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A B S T R A C T   

Introduction: The extent of the biological impact of passive smoke exposure is unclear. We sought to investigate 
the association between passive smoke exposure and DNA methylation, which could serve as a biomarker of 
health risk. 
Materials and methods: We derived passive smoke exposure from self-reported questionnaire data among smoking 
and non-smoking partners of participants enrolled in the UK Household Longitudinal Study ‘Understanding So
ciety’ (n=769). We performed an epigenome-wide association study (EWAS) of passive smoke exposure with 
DNA methylation in peripheral blood measured using the Illumina Infinium Methylation EPIC array. 
Results: No CpG sites surpassed the epigenome-wide significance threshold of p<5.97 × 10− 8 in relation to 
partner smoking, compared with 10 CpG sites identified in relation to own smoking. However, 10 CpG sites 
surpassed a less stringent threshold of p<1 × 10− 5 in a model of partner smoking adjusted for own smoking 
(model 1), 7 CpG sites in a model of partner smoking restricted to non-smokers (model 2) and 16 CpGs in a model 
restricted to regular smokers (model 3). In addition, there was evidence for an interaction between own smoking 
status and partners’ smoking status on DNA methylation levels at the majority of CpG sites identified in models 2 
and 3. There was a clear lack of enrichment for previously identified smoking signals in the EWAS of passive 
smoke exposure compared with the EWAS of own smoking. 
Conclusion: The DNA methylation signature associated with passive smoke exposure is much less pronounced 
than that of own smoking, with no positive findings for ‘expected’ signals. It is unlikely that changes to DNA 
methylation serve as an important mechanism underlying the health risks of passive smoke exposure.   

1. Introduction 

Passive smoke (PS), is the exposure to “second- or third-hand smoke by 
breathing ambient air containing toxic substances resulting from the com
bustion of tobacco products after birth or the exposure to utero to maternal 
blood contaminated of tobacco smoking products” (Gibson et al., 2013). In 
spite of progress in tobacco control, a large proportion of the world’s 
population remain exposed to second-hand smoke: in 2011 this was 
estimated to be 40% of children, 33% of male non-smokers and 35% of 

female non-smokers (Öberg et al., 2011). Second-hand smoke (SHS) 
contains at least 5,000 chemicals, including over 70 that are known to be 
carcinogenic (Cancer Research UK, 2018). While the chemical constit
uents differ from primary tobacco smoke inhalation, and although the 
levels of exposure are much less than personal smoking, the 2006 US 
Surgeon General’s report concluded that there is also no risk-free level of 
SHS exposure (Department of Health, 2014; Department of Health, 
2010). In addition, the risks of passive smoke exposure do not stop at 
second-hand smoke, but may also come from exposure to third-hand 
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smoke, which is the residue of tobacco smoke that persists long after a 
cigarette has been extinguished (Protano and Vitali, 2011). These con
clusions about the damaging impact of PS on adult health draw on re
ported associations with increased risks of lung cancer, and respiratory 
and cardiovascular diseases (ASH, 2014). Furthermore, there is some 
evidence that children exposed to PS can be more likely to take up 
smoking themselves (Leonardi-Bee et al., 2011). 

In contrast, several large-scale studies have not supported a causal 
relationship between PS exposure and tobacco-related mortality 
(Enstrom et al., 2003). Such contradictory results could potentially 
reflect misclassification and measurement error, especially as PS is often 
measured via self-report (Davey-Smith, 2003). Cotinine (measured in 
urine, blood or sputum) is a metabolite of nicotine which has been 
widely used as a biomarker for personal smoke exposure, although it 
may also serve as a marker of PS exposure (Benowitz, 1996; Etzel, 1990). 
A previous study conducted using data from the Avon Longitudinal 
Study of Parents and Children (ALSPAC) showed low levels of cotinine in 
non-smoking women whose partners smoked (Taylor et al., 2014), 
indicating a potentially negligible biological effect of PS from partners. 
However, because of the short half-life of cotinine it may not provide an 
accurate representation of long-term PS exposure and related effects 
(Benowitz and Jacob, 1993). 

DNA methylation is a type of epigenetic process characterised by the 
addition of methyl groups to sites in the DNA known as “CpGs” (cyto
sine-phosphate-guanine). It is altered in response to various environ
mental and biological factors and in recent epigenome-wide association 
studies (EWAS), cigarette smoking has been associated with long-term 
changes in DNA methylation (Breitling et al., 2011; Joehanes et al., 
2016). For example, peripheral blood methylation at sites in the DNA 
annotated to genes such as AHRR (aryl hydrocarbon receptor repressor) 
has been shown to determine previous smoke exposure with much 
higher accuracy than cotinine levels (Zhang et al., 2016) and has been 
shown to predict future lung cancer risk (Zhang et al., 2015). 

