment will be divided into a number of rounds and throughout all rounds you will

be anonymously matched with the same five other “counterparts” via the computer. These

counterparts are other participants in today’s experiment.

You and your counterparts are sellers of a fictitious good, and throughout each round you

will select prices to offer to the market. The buyers in today’s experiment are simulated

by computerized “robots.” Your price choices and those of the other sellers determine your

rewards for the round. Your production costs are 0, so every sale you make directly adds to

your reward, i.e., to the amount of money you will receive at the end of the experiment.

Some trading rounds will be further divided into a number of subperiods. In each subperiod

you and the other sellers will privately select prices and at the end of the subperiod the

combination of these prices will determine your rewards for the subperiod.

How Buyers Purchase

Buyers want to buy at the lowest price they can, and they will never pay more than $1.80

per unit. Buyers do not see all six sellers’ prices, however. Sometimes they see one price,

and as long as that price is no higher than $1.80 they will purchase at that price. Sometimes

buyers see two or three prices, and in those cases they will purchase the lowest-price item

they see.
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We will not tell you exactly how often buyers see one, two or three prices, or their cost to

search for additional prices, but here are a few facts:

1. Your reward at any time depends entirely on your current price and the other sellers’

current prices, and nothing else.

2. The function that determines how your sales quantity (and therefore your rewards)

depends on your prices and others’ prices will not change over the course of a round. That

is, if you and the other sellers choose the same prices at time A as at time B, you will all

have the same profits at time A as at time B.

3. The function that determines your sales quantity from the prices chosen can change

in different rounds (due to changes in buyers’ search costs or how many prices they see).

4. Your rewards are symmetric with the other sellers. That is, the function that deter-

mines how prices determine sales quantity is the same for all participants.

The screen display

Figure 1 shows the computer display you will use to choose prices and interact with the other

sellers. You will receive rewards throughout the round that depend on your price choice and

other sellers’ price choices, and your rewards will be displayed on this screen.

You select your price by moving a slider (from left to right) or clicking at the bottom of the

screen below the left graph. This determines a “price target” that you want to offer. Your

actual price being offered to buyers may quickly or slowly adjust to this target, and this

adjustment speed may differ across trading rounds. The horizontal axis covers prices from

$0.00 (the far left) to $1.80 (the far right).

If the round is divided into subperiods, you can freely adjust your tentative price offer by

clicking on the screen or dragging the slider. Your actual price for the subperiod is the

location of your slider at the end of the subperiod. Subperiod endings are designated with

vertical lines on the rewards time graph at the right of the screen (see Figure 2).

During the round (or when the subperiod is over) you will see a green circle displaying your
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rewards payoff rate at that time. The higher the circle, the faster your reward accumulates.

You will also be shown circles of different colors at the bottom of the screen showing the

other sellers’ prices.

In some rounds your display may also show the rewards you could receive at every possible

price, based on the current (or previous subperiod) prices of all other sellers. The height

of this light gray line indicates the possible rewards amount at other prices you could have

chosen.

It is important to keep in mind for rounds divided into subperiods that the other sellers’ prices

and your reward circle height always refers to outcomes from the previous subperiod.

You will not learn your rewards or others’ prices from the current subperiod until after the

subperiod is over.

The small graph on the top right of the screen shows the history of your price choices (green

line) and the other sellers’ price choices (other colored lines) throughout the current trading

round. Higher lines correspond to higher prices.

Rewards

To the right of your price choice graph you will have a display showing your accumulating

rewards for the current round. Your rewards are represented by the solid green area – the

larger the area, the greater your accumulated rewards. The height of the green area is based

on the prices chosen by you and others at that moment (or in that subperiod). So the higher

the green line, the faster your rewards are accumulating.

Your rewards will be given in points. Your points will accumulate over the course of the

experiment. The upper left of your screen will always display your “Round Rewards” during

the round so far and “Accumulated Rewards” earned over all previous rounds.

You will be paid cash for points earned at a conversion rate written on the white board at

the front of the room.
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Frequently asked questions

Q1. Is this some kind of psychological experiment with an agenda you haven’t told us?

Answer. No. It is an economics experiment. If we do anything deceptive or don’t pay you

cash as described then you can complain to the campus Human Subjects Committee and we

will be in serious trouble. These instructions are meant to clarify how the market works and

show you how you earn money; our interest is simply in seeing how people make decisions.

Q2. What changes from one round to the next?

Answer. The likelihood that the robot buyers see one, two or three prices might change,

and their cost to search for more prices might change, both of which will change the function

that determines your sales quantity from the prices chosen. The adjustment speed might also

be faster or slower than in the previous round. Also, some rounds may be broken down into

subperiods. But often nothing changes between rounds, and you are matched with exactly

the same people in exactly the same way as in the last round.

54

Copyright The University of Chicago 2020. Preprint (not copyedited or formatted). Please use DOI when citing or quoting. DOI: https://doi.org/10.1086/712445 



	

Figure	1	

	

	

	

	

	

Figure	2	(Subperiods)	

Prices	of	all	sellers	over	time	

Other	sellers’	prices	

Slider	for	choosing	prices	 Accumulating	earnings	area	

References

Anderson, C.M., C.R. Plott, K. Shimomura and S. Granat (2004). “Global instability in

experimental general equilibrium: the Scarf example”, Journal of Economic Theory,

115, 209-249.

Andreoni, J., M.A. Kuhn, J.A. List, A. Samek, K. Sokal and C. Sprenger (2019). “To-

ward and understanding of the development of time preferences: Evidence from field

experiments”, Journal of Public Economics, 177, 104039.

Baye, M. R., D. Kovenock, and C. G. De Vries (1992) “It takes two to tango: equilibria in

a model of sales”, Games and Economic Behavior, 4.4, 493-510.

Baye, M. R., Morgan, J. and Scholten, P. A. (2004) “Price dispersion in the small and

in the large: evidence from an internet price comparison site”, Journal of Industrial

Economics, 52, 463-496.
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