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behaviour. It appears that delay is attributable to patent office, not filer, behaviour in our sample. A
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Introduction

A growing body of work has investigated the workings of patent and trademark offices (PTOs) in a
variety of countries. Concern about the quality of patent office reviews has been particularly strong
in the US, (FTC, 2003, NAS, 2004, Jaffe and Lerner, 2004). Aspects that have been studied include
“rational ignorance” (Lemley, 2001), examiner incentives to provide high quality patent review
(Schuett, 2011), disclosure of prior art (Langinier and Marcoul, 2007), patent overload (Caillaud and
Duchene,2011), patent re-examination (Graham and Mowery, 2004), and potential biases in the

review process (Johnson and Popp, 2003).

The last work, by Johnson and Popp, provides empirical evidence that more important patents are
reviewed systematically more slowly by the US PTO. This result was questioned in recent work by
Regibeau and Rockett (2010), who pointed out that when broad technology groupings are used in
econometric work, innovations at different points in their “technology cycles” are combined
together. If major innovations occur disproportionately at the beginning of such cycles, then they
occur at a point where patent examiners may be learning about how to evaluate patents in such a
novel area. Hence, importance and learning effects on delay can be confounded. They argue that
when learning effects are significant this could lead to a positive but spurious empirical correlation

between patent importance and pendency.

This paper presents a similar but extended analysis to confirm and elaborate on the Regibeau and
Rockett results. Specifically, Regibeau and Rockett (2010) analysed a single and somewhat restricted
data set. Confirmation on an independent data set that their effects remain would increase the
confidence one could put in their results. That paper also did not test that data for the presence of
potential strategic effects outside their theoretical model and, more precisely, it did not test the
data for the presence of patent thicket effects. Strategic effects arise and can affect the results
because a patent that is part of a thicket may generate very large rents even if it is not “important”.
For example, a “defensive” patent is a useful bargaining tool to extract profits from infringers if it
merely blocks other patents. Such strategic interactions among patent applicants can affect patent
submission strategies and grant times, affecting the correlation between any single patent’s
importance and its filing behaviour. New patent thicket measures have become available recently,
namely a measure by Clarkson (2004), which this paper applies to its data set before conducting

empirical analysis.

This paper finds that its data set passes these tests so that we reject the presence of a distinct

patent thicket within our data. We then move on to an empirical analysis to confirm the relation



between the importance of a new innovation and its pendency at the patent office. While
confirming the main result of Regibeau and Rockett (2010) that, contrary to Johnson and Popp
(2003) and consistent with Harhoff and Wagner (2009), more important patents are approved more
quickly than less important patents the results in this paper are distinct in a number of ways. The
data set exhibits a much more muted learning effect over the technology cycle than the data of
Regibeau and Rockett (2010). Indeed, while the broad technology class to which our patents belong
exhibits a positive relation between patent pendency and importance in the Johnson and Popp
analysis, merely by specifying a narrower technology this paper is able to recover a negative relation
between pendency and importance. The smaller technology learning effect is not surprising given
the nature of the technology involved, in fact: our earlier data set involved a radically new
technology (genetic modification), whereas this data set involves a much more modest step (stent
development). Hence, the source of the basic sign of the relation is quite different in this paper:
here, the negative relation can be recovered merely by defining a technology narrowly enough that
it represents a single technological innovation. Separating out the learning effect once the
technology has been isolated is not crucial to obtaining the correct sign, as it was in Regibeau and
Rockett (2010). Indeed, Harhoff and Wagner’s (2009) model does not separate out learning effects
but does specify technologies more precisely than Johnson and Popp (2003) and achieves results

linking importance and delay that are consistent with ours.

On the other hand, we find significant individual examiner effects in our data, which increase the
magnitude of our main relation between importance and pendency. As our data is drawn from a
narrow technology, we can compare our results to other studies that used much broader technology
definitions to confirm their results with a stricter control for the type of patent reviewed. The issue
of individual examiner effects was pointed out in Cockburn, Kortum, and Stern (2003), was present
in more muted form in Regibeau and Rockett (2010) and was excluded from Johnson and Popp
(2003). Indeed, as a rather efficient examiner handles a large proportion of our patents early in the
data set, without this control we could find that examination times lengthened over the period of
our data. Rising workloads of examiners and their effect on patent pendency has been discussed
extensively, of course, in practice by Lemley and Shapiro (2005), FTC(2003), and NAS(2004) and in
theory by Caillaud and Duchene (2011). While average workloads rise over the course of time in our
data, we find that the effect of a change in workload at the level of individual examiners and within a
technology are — perhaps surprisingly — reversed: lower workloads are associated with longer
pendency times. This is consistent with Lemley and Shapiro’s (2005) informal concern that heavy
workloads force examiners to devote very little time to each patent review. These authors postulate

the increased workloads at the patent office may have led to lower quality examining. While we



have no evidence of a change in quality within our sample, our findings are consistent with their
view that increased workloads may put pressure on examiners to spend less time on each patent
examination. Our results are qualified, however, since they are not completely consistent across
the sample. In keeping with Cockburn et al (2003), we find that examiner experience does not

generally affect examination delay significantly, and when it does it has inconsistent effects.

