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Wheat stripe rust is one of the main wheat diseases worldwide, which has significantly
adverse effects on wheat yield and quality, posing serious threats on food security.
Disease severity grading plays a paramount role in stripe rust disease management
including breeding disease-resistant wheat varieties. Manual inspection is time-
consuming, labor-intensive and prone to human errors, therefore, there is a clearly
urgent need to develop more effective and efficient disease grading strategy by using
automated approaches. However, the differences between wheat leaves of different levels
of stripe rust infection are usually tiny and subtle, and, as a result, ordinary deep learning
networks fail to achieve satisfying performance. By formulating this challenge as a fine-
grained image classification problem, this study proposes a novel deep learning network
C-DenseNet which embeds Convolutional Block Attention Module (CBAM) in the densely
connected convolutional network (DenseNet). The performance of C-DenseNet and its
variants is demonstrated via a newly collected wheat stripe rust grading dataset
(WSRgrading dataset) at Northwest A&F University, Shaanxi Province, China, which
contains a total of 5,242 wheat leaf images with 6 levels of stripe rust infection. The
dataset was collected by using various mobile devices in the natural field condition.
Comparative experiments show that C-DenseNet with a test accuracy of 97.99%
outperforms the classical DenseNet (92.53%) and ResNet (73.43%). GradCAM++
network visualization also shows that C-DenseNet is able to pay more attention to the
key areas in making the decision. It is concluded that C-DenseNet with an attention
mechanism is suitable for wheat stripe rust disease grading in field conditions.
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INTRODUCTION

Stripe rust is a major wheat crop disease significantly affecting
wheat yield and quality worldwide. With the continuous
evolution and epidemic of new physiological races, and new
pathogenic types of wheat stripe rust, the scope of the damage
caused by wheat stripe rust has been further expanded recently,
and the degree of damage has also become heavier. All
these constraints have made stripe rust disease control more
difficult. There are generally two ways available to control stripe
rust for cereal crops including chemical control and genetic
resistance (Ellis et al., 2014). Chemical control approach relies
on the dynamic monitoring of pathogen populations, the
prediction of disease outbreaks and the corresponding chemical
intervention. While, genetic resistance approach mainly focuses
on planting and distributing disease-resistant varieties, which is
more cost-effective and sustainable in the long run (Li and
Zeng, 2002).

In disease-resistant wheat cultivar breeding, wheat condition
is required to be monitored to make a preliminary judgment of
its disease resistance. The disease resistance can be regarded as
the expression of disease resistance genes and pathogenic
bacteria genes (i.e., mutual gaming) in plants under the
influence of certain environmental conditions. The long-term
evolution process is that plants under different environmental
conditions form different types of disease resistance. The criteria
for dividing disease types are usually different. The main
indicators for disease resistance performance of mature wheat
plants are infection type and severity. In general, if the
identification time is appropriate, the infection type is regarded
as the disease resistance performance of the material itself, and
the severity reflects whether this environment is conducive to
sufficient disease incidence. Therefore, the infectious type is the
main evaluation index for wheat resistance performance.
Different grading standards for stripe rust disease infection are
available in the literature such as 0-9 identification standard
(Peterson et al., 1948; McNeal et al., 1971) and 0-5 identification
standard (Li and Zeng, 2002). The latter is adopted in this study,
since it is widely used in China where this research was
conducted. Example images of the used standard are shown in
Figure 1, and the specific division rules are given in Table 1.
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The current monitoring method is based on manual
investigations by pathology experts, which is time-consuming,
labor-intensive, and prone to errors depending on individual
experience. With the advent of deep learning and computer
vision in recent years, there is a trend to adopt these high-
throughput information technology to detect and quantify wheat
stripe rust disease more effectively and efficiently.

