
IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 1

Securing SDN controlled IoT Networks Through
Edge-Blockchain

Jiejun Hu, Martin Reed, Member, IEEE, Nikolaos Thomos, Senior Member, IEEE, Mays F. AI-Naday, Member,
IEEE, and Kun Yang, Senior Member, IEEE

Abstract—The Internet of Things (IoT) connected by Software
Defined Networking (SDN) promises to bring great benefits to
cyber-physical systems. However, the increased attack surface
offered by the growing number of connected vulnerable devices
and separation of SDN control and data planes could overturn
the huge benefits of such a system. This paper addresses the
vulnerability of the trust relationship between the control and
data planes. To meet this aim, we propose an edge computing
based blockchain-as-a-service (BaaS), enabled by an external
BaaS provider. The proposed solution provides verification of
inserted flows through an efficient, edge-distributed, blockchain
solution. We study two scenarios for the blockchain reward
purpose: (a) information symmetry, in which the SDN operator
has direct knowledge of the real effort spent by the BaaS
provider; and (b) information asymmetry, in which the BaaS
provider controls the exposure of information regarding spent
effort. The latter yields the so called “moral hazard”, where the
BaaS may claim higher than actual effort. We develop a novel
mathematical model of the edge BaaS solution; and propose an
innovative algorithm of a fair reward scheme based on game
theory that takes into account moral hazard. We evaluate the
viability of our solution through analytical simulations. The
results demonstrate the ability of the proposed algorithm to
maximize the joint profits of the BaaS and the SDN operator, i.e.
maximizing the social welfare.

Index Terms—SDN, blockchain, flow verification and valida-
tion, reward scheme.

I. INTRODUCTION

The Internet of Things (IoT) finds many applications in both
industrial and domestic spheres and promises to bring great
benefits through increased connectivity to cyber-physical sys-
tems. However, as IoT systems generally lack computational
power, the computation tasks are moved to edge computing
systems such as multi-access edge computing (MEC). A key
component of modern flexible compute systems, such as MEC,
is software defined networking (SDN) which has generally
been proposed for IoT architectures to deal with highly
time-varying communication demands, prolong the lifetime
of energy constraint devices, provide scalability and improve
flexibility.

While SDN is an essential component of many edge sys-
tems, supporting the IoT through flexible networking [1] [2],
it also offers benefits in improving the security of networked
systems. This has been demonstrated by the SerIoT project [3],
which has proposed a fully integrated system that combines
edge computing and SDN to address the security of the IoT.
However, although SDN can benefit security [4], it has also

J. Hu, M. Reed, N. Thomos, M. AI-Naday, and K. Yang are with the school
of Computer Science and Electronic Engineering, University of Essex, UK.

been noted that the SDN subsystem itself can be a target of at-
tacks [5] [6]. The security issues in SDN are complex [5] to go
into great detail here. However, in brief, the issues arrive from:
a centralized SDN controller that implements highly complex
software actions from the contents of network flows, leading
to software actions too complex to test every outcome; implicit
trust between the centralized controller and the edge switches;
the switches are essentially dumb and simply implement the
flow rules sent to them; and, a controller who often acts in a
reactive mode and sends flow rules for any new network flows
that arise without necessarily holding historical immutable
state of the rules. Thus, this paper provides a solution to
facilitate SDN security, i.e. ensuring flow rules are verified, at
the edge, against network policies before being inserted into
SDN switches; and, maintaining an independent, immutable,
history of SDN flow insertion (which may be used by anomaly
detection systems). This is an important addition to systems
such as that proposed by SerIoT to ensure SDN security. In
particular, our solution maximizes the joint satisfaction of the
different blockchain stakeholders (i.e., the SDN operator and
the blockchain provider). Evaluating the security performance
is out of the scope of this paper as security is directly related
to the choice of the implemented policies and is left for future
work.

To provide the security solution above, this paper proposes
a novel solution which carries out a separate flow verifica-
tion/validation using blockchain technology. As it is vital that
the flow verification occurs close to the edge switches, to
reduce the opportunity of attacks [7], it is required that the
blockchain technology is also implemented at the edge through
a mechanism, such as MEC, to form an edge-blockchain.
Blockchain technology, a sub-concept of distributed ledger
technology, is essentially an append-only data structure main-
tained by a group of not-fully-trusted nodes, that never-
theless provide a trusted data structure through a suitable
consensus algorithm [8]. Furthermore, blockchain technology
is decentralized, immutable, transparent, and reliable, which
allows it to stand independently from the SDN network and
the IoT network to establish a distributed trust mechanism.
The distributed nature of edge-blockchain is ideally suited to
supporting the security of the edge SDN systems [9] as it
allows the flow verification to take place directly next to the
edge switches while ensuring there is distributed consensus
over the whole network.

To provide a straightforward deployment of blockchain,
we utilise Blockchain-as-a-Service (BaaS) [10]. We introduce
Blockchain agents (BCAs) that are collocated with SDN

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 2

switches at the edge, and also in the core. The BCAs are
responsible for flow verification/validation by running smart
contracts. Flow verification requires a group of edge BCAs
(e.g., in MEC) to act as a verifier initiator (VeIn) and verifiers.
The verifiers inspect the new flow information, e.g., addresses,
ports, and any other required fields against the policy. After
flow verification, the verification result is sent back to the
VeIn. Then, the flow validation process will be conducted.
Flow validation requires BCAs to act as peers to validate
the new flow in the block and update the flow ledger. Flow
verification/validation in an SDN application needs computa-
tion capability to execute the encryption algorithm, consensus
mechanism, and other smart contracts. As mentioned earlier, it
is essential that the verification process takes place as close as
possible to the edge SDN switches to minimize opportunities
for malicious interference. Thus, the proposed architecture
adopts compute in the edge (e.g., MEC) that is co-located with
the SDN switches to host the BCAs. With lightweight IoT hubs
the use of this edge compute may be vital as edge-blockchain
is likely to be beyond the computational capabilities of many
IoT devices and hubs. Thus, the edge-assisted BCA can
provide advantages such as promoting the scalability of the
IoT networks with the number of IoT devices and reducing
the communication overhead compared with cloud computing.

In the proposed architecture, BCAs run the SDN flow
verification application as an external service. Meanwhile,
there could be other applications from other parties running
on the BCAs. This necessitates an incentive mechanism to
stimulate the BCAs to perform the SDN flow verification.
When a BCA initializes the flow verification procedure (i.e.,
it acts as a VeIn), it hires a group of BCAs as verifiers and
offers them a reward. The verifiers know their computational
ability, channel condition, workload, and the size of the task.
Hence, the verifiers can decide how much reward they want.
In this scenario, we realize that there is an information
barrier between the verification initiator and the verifiers.
Specifically, a verification initiator can only decide the reward
by the information provided by verifiers, however the verifiers
may not always be honest. In this paper, we propose two
reward schemes for (a) an information-symmetric scenario
(ISS) where the verifiers report their effort honestly, and (b)
an information-asymmetric scenario (IAS), where the verifiers
hide their effort but reveal part of their information. In IAS, the
verifier may behave greedily and demand a higher price for a
simple task by revealing a high performance, or else they will
not implement the task. This phenomenon is known as the
"moral hazard" of the verifiers [11]. The underlying reason
for the moral hazard is the asymmetric relationship about
system information: a verifier has access to more information
to make a decision than a VeIn. In this work, game theory
and contract theory are used to solve this problem. To the
best of our knowledge, our work is the first to propose the
workflow of flow rule verification/validation in blockchain-
aided SDN (BC-SDN), to do so using edge computation and
also to use contract theory to study the quantified performance
of blockchain in the considered use-case.

The main contributions of this paper are summarized as
follows.

• we propose the architecture of edge-blockchain assisted
SDN (BC-SDN) for flow conformance in an IoT system.
Edge-blockchain helps maintain a distributed, immutable
flow ledger for SDN;

• we design the workflow of flow verification and sub-
sequent validation for the SDN IoT system with the
assistance of edge-blockchain;

• we devise fair reward schemes based on information-
symmetric and asymmetric scenarios to stimulate the
performance of the BCAs on edge servers. Moreover,
we compare the information symmetric and asymmetric
cases in the proposed reward scheme using numerical
simulations.