Part | of the paper discusses the link between patent pendency and patent importance, with a focus
on separating out the effect of importance itself rather than other effects that could be confounded
with importance. Queries that will be addressed by this paper are the focus of this section. Part
reviews recently proposed measures of patent thickets and the results of these measures when
applied to our data. Part lll presents our empirical results for the relation between patent pendency,

patent importance, and the stage in the innovation cycle. Part IV concludes.

I: Patent Pendency and Patent Importance

We focus on the relation between the approval delay involved in patent office review and the
quality of the underlying innovation. While Johnson and Popp, 2003, presented empirical results
suggesting that more important patents are reviewed systematically more slowly, contrasting
empirical work was presented by Harhoff and Wagner (2009) and Regibeau and Rockett (2010).
Regibeau and Rockett’s model suggests that the delay observed for more important innovation is
composed of two effects. First, delays rise when innovations are early in their “innovation cycle”, in
other words, when innovations are quite novel. For example, early in the years of genetic
engineering, patents based on this new technology were uncharted territory for examiners and so
would have required more review time. Once the technology was established and examiners had
experience in such reviews, review time would fall as the work became more routine with better
known markers for patent quality. If important innovations, in the sense of being highly cited, tend
to occur early in innovation cycles, they will tend to have a disproportionate learning effect and so a
disproportionate delay that is not directly due to importance. Second, delays rise when applicants
or examiners are less diligent in the “give and take” that is involved in patent approval. This process
involves queries raised by examiners and responses made by applicants (or vice versa). Similar to
the refereeing process for academic papers, this process can be undertaken with more or less effort
on both sides. If more important patents are those that generate more social welfare or private
profits, then the effort incentive for the applicant and/or the patent office will tend to be greater,
leading to quicker approval times. The paper tests these implications on a data set that traces a
single and focussed technology (GM food) from inception up to 1999 and finds support for the result

that higher delays tend to be due to a learning effect while lower delays tend to be due to



importance per se. The importance of a patent is measured by its own forward citations, which is
one of the standard measures used in the literature (see Lanjouw and Schankerman, 2004 for

discussion).

Specifically, Rockett and Regibeau (2010) and also this paper test the model:

Approval delay = f(importance, location in innovation cycle, control variables)

Where approval delay is measured as the difference between grant date and application date for a
patent, the location in the innovation cycle is measured either by a time trend or by yearly dummy
variables, and controls include the number of claims in the patent as a measure of patent review
complexity, examiner and attorney dummies to reflect the effects of differences in practice across
individuals as identified in Cockburn et al (2003), and private firm dummies to reflect differences in
behaviour across private firms and other types of organisations that patent (such as universities).
Patent application complexity is important to include in such a specification as the complexity can
clearly affect review time. Further, if more important patents also tend to have more complex
applications, then the effects of importance and complexity can be confounded. The log of delay
was used in initial OLS runs to correct for skewness of the distribution of delay, as noted in Caballero
and Jaffe (1993). We report Cox proportional hazard (survival) model results, although a Weibull
specification generated similar results. Finally, we run a second specification with formal controls
for workload: elapsed time since the appearance of the new technology captures the effect of
“learning the technology”, examiner cumulative experience in reviewing patents captures the effect

of “learning to be an examiner”, and overall yearly workload to captures congestion effects.

The Regibeau and Rockett test is limited in several ways that are addressed here. First it is based
data from a single technology. This is the result of the need to carefully specify what is meant by an
“innovation cycle”: even if a carefully constructed data set such as the Trajtenberg CT Scanner
patents is used, this data combines relatively well-established technologies (such as those relating to
the design of a CT scan examination table) with those of relatively new technologies (such as certain
tracer drugs) so that the learning effect is difficult to isolate. Indeed, even relatively precise
identification of relevant data with patent classes tend to result in data sets that involve a variety of
technologies at different points in their innovation cycle. As a result, a time-consuming method of
reading patent documents was adopted to isolate a single “technology cycle” involving genetic
modification as applied to food. This resulted in rather clean data, but clearly was not suited to a

large data set. Hence, a concern is whether the Regibeau and Rockett (2010) results are specific to



their data set. This paper presents results based on a second, carefully collected, data set and

confirms the earlier results, raising the confidence one can place in their conclusions.