Whilst peripheral blood DNA methylation changes have been iden
tified in relation to intra-uterine exposure to maternal smoking (Joubert 
et al., 2016; Richmond et al., 2015), there has been only one study 
investigating the association between postnatal PS exposure and pe
ripheral blood DNA methylation variation, which has evaluated 
methylation only at a limited number of CpG sites (Reynolds et al., 
2017). 

This study aimed to: i) investigate the association between blood- 
based genome-wide DNA methylation and PS exposure, based on 
questionnaire derived information on partners’ smoking behaviour and 
ii) compare the DNAm signature for PS exposure with that associated 
with the participants’ own smoking behaviour (active smoking). 

2. Materials and methods 

2.1. Study description 

The UK Household Longitudinal Study (UKHLS) (Knies, 2017), also 
known as Understanding Society (University of Essex, 1991–2009), is an 
ongoing longitudinal panel survey of 40,000 UK households from En
gland, Scotland, Wales and Northern Ireland (Buck and McFall 2011). 
The survey started in 2009 and collects information about people’s 
health, behaviours, attitudes and social and economic circumstances. 
Further details on Understanding Society sample methodology has been 
published elsewhere (Lynn, 2009). 

2.2. Measures 

Annual interviews have collected sociodemographic information 
since 1991. Biomedical measures and blood samples were collected at a 
nurse visit in the participants’ homes between 2010 and 2012. The 
eligibility criteria for collecting blood samples were: participation in the 
previous main interview in England; age 16 and over; living in England, 

Wales or Scotland; not pregnant; and other conditions covered in the 
user guide (Benzeval et al., 2017). 

2.2.1. Genome-wide quantification of peripheral blood DNA methylation 
variation 

DNA was extracted from the blood samples of 1193 eligible in
dividuals aged 28 to 98 who had consented to both blood sampling and 
genetic analysis, had participated in all annual interviews between 1999 
(BHPS wave 9) and 2011–2013 (Understanding Society wave 3), and 
whose time between blood sample collection and processing did not 
exceed three days. Eligibility requirements for genetic analyses meant 
that the samples for DNA methylation measurement were restricted to 
participants of white ethnicity. 500ng of DNA from each sample was 
bisulphite converted using the EZ-96 DNA methylation-Gold Kit (Zymo 
Research, CA, USA). DNA methylation was quantified using the Illumina 
Infinium HumanMethylationEPIC BeadChip (Illumina Inc., CA, USA) 
run on an Illumina iScan System (Illumina, CA, USA) using the manu
facturer’s standard protocol. Samples were randomly assigned to chips 
and plates to minimise batch effects. A fully methylated control (CpG 
Methylated HeLa Genomic DNA; New England BioLabs, MA, USA) was 
included in a random position on each plate to facilitate tracking, 
resolve experimental inconsistencies and confirm data quality (Univer
sity of Essex, 1991–2009). 

2.2.2. DNA data pre-processing 
Using the “bigmelon” package in R (Gorrie-Stone et al., 2018), raw 

signal intensities were imported from idats and converted into beta 
values. Data were processed through a standard pipeline and included 
the following steps: outlier detection, confirmation of complete bisul
phite conversion, and estimation of age from the data (Horvath, 2013). 
Data were normalised using the “dasen” function from the “watermelon” 
package in R software (Pidsley et al., 2013). Samples that were 
dramatically altered as a result of normalisation were excluded by 
assessing the difference between normalised and raw data and removing 
those with a root mean square and standard deviation > 0.005. Samples 
where >1% of sites or sites where >1% of samples had a p-value for 
detection >0.05 were also excluded. DNA methylation sites with a bead 
count <3 were excluded. The data were then re-normalised with the 
“dasen” function. The final dataset included 857,071 DNA methylation 
(CpG) sites of 1175 individuals. For the current analysis, CpG sites 
residing on the X or Y chromosome were excluded, as were SNP and 
control probes, leaving 837,487 CpG sites for analysis. 

2.2.3. Technical variation 
Batch effects were accounted for by adjusting for the batch numbers 

of the blood samples and batch number of the samples in the lab. Blood 
cell composition estimates were calculated using the Houseman refer
ence based algorithm implemented in the “estimateCellCounts” function 
packaged “minfi” (Houseman et al., 2012; Aryee et al., 2014) and 
included as covariates in the statistical models. 

2.2.4. Exposure assessment 
The Understanding Society questionnaires are completed via in

terviews with members of each household that are over the age of ten. 
Questionnaire data for the 1175 individuals with DNA methylation data 
were obtained from annual surveys conducted as part of BHPS (waves 
9–18; 1999–2009) and Understanding Society (wave2; 2010–2012). In 
wave 2 of Understanding Society, participants were asked about their 
smoking history and whether they had ever smoked a cigarette, a cigar 
or a pipe. Participants who responded with ‘no’ were classed as “never 
smokers”. Participants who responded with ‘yes’ and who also reported 
that they had ever smoked cigarettes, a cigar or a pipe regularly (at least 
one per day) were classed as “regular smokers”. To maximise contrast, 
somewhat ambiguous groups, including participants who responded 
with ‘yes’ but who reported that they had not smoked cigarettes, a cigar 
or a pipe regularly were excluded from the analysis. This was to exclude 
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those individuals with only a limited smoking history (i.e. less than one 
per day). We ran an additional analysis whereby we assessed partners’ 
regular smoking among participants who reported being never smokers 
themselves. 