In recent years, great progress has been made in plant disease
identification by using Deep Neural Networks (DNN). The
PlantVillage initiative (Hughes and Salathé, 2015) is dedicated
to generating plant leaf disease datasets, which have collected
50,000 images of healthy and infected leaves of 14 different crops
with 26 different diseases. Mohanty et al. (2016) designed a
disease recognition classifier using the above public dataset but
only with a limited accuracy. The crop-conditional plant disease
classification network proposed by Picon et al. (2019a) obtains a
balanced accuracy of 98%, which incorporates the contextual
information by concatenation at the embedding vector level.
Ramcharan et al. (2019) trained a Convolution Neural Network
(CNN) object detection model to recognize the foliar symptoms
of diseases in cassava and deployed the model on mobile
applications to test its performance on mobile images and
videos. It is found that the performance on filed image and
video is decreased in term of F-1 score. In particular,
illumination, shooting angle and other factors affect the
performance of the model, which also proves that the field
image classification is very challenging. Picon et al. (2019b)
and Lu et al. (2017) have made great progress in the
classification of different wheat diseases. Although the network
in the above study has achieved a higher accuracy in plant
FIGURE 1 | Example images for the identification standard in this work.
TABLE 1 | Classification standard for stripe rust infection type in this work.

Infection
type

Symptom

0 No visible symptom
1 Necrotic areas without sporulation
2 Necrotic areas with restricted sporulation
3 Necrotic and chlorotic areas with small or medium size

sporulation
4 Chlorotic areas with major sporulation
5 Abundant sporulation without chlorosis and necrosis
September 2020 | Volume 11 | Article 558126
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diseases classification, most of the disease classification objects
are images with easily distinguishable color and shape features.
Wheat stripe rust infection grading is, however, more difficult,
since the differences in image features (e.g., color, shape) under
different levels of stripe rust infection are usually tiny and subtle.
Therefore, this challenge is formulated as a fine-grained image
classification problem in this study.

Fine-grained image classification is a hot topic in the field of
image classification. The positioning-classification method is
usually effective. Early positioning-classification methods relied
on strongly supervised learning and required a lot of manual
work to label key areas of the image. For example, SP⁃DA-CNN
proposed by Zhang et al. (2016) uses Part annotation in the CUB
bird dataset to train the detection network and obtain hard
attention corresponding to 7 different parts of the bird in the
dataset. After the features are cut at the corresponding positions,
they are used for image classification with better performance.
The attention mechanism (Borji et al., 2013) does not rely on
manual annotation and is an effective method with weakly
supervised learning. In particular, the attention mechanism
optimizes the model and makes more accurate judgments by
assigning different weights to different parts of interest in the
model and extracting more important and critical information
therein. For example, Jaderberg et al. (2015) proposed a spatial
transform network, which uses soft attention to sample on
feature maps to obtain morphologically transformed features.
Compared with the classical convolutional networks, it can
extract spatial feature information more efficiently. The two-
level attention model proposed by Xiao et al. (2015) applies both
object-level and part-level attention, where convolutional
networks are used to obtain objects level information and
clustering method is adopted to get the key local area in order
to use the multi-level information more accurately. Fu et al.
(2017) combined visual attention with recursive structure, and
fused features and attention weights at each level of the recursive
network, thereby combining key region features at multiple
scales in the model.

Inspired by the attention mechanism, this work proposes a
novel deep learning network C-DenseNet for wheat stripe rust
infection grading, where the developed C-DenseNet embeds
Convolutional Block Attention Module (CBAM) in the densely
connected convolutional network (DenseNet). The main
contributions are summarized as below:

1. By formulating stripe rust disease grading as a fine-grained
image classification problem, this paper proposes C-DenseNet
to achieve adaptive calibration of feature channels and space.

2. An open-access wheat stripe rust grading dataset (WSRgrading
dataset) is collected, which contain a total of 5,242 wheat
leaves with 6 levels of wheat stripe rust infection. The dataset
is collected in the field condition by various mobile devices
and then manually calibrated according to the infectious
classification standard.

3. Based on the above dataset, extensively comparative
experiments (e.g., performance, attention visualization) are
conducted on the C-DenseNet (and its variants) against the
Frontiers in Plant Science | www.frontiersin.org 3
classical DenseNet and ResNet. It is shown that the
proposed C-DenseNet outperforms the classical DenseNet
and ResNet, showing the effectiveness of embedding
attention mechanism.
MATERIALS AND METHODS

This section details the materials and methods adopted in this
research, which include the collected image dataset, the proposed
C-DenseNet and its variants and attention visualization.

WSRgrading Image Dataset
The image dataset used in this research is introduced including
image acquisition and image preprocessing.

