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Abstract

A fundamental theorem in the study of Dunwoody manifolds is a classification of finite graphs on

2n vertices that satisfy seven conditions (concerning planarity, regularity, and a cyclic automorphism

of order n). Its significance is that if the presentation complex of a cyclic presentation is a spine of

a 3-manifold then its Whitehead graph satisfies the first five conditions (the remaining conditions

do not necessarily hold). In this paper we observe that this classification relies implicitly on an

unstated 8th condition and that this condition is not necessary for such a presentation complex to

be the spine of a 3-manifold. We expand the scope of Dunwoody’s classification by classifying all

graphs that satisfy the first five conditions.
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1 Introduction

A fundamental theorem in the study of so-called Dunwoody manifolds, which leads to the definition

of a Dunwoody diagram (in [2]), is Theorem 1 of [4]. That theorem asserts a classification of all finite

graphs Γ that satisfy the following seven conditions:

(1) Γ is planar;

(2) Γ is regular;

(3) (a) Γ has no loops (i.e. no edge from a vertex to itself),

(b) there may be more than one edge joining the same pair of vertices;

(4) Γ has 2n vertices, for some positive integer n;

(5) Γ admits an automorphism θ acting as a regular permutation of order n both on the edges and

the vertices of Γ;

(6) in some θ-orbit there is a pair of vertices that are joined by an edge;

(7) there are two vertices in different θ-orbits that are joined by an edge.

(A permutation is regular if it is either trivial or has no fixed points and is the product of disjoint

cycles of the same length.) Unfortunately, for reasons discussed below, the theorem as originally stated

omits an implicitly assumed, but unstated, 8th condition and is false without it (a counterexample is

given in Figure 1 where θ = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)):

∗Howie was supported for part of this project by Leverhulme Trust Emeritus Fellowship EM-2018-023\9.
†Williams was supported for part of this project by Leverhulme Trust Research Project Grant RPG-2017-334.
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(8) If v, v′ are adjacent vertices in the two orbits of θ then there is an edge joining v and θk(v) for

some (k, n) = 1 and there is an edge joining v′ and θm(v′) for some (m,n) = 1.

As we now describe, the motivation for the introduction of these conditions in [4] arose from

the study of cyclic presentations of groups that correspond to spines of 3-manifolds, or equivalently,

Heegaard splittings of 3-manifolds with cyclic symmetry. The fact that condition (8) was overlooked

in [4] appears to be a consequence of the particular type of cyclic symmetry considered there.

The presentation complex K of a group presentation P = 〈X | R〉 is the 2-complex with one 0-cell

O, a loop at O for each generator x ∈ X and a 2-cell for each relator (the boundary of that 2-cell

spelling the relator). If R is a regular neighbourhood of O then K∩∂R is a 1-dimensional cell complex

called the Whitehead graph or link graph of P . Thus the Whitehead graph of P is the graph with

2|X| vertices vx, v
′
x (x ∈ X) and an edge (vx, vy) (resp. (v′x, v

′
y), (vx, v

′
y)) for each occurrence of a

cyclic subword xy−1 (resp.x−1y, (xy)±1) in a relator r ∈ R. In [10] Neuwirth provides an algorithm

for deciding if the presentation complex of a group presentation with an equal number of generators

and relators is a spine of a closed compact 3-manifold M . A necessary condition for a presentation to

correspond to a spine in this way is that its Whitehead graph is planar (see, for example, [7, page 33]).

Since multiedges of a Whitehead graph clearly have no effect on the graph’s planarity, it is convenient

to define the reduced Whitehead graph of P to be the graph obtained from the Whitehead graph of P

by replacing all multiedges between two vertices of the Whitehead graph of P by a single edge.

A cyclic presentation of a group is a presentation with an equal number of generators and relators

that admits a cyclic symmetry. Presentations with an equal number of generators and relators are

called balanced presentations and are of interest from both topological and algebraic perspectives.

Cyclic presentations form an important subclass that are more tractable than arbitrary balanced

presentations (the built-in symmetry can be exploited) and which can correspond to spines of manifolds

that inherit the cyclic symmetry.

Formally, the cyclic presentation Pn(w) is the presentation with generators x0, . . . , xn−1 (say)

and relators w(xi, xi+1, . . . , xi+n−1) (0 ≤ i ≤ n − 1, subscripts mod n), where the defining word

w(x0, x1, . . . , xn−1) is some fixed word w in the generators. It follows that the Whitehead graph Γ

of Pn(w) satisfies (2),(3(b)),(4),(5), and if w is cyclically reduced (i.e. if it has no cyclic subwords of

the form xx−1 or x−1x for any generator x) then Γ satisfies (3(a)) and if it corresponds to a spine

of a manifold then (1) also holds. The additional conditions (6),(7) and (8) were imposed in order

to obtain Dunwoody’s classification theorem (Theorem 1.1, below). The implicitly assumed condition

(8) is not necessary for a cyclic presentation to correspond to a spine. We know of two (reduced)

Whitehead graphs of cyclic presentations corresponding to spines of manifolds that demonstrate this.

The cyclic presentation P2m(x0x1x
−1
2 ) of the Fibonacci group F (2, 2m) corresponds to a spine of the

Fibonacci manifold (see [3],[5]) and its Whitehead graph is of our type (II.11), given in Figure 17. The

cyclic presentation P2m(x1(x
−1
2 x0)

l) (l ≥ 1) corresponds to a spine of a manifold [8],[9] and its reduced

Whitehead graph is of type (II.14), given in Figure 20. As noted in [4], the Fibonacci manifolds satisfy

“a different sort of cyclic symmetry” to the Dunwoody manifolds. The principal difference in symmetry

seems to be that the generating symmetry of the Fibonacci manifolds is orientation-reversing rather

than orientation-preserving. Indeed, the classification in [4] is correct under the slightly stronger

hypothesis that the symmetry in (5) extends to an orientation-preserving self-homeomorphism of the

ambient 2-sphere into which Γ embeds. A spine C may correspond to a cyclic presentation where

the defining word w is not cyclically reduced, in which case the Whitehead graph contains loops (in

contrast to condition (3(a))). For example, the cyclic presentation 〈x0 | x20x
−1
0 〉 corresponds to a spine

of the 3-sphere S3 [11], and the (Fibonacci) cyclic presentation F (2, 2) = 〈x0, x1 | x0x1x
−1
0 , x1x0x

−1
1 〉

corresponds to a spine of S3 by [3, Theorem 3],[5, Theorem A].

In this paper we correct and expand [4, Theorem 1], by classifying all finite graphs Γ that satisfy
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conditions (1)–(5), but not necessarily conditions (6),(7),(8). The impact of the original omission of

condition (8) on the literature concerning Dunwoody manifolds is likely to be minor, as the significance

of [4] is the generation of interesting examples of cyclic presentations that correspond to spines of

manifolds, rather than the classification. However, our classification expands the scope of Dunwoody’s

work by providing many new graphs that potentially arise as Whitehead graphs of such presentations.

It is currently unknown which of these graphs do indeed arise in this way, beyond a few known cases

which we describe at the end of this section.

To avoid a detailed tracking of the number of edges between every pair of vertices, instead of

considering graphs that satisfy (3) we consider graphs that satisfy the following variant:

(3′) (a) Γ has no loops (i.e. no edge from a vertex to itself),

(b) there is at most one edge joining the same pair of vertices.

The process of replacing all edges between any pair of vertices of a regular graph by a single edge may

result in a graph that is not regular so to adjust for our variant condition (3′) we modify condition (2)

to the following:

(2′) Γ can be made to be regular by replacing each edge of Γ joining two of its vertices by a suitable

(finite, positive) number of edges between those vertices in such a way that, given any pair of

vertices u, v, the number of edges joining u, v is equal to the number of vertices joining θ(u), θ(v).

A classification of all finite graphs that satisfy conditions (1),(2),(3),(4),(5) can easily be obtained

from one of all finite graphs that satisfy (1),(2′),(3′),(4),(5). The purpose of this paper is to obtain a

classification of graphs satisfying the latter conditions.

Note that condition (6) appears somewhat asymmetric, in that it involves only one of the two

orbits of vertices under the automorphism θ. However, under the presence of condition (2′), if (6)

holds then, in fact, for each θ-orbit of vertices, there exists a pair of edges in that orbit that are joined

by an edge.

A classification of all finite graphs that satisfy conditions (1),(2),(3),(4),(5),(6),(7),(8) is equivalent

to one of all graphs that satisfy conditions (1),(2′),(3′),(4),(5),(6),(7),(8). In this re-expression, and

referring to [4, Figure 1] where a graph Γn(a, b, c) is defined, Dunwoody’s classification [4, Theorem 1],

can be stated as follows:

Theorem 1.1 ([4, Theorem 1]). Let Γ be a graph satisfying (1),(2′),(3′),(4),(5),(6),(7),(8). Then Γ

is isomorphic to either Γn(1, 1, 1) or Γn(1, 1, 0).