Although there is a clear need for security mechanisms in
SDN, as we propose, in this paper we concentrate on the edge-
blockchain mechanism itself as this is the fundamental mecha-
nism that is required before its benefits can be deployed. Thus,
now we briefly elucidate the benefits of our architecture and its
intended uses. The major benefit of the mechanism described
is that it provides a security framework that is completely
separate from the complex SDN controller process and thus
provides prevention of malicious behavior that may occur in
the SDN subsystem and verifiable security auditing of SDN.
By using a smart contract for the flow verification it allows
verifiable, independent, code to be developed so that the safety
of the flow insertion can be ensured. A smart contract also
provides a development environment that allows a deployer
of the technology to select a wide range of flow verification
policies for example a simple case of checking addresses of
connected devices through to complex verification of end-to-
end paths for specific flows. By using the immutable ledger
facility of the blockchain inserted flows can be audited in the
knowledge they cannot be changed or tested for anomalies
using machine-learning approaches.

In the following, we first review related literature in Section
II. Then, in Section III, we introduce the proposed architecture
and workflow of BC-SDN. Next, we provide the consid-
ered system model in Section IV. We then formulate the
problem and present our solution for both the information-
symmetric and information-asymmetric scenario in Section
V. Our solution is evaluated extensively in Section VI to
get an understanding of the influence of the various system
parameters. We also compare the performance of our solutions
against other state-of-the-art methods, and the results show the
advantages of using the proposed method. Finally, we draw
conclusions in Section VII.

II. RELATED WORKS

Blockchain is a disruptive technology that has been used
in many scenarios in real life, i.e., governance [12], health
care [13], smart grid [14], and so on. In this paper, we review
the related works on blockchain-based SDN, edge computing
assisted blockchain, and the pricing scheme of blockchain.

A. SDN using blockchain technology

Blockchain technology uses a group of not-fully-trusted
nodes, that nevertheless provide a trusted data structure

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 3

through a suitable consensus algorithm. Thus, it is commonly
used as a solution for security challenges in IoT and SDN. In
[15], an SDN-based decentralized security architecture using
blockchain technology for the IoT ecosystem is presented.
This work aims to mitigate the recent challenges and detect
attacks more efficiently. It adopts the blockchain technology
to dynamically update the attack detection model and reward
the fog nodes according to the “Proof-of-Work”. Boukria et al.
[16] propose a blockchain-based controller against false flow
rule injection, focusing mainly on the SDN controller authenti-
cation. Yazdinejad et al. [17] introduces a novel authentication
handover based on blockchain in SDN-based 5G network
with the aim to remove the unnecessary re-authentication in
repeated handover among heterogeneous cells in 5G. Qiu et
al. [18] studies the scenario of industrial Internet of Things
with multiple SDN controllers. A blockchain-based consensus
protocol is presented to collect and synchronize network-wide
views among different SDN controllers. This work employs
the Q-learning method to jointly optimize the view change,
access selection, and computational resources.

B. Blockchain and Edge computing

Blockchain technology is computationally-intensive during
the consensus mechanism and ledger updating procedure.
Therefore, typically there is a need to offload these, relatively,
computationally heavy tasks to edge devices [19], [20]. Task
offloading is not new and has been researched into since more
than a decade ago [21]. The authors in [22] present MEC
in the form of mobile cloud and combine it with C-RAN
(Cloud radio access networks) with particular focus on joint
resource allocation across computation and communication
domains. The authors in [23] further introduced wireless
power transfer into MEC to battle the energy supply issue of
battery-powered IoT devices. A blockchain-based distributed
cloud architecture has been proposed in [24]–[26], with fog
nodes at the edge providing the functionality of the SDN
controller. This work introduces a hierarchy with a central
blockchain-based cloud moving towards a blockchain-based
edge, with the latter taking responsibility for updating the flow
rules. Although these studies show how cloud/fog computing
would support blockchain, the presented solution neglects the
issue of flow conformance testing that we address in this
paper. The work in [27] proposes a Trust List that represents
the distribution of trust among IoT related stakeholders and
provides autonomous enforcement of IoT traffic management
at the edge networks by integrating blockchains and SDN.
Ethereum is used to store the information of the controller on
the edge computing servers, which lead to severe delays. In
[28], an optimal pricing-based edge computing resource man-
agement is presented. This solution can support blockchain
applications where the mining process can be offloaded to an
edge computing server provider (ESP). The authors adopted
a two-stage Stackelberg game to maximize the utility of the
ESPs and the miners.

Edge computing not only relieves the computational demand
of blockchain technology but can also resolve security issues
with the edge systems. First, using blockchain, it is possible

to build a distributed control mechanism over all the edge
systems [29]. Second, blockchain maintains data consistency
in every edge node through its consensus mechanism; for ex-
ample, Yang et al. proposed a smart edge computing oriented
data exchange prototype using Hyperledger to solve the issue
of data automatically maintaining [30]. Last but not least,
blockchain enables dynamic resource allocation among edge
nodes [31].

C. BaaS reward scheme

Due to the fact that blockchain technology is a resource
consuming application, studies concentrate on optimization
problems that consider various aspects such as: the latency,
throughput of transactions, finality, security, and decentraliza-
tion [32]. A survey covering the use of contract theory in wire-
less networks is presented by Zhang et al. [33]. This paper re-
views works that focus on the design of incentive mechanisms
in wireless networks to ensure participants from the third party,
such as access point, small cells, and users execute tasks with
a proper reward. In [34], blockchain-based block verification
is used in an Internet of Vehicles (IoV) setting. This paper
considered verification latency, verifiers’ reputation, network
scale to construct the contract between the block manager
and the verifiers. Differently, multi-dimensional contract the-
ory in mobile crowdsourcing is studied in [35]. This paper
designed an incentive mechanism for mobile crowdsourcing
by considering participants’ effort, performance, and reward.
The work in [36] proposed a directed acyclic graph (DAG)-
based vehicle to vehicle communication network to solve the
limited scalability and improve blockchain’s efficiency. This
paper also proposed a game-theoretic solution to optimize
bandwidth allocation and information transmission. However,
it did not provide any incentive to conduct DAG service.

However, these solutions fail to exploit blockchain tech-
nology in a manner that is compatible with existing SDN
architectures. Specifically, they do not consider how to verify a
new flow using blockchain in fine-grained manner; nor, how to
enable blockchain technology without changing the foundation
of SDN. Additionally, they do not take into account how to
secure the communication between the SDN controller(s) and
switches; nor do they consider how to use blockchain as a
service which needs a pricing scheme for the business model
used in practice. This paper aims at solving these problems
by introducing our novel solution of BC-SDN. We achieve
this by designing a flow verification/validation workflow that
uses smart contracts. We design two reward schemes for ISS
and IAS scenarios, analyze these schemes mathematically, and
evaluate them through simulations.

III. ARCHITECTURE AND WORKFLOW OF BC-SDN

A. Architecture of BC-SDN

We consider an architecture in which Blockchain capabil-
ities can be offered as a service, termed BaaS to multiple
customers. The architecture consists of a traditional SDN
network, complemented by edge computing [37] to facili-
tate communication and provide applications in a generic
IoT scenario. In this scenario, IoT devices are attached to

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 4

edge computing systems and communicate with each other
through an SDN-based network [3]. The edge computing
provides virtual resources to a set of applications; one of
which is a blockchain overlay, which provides blockchain
services to customers both inside and outside the network. We
assume the SDN operator to be one of such customers, which
purchases the service of the blockchain overlay to perform
flow verification/validation between the control and forwarding
counterparts. Fig. 1 shows an architectural view of the entities
in our BC-SDN proposition, including:

• IoT devices that interact with end-user environment and
exchange data to influence said environment

• IoT hubs that connect the IoT devices to edge nodes
through SDN switches;

• SDN switches that detect new flows and execute a
forwarding plan calculated by the SDN controller(s);

• Blockchain agents are software components (i.e.,
servers) provided by a blockchain service provider uti-
lizing edge computing. BCAs are in charge of flow
verification and validation via smart contracts. Further-
more, BCAs also execute basic blockchain functions,
such as the consensus process, sending transactions, and
maintaining the flow ledger. We consider that one or more
BCAs are located in the edge servers for each SDN switch
to provide computation ability. For simplicity and without
loss of generality, hereafter we assume there is only one
BCA associated with each SDN switch.

• Edge nodes: are a selection of edge computing nodes
connected through the SDN infrastructure. They provide
computation and storage capabilities to the blockchain
service, among others. Similar to IoT hubs, edge nodes
are connected by the SDN infrastructure. Notably, in a
generic scenario, the distribution of edge nodes could
be different from that of the SDN switches; however,
to simplify our work, we assume that one edge node is
collocated with each SDN switch. To remove the effect of
network-related latency, we assume that an BCA running
on an edge node serves the switch collocated with that
node.