Image Acquisition
In original experiment design (Wu et al., 2020), a total panel of
over 1,500 wheat accessions were used to evaluate stripe rust
responses and the wheat lines Avocet S, Mingxian 169, and
Xiaoyan 22 were used as the susceptible controls. In this
substudy, part of the wheat plots (with a number of about 200)
were used for image collection, where adult-plant resistance
evaluations were carried out at Yangling (34°17’ N, 108°04’ E,
altitude 519 m) in Shaanxi province during the winter wheat
cropping season (2018–2019). More details about plant growth,
management, and evaluation time are available in the previous
publication (Wu et al., 2020).

In this field, a total of 5,242 winter wheat leaf images (adult
wheat plants after wheat earing) were collected by different
mobile devices (e.g., Huawei Honor 9, Huawei Honor V9,
Huawei Honor 10, vivo X20A, vivo X9Plus, Oppo R15x, Oppo
A83T, Xiaomi Redmi 2 Pro, iPhone 6) with different imaging
distances and angles, which were further divided into 6 levels of
disease infection via visual inspection by pathology experts.
Example image samples are shown in Figure 2. The dataset
was collected between 8:00 AM and 5:00 PM covering various
field conditions (e.g., illumination).

The images were acquired from the upper leaf surface and by
avoiding direct sun light reflection. No other limitations were
imposed on to maximally simulate the real acquisition
conditions in real-life applications. The use of additional
normalization color elements was also avoided as they are
unpractical for field image acquisition as shown in Johannes
et al. (2017).

A number of randomly selected samples are shown in Figure
1. It can be seen that the differences between wheat leaves
with different levels of strip rust infection are usually tiny and
subtle, which poses significant challenges for image classification.
In this study, this challenge is formulated as fine-grained image
classification problem. The number and proportion of images
at each level are shown in Table 2. One can see from Table 2
that the image numbers for different disease severity levels
are generally balanced and therefore no data imbalance
problem exists.
September 2020 | Volume 11 | Article 558126
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Image Preprocessing and Augmentation
In the network proposed in this paper, the input image needs to
be downsampled to an image of size 640 * 640. If a complex
background is still left in the image, the classification
performance of the developed model will be adversely affected.
On the other hand, when the lesion is small, this direct
downsampling method may make the lesion become very
small or even disappear. In response to the above problems, we
adopted a blade mask method similar to that proposed by Picon
et al. (2019a).
Frontiers in Plant Science | www.frontiersin.org 4
In this method, the image is cropped by a rotatable
rectangular frame into a rectangular image containing leaf
elements of interest. The range of leaf elements is provided by
expert notes during the training phase and by the end-user
during testing (or real-life applications). Then a white mask is
adopted to expand the image into a square to avoid distortion
when the image is normalized. Intuitively, cropping an image
into a leaf boundary rectangle reduces the loss of detail by
discarding non-relevant areas in the original image before
downsampling, especially for early disease detection and
grading. The details of this process are illustrated in Figure 3.

Enriching the dataset through data augmentation can
increase data diversity and avoid overfitting problems in
training the model. In order to increase the number and
diversity of the original image dataset and make the extracted
features more robust to changes in position and lighting, an
TABLE 2 | Number and proportion of each category in the dataset.

Category 0 1 2 3 4 5

Number 661 980 961 895 738 1007
Proportion 0.126 0.186 0.183 0.171 0.141 0.193
FIGURE 2 | Example wheat leaves with strip rust infection in the dataset.
FIGURE 3 | Sample images from the dataset after leaf mask-based cropping.
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enhanced image dataset was constructed by various data
augmentation techniques including horizontal flipping,
random angle rotation, and lighting changes (Dellana and Roy,
2016). In algorithm training phase, each image will be randomly
transformed for geometric modification to ensure that the
training image has a better variability. To avoid the problem of
class imbalances during training (Japkowicz and Stephen, 2002),
each class is also sampled uniformly from the data set, resulting
in an equal percentage of each aggressive level class.