(The graphs Γn(1, 1, 1) and Γn(1, 1, 0) correspond to the graphs in Figures 2 and 4 (below), respec-

tively.) We express our results in terms of graphs Γn(A,B,Q) that we now define.

Definition 1.2. Let n ≥ 1, A,B,Q ⊆ {0, . . . , n−1} and define the graph Γn(A,B,Q) to be the graph

with vertices v0, . . . , vn−1, v
′
0, . . . , v

′
n−1 and edges (vi, vi+a), (v

′
i, v

′
i+b), (vi, v

′
i+q), for all 0 ≤ i ≤ n − 1,

a ∈ A, b ∈ B, q ∈ Q (subscripts mod n). We shall say that Γn(A,B,Q) is properly given if a1 6≡

±a2 mod n and b1 6≡ ±b2 mod n for all a1, a2 ∈ A and all b1, b2 ∈ B.

The term ‘properly given’ was introduced by Heuberger [6] when studying circulant matrices, and is

a useful concept since (vi, vi+a) (resp. (v
′
i, v

′
i+b)) is an edge of Γn(A,B,Q) if and only if (vi, vi−a) (resp.

(v′i, v
′
i−b)) is an edge, and so there is no redundancy in the sets A,B when Γn(A,B,Q) is properly given.

In Lemma 2.1 we show that if a graph satisfies (3′),(4),(5) then it is isomorphic to Γn(A,B,Q) for some

A,B ⊆ {1, . . . , n − 1} and Q ⊆ {0, . . . , n − 1}; if it also satisfies (2′) then it is the Whitehead graph

of some cyclic presentation Pn(w) and either A = B = ∅ or A 6= ∅ and B 6= ∅, and if it also satisfies

(7) then Q 6= ∅. If (7) does not hold, then Γn(A,B,Q) is the disjoint union of two circulant graphs, in
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which case a classification may be obtained directly from a result of Heuberger [6] (Lemma 2.4, below);

thus we may assume that (7) does hold. We show in Lemma 2.3 that all components of Γn(A,B,Q) are

then isomorphic, so we may also assume that Γn(A,B,Q) is connected. The regularity condition (2′) is

unimportant for our proof methods so we provide a more general classification that is independent of

(2′) before specializing to the more restricted case. Specifically, Theorem A classifies all the connected

graphs that satisfy (1),(3′),(4),(5) and Corollary B classify those that also satisfy (2′). Dunwoody’s

classification (Theorem 1.1) follows as a special case of Corollary B.

Theorem A. Suppose n ≥ 2, A,B ⊆ {1, . . . , n − 1}, ∅ 6= Q ⊆ {0, . . . , n− 1} and let Γ = Γn(A,B,Q)

be properly given. Then Γ is connected and planar if and only if one of the cases of Table 1 holds for

some 0 ≤ q ≤ n− 1.

Corollary B. Suppose n ≥ 2, A,B ⊆ {1, . . . , n− 1}, ∅ 6= Q ⊆ {0, . . . , n− 1} and let Γ = Γn(A,B,Q)

be properly given. Then Γ is connected and satisfies (1) and (2′) if and only if one of the cases of

Table 1 holds for some 0 ≤ q ≤ n− 1 where either A = B = ∅ or A 6= ∅ and B 6= ∅.

We exhibit the graphs Γn(A,B,Q) from Theorem A and Corollary B in Figures 2–35 where we

denote the vertices vi and v′i by i and ī (for clarity, in Figures 22 and 23 we omit some vertex labels

that can be easily deduced). These fall into 3 classes: Class I, which holds for all n, Class II which

holds for all even n, and Class III which holds for all n ≡ 2 mod 4. We now summarize the situation

for those graphs from Corollary B, i.e. those that are potentially reduced Whitehead graphs of cyclic

presentations corresponding to spines of manifolds. In Class I there are three isomorphism classes

of connected graphs that satisfy (1),(2′),(3′),(4),(5),(7). Two of these (types (I.1) and (I.3)) satisfy

both (6) and (8) and correspond to Dunwoody manifolds, and one of them (type (I.5)) does not

satisfy (6) (and hence does not satisfy (8)). It follows that Dunwoody’s original classification [4] is

correct when n is odd. In Class II there are 7 isomorphism classes of connected graphs that satisfy

(1),(2′),(3′),(4),(5),(7); none of these satisfy (8), all but one of them (type (II.6)) satisfies (6). We

remark that, when n is even, conditions (I.3) and (II.6) yield isomorphic graphs: if n is even and

(n, s) = 1 then Γn({s}, {s}, {q}) ∼= Γn(∅, ∅, {q, q + s, q − s}). As previously mentioned, two of the

graphs in Class II are known to correspond to spines of manifolds: type (II.11) to the Fibonacci

manifolds of [5] and type (II.14) to the manifolds of [8],[9]. In Class III there are 9 isomorphism classes

of connected graphs that satisfy (1),(2′),(3′),(4),(5),(7); precisely two of them satisfy (8), all of them

satisfy (6) and none are known to correspond to spines of manifolds. We expect that some of the

remaining graphs are also reduced Whitehead graphs of cyclic presentations corresponding to spines

of manifolds; investigating which of them are is a subject for future research.

2 Circulant graphs and the graphs Γn(A,B,Q)

We first prove the previously mentioned lemma, which relates the conditions (2′),(3′),(4),(5),(6),(7) to

the graphs Γn(A,B,Q) and to Whitehead graphs of cyclic presentations.

Lemma 2.1. Let Γ be a graph.

(a) The following are equivalent:

(i) conditions (3′(b)),(4),(5) (resp. and (3′(a))) hold;

(ii) Γ is isomorphic to Γn(A,B,Q) for some A,B,Q ⊆ {0, . . . , n − 1} (resp. where 0 6∈ A and

0 6∈ B).

(b) The following are equivalent:
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(i) conditions (2′),(3′(b)),(4),(5) (resp. and (3′(a))) hold;

(ii) Γ is isomorphic to Γn(A,B,Q) for some A,B,Q ⊆ {0, . . . , n − 1} where either A = ∅ and

B = ∅ or A 6= ∅ and B 6= ∅ (resp. where 0 6∈ A and 0 6∈ B);

(iii) Γ is isomorphic to the reduced Whitehead graph of a cyclic presentation Pn(w) (resp. where

w is cyclically reduced).

Proof. In each case the ‘resp.’ statements are obvious, so we pay no attention to them in what follows.

(a)(i) ⇒ (a)(ii). Let v, v′ be vertices of Γ from the two orbits of θ. Since the automorphism θ of

condition (5) acts as a regular permutation, for distinct i, j (0 ≤ i, j ≤ n − 1) we have θi(v) 6= θj(v)

and θi(v′) 6= θj(v′). Thus, for each 0 ≤ i ≤ n − 1 setting vi = θi(v), v′i = θi(v′) defines 2n distinct

vertices. The set of neighbours of vertex v is the set N(v) = {va | a ∈ A} ∪ {v′q | q ∈ Q} for some

A,Q ⊆ {0, . . . , n − 1}. Similarly the set of neighbours of vertex v′ is the set N(v′) = {v′b | b ∈

B} ∪ {vn−q | q ∈ Q} for some B ⊆ {0, . . . , n − 1}. Thus, by (5), for each 0 ≤ i ≤ n − 1 the set of

neighbours N(vi) = {vi+a | a ∈ A} ∪ {v′i+q | q ∈ Q} and N(v′i) = {v′i+b | b ∈ B} ∪ {vi−q | q ∈ Q}

(subscripts mod n). That is, Γ is isomorphic to Γn(A,B,Q).

(a)(ii) ⇒ (a)(i). Letting θ be the automorphism given by θ(vi) = vi+1, θ(v
′
i) = v′i+1 (subscripts

mod n) we see that (5) holds while (3′(b)), (4) clearly hold.

(b)(i)⇒ (b)(ii). By part (a) the graph Γ is isomorphic to Γn(A,B,Q) for someA,B,Q ⊆ {0, . . . , n−

1}. If A = ∅ and B 6= ∅ then any attempt to make Γ = Γn(A,B,Q) regular by the process in condition

(2′) will fail: vertices vi are only adjacent to vertices v′j and each edge at a vertex vi is incident at a

vertex v′j , while there exist edges (v′j , v
′
j+b), ensuring that the degree of v′j will strictly exceed that of

vi. A similar argument applies if A 6= ∅ and B = ∅.