• SDN Controller has the global view of the network
and is able to calculate a optimised paths in the net-
work according to pre-defined objectives and policies.
In practice, multiple SDN controllers are likely to be
used for reliability and scalability. This does not change
the solution or architecture in any way as the BCA is
colocated with a switch and, in the same manner as a
switch, a BCA would be configured to operate with a
load-balanced controller group which sees the multiple
controllers as a single, virtual, controller.

We note that, as with existing SDN controller and switch
interconnections [5], we assume that the controller-to-BCA
and BCA-to-switch connections are protected using transport
layer security (TLS). This provides basic support against
malicious interventions in the control plane channels, and is
an important security step. However, it should be pointed out
that TLS in the control plane does not provide the independent
policy conformance testing that is provided by the solution

Fig. 1: System model of blockchain-based SDN

presented in this paper, which protects against much wider
malicious activity against the SDN system. For example,
malicious behavior through manipulation of the controller or
wider attempts at injection of data plane traffic that goes
against wider site policy necessitates a solution such as that
presented here. Additionally, immutable storage of the flow
rules (and their changes) in the blockchain ledger allows
security analysis of the behaviour of the SDN. This ledger
can be accessed through a role-based approach so that for
example users of the network can confirm that their relevant
rules have been accepted, but without having wider access to
sensitive information, while a network operator may have full
view of the rules for wider security analysis.

In this paper, we adopt a permission-based consortium
blockchain, such as Hyperledger [38], which means that only
authorized BCAs can conduct the blockchain functions. Fur-
thermore, we adopt a BaaS infrastructure with a BCA collo-
cated with an SDN switch. There are three main advantages of
using the proposed mechanism for flow verification/validation.
First, as BCAs are collocated with the SDN switches, pro-
viding a blockchain service to the SDN, the BCAs can
assist with the secure communication between the controller
and the corresponding switch. Second, BCAs are compo-
nents provided by an external entity, which conducts flow
verification/validation outside the SDN network to guarantee
connection privacy. Finally, BaaS enables a straightforward
deployment of blockchain in SDN without the SDN operator
needing to create their own blockchain system.

B. Smart contracts and workflow of BC-SDN

In BC-SDN, the workflow includes the flow verification and
flow validation. We show these two parts in Figs. 2 and 3,
respectively. Flow verification mainly focuses on new flow
verification initiation, flow conformance policy checking and
result feedback to the VeIn. The flow validation is in charge of
flow ledger updating. In Hyperledger, verification is performed
by a leading verifier and the following verifiers. Validation
is performed by a leading peer, namely the orderer and the
following peers. In BC-SDN, VeIn acts as the leading verifier
and the orderer. And there is a group of BCAs act as verifier
and peers in verification and validation, respectively. In this

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 5

work, we adopt Hyperledger as edge-blockchain and Byzantine
consensus mechanism [39]. First, we assume that:

• this blockchain application is using a unique Hyperledger
channel. To allow multiple applications to use Hyper-
ledger at the same time, each application is allocated a
unique channel with an individual channel ID. In BC-
SDN, it only has one SDN flow verification/validation
application.

• the IoT devices/IoT hubs that require new flow rules
have been registered and enrolled with the organisation’s
Certificate Authority and received back necessary crypto-
graphic material, which is used to authenticate the device.

• the BCAs have been fed with previous topology and
connectivity information from the controller. Moreover,
all the BCAs apply the same flow conformance policy
to check the new flow rules. The conformance policy is
defined as the simple policy, i.e., it verifies the source
and destination IP addresses and the port numbers.

• the controller is responsible for path calculations, which
will result in a set of flow rules according to the path.

1) Smart contracts in edge-blockchain: We define a group
of smart contracts to conduct flow verification/validation on
edge-blockchain. First, we have verification initiation contract
and validation initiation contract to start preparation of new
flow verification/validation with obtaining the key information
of the flow, essential encrypted materiel, and so on. Then,
edge-blockchain deploys verification contract to inspect sig-
nature of the verifiers, conduct flow conformance policy, and
construct response messages to peer verifiers. Last but not
least, we have Byzantine consensus mechanism deployed as
consensus contract when the response is checked among all
the peers in verification/validation phase.

2) Flow verification: In traditional SDN architecture,
when IoT devices initiate a new communication request,
the corresponding access switch sends the new packet with
source/destination IP, source/destination port ID, and protocol
to the controller. It requires the controller with the global
view of the network to calculate the path. In BC-SDN, the
flow verification process initiates after the SDN controller
sends the flow rule back with verification initiation contract.
Instead of sending the flow rule back to the switch, SDN
controller sends it to the corresponding BCA of the switch.
Then, the BCA VeIn will start flow verification by running
verification initiation contract. This contract requires preparing
the proposal and sending to the other BCAs, namely verifiers.
Here, the VeIn adopts a pre-set endorsement policy to employ
the verifier. The endorsement policy [38] requires that the VeIn
must obtain the inspection feedback of the new flow rule from
a certain number of verifiers, otherwise the endorsement is
considered as failed. The endorsement policy is crucial to
justify if Byzantine consensus mechanism is reached. The
actions of establishing and verifying/validating a new flow rule
are embedded in consensus contract within the blockchain.
Below, we explain these actions in more depth.

(i) an IoT device causes an SDN switch to initiate a new
flow establishment request when it sends a packet with
source IP/port information, destination IP/port infor-

Fig. 2: Workflow of flow verification

mation, and flow conformance policy. The message is
formed as packet = <souIP, desIP, souPort, desPort,
Policy> without an existing flow rule, and this is sent
to the controller over a secure communication channel.
The controller calculates the path according to the packet
and generates new flow rules that it then forwards them
to the corresponding BCA (VeIn). The ID of flow is
fid= hash(packet). This reply from the controller targets
BCA1.
• The VeIn constructs a new flow proposal <PRO-

POSAL, tx, Consig> and makes sure the new flow
proposal is properly formed; tx includes: the ID
of controller, ID of the flow, packet, ID of smart
contract, endorsement policy, and timestamp.

• the VeIn’s credentials are used to produce a signature
ConSig = hash(tx) for this proposal.

(ii) The VeIn starts the verification of the new flow by
verification contract. The contract requires the VeIn to
employ verifier peers. Then, verifiers inspect the signa-
ture ConSig and execute the new flow verification:
• The verifiers check whether: the proposal is well

formed; it has not been submitted already in the past
(i.e., it is not some form of replay); the signature is
valid; and the VeIn is properly authorized to perform
the proposed operation.

• The verifiers use the new flow proposal as input to
invoke the verification contract.

• The verification contract checks the new flow against
the flow conformance policy and asserts as TRUE
or FALSE accordingly. The response values along
with the verifiers’ signature first is passed among
the verifiers till the consensus is reached by run-
ning Byzantine consensus contract, and then the the
responses of verifiers are passed back to the VeIn
as a “proposal response”. Byzantine consensus re-
quires the VeIn to receive enough verifiers’ “TRUE”
response of the flow, i.e., the number of verifiers
satisfying the endorsement policy. All the response
values will be stored in blockchain’s status database

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 6

Fig. 3: Workflow of flow validation

readset and writeset.
• The response values along with the verifiers’ sig-

nature is passed back to the VeIn as a "proposal
response" ProRes=<TransactionEndorsed, fid, Tran-
Proposal, epSig>, where TranProposal = (epID, fid,
chaincodeID, tx, readset, writeset).

• If this new flow is invalid, then send message
<TransactionEndorsed, fid, REJECT, epSig> to the
VeIn.

Till here, the consensus contract completes and the VeIn
receives the consensus result from the verifiers. Note that,
no changes are made to the flow ledger up to this point.

(iii) Proposal responses are then checked as follows:

• The VeIn inspects the verifiers’ signature and con-
firms that the number of identical ProRes responses
reach the number expected by the endorsement pol-
icy.

• If the VeIn only enquires of flow rules from the flow
ledger, then there is no need to update the blockchain
database, namely the ordering service.

• The VeIn checks if the endorsement policy has been
reached before the new flow is stored in the ledger.

3) Flow validation: In flow validation phase, each BCA
appends the block with the new fid. After flow validation, all
the flow rules, no matter if they are legitimate or not, will be
stored in the flow ledger immutably, which provides evidence
to anomaly detection algorithms and applications.