C-DenseNet Network
DenseNet (Huang et al., 2017) is a densely connected network that
implements feature multiplexing well. In DenseNet network, each
layerobtains additional input fromall theprevious layers andpasses
its featuremaptoall subsequent layers in a cascademanner.Because
each layer accepts feature mappings from all previous layers, the
network can be thinner, more compact, and with fewer channels,
which is a good departure from the singlemethod of deepening the
number of network layers and widening the network structure to
improve network performance. It turns out that DenseNet
performed better than Resnet (Chang et al., 2018) in actual
training for stripe rust infection grading.

Although each infection level has different color and disease
shape characteristics, the differences between some levels is very
tiny and subtle. For example, the difference between the first and
second levels is only the presence or absence of small spores. In
addition, between second and fourth levels, third and fifth levels,
the only difference is the presence or absence of white spots. To
accurately identify these subtle differences, we designed the C-
DenseNet network to implement the fine-grained image
classification problem, as shown in Figure 4. The network is
mainly composed of four dense blocks, three transition layers
and three CBAM modules (Woo et al., 2018).

In particular, the Denseblock is composed of 12 dense layers,
where the function of the dense layer is shown in Figure 5. The
batch normalization layer solves the problems of gradient
disappearance and gradient explosion through data
normalization. The ReLU layer is used to add nonlinear factors
Frontiers in Plant Science | www.frontiersin.org 5
for a better expression ability, which is easier to train and often
achieves better performance against alternatives (e.g., sigmoid,
hyperbolic tangent). The dropout layer, a typical regularization
technique for neural network models, can effectively reduce
branches and avoid overfitting.

The Transition layer is placed between the dense block and the
CBAM module. It consists of BN, ReLU, 1*1*1 Conv layer, and
2*2*2 average pooling layer. Its role is to reduce the dimension of
eachDenseBlock output channel. There is a parameter reduction in
the Transition Layer, which reduces the output to the original
reduction times, where the default parameter of 0.5 is adopted in
this article. The CBAMmodule is one type of attentionmechanism
module that combines space and channels. Compared against SE-
Net, it is able to increase the attentionmechanismof attention space
and also achieve better results.

The channel attention mechanism is indeed similar to SE-
Net, except that in addition to using the Avg pool when
compressing the spatial dimensions of the Feature map, the
Max pool is also added. When gradient back-propagation is
performed, gradient feedback is provided where the feature map
responds most to make the information more comprehensive.
MLP is a two-level fully connected layer. The channel dimension
is first reduced to 1/16 of the original and then raised back to the
original dimension. It adds non-linearity and better fits the
complex correlation between channels. The intermediate
feature requires the ReLU Activate function to process. The
mathematical expression of this process is given in Eq (1):

MC(F) = s  MLP AvgPool(F)ð Þ +MLP MaxPool(F)ð Þð Þ (1)

The spatial attention mechanism makes the network respond
more to important parts of the Feature map at the spatial level. In
this approach, a Global max pooling and Global average pooling
are first done based on the feature channel, and then the
concatenation operation is done. Then after a convolution
operation, the dimension is reduced to 1 channel, which is
followed by a Sigmoid operation to generate the Spatial
attention feature. The mathematical expression for this process
is given in Eq (2):
FIGURE 4 | Framework of the proposed C-DenseNet for strip rust disease grading.
September 2020 | Volume 11 | Article 558126
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MS(F) = s f 7�7(½AvgPool(F);MaxPool(F)�)� �
(2)

C-DenseNet Variants
In addition to C-DenseNet, its variants are also proposed and
tested. First, the so-called C-DenseNet-IN is considered, where
the CBAM module is added in the dense block. In addition, the
effect of the number of channels of each Dense Block is also
tested, where C-DenseNet-121 (C-DenseNet equivalently), C-
DenseNet-169, and C-DenseNet-201 are considered. The overall
structure design is shown in Table 3, where k represents the
Frontiers in Plant Science | www.frontiersin.org 6
growth rate. Modules are finally connected in a Concatenate way,
so each time a module passes, the feature dimension of the next
layer increases by k. A larger k means the smoother information
in the network and, therefore, a stronger network. However, this
is at the expense of increasing network size and calculation. k =
32 is chosen in this article.