(b)(ii) ⇒ (b)(i). By part (a) the conditions (3′(b)),(4),(5) hold, so it remains to show that (2′)

holds. If |A| = |B| then Γn(A,B,Q) is regular so (2′) holds. If |A| > |B| > 0 then, for some fixed

b ∈ B replacing the edge joining vertices v′i, v
′
i+b by |A| − |B|+ 1 edges joining these vertices (for each

0 ≤ i ≤ n−1) produces a regular graph, obtained by the manner described in (2′). A similar argument

applies if |B| > |A| > 0.

(b)(i) ⇒ (b)(iii) By part (a) the graph Γ is isomorphic to Γn(A,B,Q) for some A,B,Q ⊆ {0, . . . , n−

1}. Consider a regular graph Λ obtained from Γ = Γn(A,B,Q) in the manner described in (2′). Then

Λ has vertices vi, v
′
i and edges (vi, vi+a) of multiplicity ma ≥ 1, (v′i, v

′
i+b) of multiplicity mb ≥ 1, and

(vi, v
′
i+q) of multiplicity mq ≥ 1 (say) for each a ∈ A, b ∈ B, q ∈ Q (0 ≤ i ≤ n− 1). Then the degree

of any vertex vi is 2
∑

a∈Ama +
∑

q∈Qmq and the degree of any vertex v′i is 2
∑

b∈B mb +
∑

q∈Qmq

and so, since Λ is regular, we have
∑

a∈Ama =
∑

b∈B mb. By replacing each edge of Λ by n edges, if

necessary, we may assume that
∑

a∈A ama +
∑

b∈B bmb +
∑

q∈Q qmq ≡ 0 mod n. This ensures that

there exists a word w in generators x0, . . . , xn−1 with ma cyclic subwords of the form xjx
−1
j+a, mb cyclic

subwords of the form x−1
j xj+b, and mq cyclic subwords of the form xjxj+q for each a ∈ A, b ∈ B,

q ∈ Q. Then setting vi = vxi
, v′i = v′xi

we see that Λ is isomorphic to the Whitehead graph of the

cyclic presentation Pn(w).

(b)(iii) ⇒ (b)(i). Suppose that Γ is the reduced Whitehead graph of a cyclic presentation Pn(w).

Then, as described in the introduction, the Whitehead graph Λ of Pn(w) satisfies (2),(3(b)),(4),(5).

Thus Γ satisfies (3′(b)),(4),(5), and since the regular graph Λ can be obtained from Γ in the manner

described in (2′) the graph Γ satisfies (2′)

The circulant graph circn(S) (where S ⊆ {0, 1, . . . , n−1}) is the graph with vertex set {u0, . . . , un−1}

and edge set {(ui, ui+s) | 0 ≤ i ≤ n−1, s ∈ S} (subscripts mod n). Since (ui, ui+s) is an edge of circn(S)

if and only if (ui, ui−s) is an edge, the graph circn(S) is said to be properly given if s 6≡ ±t mod n for all

s, t ∈ S, s 6= t [6]. Note that the induced subgraphs of Γn(A,B,Q) with vertex set {v0, . . . , vn−1} and

with vertex set {v′0, . . . , v
′
n−1} are the circulant graphs circn(A), circn(B), respectively. In particular,
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if Q = ∅ then Γn(A,B,Q) is the disjoint union of circn(A) and circn(B). The connected components

of a circulant graph are described by the following result.

Lemma 2.2 ([1]). Let S ⊆ {0, 1, . . . , n − 1} and set d = gcd(n, s (s ∈ S)). Then circn(S) consists of

d connected components, each of which is isomorphic to circn/d(S/d) where S/d = {s/d | s ∈ S}. In

particular, circn(S) is connected if and only if d = 1.

In a similar way, forQ 6= ∅, the connected components of Γn(A,B,Q) are described by the following.

(When Q = ∅, the connected components of Γn(A,B,Q) follow immediately from Lemma 2.2.)

Lemma 2.3. Suppose Q 6= ∅ and fix some q0 ∈ Q and set d = gcd(n, a (a ∈ A), b (b ∈ B), q − q0 (q ∈

Q)). Then Γ = Γn(A,B,Q) consists of d connected components, each of which is isomorphic to

Γn/d(A/d,B/d,Q/d) where A/d = {a/d | a ∈ A}, B/d = {b/d | b ∈ B}, Q/d = {q0+(q−q0)/d | q ∈ Q}.

In particular, Γ is connected if and only if d = 1.

Proof. Let Λ0 = Γn/d(A/d,B/d,Q/d). Then Λ0 has vertices xj, x
′
j and edges (xj , xj+a/d), (x

′
j, x

′
j+b/d),

(xj , x
′
j+q0+(q−q0)/d

) a ∈ A, b ∈ B, q ∈ Q, 0 ≤ j ≤ n/d − 1. For each 0 ≤ j ≤ n/d − 1 let yj = xj,

y′j = x′j+q0
. Then Λ0 has vertices yj, y

′
j and edges (yj, yj+a/d), (y

′
j, y

′
j+b/d), (yj , y

′
j+(q−q0)/d

) a ∈ A, b ∈

B, q ∈ Q, 0 ≤ j ≤ n/d − 1. Contracting each edge (yj , y
′
j) contracts Λ0 to the circulant graph

circn(A/d∪B/d∪ {(q− q0)/d (q ∈ Q)}), which is connected by Lemma 2.2, and thus Λ0 is connected.

For each j set wdj = yj, w′
dj = y′j, so that Λ0 has vertices w0, wd, . . . , wn−d, w′

0, w
′
d, . . . , w

′
n−d

and edges (wi, wi+a), (w
′
i, w

′
i+b), (wi, w

′
i+q−q0

), where i = dj. Now for each 1 ≤ α ≤ d − 1 let Λα

be an isomorphic copy of Λ0 with vertices wα, wα+d, . . . , wα+n−d, w′
α, w

′
α+d, . . . , w

′
α+n−d and edges

(wi, wi+a), (w
′
i, w

′
i+b), (wi, w

′
i+q−q0

), where i = dj + α. Then the disjoint union Λ of Λ0, . . . ,Λd−1 has

vertices w0, . . . , wn−1, w
′
0, . . . , w

′
n−1 and edges (wi, wi+a), (w

′
i, w

′
i+b), (wi, w

′
i+q−q0

) a ∈ A, b ∈ B, q ∈ Q,

0 ≤ i ≤ n−1. Now for each i, setting vi = wi and v′i = w′
i−q0

shows that Λ is isomorphic to Γn(A,B,Q),

and the proof is complete.

Thus, by Lemmas 2.1 and 2.3, in studying graphs that satisfy (3′),(4),(5),(7), we may assume that

the graphs are connected, as we do in Theorem A and Corollary B.

Heuberger [6] classified the planar circulant graphs, and this classification will be a key tool in our

proofs. Since the inclusion of 0 in S clearly has no bearing on planarity, we may assume that 0 6∈ S.

Theorem 2.4 ([6, Theorem 23]). Let circn(S) be a connected, properly given, circulant graph where

S ⊆ {1, . . . , n− 1}. Then circn(S) is planar if and only if one of the following holds:

(i) S = {s}, for some s;

(ii) S = {s,±2s}, for some s and n is even;

(iii) S = {s, n/2}, where 2|s and n ≡ 2 mod 4.

Note that for n ≥ 5, in Theorem 2.4(ii) we have n/2 6∈ S, for otherwise either s = n/2, in which

case 2s ≡ 0 mod n, so S is not a subset of {1, . . . , n − 1}, or 2s = n/2 so the fact that circn(S) is

connected implies that (n,±n/4, n/2) = 1, i.e.n = 4, a contradiction. Thus for n ≥ 5 the cases (ii)

and (iii) of Theorem 2.4 are distinct. Since the subgraphs circn(A), circn(B) of our (connected) graph

Γn(A,B,Q) may be disconnected, it is useful to remove the hypothesis that circn(S) is connected from

Theorem 2.4. Using Lemma 2.2 to do this we have:

Corollary 2.5. Let S ⊆ {1, . . . , n − 1} be properly given. Then circn(S) is planar if and only if one

of the following holds:

(i) S = ∅ or S = {s}, for some s;

(ii) S = {s,±2s}, for some s and n/d is even, d = (n, s);

(iii) S = {s, n/2}, where 2d|s and n/d ≡ 2 mod 4, d = (n/2, s).

6



3 Proof of Theorem A

We first list certain non-planar graphs Γn(A,B,Q) that are important for our arguments.

Proposition 3.1. The following graphs are non-planar where n ≥ 4:

(i) Γn(∅, ∅, {0, 1, n − 1}), where n is odd;

(ii) Γn({1}, {1}, {0, 1, n − 1});

(iii) Γn({1}, {1}, {0, 2});

(iv) Γn({2}, {2}, {0, 1}), where n is even;

(v) Γn({1, 2}, {1}, {0}), where n is even;

(vi) Γn({2}, {2}, {0, n/2}), where n ≡ 2 mod 4;

(vii) Γn({2, n/2}, {2, n/2}, {0}), where n ≡ 2 mod 4;

(viii) Γn(∅, ∅, {0, n/4, n/2, 3n/4}), where 4|n;

(ix) Γn(∅, ∅, {0, n/3, n/2, 2n/3}), where 6|n;

(x) Γn(∅, ∅, {0, n/6, n/2, 5n/6}), where 6|n.