2.2.5. Covariates 
All models were adjusted for age at nurse visit, sex, six estimated 

cellular composition variables (B cells, CD8 T cells, CD4 T cells, mono
cytes, granulocytes, natural killer T cells), two batch variables (blood 
processing day and batch number) and surrogate variable analysis 
derived from the data using “meffil” (Min et al., 2018). Inclusion of these 
modelled factors in the epigenome-wide association analyses was 
justified given their substantial loadings on the top principal compo
nents generated from the DNA methylation data using singular value 
decomposition analysis in “ChAMP” (Tian et al., 2017) (Supplementary 
File 1). Surrogate variable analysis was used to capture large-scale ef
fects of unmodelled factors in order to overcome sources of heteroge
neity in the EWAS and to increase the biological accuracy and 
reproducibility of analyses (Leek and Storey, 2007). 

2.3. Statistical analyses 

2.3.1. Epigenome-wide association analysis 
DNA methylation variation (as the outcome variable) was analysed 

in relation to PS (as the exposure variable) using multivariable regres
sion in an epigenome-wide association study (EWAS) approach, in the R 
package “meffil” designed for quality control, normalisation and EWAS 
of large samples of Illumina Methylation BeadChip microarrays (Min 
et al., 2018). The main EWAS analysis was for ever regular partner 
smoking versus never partner smoking, with adjustment for partici
pants’ own smoking status (never or regular smoker) (model 1). We also 
conducted a subgroup analysis for regular partner smoking among never 
smokers only (model 2) and compared this to regular partner smoking 
among regular smokers (model 3). Based on this subgroup analysis, we 
assessed whether there was an interaction between own smoking status 
and partner’s smoking status on DNA methylation variation, using a 
Cochran’s Q test. 

Results of models 1–3 were directly compared with an EWAS analysis 
for participants’ own smoking status (ever regular versus never) with 
adjustment for partners’ ever smoking status. As own smoking has been 
robustly associated with changes in DNA methylation previously (Joe
hanes et al., 2016), this analysis served as a positive control (model 4). 

We further investigated CpG sites that reached a Bonferroni- 
significance threshold of P<5.97 × 10− 8, as well as a less stringent 
threshold of P<1.00 × 10− 5, in order to assess concordance of DNA 
methylation signals across the models. While we could not make claims 
about epigenome-wide significance for those CpGs surpassing the less 
stringent threshold, this was used to assess concordance of DNA 
methylation signals across the models and in relation to other published 
EWAS. Given previous evidence of an association between SHS exposure 
and DNA methylation at cg05575921 (AHRR) (Reynolds et al., 2017), 
we also specifically investigated the strength of associations at this CpG 
site in all of the models. 

Finally, we investigated overlap of the CpG sites identified with those 
previously reported in the published literature by: 1) performing a 
search of the top CpG sites from the EWAS performed in two publicly 
available repositories: the EWAS Catalog (MRC-IEU University of Bris
tol, 2018) and EWAS Atlas (BIG Data Center, 2019), and 2) assessing 
whether there was any evidence for enrichment of previously identified 
CpG sites related to own smoking status from a large meta-analysis 
(Joehanes et al., 2016) in our EWAS of PS exposure. We assessed the 
degree of inflation of association signal (lambda value) for these CpG 
sites compared with that seen genome-wide across the samples and 
performed a Wilcoxon rank sum test to assess enrichment. 

Analysis was performed using Stata (version 15) and R (version 
3.5.1). 

3. Results 

3.1. Study characteristics 

Compared with those individuals aged 28 to 98 who were originally 
part of the BHPS cohort and who had questionnaire data from wave 2 of 
Understanding Society (n=8551), those with epigenetic data were slightly 
older on average and were more likely to be female, to have been a 
regular smoker and to have had a partner who smoked (Table 1). Of the 
1175 individuals with epigenetic data, there were 769 participants 
whose partners reported their own smoking status. 35% of the 769 
participants had partners who were regular smokers (268 participants). 
Of these 268, 41% (110) had previously smoked themselves, either 
regularly or non-regularly. The mean age of all 769 participants was 
56.5 years (standard deviation (SD) ± 14.5), whilst for participants with 
partners that smoked regularly the mean age was 58.4 years (SD ± 12.2). 
52.1% of the participants were female and the total sample had a mean 
body mass index (BMI) of 28.3 (SD ± 5.3). For participants with partners 
who had smoked regularly, the percentage of women (64.2%) was 
higher than for participants with partners who had never smoked 
(41.5%). Participants with partners who had smoked regularly had a 
BMI of 28.6 (SD ± 5.4) in comparison to a BMI of 27.9 (SD ± 4.6) for 
participants with partners who had never smoked. Within the sample 
(n=769), 19.9% self-reported having a degree as their highest qualifi
cation, 24.9% had a GCSE, and 13.6% reported having no qualifications 
(Table 2). Fig. 1 shows the classification of participants and their part
ners in each EWAS model. 