(i) To start validation initiation, the VeIn executes the
validation initiation contract to broadcast the proposal
<PROPOSAL> with <ProRes> in one message broad-
cast =(PROPOSAL, ProRes) to all of the BCAs.

(ii) When all the BCAs receive the proposal, the leader
selection procedure is triggered. We assume that VeIn
is the leader of the flow ledger updating. VeIn sends a
message deliver(seqno, prevhash, endorsement), where
seqno is sequence number, prevhash is the hash of the
most recently delivered endorsement. VeIn orders all the

TABLE I: Notation and Descriptions
Description Parameter

Number of verifiers N

Set of possible rewards to verifiers R = {r1, ...rn}, ri ∈ R
Honesty factor of verifiers H = {h1, ...hn}, hi ∈ H

Set of blocksizes S = {s1, ...sn}, si ∈ S
Set of latencies L = {l1, ...ln}, li ∈ L

Probabilities of latency P = {p1, ...pn}, pi ∈ P
Cost factor α

Income factor β

Honesty factor τ1

Latency factor τ2

Reservation utility σ

Social welfare ω

Maximum latency lmax

Maximum blocksize smax

flow rules chronologically and creates blocks of flow
rules.

(iii) The blocks of flow rules are delivered to all BCAs. The
consensus contract is executed by all the BCAs as it is
in verification consensus mechanism.
• The BCAs verify the ID of consensus contract,

endorsement policy, and consistency of the status
database to avoid violations. They wait until all the
peer BCAs’ feedback to reach consensus.

• If the checks pass, the flow rule is deemed valid or
committed. In this case, the BCAs set the bitmask
of the flow Ledger.

• If the checks fail, the new flow establishment is
considered invalid and the BCA unsets the bitmask
of the flow Ledger. This invalid flow rule is still
stored until it is deleted by a periodic blockchain
function.

Up to this point, flow verification/validation are completed.

IV. SYSTEM MODEL

We use BaaS in BC-SDN, as described in Section III, the
BaaS is running over virtual resources rented from the edge
computing provider, independently from the SDN network.
The BaaS provides services to multiple organisations, one of
which is the SDN network. This means that the VeIn may lack
knowledge of the edge servers’ performance (and other abil-
ities). Thus, there is an information barrier between the VeIn
and the BaaS. In this paper, we assume two scenarios, namely,
an information-symmetric scenario (ISS) and an information-
asymmetric scenario (IAS). IAS leads to what is known as
a moral hazard [40]. The moral hazard is commonly solved
by contract theory in the field of economics. Motivated by
the above, in this paper we design two reward schemes for
the BaaS, which can relieve the difficulty of the information
barrier between VeIn and the third-party BCAs.

In BC-SDN, flow verification/validation is provided by
BCAs and a contract is designed based on the outcome
of the verifiers. We consider N verifiers. Each verifier of-
fers n different execution latencies according to the reward,

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 7

workload, CPU capability, and so on. The set of possible
latency values for flow verification and validation is denoted
as L = {l1, ...ln}, li ∈ L and the set of blocksizes as
S = {s1, ..., sn}, si ∈ S with elements in S and L having
one to one correspondence. When a flow verification process is
initiated, the VeIn presents a contract for the verifiers offering a
reward. Then, the verifiers have the option to either accept the
reward or reject it. According to the reward, the verifiers exert
the flow verification/validation latency. During this procedure,
the verifier has to report its latency of execution to the VeIn.
We represent the honesty factor of a verifier by hi ∈ H, where
H = {h1, ...hn} is the set of honesty factors. The honesty
factor indicates the level of honesty of a verifier when it
reports its performance to the VeIn. In this work, we propose
two reward mechanisms for the two scenarios studied here,
ISS and IAS. Let t be the reward mechanism indicator, where
t ∈ {t1, t2}. When t = t1, we consider the ISS, and vice-versa.
In ISS, VeIn can observe the effort, namely the blocksize si,
to make a decision regarding the reward. Thus, we consider
the reward machanism as contract Ct1(ri, si), where ri is the
reward of the ith verifier. In IAS, BCAs hide their true effort
blocksize si, so the VeIn can only make a decision of the
reward by the latency li of BCAs. Thus, the contract is defined
as Ct2(ri, si), with t = t2 indicating IAS contract.

In this section, we first introduce the system model by
analyzing the cost and income of the VeIn and the verifiers.
Then, we define the employed utility functions of both the
VeIn and the verifiers. Finally, we propose our solution based
on contract theory.

A. Execution cost of verifier
Consider verifiers who participate in BC-SDN and make

a choice of flow verification/validation latency. However, the
latency may not just be the consequence of the block it actually
processes but may also be influenced by other tasks that
the verifiers choose to carry out. However, generally we can
say that the execution cost of the verifier is related to the
blocksize. Similar to [19], the execution cost of a verifier is
defined in quadratic form, which is thus convex and provides
a straightforward evaluation of the derivative. When verifiers
create a blocksize si, the execution cost of the verifier is

φ(si) =
1

2
αs2i (1)

where α > 0 is the cost factor for the verifiers. The cost
function shows that there exists an optimal blocksize, which
could lead to the optimal cost.

B. Reward plan for verifier
We consider the set of rewards R = {r1, ..., rn}, ri ∈ R.

We assume that verifiers with the same honesty factor have
the same reward. Thus, we define the reward to verifiers with
honesty factor hi as

wi =

{
riχi(hi, si) when t = t1

riχi(hi, li) when t = t2
(2)

where χi(·) is a function of verifiers with honesty factor hi’s
performance. The reward plan for verifiers in both scenarios

should respect the following: the bigger the honesty factor
is, the bigger the reward is. Moreover, for ISS, the bigger the
blocksize is, the bigger the reward is. On the contrary, for IAS,
the bigger the latency is, the smaller the reward is. Therefore,
the following conditions should hold when designing the
reward function: ∂χi

∂hi
> 0, ∂χi

∂li
< 0, and ∂χi

∂si
> 0.

C. Income of VeIn

The income of the VeIn depends on the contribution of the
verifiers, i.e. the blocksize si and the honesty factor hi for
ISS and the latency li of flow verification/validation and the
honesty factor hi of the verifier for IAS. The income function
of the VeIn, Ii, in terms of verifiers with honesty factor hi,
blocksize si, and latency li is given by

Iti =

{
τ1f(hi)si , when t = t1

τ1f(hi)− τ2g(li, lmax) , when t = t2

where τ1 > 0 and τ2 > 0 are the weighting of honesty and
the weighting of latency, respectively. The parameter lmax is
the maximum latency.

We should have ∂f(hi)
∂hi

> 0, ∂g(li,lmax)
∂li

> 0, ∂Ii
∂hi

> 0, and
∂Ii
∂li

< 0. This means that the bigger is the honesty factor, the
higher is the income. It also means that larger latency leads to
lower income. To simplify the problem, we define the income
function as

Iti =

{
τ1hisi when t = t1

τ1hi − τ2 li
lmax

when t = t2
(3)

V. PROBLEM FORMULATION

In this section, we analyze the ISS and IAS scenarios in
detail. In ISS, the VeIn is informed by the verifiers about
their efforts of executing a verification/validation task with
respect to their honesty factor. Therefore, in ISS, the VeIn can
optimize the reward according to the efforts of verifiers.

We also investigate IAS, which suffers the moral hazard.
Since in IAS, the VeIn does not have full knowledge of the
verifiers, it can only be informed from their performance,
i.e., the execution latency of the verifiers. Thus, the IAS
scenario leads to a more complex problem to solve than the
ISS scenario. The rest of this section studies ISS and IAS
scenarios in Section V-A and V-B, respectively.

A. Information Symmetric Scenario

In ISS, we assume that verifier i will report the actual effort,
i.e., the blocksize si considering a honesty factor hi. The
honesty of the verifier affects the income of the VeIn. We
define the utility function of the verifier as the income of the
verifier i minus the execution cost (1). Hence, it is

U t1i = risi −
1

2
αs2i (4)

where the income of verifier i is proportional to the blocksize
si. We, also, formulate the utility function of VeIn as

U t1v = βτ1hisi − risi (5)

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 8

where β > 0 is VeIn’s income factor. We can, then, propose a
two stage optimization method. In the first stage, the verifier
considers the reward ri from VeIn as known and computes
the optimal blocksize si. In the second stage, the verification
initiator uses the optimal blocksize si∗ and solves a second
optimization problem to compute the optimal reward ri∗. This
formulation falls to the category of Stackelberg games, which
also means that Stackelberg game is information symmetric
between the VeIn and the verifiers.