Proof. (i) By setting (for each 0 ≤ i ≤ n − 1) ui = vi when i is even, ui = v′i when i is odd,

ui+n = v′i when i is even, ui+n = vi when i is odd, we see that Γn(∅, ∅, {0, 1,−1}) is isomorphic

to circ2n({1, n}) which is non-planar (by Corollary 2.5).

(ii) Contracting the edges (vi, vi+1), (v
′
i, v

′
i+1) (3 ≤ i ≤ n−2) contracts Γ = Γn({1}, {1}, {0, 1,−1}) to

Γ3({1}, {1}, {0, 1,−1}), which contains Γ3(∅, ∅, {0, 1,−1}) as a subgraph, but this is isomorphic

to the complete bipartite graph K3,3.

(iii) Contracting the edges (vi, vi+1), (v
′
i, v

′
i+1) (4 ≤ i ≤ n − 2) contracts Γ = Γn({1}, {1}, {0, 2}) to

Γ4({1}, {1}, {0, 2}). Then contracting the edges (vi, v
′
i) (1 ≤ i ≤ 3) leaves complete graph K5,

so Γ is non-planar.

(iv) Contracting the edges (vi, vi+2), (v
′
i, v

′
i+2) (3 ≤ i ≤ n − 3) contracts Γ = Γn({2}, {2}, {0, 1}) to

Γ4({2}, {2}, {0, 1}). Contracting the edges (v0, v
′
0), (v2, v

′
2) leaves the complete bipartite graph

K3,3, so Γ is non-planar.

(v) Contracting the edges (vi, vi+1), (v
′
i, v

′
i+1) (3 ≤ i ≤ n − 2) contracts Γ = Γn({1, 2}, {1}, {0}) to

Γ4({1, 2}, {1}, {0}). Contracting the edges (v2, v
′
2), (v3, v

′
3), (v

′
0, v

′
1) leaves the complete graph K5,

so Γ is non-planar.

(vi) Contracting the edges (vi, vi+2), (v
′
i, v

′
i+2), for 0 ≤ i ≤ n− 1, i odd and for 4 ≤ i ≤ n− 2, i even,

then contracting the edges (vi, v
′
i) (i = 0, 2, 4) leaves the complete graph K5, so Γ is non-planar.

(vii) Contracting the edges (vi, vi+2), (v
′
i, v

′
i+2) for each odd i with 1 ≤ i ≤ n− 1 and contracting the

edges (vi, vi+2), (v
′
i, v

′
i+2) for each even i with 4 ≤ i ≤ n− 2 (which is no edges when n = 6) then

contracting the edges (v0, v
′
0), (v2, v

′
2), (v4, v

′
4) leaves the complete graph K5, so Γ is non-planar.

(viii) The induced subgraph of Γ = Γn(∅, ∅, {0, n/4, n/2, 3n/4}) with vertices v0, vn/4, vn/2, v
′
0, v

′
n/4, v

′
n/2

is the complete bipartite graph K3,3 so Γ is non-planar.
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(ix) The induced subgraph of Γ = Γn(∅, ∅, {0, n/3, n/2, 2n/3}) with vertices v0, vn/3, v2n/3, v
′
0, v

′
n/3, v

′
2n/3

is the complete bipartite graph K3,3 so Γ is non-planar.

(x) The map vi 7→ vi, v
′
i 7→ v′i+n/2 (0 ≤ i ≤ n − 1) gives an isomorphism between this graph and

that in part (ix), which is non-planar.

It simplifies our later arguments if we may assume n ≥ 5 so we now classify the connected planar

graphs Γn(A,B,Q) in the cases n = 2, 3, 4.

Lemma 3.2. Suppose Q 6= ∅, 0 6∈ A,B and assume that Γ = Γn(A,B,Q) is properly given. Then

1. Γ2(A,B,Q) is connected and planar if and only if ({A,B},Q) is any of the cases from Class I

of Table 1.

2. Γ3(A,B,Q) is connected and planar if and only if ({A,B},Q) is any of the cases from Class I

of Table 1.

3. Γ4(A,B,Q) is connected and planar if and only if ({A,B},Q) is any of the cases from Class I

or Class II of Table 1.

Proof. 1. If A = B = ∅ and |Q| = 1 then Γ = Γ2(A,B,Q) is disconnected; in all other cases Γ is

connected and planar (of type (I.1),(I.2),(I.3),(I.4), or (I.5)).

2. Here A,B ⊆ {±1}. If |Q| = 1 then Γ is connected and planar if and only if A,B are not both

empty; that is, in cases (I.3) and (I.4). If |Q| = 2 then Γ is connected and planar in all cases; that is,

in cases (I.1),(I.2) and (I.5). If |Q| = 3 then Γ contains Γ3(∅, ∅, {0, 1, 2}), which is the complete graph

K3,3, so it is non-planar.

3. We have A ⊆ {±1, 2}, B ⊆ {±1, 2} and there exists q ∈ Q for some q ∈ {0, 1, 2, 3}. If |Q| = 4 then

Γ contains the (non-planar) complete bipartite graph K4,4 so we may assume |Q| ≤ 3.

Case 1: |A|+ |B| ≥ 3. If {A,B} = {{±1, 2}, {±1, 2}} or {{±1, 2}, {±1}} then Γ contains a subgraph

isomorphic to Γ4({1, 2}, {1}, {0}), which is non-planar by Proposition 3.1(v). Thus we have {A,B} =

{{±1, 2}, {2}}. If q ± 1 ∈ Q then Γ contains a subgraph isomorphic to Γ4({2}, {2}, {0, 1}) which is

non-planar by Proposition 3.1(iv). Thus Q = {q} or {q, q+2}, in which case Γ is connected and planar

(of type (II.12) or (II.14)).

Case 2: |A| + |B| = 2. Suppose first that |A| = |B| = 1 so either {A,B} = {{±1}, {±1}}

or {{±1}, {2}} or {{2}, {2}}. Suppose A = {±1}, B = {±1}. If q, q + 2 ∈ Q then Γ contains

Γ4({1}, {1}, {0, 2}), which is non-planar by Proposition 3.1(iii). If Q = {q, q+1, q−1} then Γ contains

Γ4(∅, ∅, {q, q + 1, q − 1}) which is non-planar by Proposition 3.1(ii). If Q = {q} or {q, q ± 1} then

Γ is planar (of type (I.3) or (I.1)). Suppose that {A,B} = {{±1}, {2}}. Then Γ is planar for any

Q with |Q| ≤ 3 (of type (II.1),(II.7),(II.11), or (II.15)). Suppose that {A,B} = {{2}, {2}}. Then if

Q = {q} or {q, q + 2} then Γ is disconnected; if Q = {q, q ± 1} or {q, q + 1, q − 1} then Γ contains

a subgraph isomorphic to Γ4({2}, {2}, {0, 1}), which is non-planar by Proposition 3.1(iv). Suppose

then that A = ∅ or B = ∅. Then {A,B} = {∅, {±1, 2}} and Γ is connected and properly given, of

type (II.2),(II.5),(II.10) or (II.13).

Case 3: |A|+ |B| < 2. Suppose first that A = B = ∅. If Q = {q} or {q, q+2} then Γ is disconnected.

If Q = {q, q±1} or |Q| = 3 then Γ is connected and planar (of type (I.5) or (II.6)). Suppose then that

|A| + |B| = 1; then without loss of generality we may assume A = ∅. If B = {2} and either Q = {q}

or {q, q + 2} then Γ is disconnected; if B = {2} and Q = {q, q ± 1} then Γ is connected and planar

(of type (II.8)); if B = {2} and Q = {q, q + 1, q − 1} then Γ is planar (of type (II.4)). Thus we may

assume that B = {±1}, in which case Γ is connected and planar of type (I.2),(I.4),(II.3) or (II.9).
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In the next three lemmas we give further conditions for non-planarity of Γ.

Lemma 3.3. Suppose 0 6∈ A,B and assume that Γ = Γn(A,B,Q) is properly given. If |A| > 2 or

|B| > 2 then Γ is non-planar.

Proof. The properly given circulant graphs circn(A), circn(B) are subgraphs of Γn(A,B,Q) and are

non-planar by Corollary 2.5.

Lemma 3.4. Suppose 0 6∈ A,B, n ≥ 5, and assume that Γ = Γn(A,B,Q) is properly given. If |Q| > 3

then Γ is non-planar.