3.2. Epigenome-wide association study 

Results for all CpG sites with a p-value <1 × 10− 5 from the unre
stricted model of partner smoking and the models of partner smoking 

Table 1 
Representativeness of participants with epigenetic data in Understanding Society.  

Demographics Participants with 
epigenetic data 
(n=1175) [SD] 

BHPS Participants at 
wave 2 of 
Understanding 
Societya (n=8551) 
[SD] 

P-value for 
difference 

Age (n=1175; 
n=8551) 

56.5 (15.0) 53.0 (15.9) <0.0001 

Sex (n=1175; 
n=8551) [males/ 
females] 

41.7%/58.4% 46.2%/53.9% 0.004 

BMI (kg/m2) 
(n=1142; n=2802) 

28.2 (5.2) 28.5 (5.5) 0.093 

Educational 
Attainment 
(n=1168; n=8458) 
[degree/other 
higher degree/A- 
level/GCSE/ other 
qual/no qual] 

18.1 % 
11.1 % 
19.1 % 
24.3 % 
10.0 % 
17.4 % 

17.7 % 
10.3 % 
21.0 % 
21.7 % 
10.3 % 
19.0 % 

0.203 

Participant ever 
smoker 
(n=1170; n=8274) 
[yes/no] 

57.4%/42.6% 42.4%/57.6% 0.908 

Participant regular 
smoker 
(n=861; n=5696) 
[yes/no] 

42.2%/57.8% 38.4%/61.6% 0.036 

Partner ever smoker 
(n = 769; n=5120) 
[yes/no] 

59.8%/40.1% 55.0%/45.0% 0.014 

Partner regular 
smoker 
(n=577; n=3785) 
[yes/no] 

46.4%/53.6% 39.2%/60.8% 0.001  

a Participants aged 28–98 years without epigenetic data. 
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restricted to non-smokers and smokers are presented in Table 3. Results 
from the EWAS for own smoking are shown in the Supplementary File 2. 
Manhattan and QQ plots are shown in Supplementary File 3. 

In epigenome-wide association analysis of PS exposure, no CpG sites 
surpassed the epigenome-wide significance threshold of p<5.97 × 10− 8. 
10 CpG sites surpassed a less stringent threshold of p<1 × 10− 5 in the 
unrestricted model of partner smoking adjusted for own smoking (model 
1), 7 CpG sites in the model of partner smoking restricted to non- 
smokers (model 2) and 16 in the model of partner smoking restricted 
to regular smokers (model 3). In the EWAS for own smoking, 10 CpG 
sites surpassed p<5.97 × 10− 8 and 30 CpG sites surpassed p<1.00 ×
10− 5 (model 4). Models 1 and 4 had equivalent power since the models 
included both participants’ own smoking status and partners’ ever 
smoking status, with similar numbers of participants and partners 

reporting to be regular smokers, along with the same covariates. 
While the sites identified with stratification for smoking (models 2 

and 3) exhibited similar levels of DNA methylation in main model 
(model 1), there were distinct differences in methylation levels found in 
response to PS exposure among non-smokers and regular smokers 
(model 2 vs model 3) (Fig. 2). Whereas the majority of the CpGs related 
to own smoking at p<1 × 10− 5 were hypo-methylated in relation to own 
smoking, CpGs related to PS at p<1 × 10− 5 were more likely to exhibit 
hyper-methylation (40% hypo-methylated in model 1; 29% in model 2; 
43% in model 3). For the majority of the 23 CpG sites identified at p<1 
× 10− 5 in models 2 and 3, there was evidence for an interaction between 
own smoking status and partners’ smoking status on DNA methylation 
levels (Supplementary File 6). For example, the top site identified in 
model 3 (cg03815796, SEC11A) exhibited increased methylation in 
relation to PS exposure among regular smokers (2.2%, 95%CI 1.4%, 
2.9%, p=9.03 × 10− 8), but there was limited evidence for an association 
with PS exposure among non-smokers (− 0.3%, 95%CI -0.9%, 0.3%, 
p=0.292) (Q statistic = 26.55, p=2.57 × 10− 7). 