Definition 1 (Stackelberg Equilibrium). The system reaches
Stackelberg Equilibrium, if and only if the verifiers and the
verification initiator reach the relationship described by the
following equations

U t1i (ri, si
∗) > U t1i (ri, si) (6)

U t1v (ri
∗, si

∗) > U t1i (ri, si
∗) (7)

Following Stackelberg Equilibrium, we use backward induc-
tion algorithm [41] to determine the equilibria of the subgames
(6) first. The maximization problem for verifier i is defined as

max
si

U t1i = risi −
1

2
αs2i (8a)

s.t.

si < smax (8b)

where smax stands for the maximum blocksize. To calculate,
the optimal blocksize we set the first derivative of the maxi-
mization problem in (8a) to zero. Hence, we obtain

∂U t1i
∂si

= ri − αsi = 0

By solving this equation we can determine the optimal block-
size si∗ = ri

α . We, then, substitute si∗ in the utility function
of the VeIn and solve the second stage of the optimization
problem so that it respects (7)

max
ri, s

∗
i

U t1v = βτ1hi
ri
α
− ri

2

α
(9a)

Following the same method with the first stage, we can obtain
the optimal reward by finding the derivative of the objective
function with respect to the reward and setting it equal to zero.

∂U t1v
∂ri

=
1

α
βτ1hi − 2

ri
α

= 0

Therefore, we can calculate the optimal reward and the block-
size by the following equations

r∗i =
1

2
βτ1hi (10)

s∗i =
1

2α
βτ1hi (11)

We can observe from (10) and (11) that the honesty factor hi
is proportional to both the reward and the blocksize.

B. Information Asymmetric Scenario

In this scenario, the VeIn considers the honesty and the
latency of the verifiers provide. Therefore, according to the
income of VeIn in (3), we define the utility function of the
VeIn as the gross income minus the reward plan w to the
verifier. Due to the uncertainty of the verifiers’ behavior, we
define that verifiers with honesty factor hi choose latency li
with probability pi. We denote the discrete set of probabilities
P = {p1, ...pn},with

∑n
i=1 pi = 1, where pi ∈ P is the

probability the verifier to choose a blocksize si ∈ S that
results to a latency li. Like in the ISS case, the utility of the
verifier is defined as the reward plan minus the execution cost.
Meanwhile, we assume that verifiers who choose the same
latency li have the same honesty factor. Thus, the verifier’s
utility is defined as

U t2i = riχi(hi, li)−
1

2
αs2i (12)

Let us assume that the total number of verifiers is N . The
VeIn’s utility function is given by

U t2v =

n∑
i=1

Npi[βIi(hi, li)− riχi(hi, li)] (13)

recall β is the income factor of the VeIn. For IAS, the
optimization problem is defined as

max
ri, li

n∑
i=1

Npi[βIi(hi, li)− riχi(hi, li)] (14a)

s.t.

riχi(hi, li)−
1

2
αs2i ≥ rjχi(hi, li)−

1

2
αs2j , (14b)

riχi(hi, li)−
1

2
αs2i ≥ σ, (14c)

i 6= j (14d)

where σ is reservation utility, which is the minimum profit
that must be guaranteed by the contract to make it acceptable
to the verifiers. Note that, without loss of generality, we
set σ = 0 to simplify the problem. (14b) is the Individual
Compatibility (IC) for verifiers, which means that by exerting
the optimal blocksize, it can obtain the optimal reward. (14c) is
the Individual Rational (IR) that requires the utility of verifier
is positive. For the sake of simplicity of representation, we
omit the arguments of χ(·) function when they do not affect
the calculations.

Lemma 1 (Monotonicity). If we have for the income function
χi ≥ χj , ∀i, j ∈ {1, · · · , n}, the reward satisfies ri ≥ rj .

Proof. This lemma is a direct application of (14b). Thus, for
i, j ∈ {1, · · · , n} we get

riχi −
1

2
αs2i ≥ rjχi −

1

2
αs2j (15)

rjχj −
1

2
αs2j ≥ riχj −

1

2
αs2i (16)

By adding inequalities (15) and (16) we find that

(ri − rj)(χi − χj) ≥ 0 (17)

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 9

Lemma 2. If the utility function of the verifier with χ1 satisfies
the IR constraint, then this holds for ∀i ∈ {1, · · · , n}.

Proof. Let us assume that χ1 < · · · < χi < · · · < χn, then
according to Lemma 1 we derive

riχi −
1

2
αs2i ≥ r1χi −

1

2
αs21 (18)

r1χi −
1

2
αs21 ≥ r1χ1 −

1

2
αs21 (19)

By adding (18) and (19), we get

riχi −
1

2
αs2i ≥ r1χ1 −

1

2
αs21 (20)

From (20), we can derive that if r1χ1− 1
2αs

2
1 > 0, then IR in

(14c) holds.
If we consider i ∈ {1, · · · , n} and i− 1 < i < i+ 1, then

there are n(n−1) constraints (these replace (14b)) of the form

riχi −
1

2
αs2i ≥ ri−1χi −

1

2
αs2i−1 (21)

riχi −
1

2
αs2i ≥ ri+1χi −

1

2
αs2i+1 (22)

Definition 2 (Local Upward and Downward Constraints). If
verifiers with χi prefer contract (ri, li) to (ri+1, li+1), then
the local upward constraint for χi is satisfied, as shown in
(22). Similarly, if verifiers with χi prefer contract (ri, li)
to (ri−1, li−1) then the local downward constraint for χi is
satisfied, as shown in (21).

Lemma 3. Local downward compatibility is reached as fol-
lows

riχi −
1

2
αs2i ≥ ri−1χi−1 −

1

2
αs2i−1 (23)

Proof. We assume that χi−1 < χi < χi+1, then according to
IC constraint we have

ri+1χi+1 −
1

2
αs2i+1 ≥ riχi+1 −

1

2
αs2i (24)

riχi −
1

2
αs2i ≥ ri−1χi −

1

2
αs2i−1 (25)

According to Lemma 1, we have

(χi+1 − χi)(ri − ri−1) ≥ 0 =⇒
=⇒ χi+1(ri − ri−1) ≥ χi(ri − ri−1) (26)

By combining (25) and (26), we get

riχi+1 −
1

2
αs2i ≥ ri−1χi+1 −

1

2
αs2i−1 (27)

And then, by combining (24) and (27), we find that

ri+1χi+1 −
1

2
αs2i+1 ≥ ri−1χi+1 −

1

2
αs2i−1 (28)

Finally, by expanding (28), we get

ri+1χi+1 −
1

2
αs2i+1 ≥ ri−1χi+1 −

1

2
αs2i−1

... ≥ r1χ1 −
1

2
αs21 (29)

which completes the proof.

Lemma 4. Upward local incentive is satisfied in the proposed
problem as follows

riχi −
1

2
αs2i ≥ ri+1χi −

1

2
αs2i+1 (30)

Proof. We can prove Lemma 4 in the same way as Lemma
3.

In the optimization problem (14), constraint (14b) includes
n(n− 1)/2 upward local incentive and n(n− 1)/2 downward
local incentive conditions. Additionally, constraint (14c) con-
sists n IR constraints. By applying the Lemmas we proved
previously, we can reduce the constraints as follows.