Proof. Let q0 ∈ Q. For each 0 ≤ i ≤ n − 1 set wi = vi, w
′
i = v′i+q0

and set R = {q − q0 | q ∈ Q}, so

0 ∈ R. Then Γ has vertices wi, w
′
i (0 ≤ i ≤ n − 1) and edges (wi, wi+a), (w

′
i, w

′
i+b), (wi, w

′
i+r) where

a ∈ A, b ∈ B, r ∈ R, so Γ is isomorphic to Γn(A,B,R) and hence we may assume that 0 ∈ Q.

Suppose that |Q| = 4, and let Q = {0, q, r, s}, say, where 0, q, r, s are distinct mod n and suppose

that Γ is connected and planar. Consider the subgraph Λ = Γn(∅, ∅,Q) = Γn(∅, ∅, {0, q, r, s}) of Γ.

Let C(0) be the graph obtained from Λ by contracting the edges (vi, v
′
i); let C(q) be the graph

obtained from Λ by contracting the edges (vi, v
′
i+q); let C(r) be the graph obtained from Λ by con-

tracting the edges (vi, v
′
i+r); let C

(s) be the graph obtained from Λ by contracting the edges (vi, v
′
i+s)

(0 ≤ i ≤ n − 1). Then C(0), C(q), C(r), C(s), are the (not necessarily properly given) circulant

graphs circn(S
(0)), circn(S

(q)), circn(S
(r)), circn(S

(s)), where S(0) = {q, r, s}, S(q) = {−q, r− q, s− q},

S(r) = {−r, q − r, s − r}, S(s) = {−s, q − s, r − s}.

Since 0, q, r, s are distinct mod n we have |S(0)| = |S(q)| = |S(r)| = |S(s)| = 3 so if any of C(0),

C(q), C(r), C(s) are properly given then it is non-planar (by Corollary 2.5) and so Γ is non-planar. The

conditions for these circulants to be properly given is as follows (all congruences are mod n):

C(0) : q 6≡ −r and q 6≡ −s and r 6≡ −s;

C(q) : r 6≡ 2q and s 6≡ 2q and r + s 6≡ 2q;

C(r) : q 6≡ 2r and s 6≡ 2r and q + s 6≡ 2r;

C(s) : q 6≡ 2s and r 6≡ 2s and q + r 6≡ 2s.

Suppose n/2 ∈ Q. Without loss of generality we may set q = n/2 and therefore r, s 6≡ n/2 mod n.

Then the conditions for C(0), C(q) to be properly given each become r 6≡ −s mod n, so we may

assume s ≡ −r mod n in which case the conditions for C(r), C(s) to be properly given become

n/2 6≡ 2r and 3r 6≡ 0, n/2. Thus we may assume r ≡ ±n/4 or r ≡ ±n/3 mod n or r ≡ ±n/6 mod n.

That is, (q = n/2, r = ±n/4, s = ∓n/4) or (q = n/2, r = ±n/3, s = ∓n/3) or (q = n/2,

r = ±n/6, s = ∓n/6) so Λ = Γn(∅, ∅, {0, n/2, n/4,−n/4}) or Λ = Γn(∅, ∅, {0, n/2, n/3,−n/3}) or

Λ = Γn(∅, ∅, {0, n/2, n/6,−n/6}), in which case Λ is non-planar by Proposition 3.1(viii),(ix),(x).

Suppose then that n/2 6∈ Q. If q 6≡ −r and q 6≡ −s and r 6≡ −s then C(0) is properly given, and

hence non-planar, so without loss of generality we may assume s = n − r. Noting that n − q 6≡ q,

n−r 6≡ r, n−s 6≡ s, (because n/2 6∈ Q) the conditions for C(q), C(r), C(s) to be properly given become

C(q) : r 6≡ 2q and −r 6≡ 2q;

C(r) : q 6≡ +2r and 3r 6≡ 0 and q 6≡ 3r;

C(s) : q 6≡ −2r and 3r 6≡ 0 and q 6≡ −3r.

We have C(0) = circn({q, r}) and q 6≡ ±r mod n (since q, r, s are distinct mod n) so Corollary 2.5

gives that C(0) is planar only if (i) q ≡ ±2r and n/(n, r) is even or (ii) r ≡ ±2q and n/(n, q) is even.

Case 1. q ≡ ±2r mod n. Then the conditions for C(q) to be properly given become 3r 6≡ 0 and

5r 6≡ 0. If 3r ≡ 0 mod n then q ≡ ∓r mod n, so s ≡ ±q mod n and we have a contradiction as q, r, s

are distinct mod n. If 5r ≡ 0 mod n then (n, r) = n/5 so n/(n, r) = 5 is odd so C(0) is non-planar.
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Case 2. r ≡ 2q mod n (resp. r ≡ −2q mod n). Then the conditions for C(r) (resp. C(s)) to

be properly given become 3q 6≡ 0, 6q 6≡ 0, 5q 6≡ 0. If 3q ≡ 0 then r ≡ ±q so s ≡ ∓q and we have a

contradiction as q, r, s are distinct mod n. If 5q ≡ 0 mod n then (n, q) = n/5 so n/(n, q) = 5 is odd

so C(0) is non-planar. If 6q ≡ 0 mod n then 2q ≡ ±n/3 and Λ contains Γn(∅, ∅, {0, 2q,−2q}) whose

connected components are isomorphic to Γ3(∅, ∅, {0, 1,−1}), which is the complete bipartite graph

K3,3 so Λ is non-planar.

Lemma 3.5. Suppose Q 6= ∅, 0 6∈ A,B and assume that Γ = Γn(A,B,Q) is properly given. If

|A| = |B| = 2 then Γ is non-planar.

Proof. Let A = {a1, a2}, B = {b1, b2}. Since Γ is properly given we have a1 6≡ ±a2, b1 6≡ ±b2. Suppose

|Q| = 1, that is, Q = {q}. Suppose for contradiction that Γ is connected and planar. Contracting

the edges (vi, v
′
i+q) contracts Γ to the connected, planar, circulant graph Λ = circn(A ∪ B). If for

any j ∈ {1, 2} we have bj 6∈ {±a1,±a2} then the subgraph circn(A ∪ {bj}) of Λ is properly given and

non-planar by Corollary 2.5. Therefore we may assume B = {±a1,±a2} and so Λ = circn(A), which

is connected, planar, and properly given.

Suppose n/2 6∈ A. Then by Corollary 2.5 we have, without loss of generality, that a2 ≡ ±2a1 mod n,

and since Λ is connected we have (n, a1) = 1 and n is even. Therefore Γ is isomorphic to

Γn({1, 2}, {1, 2}, {0}) which contains Γn({1, 2}, {1}, {0}), which is non-planar by Proposition 3.1(v).

Suppose then that n/2 ∈ A, a2 = n/2, say. Then A = {a1, n/2} and since Λ = circn(A) is connected

and planar, Theorem 2.4 gives that (n/2, a1) = 1, n ≡ 2 mod 4, and a1 is even. Then Γ is isomorphic

to Γn({2, n/2}, {2, n/2}, {q}) which is non-planar by Proposition 3.1(vii). If |Q| > 1 then Γ contains

Γn(A,B, {q}) which (as we have just shown) is non-planar.

Consider now the case A = B = ∅.

Lemma 3.6. Let A = B = ∅, n ≥ 5, Q 6= ∅. Then Γ = Γn(A,B,Q) is connected and planar if and

only if either

(II.5) Q = {q, q + s}, for some q, where (n, s) = 1; or

(II.6) Q = {q, q + s, q − s}, for some q, where n is even and (n, s) = 1.

Proof. If |Q| = 1 then Γ is disconnected. If |Q| > 3 then Γ is non-planar by Lemma 3.4.

Suppose that |Q| = 2, i.e. Q = {q, q + s} for some q, s ∈ {0, . . . , n − 1}, s 6≡ 0 mod n. For each

i ∈ {0, . . . , n−1} let wi = vi, w
′
i = v′i+q. Then Γ has vertices wi, w

′
i and edges (wi, w

′
i), (wi, w

′
i+s), (0 ≤

i ≤ n−1). Then Γ consists of (n, s) cycles w′
i−wi−w′

i+s−wi+s−w′
i+2s−wi+2s−· · ·−w′

i−s−wi−s−w′
i,

so it is connected and planar (of type (I.5)) if and only if (n, s) = 1.

Now suppose that |Q| = 3 and let Q = {p, p + s, p + r} for some p, r, s ∈ {0, . . . , n − 1}, where

s 6≡ 0, r 6≡ 0, r 6≡ s mod n.