Attention Visualization of Different Models
In order to visually analyze the changes brought by the addition
of the attention module, this paper uses Grad-CAM++
(Chattopadhyay et al., 2017) to visualize the features of the
TABLE 3 | Detailed structure of C-DenseNet variants.

Layers Output Size C-DenseNet-121(k=32) C-DenseNet-169(k=32) C-DenseNet-201(k=32)

Convolution 640 × 640 7 × 7 conv,stride2
Pooling 320 × 320 3 × 3max pool,stride2

Dense Block 1 320 × 320 1� 1 conv

3� 3 conv

 !
� 6

Transition Layer 1 320 × 320 1 × 1 conv
160 × 160 2 × 2 average pool

CBAM Layer 1 160 × 160 scale × 1

Dense Block 2 160 × 160 1� 1 conv

3� 3 conv

 !
� 12

Transition Layer 2 160 × 160 1 × 1 conv
80 × 80 2 × 2 average pool

CBAM Layer 2 80 × 80 scale × 1

Dense Block 3 80 × 80 1� 1 conv

3� 3 conv

 !
� 24

1� 1 conv

3� 3 conv

 !
� 32

1� 1 conv

3� 3 conv

 !
� 48

Transition Layer3 80 × 80 1 × 1 conv

40 × 40 2 × 2 average pool

CBAM Layer 3 40 × 40 1 × 1scale

Dense Block 4 40 × 40 1� 1 conv

3� 3 conv

 !
� 16

1� 1 conv

3� 3 conv

 !
� 32

1� 1 conv

3� 3 conv

 !
� 32

Classification Layer 1 × 1 40 × 40 average pooling

fully-connected, softmax
September 20
FIGURE 5 | Detailed structure of the Convolutional Block Attention Module (CBAM) module.
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wheat stripe rust leaf test set. Grad-CAM is an effective feature
visualization method. This approach mainly uses the gradient of
the target class to obtain the weight of the feature map, and then
performs weighted summation to obtain the attention heat map.
For the sack of completeness, Grad-CAM++ algorithm is briefly
introduced. First, the weights are calculated by the global average
of the gradient. Compared to Grad-CAM, Grad-CAM++ adds
ReLU and weight gradients akc

ij . We define the weight of the
category c corresponding to the kth feature map in Grad-CAM as
wc
k which is given by Eq (3):

wc
k =o

i
o
j
akc
ij : relu

∂ yc

∂ Ak
ij

(3)

where yc is the gradient of the score for class c, Ak
ij is the pixel

value at the (i, j) position in the kth feature map. Then the
weights of all the categories corresponding to the feature maps
are obtained and weighted summation is performed, so that the
final heat map can be obtained. The summation formula is
shown in Eq(4):

YC =o
k

wc
k :o

i
o
j
Ak
ij (4)
RESULTS

Model Training
To validate the performance of different models, 80% of the
images in each category are randomly selected as training
samples and the remaining 20% are utilized as validation
samples. All the deep learning networks in this study were
implemented by using a Python tool in the Pytorch
framework. The computations were run on an Intel Xeon E5-
2618L 2.3GHz PC with an NVIDIA GeForce GTX 2080 Ti
graphics processing unit (GPU).

The basic parameters of C-DenseNet are shown in Table 4. In
addition, the standard cross-entropy is utilized as the loss
function in model training. To better address the problem of
over-fitting and gradient vanishing, L2 regularization is exploited
and the initial learning rate is set to be 0.01. In pursuit of a faster
training speed, the strategy of ‘‘SGD+momentum’’ is utilized as
the optimization algorithm. Weight-decay and momentum are
set to be 1e-4 and 0.9, respectively.

Performance of C-DenseNet
Upon training the models, the hold-out 20% of the image dataset
is used to evaluate the proposed C-DenseNet network against the
classical DenseNet (Huang et al., 2017) and ResNet (Chang et al.,
Frontiers in Plant Science | www.frontiersin.org 7
2018). A number of evaluation metrics are adopted in this work
including accuracy, precision, recall and F1-score. In addition,
confusion matrix is also used for the proposed C-DenseNet,
which is shown in Figure 6. From the confusion matrix, it can be
seen that the misclassification mainly occurs between levels 1 and
2, and between levels 3 and 5. This is mainly because the
differences between them are very tiny and subtle, and,
therefore, a few misjudgments are within the tolerable ranges.
The sample pictures that were predicted incorrectly and
accurately by the model are listed in a table to visually verify
the performance of the model, as shown in Table 5.