We know that in order to maximize the utility of VeIn, we
need to provide the minimum reward to verifiers, which leads
to the minimum utility of verifier in (14c) as r1χ1 − 1

2αs
2
1 =

0. Therefore, (14c) can be reduced. Moreover, for (14b), if
rewards ri and ri−1 lower the utility value by the same amount
and the downward local incentive still holds, then eventually
it can reach riχi− 1

2αs
2
i = ri−1χi− 1

2αs
2
i−1 because we have

riχi −
1

2
αs2i = ri−1χi −

1

2
αs2i−1 (31)

Since monotonicity holds, when χi ≥ χi−1, it is also ri ≥
ri−1, so we have

χi(ri − ri−1) ≥ χi−1(ri − ri−1) (32)

By adding (31) and (32), we derive

1

2
αs2i −

1

2
αs2i−1 ≥ χi−1(ri − ri−1)

riχi−1 −
1

2
αs2i ≤ ri−1χi−1 −

1

2
αs2i−1 (33)

By observing (33), we note that it is the same as Lemma 4.
Thus, the constraint in (14b) can be reduced as (31). Therefore,
we can propose the new optimization problem as follows

max
ri, li

n∑
i=1

Npi[βIi(hi, li)− riχi(hi, li)] (34a)

s.t.

riχi(hi, li)−
1

2
αs2i = ri−1χi(hi, li)−

1

2
αs2i−1, (34b)

r1χ1(h1, l1)−
1

2
αs21 = 0 (34c)

By solving (34c), we can obtain

r1 =
αs1

2

χ1

Then, by solving recursively (34b), we can find

ri =
αs1

2

χ1
+

i∑
q=2

(
αsq

2

χq
− αsq−1

2

χq
)

As blocksize and latency have a linear relation, we can
substitute blocksize with latency without losing optimality.

ri =
αl1

2

χ1
+ α

i−1∑
q=1

(
lq+1

2 − lq2

χq+1
) (35)

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 10

TABLE II: Simulation settings
Description Setting

Number of verifiers N = 10

Honesty factor of verifiers H = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}
Probability of latency pi = 0.1

Cost factor α = 0.5

Income factor β = 10

Honesty weighting τ1 = 1

Latency weighting τ2 = 2

Reservation utility σ = 0

Maximum latency lmax = 20

Let us define

gq =

i−2∑
q=1

lq+1
2 − lq2

χq+1
(36)

Then we can substitute ri in (34a) and the objective function
becomes

U t2v =

n∑
i=1

NpiβIi −Nα
n∑
i=1

pi[(
l1

2

χ1
+ gq)(τ1hi

− τ2
li
lmax

) + li
2 − li−12] (37)

We can calculate the derivatives of the utility function in
(37) with respect to li as follows

∂U t2v
∂li

= −Npiβ
τ2
lmax

−Nαpi[−
τ2
lmax

(
l1

2

χ1
+ gq) + 2li]

∂U t2v
2

∂li
2 = −Nαpi2 < 0 (38)

From (38), we can see that ∂Ut2
v

2

∂li2
< 0, thus the objective

function/ utility function of the VeIn is concave. Further, as
the constraints are all affine, the optimal value of latency li
and reward ri can be computed using an optimization solver
such as CVX [42]. We would like to note that by using the
proposed scheme, the verifiers can be stimulated by the reward
and conduct the flow verification/validation.

VI. EXPERIMENTAL EVALUATION

In this section, we numerically evaluate the performance of
the proposed reward schemes in BC-SDN. We consider that
BCAs work as both verifiers and validators in the proposed
architecture. In the following, we first introduce the benchmark
solutions. Then, we evaluate the performance of the proposed
reward schemes with respect to the cost factor of verifiers,
α, the income factor of the VeIn, β, the number of verifiers
N , and probability p of blocklength selection which is pro-
portional to latency. In the simulation set up, we consider a
group of verifiers and different number of χ values, in which
χi stands for the combination of latency li and honesty factor
hi. The key parameters used in the evaluation are listed in
Table II. In the simulations, we consider these values unless
otherwise stated. To evaluate the performance of the proposed
reward scheme, we introduce the concept of “social welfare”

0 2 4 6 8 10

Items in contract

0

50

100

150

200

250

300

350

U
ti
lit

y
 o

f
V

I

h1

h3

h4

h6

 Maximum Utility of VeIn

Fig. 4: Utility of VeIn with respect to honesty factor hi.

ω of the BaaS service and defined as the profit of the verifiers
and the VeIn. Thus, the social welfare is

ω =

n∑
i=1

Ui + Uv (39)

Social welfare is a rational way to analyze if the contract
can maximize the total utilities, where the utility indicates
the preference of the VeIn and the verifiers choosing and
consuming the contracts and resource, respectively, which
leaves utility without unit. Social welfare also indicates the
BCAs’ resource utilization of edge. For the sake of compari-
son, we compare the proposed reward scheme with a solution
based on the Stackelberg game. We examine the ISS scenario
described in Section V-A, where the VeIn knows the true
effort si of the verifiers. We also investigate the IAS scenario,
as discussed in Section V-B, where the VeIn is only aware
of the performance, namely latency li, of the verifier. Our
evaluations attempt to capture the impact of honesty on the
derived solutions. Specifically, the ISS scenario can be seen
as a special sub-case of IAS scenario, whereas in ISS the VeIn
and the verifiers share the same information while deciding the
optimal blocksize, for example. Finally, we also compare our
scheme against the fixed reward scheme proposed in [7].

1) Utility of VeIn with respect to honesty factor: We
evaluate the utility of the VeIn with respect to the honesty
factor hi. We assume 10 verifiers (i.e., N = 10) with four
values of honesty factors, i.e., h1, h3, h4, h6 ∈ H as defined
in Table II. From Fig. 4, we can note that the utility of the
VeIn reaches its maximum when the corresponding contract is
obtained, i.e., when h4 with contract Ct2(r4, l4) can allow the
utility to be the maximum. Note that in practice we actually
consider χi, which is a combination of both latency li and
honesty hi, for convenience here we have considered the case
where h1 < h3 < h4 < h6. This result verifies individual
compatibility in (14b), i.e., for verifiers with χi, there is one,
and only one, optimum contract item.

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 11

10 12 14 16 18 20

Income factor

0

500

1000

1500

S
o
c
ia

l
W

e
lf
a
re

n=2

n=4

n=10

Fig. 5: Social welfare with respect to income factor β.

2) IAS’s social welfare with respect to β: We examine
the social welfare of IAS with respect to the VeIn’s income
factor β. In Fig. 5, we consider different number of latency
and honesty factors’ combinations. From this evaluation, we
can observe that with increasing income factor β, the social
welfare also increases. Second, we note that when the number
n of combinations increases, the social welfare decreases. This
is due to the fact that increasing the number of combinations,
n, adds uncertainty to the system, which leads to a higher cost
of VeIn, and causes social welfare degradation.

3) Impact of α to the social welfare: In Fig. 6, we compare
the social welfare of the proposed IAS, ISS, and fixed salary
scheme with respect to the cost factor α. We simulate IAS with
2 kinds of combination χ and 4 kinds of combination χ. Note
that, parameter n means that the verifiers have n different
probabilities to choose from these combinations. From the
simulation results, we can see as α increases, the social welfare
decreases. The reason for this behaviour is that the larger cost
factor is, the larger the cost of the verifier is, which means
that it is going to cost more to maintain the same blocksize.
However, the IAS achieves higher social welfare when α is
about 1.3. This is due to the fact that in IAS, the verifiers can
choose a smaller blocksize to compensate the execution cost
in order to maintain the social welfare.

4) Impact of the number of verifiers to the social welfare:
We also analyze the social welfare of ISS, and IAS with
respect to the number of verifiers N . The results are illustrated
in Fig. 7. We consider verifiers have honesty factor h6 and
latency l6 and have different number of verifiers for ISS and
IAS. We apply the setting of three different combinations of
χ, i.e., χ5, χ6, and χ7. As we can observe from the figure,
the social welfare increases when the number of the verifiers
increases. Note that, the least social welfare is observed for
IAS. This is attributed to the fact that the VeIn has no knowl-
edge of the verifiers real effort in executing the application.
From this, we can conclude that the information-asymmetric
scenario costs more than the information-symmetric scenario

0.5 1 1.5 2

Coefficient of cost

0

100

200

300

400

S
o
c
ia

l
W

e
lf
a
re

IAS with n=2

IAS with n=4

ISS

Fixed salary

Fig. 6: Social welfare with respect to cost factor α.

0 2 4 6 8 10

Number of verifiers N

0

2000

4000

6000

8000

S
o
c
ia

l
W

e
lf
a
re

ISS

IAS with n=2

IAS with n=6

Fig. 7: Social welfare with respect to the number of verifiers
N .

to the VeIn.
5) Impact of the probability distributions of latency to

the utility of the VeIn: In Fig. 8, we investigate the im-
pact of different probability distributions of latency on the
utility of the VeIn under IAS. We consider five combi-
nations of χ and 10 verifiers in this simulation. For the
comparisons, we assume a uniform distribution with P =
{0.2, 0.2, 0.2, 0.2, 0.2}, an affine distribution with P =
{0.35, 0.3, 0.2, 0.1, 0.05}, and also a discrete Gaussian dis-
tribution with P = {0.1, 0.15, 0.5, 0.15, 0.1}. As is shown
in Fig. 8, the Gaussian distribution achieves the maximum
utility for χ5 setting. In addition, we evaluate (Fig. 9) the
utility of the VeIn with respect to the number of verifiers
for the considered probability distributions. We consider a
range of verifiers [10, 14], corresponding to deployment in a
regional edge network. As we can observe from Fig. 9, the

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 12

1 2 3 4 5

i

0

100

200

300

400

500

U
ti
lit

y
 o

f
V

I

Uniform distribution 1

Gaussian distribution

Uniform distribution 2

Fig. 8: Utility of VeIn with respect to different probability
distribution of χ’s combinations.