Suppose first that s ≡ −r or r ≡ 2s or s ≡ 2r mod n. If s ≡ −r let q = p, t = s; if r ≡ 2s mod n let

q = p+s, t = s; if s ≡ 2r let q = p+r, t = r. Then Q = {q, q+t, q−t}. We claim that if Γ is connected

then it is isomorphic to Γn{∅, ∅, {0, 1,−1}), so if n is odd Γ is non-planar by Proposition 3.1(i), and if

n is even then Γ is planar (of type (II.6)). Now Γ has vertices vi, v
′
i and edges (vi, v

′
i+q), (vi, v

′
i+q+t),

(vi, v
′
i+q−t). For each 0 ≤ i ≤ n−1 let wi = vi, w

′
i = v′i+q; then Γ has vertices wi, w

′
i and edges (wi, w

′
i),

(wi, w
′
i+t), (wi, w

′
i−t). Therefore Γ = Γn(∅, ∅, {0, t,−t}), which (by Lemma 2.3) is connected if and

only if (n, t) = 1, in which case Γ is isomorphic to Γn{∅, ∅, {0, 1,−1}), as claimed.

Suppose then that s 6≡ −r, r 6≡ 2s, and s 6≡ 2r mod n, and suppose that Γ is connected and planar.

For each 0 ≤ i ≤ n − 1 let wi = vi, w
′
i = v′i+p. Then Γ has edges (wi, w

′
i), (wi, w

′
i+s), (wi, w

′
i+r) so

Γ is isomorphic to Γn(∅, ∅, {0, s, r}). Contracting the edges (wi, w
′
i) of Γ and removing loops leaves

the circulant C(0) = circn({s, r}), which is properly given since s 6≡ ±r mod n. Contracting the
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edges (wi, w
′
i+s) of Γ leaves the circulant C(s) = circn(−s, r − s), which is properly given since r 6≡ 0,

r 6≡ 2s mod n. Contracting the edges (wi, w
′
i+r) of Γ leaves the circulant C(r) = circn(−r, s− r), which

is properly given since s 6≡ 0, s 6≡ 2r mod n.

If s = n/2 then C(0) = circn({n/2, r}), which is connected and planar, so Theorem 2.4 gives

that (n/2, r) = 1, n ≡ 2 mod 4, and r is even, so in particular r − n/2 is odd. In the same way

C(s) = circn({n/2, r − n/2}) is connected and planar so (n/2, r − n/2) = 1, n ≡ 2 mod 4, and r− n/2

is even, a contradiction. If r = n/2 then C(0) = circn({n/2, s}), which is connected and planar, so

Theorem 2.4 gives that (n/2, s) = 1, n ≡ 2 mod 4, and s is even, so in particular s−n/2 is odd. In the

same way C(r) = circn({n/2, s − n/2}) is connected and planar so (n/2, s − n/2) = 1, n ≡ 2 mod 4,

and s − n/2 is even, a contradiction. Thus we may assume that n/2 6∈ {r, s}. Then since C(0) is

connected and planar, noting that r 6≡ 2s, s 6≡ 2r mod n, Theorem 2.4 gives that either s ≡ −2r or

r ≡ −2s mod n and so C(s) = circn({2r, 3r}) and C(r) = circn({2s, 3s}), respectively, which are not

connected and planar since n ≥ 5, a contradiction.

Lemma 3.7. Let A = ∅ or B = ∅, A ∪ B 6= ∅, |Q| = 1 or 2, n ≥ 5, 0 6∈ A, 0 6∈ B and suppose that

Γ = Γn(A,B,Q) is properly given. Then Γ is connected and planar if and only if one of the following

holds:

(I.2) {A,B} = {∅, {±s}}, Q = {q, q + s}, for some q, (n, s) = 1;

(I.4) {A,B} = {∅, {s}}, Q = {q}, for some q where (n, s) = 1;

(II.5) {A,B} = {∅, {s,±2s}}, Q = {q}, for some q where n is even, (n, s) = 1;

(II.8) {A,B} = {∅, {±2s}}, Q = {q, q + s}, for some q where n is even, (n, s) = 1;

(II.9) {A,B} = {∅, {±s}}, Q = {q, q + 2s}, for some q where n is even, (n, s) = 1;

(II.10) {A,B} = {∅, {±s,±2s}}, Q = {q, q + s}, for some q, n even, (n, s) = 1;

(II.13) {A,B} = {∅, {±s,±2s}}, Q = {q, q + 2s}, for some q, n even, (n, s) = 1;

(III.2) {A,B} = {∅, {n/2, s}}, Q = {q, q + n/2}, for some q, where n, s are even, (n/2, s) = 1;

(III.3) {A,B} = {∅, {s}}, Q = {q, q + n/2}, for some q, where n, s are even, (n/2, s) = 1;

(III.9) {A,B} = {∅, {s, n/2}}, Q = {q}, for some q where n, s are even (n/2, s) = 1;

(III.12) {A,B} = {∅, {n/2,±s}}, Q = {q, q + s}, for some q, where n, s are even, (n/2, s) = 1;

(III.14) {A,B} = {∅, {n/2}}, Q = {q, q + s}, for some q, where n, s are even, (n/2, s) = 1.

Proof. By setting Q′ = {n−q | q ∈ Q} we see that the graphs Γn(A,B,Q), Γn(B,A,Q′) are isomorphic,

so without loss of generality we may assume that A = ∅.

If |Q| = 1 then Γ is connected and planar if and only if circn(B) is connected and planar, the

conditions for which are given in Theorem 2.4, and which correspond to cases (I.4),(II.5),(III.9).

If |Q| = 2, Q = {q, q + t}, say, then each vertex vi is of degree 2. Replacing each length 2 path

v′i−vi−q−v′i+t by an edge (v′i, v
′
i+t) we see that Γ is connected and planar if and only if C = circn(B∪{t})

is connected and planar, so in particular |B| ≤ 2. Suppose |B| = 1, B = {b}, say, then C = circn({b, t}).

If b ≡ ±t then C is connected and planar if and only if (n, t) = 1, giving case (I.2). If b 6≡ ±t, n/2 mod n

then C is connected and planar if and only if n is even and either b ≡ ±2t and (n, t) = 1 or t ≡ ±2b

and (n, b) = 1, giving cases (II.8),(II.9), respectively. If b ≡ n/2 then C is connected and planar if and

only if t is even and (n/2, t) = 1, giving case (III.14). If t ≡ n/2 then C is connected and planar if and

only if b is even and (n/2, b) = 1, giving case (III.3). Suppose |B| = 2; then since C is planar we have
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±t ∈ B, so C = circn({b, t}) and B = {b,±t}, b 6≡ ±t (since Γ is properly given). If b, t 6≡ n/2 mod n

then either b ≡ ±2t and (n, t) = 1 or t ≡ ±2b and (n, b) = 1, giving cases (II.10),(II.13), respectively.

If b ≡ n/2 mod n then t is even, (n/2, t) = 1, giving case (III.12); if t ≡ n/2 mod n then b is even,

(n/2, b) = 1, giving case (III.2).

We now consider the case |Q| = 3.

Lemma 3.8. Let |Q| = 3, n ≥ 5, A ∪ B 6= ∅, 0 6∈ A,B and suppose that Γ = Γn(A,B,Q) is properly

given. Then Γ is connected and planar if and only if the following holds:

(II.1) {A,B} = {{±s}, {±2s}}, Q = {q, q + s, q − s}, for some q, and n is even, (n, s) = 1;

(II.2) {A,B} = {∅, {±s,±2s}}, Q = {q, q + s, q − s}, for some q, and n is even, (n, s) = 1;

(II.3) {A,B} = {∅, {±s}}, Q = {q, q + s, q − s}, for some q, and n is even, (n, s) = 1;

(II.4) {A,B} = {∅, {±2s}}, Q = {q, q + s, q − s}, for some q, and n is even, (n, s) = 1.

Proof. Suppose that Γ = Γn(A,B,Q) is connected and planar and let Q = {p, p + s, p + r} where

p, q, r ∈ {0, . . . , n − 1}, s 6≡ 0, r 6≡ 0, r 6≡ s mod n. If s 6≡ −r, r 6≡ 2s, and s 6≡ 2r mod n then

Q 6= {q, q + t, q − t} for any q, t so the subgraph Γn(∅, ∅,Q) is non-planar by Lemma 3.6.

Thus we may assume that s ≡ −r or r ≡ 2s or s ≡ 2r mod n and set q = p, t = s (when s ≡ −r),

q = p + s, t = s (when r ≡ 2s), and q = p + r, t = r (when s ≡ 2r). Then Q = {q, q + t, q − t}.

Contracting the edges (vi, v
′
i+q−t) leaves the connected, planar, circulant graph Λ = circn(S) where

S = A ∪ B ∪ {t, 2t}. By Theorem 2.4 we have A,B ⊆ {±t,±2t} and then Λ has (n, t) connected

components so (n, t) = 1 and n is even.