The performance in term of Accuracy, Precision, Recall and
F-1 score for the proposed C-DenseNet, DenseNet, and ResNet is
presented in Table 6. It is shown that both C-DenseNet and
DenseNet significantly outperform the ResNet for all evaluation
metrics. In addition, the proposed C-DenseNet also outperforms
the DenseNet for all evaluation metrics, particularly with an
improvement of 6% in accuracy. This result proves the
effectiveness of the attention mechanism in wheat stripe rust
disease grading.
Performance of C-DenseNet Variants
In the section, the performance of C-DenseNet variants is
assessed against C-DenseNet by using cross-validation.
Similarly, evaluation metrics including accuracy, precision,
recall and F1-score are used and the results are shown in
Tables 7 and 8. It can be seen from Table 7 that the effect of
placing the CBAM module in or outside the denseblock is
neglectable, which indicate that the attention mechanism has
been applied in multiple places in DenseNet effectively. It follows
from Table 8 that increasing the number of channels does not
effectively improve the recognition accuracy, but instead
increases the training cost.
TABLE 4 | Basic parameters of C-DenseNet.

Hyper-parameters Value

Image size/Batch size (640, 640,3)/8
Epochs 50
Ratio/Kernel_size of the CBAM module 16/7
FIGURE 6 | Confusion matrix of the proposed C-DenseNet.
September 2020 | Volume 11 | Article 558126
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TABLE 5 | Some example wheat leaves which are predicted by this method correctly and incorrectly. (a), (b), (c), and (d) are for label 1, 2, 3, 5, respectively.

 

 

(a) 

(b) 

(c)

(d)
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Network Attention Visualization
In order to investigate why the proposed C-DenseNet outperform
other approaches, GradCAM++ is adopted to visualize the
classification results. In particular, randomly selected examples in
grade 2, 3 and 5 are tested, where the attention heat map are
displayed in Table 9. It can be seen that C-DenseNet and C-
DenseNet -IN, embedding CBAM attention mechanism, are able
to pay more attention to the key areas in inferring the strip rust
TABLE 6 | Performance comparison for the proposed C-DenseNet against the
classical DenseNet, and ResNet.

Network Accuracy Precision Recall F1-score

ResNet 0.7343 0.7272 0.7276 0.7197
DenseNet 0.9253 0.9254 0.9253 0.9248
C-DenseNet 0.9790 0.9799 0.9799 0.9799
Frontiers in Plant Sc
ience | www.fron
tiersin.org
Each result is reported in the form of mean deviation. The ones in bold denote the best
performance.
8

TABLE 7 | Performance comparison of C-DenseNet and C-DenseNet-IN.

Network Accuracy Precision Recall F1-score

C-DenseNet-IN 0.9702 0.9703 0.9703 0.9703
C-DenseNet 0.9790 0.9799 0.9799 0.9799
Septe
mber 2020 | Volu
me 11 | Artic
Each result is reported in the form of mean deviation. The ones in bold denote the best
performance.
TABLE 8 | Performance comparison against C-DenseNet-169 and C-
DenseNet-201.

Network Accuracy Precision Recall F1-score

C-DenseNet-121 0.9790 0.9799 0.9799 0.9799
C-DenseNet-169 0.9439 0.9439 0.9439 0.9440s
C-DenseNet-201 0.9652 0.9600 0.9598 0.9598
The bold data denotes the one with the best performance.
le 558126
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TABLE 9 | Attention heat maps of C-DenseNet, DenseNet, ResNet, and C-DenseNet networks for wheat leaves infected with grade 2, 3, and 5 level of stripe rust
disease.
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disease infection grade, while ResNet and DenseNet perform
slightly worse.
DISCUSSION

Wheat stripe rust is one of themost seriouswheat diseasesworldwide
(88% of the world’s wheat production), which is extremely
destructive in the main wheat production areas in China (Wan
et al., 2004;Wellings, 2011;Maet al., 2013).Growingdisease-resistant
cultivars is the most effective, economical, and environmentally
sound approach to control wheat stripe rust (Chen, 2005; Dodds
andRathjen, 2010). In disease-resistant cultivar breeding, it is of great
importance to assess the disease severity in their growing lifecycle.
The traditional methods for disease grading rely on manual
inspection, which is labor-intensive, inefficient, and subjective.
Therefore, there is a clearly urgent need to develop more effective
and efficient wheat strip rust disease grading algorithms, which can
automatically classifywheat leaves intodifferent categories of interest.