There was limited overlap between the sites identified in relation to 
own smoking (model 4) compared with those identified in relation to 
partner smoking (models 1–3) (Fig. 2). For some of the sites exhibiting 
hypomethylation in relation to own smoking, there was some evidence 
for differential methylation in relation to partner smoking (e.g., at 
cg21566642: 1.8%, 95% CI -2.9%, − 0.8%, p = 8.6 × 10− 4; and 
cg06644428: 1.3%, 95% CI -2.2%, − 0.4%, p=5.0 × 10− 3 in model 1). 
However, the associations were attenuated when own smokers were 
excluded from the analysis of partner smoking (cg21566642: 0.3%, 95% 
CI -1.3%, 0.8%, p = 0.63; and cg06644428: 0.6%, 95% CI -1.8%, 0.7%, 
p=0.38 in model 2), indicating potential residual confounding in the 
primary model. There was limited evidence for an association between 
partner smoking and hypomethylation at AHRR (cg05575921: 0.8%, 
95% CI -1.7%, 0.1%, p=0.07 in model 1; − 0.3%, 95% CI 1.0%, 0.4%, p 
= 0.46 in model 2 and -2.2%, 95% CI -5.0%, 0.5%, p = 0.12 in model 3), 
in contrast to the association observed in relation to own smoking 
(− 3.7%, 95 % CI -4.6%, 2.8%, p=1.66 × 10− 14), as shown in Supple
mentary File 4. 

We performed a search of the top CpG sites identified in the EWAS 
analysis in two publicly available repositories of published EWAS 
literature: the EWAS Catalog (MRC-IEU University of Bristol, 2018) and 
EWAS Atlas (BIG Data Center, 2019), as shown in Supplementary File 5. 
4 CpG sites (cg17672850; cg18866792; cg13249774; cg11549025) 
identified in relation to partner smoking were found to be related to 
other traits: colorectal laterally spreading tumour, adenoma, Down 
syndrome, atopy, immune system disease and myalgic encephalomy
elitis (chronic fatigue syndrome). Just one CpG site (cg18866792) has 
been previously related to own smoking in a large EWAS meta-analysis 
(Joehanes et al., 2016). Of the 30 CpG sites identified at p<1x10-5 in 
relation to own smoking (model 4), 13 had been previously related to 
other traits: smoking, current versus never smoking, former versus never 
smoking, maternal smoking in pregnancy, serum cotinine, educational 
attainment and alcohol consumption per day. The 17 CpG sites related to 
own smoking which were not identified in the EWAS Catalog and EWAS 
Atlas, included sites located close to regions where DNA methylation 
changes have previously been identified in relation to smoke exposure, 
including F2RL3 (cg21911711) as well as some novel gene regions, e.g. 
SLAMF7 (cg00045592), HEPACAM2 (cg04992673) and PRDM2 
(cg05297322). 

QQ plots to assess the enrichment of CpG sites previously associated 
with smoke exposure in a large EWAS meta-analysis (Joehanes et al., 
2016) in relation to partner and own smoking in Understanding Society 
are presented in Fig. 3. There was no clear enrichment of previous 
identified smoking-related signals in relation to partner smoking 
(lambdas 1.03, 0.95 and 0.91; Wilcoxon rank sum p-value p=0.34, 
p=0.87 and p=0.99 for models 1–3). Inflation of signals was observed in 
relation to own smoking (lambda 1.43; Wilcoxon rank sum p-value 
p<2.2 × 10− 16 for Model 4). 

Table 2 
Descriptive characteristics of participants by partners smoking status.  

Demographics (separated 
by participant’s own 
smoking status) 

Participants with 
partners who have 
smoked regularly 
(n=268) 

Participants with 
partners who have never 
smoked (n=309) 

Age 56.1 (SD ± 13.8) 54.8 (SD ± 14.2) 
Participant regular smoker 

(n=110; n=85) 
58.4 (SD ± 12.9) 54.8 (SD ± 14.2) 

Participant non-regular 
smoker (n=56; n=54) 

57.9 (SD ± 12.0) 53.1 (SD ± 13.7) 

Participant never smoker 
(n=102; n = 170) 

59.0 (SD ± 12.1) 53.1 (SD ± 14.0) 

Sex 35.8% males/64.2% 
females 

58.5% males/41.5% 
females 

Participant regular smoker 
(n=110; n=85) 

45.8% males/54.1% 
females 

73.4% males/26.6% 
females 

Participant non-regular 
smoker (n=56; n=54) 

30.36% males/69.64% 
females 

70.37% males/29.63% 
females 

Participant never smoker 
(n=102; n = 170) 

29.6% males/70.4% 
females 

44.5% males/55.5% 
females 

BMI (kg/m2) 28.6 (SD ± 5.4) 27.91 (SD ± 4.6) 
Participant regular smoker 

(n=110; n=85) 
29.5 (SD ± 5.6) 29.05 (SD ± 4.9) 

Participant non-regular 
smoker (n=56; n=54) 

28.0 (SD ± 5.1) 27.48 (SD ± 4.4) 

Participant never smoker 
(n=102; n = 170) 

28.6 (SD ± 5.5) 27.47 (SD ± 4.4) 