If ±t ∈ A ∩ B then Γ contains the subgraph Γn({t}, {t}, {q, q + t, q − t}) which is isomorphic

to Γn({1}, {1}, {0, 1, n − 1}) which is non-planar by Proposition 3.1(ii). If ±2t ∈ A ∩ B then Γ

contains the subgraph Γn({2t}, {2t}, {q, q + t, q − t}) which is isomorphic to Γn({2}, {2}, {0, 1,−1}),

which contains the subgraph Γn({2}, {2}, {0, 1}) which is non-planar by Proposition 3.1(iv). Thus if

A 6= ∅ and B 6= ∅ then {A,B} = {{±t}, {±2t}} so Γ is isomorphic to Γn{{1}, {2}, {q, q + 1, q − 1}}

which is planar (of type (II.1)) since n is even, and is connected by Lemma 2.3. Therefore we may

assume that {A,B} = {∅,X} where X ⊆ {±t,±2t}. If X = {±t,±2t}, {±t}, {±2t} then we get cases

(II.2),(II.3),(II.4), respectively.

By Lemmas 3.2–3.8 the connected and planar graphs Γn(A,B,Q) have been classified except when

all of the following hold: n ≥ 5 and 1 ≤ |Q| ≤ 2, 2 ≤ |A| + |B| ≤ 3, A 6= ∅, B 6= ∅. We deal with

these cases in the following four lemmas. For the case |A| + |B| = 3, |Q| = 2; that is, for the case

{|A|, |B|} = {2, 1}, |Q| = 2 we have the following.

Lemma 3.9. Let {|A|, |B|} = {2, 1}, 0 6∈ A,B, |Q| = 2, q ∈ Q, n ≥ 5 and suppose that Γn(A,B,Q) is

properly given. Then Γ is connected and planar if and only if one of the following holds:

(II.12) {A,B} = {{±s,±2s}, {±2s}}, Q = {q, q + 2s}, n is even, (n, s) = 1;

(III.1) {A,B} = {{s, n/2}, {n/2}}, Q = {q, q + n/2}, (n/2, s) = 1, s is even;

(III.7) {A,B} = {{±s, n/2}, {±s}}, Q = {q, q + s}, (n/2, s) = 1, s is even;

(III.11) {A,B} = {{±s, n/2}, {n/2}}, Q = {q, q + s}, (n/2, s) = 1, s is even.

Proof. Without loss of generality we may assume |A| = 2, |B| = 1, so let A = {a1, a2} (a1 6≡

±a2 mod n), B = {b}, Q = {q, q + s} (s 6≡ 0 mod n) and suppose that Γ is connected and planar.

If s 6≡ ±a1,±a2 (mod n) or b 6≡ ±a1,±a2 then contracting the edges (vi, v
′
i+q) leaves the non-planar
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circulant circn(A ∪ B ∪ {s}), so we may assume (without loss of generality) that s ≡ ±a2 mod n and

either b = a1 or b = a2.

Suppose n/2 6∈ A. Then since the subgraph circn(A) of Γn(A,B,Q) is planar (but not necessarily

connected), Corollary 2.5 implies that n is even and either a2 ≡ ±2a1 or a1 ≡ ±2a2. Thus we have

the following four cases:

1. A = {a1,±2a1}, B = {a1}, s = ±2a1;

2. A = {a2,±2a2}, B = {±2a2}, s = ±a2;

3. A = {a1,±2a1}, B = {±2a1}, s = ±2a1;

4. A = {a2,±2a2}, B = {a2}, s = ±a2.

Since Γ is connected, by Lemma 2.3 we have (n, a1) = 1 in Cases 1,3 and (n, a2) = 1 in Cases 2,4. There-

fore, in Cases 1 and 4, the graph Γn(A,B,Q) is isomorphic to Γn({1, 2}, {1}, {0, 2}), Γn({1, 2}, {1}, {0, 1}),

respectively, each of which which contains the subgraph Γn({1, 2}, {1}, {0}), which is non-planar by

Proposition 3.1(v). In Case 2 the graph Γn(A,B,Q) is isomorphic to Γn({2, 1}, {2}, {0, 1}), which con-

tains Γn({2}, {2}, {0, 1}) which is non-planar by Proposition 3.1(iv). In Case 3 the graph Γn(A,B,Q)

has a planar embedding (of type (II.12)).

Suppose then that n/2 ∈ A. Then A = {a, n/2} and so B = {a} or B = {n/2} and we have

Q = {q, q ± a} or Q = {q, q + n/2}. Then since Γ is connected we have (n/2, a) = 1. Then the

subgraph circn(A) = circn(a, n/2) of Γn(A,B,Q) is connected and planar so Theorem 2.4 implies that

n ≡ 2 mod 4 and a is even. Thus we have the following four cases:

5. A = {a, n/2}, B = {a}, s = ±a;

6. A = {a, n/2}, B = {n/2}, s = n/2;

7. A = {a, n/2}, B = {a}, s = n/2;

8. A = {a, n/2}, B = {n/2}, s = ±a.

In Case 7 the graph Γ is isomorphic to Γn{{2, n/2}, {2}, {0, n/2}} which contains Γn{{2}, {2}, {0, n/2}}

which is non-planar by Proposition 3.1(vi). In the remaining cases Γ is planar of type (III.1),(III.7)

or (III.11).

Lemma 3.10. Let |A| = 1, |B| = 1, 0 6∈ A,B, |Q| = 2, q ∈ Q, n ≥ 5 and suppose that Γ = Γn(A,B,Q)

is properly given. Then Γ is connected and planar if and only if one of the following holds:

(I.1) {A,B} = {{±s}, {±s}}, Q = {q, q + s}, (n, s) = 1;

(II.7) {A,B} = {{±2s}, {±s}}, Q = {q, q + s}, n is even, (n, s) = 1;

(II.15) {A,B} = {{±2s}, {±s}}, Q = {q, q + 2s}, n is even, (n, s) = 1;

(III.5) {A,B} = {{n/2}, {s}}, Q = {q, q + n/2}, n, s are even, (n/2, s) = 1;

(III.10) {A,B} = {{n/2}, {±s}}, Q = {q, q + s}, n, s are even, (n/2, s) = 1;

(III.13) {A,B} = {{n/2}, {n/2}}, Q = {q, q + s}, n, s are even, (n/2, s) = 1.

Proof. Let A = {a},B = {b},Q = {q, q + t} where t 6≡ 0 mod n, and suppose that Γ = Γn(A,B,Q)

is connected and planar. Contracting the edges (vi, v
′
i+q) leaves the connected and planar (but not

necessarily properly given) circulant graph Λ = circn(S) where S = {a, b, t}.
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Case 1: t ≡ n/2, a 6≡ ±b mod n. Here Λ = circn(S) where S = {a, b, n/2}. Theorem 2.4 implies

that either a ≡ n/2 or b ≡ n/2 mod n. Thus {A,B} = {{n/2}, {s}} for some s 6≡ n/2 mod n. Since

n ≥ 5 Theorem 2.4 implies that s is even, n ≡ 2 mod 4, (n/2, s) = 1, in which case Γ is connected and

planar (of type (III.5)).

Case 2: t ≡ n/2, a ≡ ±b mod n. Here Λ = circn(S) where S = {s, n/2}, where s = a. Since Λ

is connected we have (n/2, s) = 1 (which implies, in particular, that s 6≡ n/2 mod n). Theorem 2.4

implies that n ≡ 2 mod 4, s is even, (n/2, s) = 1, in which case Γ is isomorphic to Γn({2}, {2}, {0, n/2}),

which is non-planar by Proposition 3.1(vi).

Case 3: t 6≡ n/2, a 6≡ ±b, a 6≡ n/2, b 6≡ n/2 mod n. Here Λ = circn(S) where S = {a, b, t} so

Theorem 2.4 implies that a ≡ ±t or b ≡ ±t mod n so Λ = circn{s, t} where s 6≡ ±t, s 6≡ n/2 mod n,

{A,B} = {{±s}, {±t}}. Since Λ is connected and planar we have n is even and either s ≡ ±2t or

t ≡ ±2s mod n. In the case s ≡ ±2t mod n we have (n, t) = 1 (since Λ is connected), in which case

Γ is connected and planar (of type (II.7)). In the case t ≡ ±2s mod n we have (n, s) = 1 (since Λ is

connected), in which case Γ is connected and planar (of type (II.15)).

Case 4: t 6≡ n/2, a 6≡ ±b mod n, and (a ≡ n/2 or b ≡ n/2). Here {A,B} = {{n/2}, {s}} (for

some s 6= n/2) so Λ = circn(S) where S = {n/2, s, t} so Theorem 2.4 implies that s ≡ ±t mod n so

Λ = circn({n/2, s}). Since Λ is connected and planar we have (n/2, s) = 1, s is even, and n ≡ 2 mod 4.

In this case Γ is connected and planar (of type (III.10)).