10 11 12 13 14

Number of verifiers

1000

1200

1400

1600

1800

2000

U
ti
lit

y
 o

f
V

e
In

Uniform distribution

Affine distribution

Gaussian distribution

Fig. 9: Utility of VeIn with respect to the number of verifiers
under different probability distribution of χ’s combinations.

utility of the VeIn increases for all distributions when the
number of verifiers increases. This comparison also shows
that the proposed reward scheme can cope with different
scenarios in a real world situation. In this setting, the discrete
Gaussian distribution achieves the highest utility among three
distributions, followed by the uniform distribution and the
affine distribution. The reason for this is that the utility of the
VeIn increases when the combination χ’s index i increases,
which is also the case of monotonicity in Lemma 1.

6) Edge-blockchain performance in terms of the blocksize:
We analyze the edge-blockchain performance by considering
the blocksize in the ISS and IAS scenarios in Fig. 10 with
a fixed reward budget. Blocksize can represent the flow
conformance task volume on the edge servers. For ISS, from
(11), we know that in the ISS the optimal blocksize only relates
with the reward. When more verifiers join the verification, the

10 11 12 13 14

Number of verifiers

0

100

200

300

400

500

600

B
lo

c
k
s
iz

e
 (

fl
o

w
s
/b

lo
c
k
)

IAS

ISS

Fig. 10: Blocksize for the ISS and IAS scenarios with respect
to the number of verifiers. Note that there is variance in
the IAS case due to varying solutions with maximum and
minimum shown on the graph.

reward to each individual decreases, which leads to a decrease
of blocksize. For IAS, we assume five combinations of χ with
limited reward budget. We observe that when the number of
verifiers increases, the average blocksize in both scenarios
decreases due to fixed reward. Limited reward budget leads
to verifiers choosing different contracts. We also add a range
indicator to the IAS case to show the biggest and largest
blocksizes (the blocksize does not change in the ISS case).
The smallest IAS blocksize is always the same as there are
only 5 contracts to choose from. When there are 14 verifiers,
they can only choose between two contracts due to the limited
reward budget. We also observe that the ISS often has larger
blocksizes than the IAS, particularly as the number of verifiers
increases (with constrained budget).

7) Impact of number of combinations χ in term of latency:
Finally, we investigate the complexity of the proposed IAS
with respect to the number of the combinations of latency
li and honesty hi factor values, i.e., χi. We should empha-
size that here we are interested in the relationship of the
computational complexity to the size of the problem rather
than the absolute run-times. We leave the design of a fast-
heuristic to future work. To investigate this relationship, we
use CVX [42] to solve the proposed optimization problem
shown in (14a). The results are depicted in Fig. 11. From
this comparison, we can see that the proposed reward scheme
is bounded by the number of χi’s combinations and that the
execution latency grows only linearly with the number of χ
combinations. Further, this comparison makes clear that the
computational complexity of the solution will not be high.

VII. CONCLUSIONS

In this paper, we have investigated a novel security solution
for SDN supported by edge-blockchain, which interconnects
IoT networks. We proposed an architecture for blockchain-

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 13

0 2 4 6 8 10

Types of

0

1

2

3

4

5

6
E

x
e
c
u
ti
o
n
 l
a
te

n
c
y
 o

f
th

e
 p

ro
p
o
s
e
d
 s

c
h
e
m

e
 (

s
e
c
)

Fig. 11: Evolution of reward scheme with respect to number
of χ’s combinations.

based Software Defined Networks. Then, we suggested the
workflow of the flow verification and validation according
to the architecture of BC-SDN. To support blockchain tech-
nology, we deploy blockchain agents with edge computing
servers to reduce the computational burden on the IoT systems.
Owing to the fact that we use BaaS, we have designed two
reward schemes for an information-symmetric scenario and an
information-asymmetric scenario to tackle the potential moral
hazard caused by the BCAs hosted by a third party edge com-
puting provider. By using the proposed reward scheme based
on contract theory, we can determine the optimal blocksize and
latency of the blockchain and the corresponding reward value.
Finally, we evaluate our system to demonstrate the impact of
different parameters using two different incentive mechanisms.
The results show that the proposed reward scheme can achieve
good social welfare. For our future work, we will consider
how different flow conformance policies can be implemented
within a smart contract.

ACKNOWLEDGMENT

This work was supported within the project SerIoT, which
has received funding from the European Union’s Horizon 2020
Research and Innovation programme under grant agreement
No 780139.

REFERENCES

[1] S. Bera, S. Misra, and A. V. Vasilakos, “Software-Defined Networking
for Internet of Things: A Survey,” IEEE Internet of Things Journal,
vol. 4, no. 6, pp. 1994–2008, Dec 2017.

[2] J. L. Hernández-Ramos, G. Baldini, R. Neisse, M. Al-Naday, and M. J.
Reed, “A policy-based framework in Fog enabled Internet of things for
cooperative ITS,” in 2019 Global IoT Summit (GIoTS), June 2019.

[3] E. Gelenbe, J. Domanska, T. Czàchorski, A. Drosou, and D. Tzovaras,
“Security for internet of things: The seriot project,” in 2018 International
Symposium on Networks, Computers and Communications (ISNCC).
IEEE, 2018, pp. 1–5.

[4] P. Amangele, M. J. Reed, M. Al-Naday, N. Thomos, and M. Nowak,
“Hierarchical machine learning for iot anomaly detection in sdn,” in
2019 International Conference on Information Technologies (InfoTech).
IEEE, 2019, pp. 1–4.

[5] A. Abdou, P. C. van Oorschot, and T. Wan, “Comparative analysis
of control plane security of sdn and conventional networks,” IEEE
Communications Surveys Tutorials, vol. 20, no. 4, pp. 3542–3559, 2018.

[6] X. Wang, X. Li, S. Pack, Z. Han, and V. C. Leung, “Stcs: Spatial-
temporal collaborative sampling in flow-aware software defined net-
works,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 6, pp. 999–1013, 2020.

[7] J. Hu, M. Reed, M. Al-Naday, and N. Thomos, “Blockchain-aided flow
insertion and verification in software defined networks,” in 2020 Global
Internet of Things Summit (GIoTS). IEEE, 2020, pp. 1–6.

[8] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the 2017 ACM International Conference on Management
of Data. ACM, 2017, pp. 1085–1100.

[9] C. Qiu, X. Wang, H. Yao, J. Du, F. R. Yu, and S. Guo, “Networking
integrated cloud-edge-end in iot: A blockchain-assisted collective q-
learning approach,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[10] M. Samaniego and R. Deters, “Blockchain as a service for IoT,” in
2016 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). IEEE, 2016, pp. 433–436.

[11] P. Bolton, M. Dewatripont et al., Contract theory. MIT press, 2005.
[12] M. P. Singh and A. K. Chopra, “Computational governance and violable

contracts for blockchain applications,” Computer, vol. 53, no. 1, pp. 53–
62, 2020.

[13] T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, “Blockchain distributed
ledger technologies for biomedical and health care applications,” Journal
of the American Medical Informatics Association, vol. 24, no. 6, pp.
1211–1220, 2017.

[14] V. Hassija, V. Chamola, S. Garg, N. G. K. Dara, G. Kaddoum, and
D. N. K. Jayakody, “A blockchain-based framework for lightweight
data sharing and energy trading in v2g network,” IEEE Transactions
on Vehicular Technology, 2020.

[15] S. Rathore, B. W. Kwon, and J. H. Park, “Blockseciotnet: Blockchain-
based decentralized security architecture for iot network,” Journal of
Network and Computer Applications, vol. 143, pp. 167–177, 2019.

[16] S. Boukria, M. Guerroumi, and I. Romdhani, “BCFR: Blockchain-based
controller against false flow rule injection in SDN,” in 2019 IEEE
Symposium on Computers and Communications (ISCC). IEEE, 2019,
pp. 1034–1039.

[17] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, and K.-K. R. Choo,
“Blockchain-enabled authentication handover with efficient privacy pro-
tection in sdn-based 5g networks,” IEEE Transactions on Network
Science and Engineering, 2019.