In the past few years, the performance of CNNs in target
recognition and image classification has improved significantly
(Schmidhuber, 2015; He et al., 2016). Although the recognition of
plant diseases using images can be achieved (Mohanty et al., 2016;
Ramcharan et al., 2017), there are still some problems to be
addressed. On the one hand, most of the images used in the
research are taken under a controlled environment. As a result,
the trained model results in poor performance in complex field
conditions.On theotherhand, there is little researchonwheat stripe
rust disease grading. The differences between different grades of
wheat leaves are usually tiny and subtle, bringing significant
challenges for image classification. Therefore, this study develops
deep learning based wheat strip rust disease grading algorithms by
using color images taken by mobile devices.

In this study, we proposed C-DenseNet architecture for wheat
stripe rust grading tasks. In C-DenseNet, the CBAM module is
set between dense blocks of DenseNet. In dense blocks, each
layer is feed-forward connected to all other layers, which allows
new features to be extracted based on the features of the previous
Frontiers in Plant Science | www.frontiersin.org 9
layer. However, feature redundancy in feature fusion is a major
problem. Due to the advantages of useful automatic feature
learning in the CBAM module, C-DenseNet can suppress
redundant features, thereby mitigating the adverse impact of
feature redundancy to a certain extent, and improving the
performance of infective level grading tasks.

According to the experimental results in Section 3.2, the
performance of C-DenseNet is better (i.e., 6% improvement in
term of accuracy) than DenseNet in wheat stripe rust disease
grading, confirming the advantages of the CBAM module in
DenseNet. Besides, as shown in Table 6, the proposed C-
DenseNet is significantly superior to ResNet (0.7343). In
addition, it follows from Table 7 that the advantages of placing
the CBAMmodule in dense blocks (0.9702) are not as significant
as placing CBAMmodule between dense blocks. In the process of
exploring new features, the CBAM module in the dense block
also learns weights of the features, which may cause overfitting,
and the CBAMmodule between dense blocks can enhance useful
features and suppress features that are not conducive to
classification. This may lead to greater improvements in C-
DenseNet performance. On the other hand, increasing the
channel of the Dense Block does not effectively improve the
hierarchical performance of the network, but instead increases
network complexity and may also lead to overfitting.
CONCLUSION AND FUTURE WORK

This study aims to develop wheat strip rust disease grading
algorithms in support of efficiently breeding disease-resistant
wheat varieties for its sustainable management. To this end, the
challenge is first formulated as a fine-grained image classification
problem, then C-DenseNet is proposed by embedding
Convolutional Block Attention Module (CBAM) in the classical
densely connected convolutional network (DenseNet) to achieve
adaptive calibration of feature channels and space. A wheat stripe
rust grading dataset (WSRgrading dataset) is collected in field
conditions with various mobile devices, which contain a total of
September 2020 | Volume 11 | Article 558126
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5,242 wheat leaves with 6 levels of wheat stripe rust infection.
Extensively comparative experiments including model
visualization are conducted to assess the performance of the
proposed C-DenseNet and its variants against the classical
DenseNet and ResNet. It is shown that the proposed C-DenseNet
outperforms the classical DenseNet and ResNet, and, therefore, is
suitable for wheat stripe rust disease grading in field conditions.

However, there is still much room for further improvement.
(i) It would be of great practical significance to automatically
isolate the leaves of interest under complex backgrounds in field
conditions, eliminating the need for manual extraction. In
addition, the data was taken in a wheat stripe rust breeding
test field and, therefore, there are few pictures of other diseases or
multiple diseases on one leaf. (ii) So the task of identifying
multiple diseases of wheat was not taken into account in this
study, and the proposed network is only applicable to grading of
wheat stripe rust infection types.
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