Case 5: t 6≡ n/2, a ≡ ±b, t 6≡ ±a mod n. Here A = {±s}, B = {±s} (for some s) so Λ = circn(S)

where S = {s, t}. Suppose s ≡ n/2 mod n. Then Theorem 2.4 implies that t is even, n ≡ 2 mod 4,

(n/2, t) = 1, in which case Γ is planar (of type (III.13)). Suppose then that s 6≡ n/2 mod n. Then

Theorem 2.4 implies that n is even, s ≡ ±2t or t ≡ ±2s mod n. In the case s ≡ ±2t mod n, we

have (n, t) = 1 (since Λ is connected) so we may assume t = 1, in which case Γ is isomorphic to

Γn({2}, {2}, {0, 1}), which is non-planar by Proposition 3.1(iv). In the case t ≡ ±2s mod n, we have

(n, s) = 1 (since Λ is connected) so we may assume s = 1 so Γ is isomorphic to Γn({1}, {1}, {0, 2})

which is non-planar by Proposition 3.1(iii).

Case 6: t 6≡ n/2, a ≡ ±b, t ≡ ±a mod n. Here A = {±t}, B = {±t}, Q = {q, q + t} so since Γ is

connected we have (n, t) = 1, in which case Γ is connected and planar (of type (I.1)).

Lemma 3.11. Let {|A|, |B|} = {2, 1}, 0 6∈ A,B, Q = {q}, n ≥ 5 and suppose that Γ = Γn(A,B,Q) is

properly given. Then Γ is connected and planar if and only if one of the following holds:

(II.14) {A,B} = {{s,±2s}, {±2s}}, where n is even, (n, s) = 1;

(III.4) {A,B} = {{s, n/2}, {n/2}} where s is even, (n/2, s) = 1;

(III.8) {A,B} = {{s, n/2}, {±s}} where s is even, (n/2, s) = 1.

Proof. Without loss of generality we may assume |A| = 2, |B| = 1, so let A = {a1, a2} (a1 6≡

±a2 mod n), B = {b}, Q = {q} and suppose that Γn(A,B,Q) is connected and planar. Contracting

the edges (vi, v
′
i+q) leaves the connected, planar circulant graph Λ = circn({a1, a2, b}). Since Λ is

planar Theorem 2.4 implies that b ≡ ±a1 or b ≡ ±a2 mod n. Without loss of generality let b = a1,

so Λ = circn({a1, a2}) = circn(A) and Γ = Γn({a1, a2}, {a1}, {q}). Since Λ is connected we have

(n, a1, a2) = 1 and since it is planar Theorem 2.4 implies that one of the following holds:

1. A = {a,±2a}, B = {±2a}, where n is even, (n, a) = 1;

2. A = {a,±2a}, B = {±a}, where n is even, (n, a) = 1;

3. A = {a, n/2}, B = {n/2}, where n ≡ 2 mod 4, a is even, (n/2, a) = 1;

4. A = {a, n/2}, B = {±a}, where n ≡ 2 mod 4, a is even, (n/2, a) = 1.
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In case 2 Γ is isomorphic to Γn({1, 2}, {1}, {0}), which is non-planar by Proposition 3.1(v). In

cases 1,3,4 the graph Γ is connected and planar of type (II.14),(III.4),(III.8), respectively.

Lemma 3.12. Let |A| = |B| = 1, 0 6∈ A,B, Q = {q}, n ≥ 5 and suppose that Γ = Γn(A,B,Q) is

properly given. Then Γ is connected and planar if and only if one of the following holds:

(I.3) {A,B} = {{s}, {±s}}, (n, s) = 1;

(II.11) {A,B} = {{s}, {±2s}}, n is even, (n, s) = 1;

(III.6) {A,B} = {{s}, {n/2}} where s is even, (n/2, s) = 1.

Proof. Let A = {a},B = {b},Q = {q} and suppose that Γn(A,B,Q) is connected and planar. If

a ≡ ±b mod n then Γ has (n, a) components, so is connected if and only if (n, a) = 1, in which case

there is a planar embedding of Γ (of type (I.3)). Suppose then that a 6≡ ±b mod n. Contracting

the edges (vi, v
′
i+q) (0 ≤ i ≤ n − 1) contracts Γ to the connected, planar, properly given, circulant

circn(A ∪ B) = circn({a, b}) which, by Theorem 2.4, is connected and planar if and only if either

1. {A,B} = {{s}, {±2s}}, where (n, s) = 1, n is even; or

2. {A,B} = {{s}, {n/2}}, where s is even, (n/2, s) = 1, n ≡ 2 mod 4.

In each of these cases Γ is connected and planar (of type (II.11) or (III.6), respectively).

We are now in a position to prove Theorem A.

Proof of Theorem A.. Figures 2–35 show that Γn(A,B,Q) is planar in all cases of Table 1, and by

Lemma 2.3 it is connected. Suppose then that Γ is connected and planar.

If n ≤ 4 then the result follows from Lemma 3.2 so we may assume that n ≥ 5. Lemmas 3.3,3.4,3.5

give that |A| ≤ 2, |B| ≤ 2, |Q| ≤ 3, {|A|, |B|} 6= {2, 2}. By Lemma 3.6 we may assume that A and

B are not both empty. Then if |Q| ≤ 2 and either A = ∅ or B = ∅ then the result follows from

Lemma 3.7. If |Q| = 3 then the result follows from Lemma 3.8. Therefore we may assume A 6= ∅,

B 6= ∅, |Q| ≤ 2, so in particular |A|+ |B| ≥ 2. If |A|+ |B| = 3 and |Q| = 2 then the result follows from

Lemma 3.9; if |A| + |B| = 2 and |Q| = 2 then the result follows from Lemma 3.10; if |A| + |B| = 3

and |Q| = 1 then the result follows from Lemma 3.11; and if |A|+ |B| = 2 and |Q| = 1 then the result

follows from Lemma 3.12.

Corollary B follows immediately from Theorem A and Lemma 2.1.
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• Class I: (n, s) = 1.

Type {A, B} Q

(I.1) {{±s}, {±s}} {q, q + s}

(I.2) {∅, {±s}} {q, q + s}

(I.3) {{±s}, {±s}} {q}

(I.4) {∅, {s}} {q}

(I.5) {∅, ∅} {q, q + s}

• Class II: n even, (n, s) = 1.

Type {A, B} Q

(II.1) {{s}, {±2s}} {q, q + s, q − s}

(II.2) {∅, {±s,±2s}} {q, q + s, q − s}

(II.3) {∅, {±s}} {q, q + s, q − s}

(II.4) {∅, {±2s}} {q, q + s, q − s}

(II.5) {∅, {s,±2s}} {q}

(II.6) {∅, ∅} {q, q + s, q − s}

(II.7) {{±s}, {±2s}} {q, q + s}

(II.8) {∅, {±2s}} {q, q + s}

(II.9) {∅, {±s}} {q, q + 2s}

(II.10) {∅, {±s,±2s}} {q, q + s}

(II.11) {{s}, {±2s}} {q}

(II.12) {{±s,±2s}, {±2s}} {q, q + 2s}

(II.13) {{±s,±2s}, ∅} {q, q + 2s}

(II.14) {{s,±2s}, {±2s}} {q}

(II.15) {{±s}, {±2s}} {q, q + 2s}

• Class III: n ≡ 2 mod 4, (n/2, s) = 1, s even.

Type {A, B} Q

(III.1) {{s, n/2}, {n/2}} {q, q + n/2}

(III.2) {{n/2, s}, ∅} {q, q + n/2}

(III.3) {{s}, ∅} {q, q + n/2}

(III.4) {{s, n/2}, {n/2}} {q}

(III.5) {{s}, {n/2}} {q, q + n/2}

(III.6) {{s}, {n/2}} {q}

(III.7) {{±s, n/2}, {±s}} {q, q + s}

(III.8) {{s, n/2}, {±s}} {q}

(III.9) {{s, n/2}, ∅} {q}

(III.10) {{n/2}, {±s}} {q, q + s}

(III.11) {{±s, n/2}, {n/2}} {q, q + s}

(III.12) {{±s, n/2}, ∅} {q, q + s}

(III.13) {{n/2}, {n/2}} {q, q + s}

(III.14) {{n/2} ∅} {q, q + s}

Table 1: Classification of properly given connected and planar graphs Γn(A,B,Q).

17



b
1

b

7

b

10

b
4

b9b 11

b 8b12

b
2

b
6

b
3

b
5

Figure 1: A graph satisfying (1)–(7) but not (8).
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Figure 2: Type (I.1)
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Figure 3: Type (I.2)
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· · · · · ·

Figure 4: Type (I.3)
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b b b b b
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· · · · · ·

Figure 5: Type (I.4)
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· · · · · ·

Figure 6: Type (I.5)
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Figure 7: Type (II.1)
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Figure 8: Type (II.2)
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Figure 9: Type (II.3)
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