[18] C. Qiu, F. R. Yu, H. Yao, C. Jiang, F. Xu, and C. Zhao, “Blockchain-
based software-defined industrial internet of things: A dueling deep q-
learning approach,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.
4627–4639, 2018.

[19] J. Hu, K. Yang, L. Hu, and K. Wang, “Reward-aided sensing task
execution in mobile crowdsensing enabled by energy harvesting,” IEEE
Access, vol. 6, pp. 37 604–37 614, 2018.

[20] S. Shen, Y. Han, X. Wang, and Y. Wang, “Computation offloading with
multiple agents in edge-computing–supported iot,” ACM Transactions
on Sensor Networks (TOSN), vol. 16, no. 1, pp. 1–27, 2019.

[21] K. Yang, S. Ou, and H.-H. Chen, “On effective offloading services
for resource-constrained mobile devices running heavier mobile internet
applications,” IEEE communications magazine, vol. 46, no. 1, pp. 56–63,
2008.

[22] K. Wang, K. Yang, and C. S. Magurawalage, “Joint energy minimization
and resource allocation in c-ran with mobile cloud,” IEEE Transactions
on Cloud Computing, vol. 6, no. 3, pp. 760–770, 2016.

[23] X. Hu, K.-K. Wong, and K. Yang, “Wireless powered cooperation-
assisted mobile edge computing,” IEEE Transactions on Wireless Com-
munications, vol. 17, no. 4, pp. 2375–2388, 2018.

[24] P. K. Sharma, M.-Y. Chen, and J. H. Park, “A software defined fog node
based distributed blockchain cloud architecture for iot,” IEEE Access,
vol. 6, pp. 115–124, 2017.

[25] P. K. Sharma, S. Singh, Y.-S. Jeong, and J. H. Park, “Distblocknet: A
distributed blockchains-based secure sdn architecture for iot networks,”
IEEE Communications Magazine, vol. 55, no. 9, pp. 78–85, 2017.

[26] P. K. Sharma, S. Rathore, Y.-S. Jeong, and J. H. Park, “Softedgenet:
Sdn based energy-efficient distributed network architecture for edge
computing,” IEEE Communications magazine, vol. 56, no. 12, pp. 104–
111, 2018.

[27] K. Kataoka, S. Gangwar, and P. Podili, “Trust list: Internet-wide and
distributed IoT traffic management using blockchain and SDN,” in 2018

IEEE INTERNET OF THINGS JOURNAL, DOI:10.1109/JIOT.2020.3017354 14

IEEE 4th World Forum on Internet of Things (WF-IoT). IEEE, 2018,
pp. 296–301.

[28] Z. Xiong, S. Feng, D. Niyato, P. Wang, and Z. Han, “Optimal pricing-
based edge computing resource management in mobile blockchain,” in
2018 IEEE International Conference on Communications (ICC). IEEE,
2018, pp. 1–6.

[29] A. Stanciu, “Blockchain based distributed control system for edge
computing,” in 2017 21st International Conference on Control Systems
and Computer Science (CSCS). IEEE, 2017, pp. 667–671.

[30] J. Yang, Z. Lu, and J. Wu, “Smart-toy-edge-computing-oriented data
exchange based on blockchain,” Journal of Systems Architecture, vol. 87,
pp. 36–48, 2018.

[31] M. Liu, F. R. Yu, Y. Teng, V. C. Leung, and M. Song, “Distributed
resource allocation in blockchain-based video streaming systems with
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 18, no. 1, pp. 695–708, 2018.

[32] M. Liu, R. Yu, Y. Teng, V. Leung, and M. Song, “Performance
optimization for blockchain-enabled industrial Internet of things (IIoT)
systems: A deep reinforcement learning approach,” IEEE Transactions
on Industrial Informatics, 2019.

[33] Y. Zhang, M. Pan, L. Song, Z. Dawy, and Z. Han, “A survey of contract
theory-based incentive mechanism design in wireless networks,” IEEE
wireless communications, vol. 24, no. 3, pp. 80–85, 2017.

[34] J. Kang, Z. Xiong, D. Niyato, D. Ye, D. I. Kim, and J. Zhao, “Toward
secure blockchain-enabled internet of vehicles: Optimizing consensus
management using reputation and contract theory,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 3, pp. 2906–2920, 2019.

[35] Y. Zhang, Y. Gu, M. Pan, N. H. Tran, Z. Dawy, and Z. Han, “Multi-
dimensional incentive mechanism in mobile crowdsourcing with moral
hazard,” IEEE Transactions on Mobile Computing, vol. 17, no. 3, pp.
604–616, 2017.

[36] V. Hassija, V. Chamola, G. Han, J. J. Rodrigues, and M. Guizani,
“Dagiov: A framework for vehicle to vehicle communication using di-
rected acyclic graph and game theory,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 4, pp. 4182–4191, 2020.

[37] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G net-
work edge cloud architecture and orchestration,” IEEE Communications
Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[38] C. Cachin et al., “Architecture of the hyperledger blockchain fabric,” in
Workshop on distributed cryptocurrencies and consensus ledgers, vol.
310, 2016, p. 4.

[39] V. Gramoli, “From blockchain consensus back to byzantine consensus,”
Future Generation Computer Systems, vol. 107, pp. 760–769, 2020.

[40] B. Hölmstrom, “Moral hazard and observability,” The Bell journal of
economics, pp. 74–91, 1979.

[41] M. J. Osborne et al., An introduction to game theory. Oxford university
press New York, 2004, vol. 3, no. 3.

[42] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex
programming, version 2.1,” 2014.

Jiejun Hu received her Ph.D. and MSc in the School
of Computer Science and Technology from Jilin
University, China, in 2019 and 2015, respectively.
She is currently a senior research officer in the
University of Essex, UK. Her research interests
include mobile crowdsensing, communication net-
works, future network technology, blockchain and
network security.

Martin Reed (M’99) received the PhD degree from
the University of Essex, United Kingdom, in 1998.
He is currently an associate professor with the
University of Essex. His research interests include
network control planes, information centric network-
ing, network security, and multimedia networking.
He has been involved in a number of EPSRC, EU,
and industrial projects in these areas which have
made contributions to IETF and 3GPP 5G standards.
He has held a Research Fellowship at BT in the
area of access networks. He has led a number of

international research testbeds that demonstrate and evaluate novel networking
protocols and architectures.

Nikolaos Thomos (S’02,M’06,SM’16) received the
Diploma and Ph.D. degrees from the Aristotle Uni-
versity of Thessaloniki, Greece, in 2000 and 2005,
respectively. He was a Senior Researcher with the
Ecole Polytechnique Federale de Lausanne (EPFL)
and the University of Bern, Switzerland. He is
currently an Associate Professor with the Univer-
sity of Essex, U.K., and the Group Leader of the
Communications and Networks Group. His research
interests include machine learning for communica-
tions, multimedia communications, network coding,

information-centric networking, source and channel coding, device-to-device
communication, and signal processing. He is an elected member of the
IEEE MMSP Technical Committee (MMSP-TC) for the period 2019-2022.
He received the highly esteemed Ambizione Career Award from the Swiss
National Science Foundation (SNSF).

Mays F. Al-Naday received the PhD degree from the
University of Essex, United Kingdom, in 2015. She
is currently a Lecturer in the School of Computer
Science and Electronic Engineering, University of
Essex, UK. Prior to that, she worked as a senior
research officer in the Network Convergence Lab-
oratory (NCL), University of Essex. Her research
focuses on future network architectures, includ-
ing microservice architectures, IoT communications,
Fog computing, next generation content delivery
networks and security and Quality of Service in 5G

and beyond. She has been the organizer of prestigious workshops in Sigcomm
17-18 and IFIP 17. She has actively contributed to a number of EU research
projects in the area of future networking architectures.

Kun Yang received his PhD from the Department
of Electronic & Electrical Engineering of University
College London (UCL), UK. He is currently a Chair
Professor in the School of Computer Science &
Electronic Engineering, University of Essex, leading
the Network Convergence Laboratory (NCL), UK.
Before joining in the University of Essex at 2003,
he worked at UCL on several European Union (EU)
research projects for several years. His main research
interests include wireless networks and communica-
tions, IoT networking, data and energy integrated

networks, mobile edge computing. He manages research projects funded by
various sources such as UK EPSRC, EU FP7/H2020 and industries. He has
published 150+ journal papers and filed 10 patents. He serves on the editorial
boards of both IEEE and non-IEEE journals. He is a Senior Member of IEEE
(since 2008) and a Fellow of IET (since 2009).