Educational Attainment Degree: 13.3% Degree: 25.6% 
Other higher degree: 
12.9% 

Other higher degree: 
10.7% 

A-level: 19.2% A-level: 21.7% 
GCSE: 24.7% GCSE: 24.9% 
Other qual: 11.8% Other qual: 7.1% 
No qual: 18.1% No qual: 9.7% 

Participant regular smoker 
(n=110; n=85) 

Degree: 12.7% Degree: 17.6% 
Other higher degree: 
11.8% 

Other higher degree: 
9.4% 

A-level: 21.8% A-level: 22.4% 
GCSE: 21.8% GCSE: 27.1% 
Other qual: 14.5% Other qual: 9.4% 
No qual: 17 .3% No qual: 14.1% 

Participant non-regular 
smoker (n=56; n=54) 

Degree: 12.5% Degree: 22.2% 
Other higher degree: 
10.7% 

Other higher degree: 
9.3% 

A-level: 16.1% A-level: 29.6% 
GCSE: 19.6% GCSE: 24.1% 
Other qual: 19.6% Other qual: 7.4% 
No qual: 21.4% No qual: 7.4% 

Participant never smoker 
(n=102; n=170) 

Degree: 14.4% Degree: 29.9% 
Other higher degree: 
15.4% 

Other higher degree: 
11.9% 

A-level: 17.3% A-level: 19.2% 
GCSE: 30.8% GCSE: 25.1% 
Other qual: 4.8% Other qual: 5.9% 
No qual: 17.3% No qual: 8.4% 

n = number; SD = standard deviation; BMI = body mass index. 
*The first sample size is participants with partners who smoke, and the second 
sample size is participants with partners who don’t smoke. 
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4. Discussion 

We conducted an analysis to investigate the impact of PS exposure, 
assessed in relation to partner’s smoking status, on DNA methylation 
changes measured in peripheral blood. DNA methylation was not 
robustly related to partner’s smoking status, with no CpG sites sur
passing the epigenome-wide significance threshold (p<5.97 × 10− 8). 
There was, however, suggestive evidence for an interaction between 
partner’s and own smoking status on DNA methylation levels at a 
number of CpG sites, albeit not at epigenome-wide significance. This 
suggests that the impact of passive smoke exposure on the DNA 
methylation might be modified by whether the individual smokes 
themselves. Interestingly, there was limited overlap between those sites 
identified in relation to passive smoke exposure compared with those 
found in relation to a participant’s own smoking. 

Of the top CpG sites that were related to PS at a less stringent p-value 
threshold of p<1 × 10− 5, cg18866792 (MARCH4) has previously been 
identified in relation to current versus never smoking in a large EWAS 
meta-analysis (Joehanes et al., 2016), although it was not related to own 
smoking in our study. However, it is important to recognise that the 
sample size of our study was significantly smaller than that in the EWAS 
meta-analysis; 769 versus 15,907 participants, respectively. MARCH4 is 
a protein coding gene which is a member of the MARCH family of 
membrane bound E3 ubiquitin ligases. DNA methylation at this site has 
been previously identified in relation to Down syndrome and gestational 
age, as determined from our evaluation of the EWAS Catalog (MRC-IEU 
University of Bristol, 2018) and EWAS Atlas (BIG Data Center, 2019) 
resources. CpG site cg13249774 is annotated to the LRP5 gene, which 
encodes the low-density lipoprotein receptor-related protein 5. DNA 
methylation at this site has previously been identified in relation to 
atopy, allergy and immune system disease. 

In the EWAS of own smoking, we found some evidence for several 
CpG sites which have not been previously identified in large-scale 
EWAS, including cg21911711 annotated to F2RL3, which encodes the 

protein coagulation factor II (thrombin) receptor-like 3, and 
cg00045592 annotated to SLAMF7, a self-ligand receptor of the signal
ling lymphocytic activation module. 

A small number of studies have previously looked at the impact of 
SHS on DNA methylation (Callahan et al., 2019; Reynolds et al., 2016; 
Wilhelm-Benartzi et al., 2011). Both Callahan et al. (2019) and Wil
helm-Benartzi et al., 2011 looked at SHS exposure and DNA methylation 
in cancerous tissues rather than peripheral blood, whereas Reynolds 
et al. (2017) assessed DNA methylation only at cg05575921 (AHRR). 
The relationship between cigarette smoking and AHRR methylation, a 
known tumour suppressor, has been well documented in previous 
studies (Monick et al., 2012; Tsai et al., 2018). Reynolds et al. (2017) 
concluded that there was an inverse association in non-smokers between 
the number of hours in close contact with people cigarette smoking in
doors and DNA methylation at cg05575921 (AHRR) particularly with 
>10 h per week of SHS exposure (Reynolds et al., 2016). Whilst in our 
study we only found weak evidence for an association between partner 
smoking status and DNA methylation at cg05575921 (p=0.07), this 
could be because SHS exposure in our study was lower than in Reynolds 
et al. (2017). Of note, in this previous study there was limited evidence 
of association between SHS exposure <9 h per week and DNA methyl
ation. However, residual confounding by own smoking may have biased 
the results of Reynolds et al. (2017). 

There are several limitations to this study. While partners’ smoking 
status was used as a proxy for PS exposure, the actual extent of exposure 
is dependent on several factors, including: the number of cigarettes 
smoked in the presence of other people, the proportion of smokers to 
non-smokers in the household, and the room ventilation. It was also 
assumed that the majority of PS exposure took place in the home, not 
accounting for PS exposure in the workplace or other indoor venues 
participants may frequent. In addition, we did not consider the impact of 
thirdhand smoke exposure from dermal absorption, ingestion and 
inhalation; further details are described elsewhere (Kuo and Rees, 
2019). These data were not available for analysis. Furthermore, the 

Fig. 1. Flow diagram of participants stratified by smoking status in Epigenome-Wide Association Analysis (EWAS) models.  
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Table 3 
Top CpG sites found in Epigenome-Wide Association Study Analysis of Passive Smoking.  

Model N CpG Site Position Chromosome Gene.symbol Coef. 
sva 

Se.sva P.sva CIL CIU 

Regular Partner Smoking 467 cg04992673 92848714 chr7 HEPACAM2 − 0.017 0.003 6.85E- 
07 

− 0.010 − 0.024 

Regular Partner Smoking 467 cg05297322 14105812 chr1 PRDM2 0.009 0.002 9.09E- 
07 

0.014 0.006 

Regular Partner Smoking 467 cg26015967 46644841 chr15  − 0.012 0.003 2.18E- 
06 

− 0.007 − 0.017 

Regular Partner Smoking 467 cg11549025 75994082 chr7  0.008 0.002 7.40E- 
06 

0.011 0.004 

Regular Partner Smoking 467 cg13249774 68121506 chr11 LRP5 − 0.012 0.003 9.28E- 
06 

− 0.007 − 0.018 

Regular Partner Smoking 467 cg23410415 14287748 chr6  0.0115 0.0037 7.64E- 
06 

0.016 0.007 

Regular Partner Smoking 467 cg18866792 217152056 chr2 MARCH4 − 0.015 0.003 3.63E- 
06 

− 0.009 − 0.021 

Regular Partner Smoking 467 cg17672850 40206354 chr17  0.012 0.003 2.34E- 
06 

0.017 0.007 

Regular Partner Smoking 467 cg04386216 70130966 chr12 RAB3IP; 
LOC101928002 

− 0.014 0.003 8.07E- 
06 

− 0.008 − 0.020 

Regular Partner Smoking 467 cg03796580 80333624 chr17  − 0.025 0.005 8.78E- 
06 

− 0.014 − 0.0361 

Regular Partner Smoking (non- 
smokers) 

272 cg19410143 17485612 chr22 GAB4 0.015 0.003 2.16E- 
06 

0.022 0.009 

Regular Partner Smoking (non- 
smokers) 

272 cg26874015 134437911 chr10 INPP54 − 0.006 0.001 2.28E- 
06 

− 0.003 − 0.008 

Regular Partner Smoking (non- 
smokers) 

272 cg18343108 36997710 chr17 C17orf98 0.039 0.008 2.37E- 
06 

0.054 0.023 

Regular Partner Smoking (non- 
smokers) 

272 cg04990241 132147072 chr2  − 0.012 0.003 7.88E- 
06 

− 0.007 − 0.017 

Regular Partner Smoking (non- 
smokers) 

272 cg24302327 194311571 chr3 TMEM44; 0.012 0.002 2.91E- 
06 

0.016 0.007 

Regular Partner Smoking (non- 
smokers) 

272 cg14795069 158956916 chr7  0.015 0.003 8.46E- 
06 

0.021 0.009 

Regular Partner Smoking (non- 
smokers) 

272 cg24445972 133261156 chr7 EXOC4 0.028 0.006 9.61E- 
06 

0.040 0.016 

Regular Partner Smoking (smokers)  cg03815796 85260295 chr15 SEC11A 0.025 0.004 9.03E- 
08 

0.029 0.014 

Regular Partner Smoking (smokers)  cg25050076 21125547 chr2  − 0.018 0.003 6.12E- 
07 

− 0.011 − 0.025 

Regular Partner Smoking (smokers)  cg01006943 126842035 chr12  − 0.018 0.004 3.07E- 
06 

− 0.011 − 0.026 

Regular Partner Smoking (smokers)  cg12153072 99481686 chr13 DOCK9 0.022 0.005 1.21E- 
06 

0.014 0.006 

Regular Partner Smoking (smokers)  cg14597637 128365555 chr9 MAPKAP1 − 0.018 0.004 8.75E- 
06 

− 0.010 − 0.026 

Regular Partner Smoking (smokers)  cg07136054 74486177 chr4 RASSF6 0.009 0.002 1.26E- 
06 

0.014 0.006 

Regular Partner Smoking (smokers)  cg11986310 65728298 chr11 SART1 − 0.018 0.004 5.72E- 
06 

− 0.010 − 0.025 

Regular Partner Smoking (smokers)  cg04359639 7199917 chr1 CAMTA1 − 0.034 0.008 9.21E- 
06 

− 0.019 − 0.049 

Regular Partner Smoking (smokers)  cg08456247 56410143 chr2 CCDC85A 0.022 0.005 4.76E- 
06 

0.032 0.013 

Regular Partner Smoking (smokers)  cg21735668 67072353 chr15 SMAD6 0.016 0.003 8.06E- 
06 

0.022 0.009 

Regular Partner Smoking (smokers)  cg15003393 22008626 chr1 USP48 0.019 0.004 9.95E- 
06 

0.027 0.011 

RegularPartner Smoking (smokers)  cg22512634 19789840 chr1 CAPZB − 0.009 0.002 7.28E- 
06 

− 0.006 − 0.014 

Regular Partner Smoking (smokers)  cg11724883 236785782 chr1  0.024 0.005 8.57E- 
06 

0.034 0.014 

Regular Partner Smoking (smokers)  cg01131241 54166783 chr10  0.014 0.003 7.92E- 
06 

0.019 0.008 

Regular Partner Smoking (smokers)  cg15163417 61119298 chr17 TANC2 0.014 0.003 7.83E- 
06 

0.019 0.008 

Regular Partner Smoking (smokers)  cg24770161 25497323 chr13 CENPJ − 0.006 0.001 6.41E- 
06 

− 0.004 − 0.009 

n = number; coef.sva = coefficient.sva; se.sva = standard error.sva; p.sva = p value from analysis adjusted for surrogate variables; CIL = confidence interval lower 
limit; CIU = confidence interval upper limit. 
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impact of exposure measurement error must be considered, from 
self-reporting methods and reports of partner’s smoking patterns. 

While our EWAS models were adjusted for common covariates (age, 
sex, cell types and batch), as well as surrogate variable analysis in order 
to capture residual confounding in the models (Leek and Storey, 2007), 
there are plausible confounders which could have been specifically 
considered (e.g. alcohol consumption and educational attainment). This 
could explain why some of the CpG sites identified in relation to own 
smoking analysis have been previously related to alcohol and education 
in the literature. In addition, within the Understanding Society cohort, no 
data were collected on prenatal smoke exposure, which has been 
robustly related to long-term changes in DNA methylation of the 
offspring exposed (Richmond et al., 2018). While we must recognise the 
chance that some of the individuals exposed to PS were also prenatally 
exposed, which may have led to confounding by prenatal smoke 

exposure, none of the top CpG sites identified in relation to PS had been 
previously related to maternal smoking in the literature. 

Participants with partners that smoked had a mean age of 56.1 years, 
whilst for participants with partners that do not smoke had a mean age 
of 54.8 years. As such, the findings from this study may not be partic
ularly generalisable to the general population. However, as smoking is 
now at a much lower prevalence among younger people than it used to 
be; 16.8% of 18–24 year-olds were smoking in the UK and 19.2% of 
25–34 year-olds (Office for National Statistics, 2018), this suggests that 
PS exposure via partners’ smoking is likely to be less of a concern among 
younger populations than it used to be. 

This study also has important strengths. The use of the Illumina 
Infinium EPIC array allowed us to assess DNA methylation in peripheral 
blood at over 850,000 CpG sites across the epigenome in relation to PS 
exposure, as assessed based on partners’ smoking status, in a sample of 

Fig. 2. A heatmap to illustrate the direction and strength of association between all investigated passive smoking exposures and DNA methylation. Legend: Plotted 
CpGs are the top 50 CpGs with the smallest p-values in the passive smoking exposure single-site. 
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769 individuals. We were also able to account for participants’ own 
reported smoking, through adjustment and stratification, in order to 
minimise the confounding effect of a participant’s own smoke exposure 
on the association between PS and DNA methylation. This was evi
denced by the limited overlap between DNA methylation signals found 
in relation to PS and own smoking. 

Despite the relatively small sample size in this analysis, the evalua
tion of DNA methylation in relation to own smoking status indicates that 
we had adequate power to detect true methylation signals of the 
magnitude observed in relation to own smoking, suggesting that PS 
exposure has much less of an impact on DNA methylation compared 
with own smoking (as a priori hypothesized). This is in line with what we 

Fig. 3. QQ plots and lambda values of DNA methylation at CpG sites previously associated with smoking in relation to partner and own smoking in Understand
ing Society. 
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know about exposure levels and health effects of smoking and PS (Öberg 
et al., 2011). 

5. Conclusion 

The results of this study indicate that PS exposure in households does 
not have a strong effect on the DNA methylation. In particular, the 
epigenetic signature associated with PS exposure is much less pro
nounced than that of own smoking. While the impact of PS exposure on 
adult and child health is well known, it is unlikely that changes to DNA 
methylation play an important role in the role in the development of 
these health effects. 
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