The difference in the test goes beyond the specific data sets analysed, however. First, the effects of
examiner workload and ability are particularly important to control for in the data set of this paper.
While examiner workload and ability were issues in Regibeau and Rockett (2010), workload did not
vary significantly for that data set and examiner ability did not interact significantly with the year of
review. For this data set we have several differences. First, the workload of the examiners involved
rose remarkably in many cases, sometimes as much as ten times in the course of a few years.
Second, the average speed of review differs significantly across examiners and the relative
proportion of our data set handled by these quicker or slower examiners also differs by year. Hence,
controlling for the elapsed time since the beginning of the technology cycle (to allow for “learning
the technology”) and examiner career effects (to allow for “learning to be an examiner”, reflected as
in Cockburn et al (2003) by cumulative patents handled by the examiner), and overall yearly

workload (to allow for congestion effects) is important to capture the various types of learning.

Third, recent work has indicated that where patent thickets are present, strategic effects may affect
behaviour. Indeed, “defensive” patenting for the sole purpose of blocking other patents has been
discussed extensively in the literature (Cohen et al, 2000). For our purposes, a patent that is part of
a thicket may generate very large rents to its owner even if in itself it is not “important”: it merely
needs to block other patents owned by other firms in order to be a useful bargaining tool to extract
profits from devices that infringe the patents. For example, a single profit-generating device may
involve a large number of complementary patents. Strategic behaviour in filing patents that are to
be used as bargaining chips rather than to generate profits based on their own importance is not
part of Regibeau and Rockett’s model: profit streams in their model are generated by single patents
and not by those patents used in combination. If patents generate profit only when used in
combination across patent-holders then the link between profitability and importance of a single
patent can be broken: a patent may generate high profits because it blocks another important
patent, not because its own measure of importance is high. It is, then, necessary to check that the
patent data set used to test their model does not suffer from thicket issues in order to interpret a
negative link between importance and pendency as maximising welfare, as do Regibeau and

Rockett(2010).

More precisely, Clarkson (2004) suggests that standard network density measures can be adapted to
test for patent thickets. Summarising Clarkson’s presentation, a standard network density equation

for a directed network with g nodes is the total number of ties (or linkages) in a network divided by



the total number of possible ties. For example, if x; is the value of a tie between nodes / and j, we

would have density A defined as:
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Applying this to a network of patents, we could have g patents, and we could measure linkages or
ties as citations or references of other patents (equivalent to “outdegrees” in a network model). An
assumption of the standard density equations, however, is that each node can be linked to each
other node. As patents are ranked chronologically, with the potential citations pool of each patent
determined by the relevant population that is available at the time of citing, this is not the case.
Hence, Clarkson proceeds to modify the standard density measure to account for this change in
potential citations pool over time. For example, later patents cannot be referenced by earlier

patents.

List the patents in the network chronologically, then, so that patent (or “node”) n can reference the
n-1 patents earlier in the network. The local patent density for each patent, n, summed up overall g
patents is the number of linkages of that patent divided by its relevant total possible number of
linkages. If we wish the average density, then we can divide this total by g-1. Hence, Clarkson

defines average density measures for either outdegrees or indegrees as:

Where the difference between outdegrees and indegrees is whether the linkages measure
references cited or citations received. Notice that the oldest patent’s local density is discarded for
the formula when outdegrees are measured (as no references within the network could be made)

and the youngest patent’s local density is discarded when indegrees are measured.

When testing the properties of this measure on incompletely connected networks, Clarkson notes
that weighting each local density by the possible number of citations has the advantage of returning
sensible results for complete networks and also means that the measure is not affected by citation
placement (so that the total number of citations and not their distribution is what matters to the

measure). He therefore modifies the measure one last time to generate:
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Notice that the weighting applied cancels out the denominator n-1 in this expression and the
denominator regains its similarity to the original network density expression, above, but the
potential number of links is modified to be only those in a directed network. This is his final
measure. He suggests that the measure be calculated both for the patent network of interest and
for a near universe of patents so that a “thicket”, if it exists, can be detached from its surrounding
universe and identified as a separate thicket. The purpose of this is to identify not just classes of
patents that may be interlinked, but membership in the potential thicket. Where the patent
network density is higher than that of the near universe, a thicket can be “detached” from the
surrounding universe and analysed as a separate pool. Clarkson then goes on to test his measures
on two thickets that were identified by means of third part evidence or litigation. His measure

confirms that both of the pools did, in fact, involve a thicket.

While an advantage of Clarkson’s approach compared to either that of the Von Graevenitz et al
(2011) or the Cohen et al (2000) alternative measures is that it proposes an objective “standard” by
which his patent thicket measure can be judged, a difficulty is that the comparison group may not
have the same technological spread as the original data set that is being tested for thickets. Clearly,
the more narrowly defined a particular technology, the more linkages will occur as “background”
simply due to the requirement to cite technological antecedents. A higher measure on a more
narrowly defined technology may not, then, indicate a thicket problem. If we define the comparison
group for our relatively narrow patent data set to be the technology class to which it belongs,
following Clarkson’s methodology, we compare a narrow patent data set (stents) to a broad class
(prosthetics, roughly). We are likely to find a significant difference in these measures simply
because the comparison group is not another data set that follows a single narrow technology from
inception to the current day, with our data showing a higher thicket measure. Hence, a difficulty
with the Clarkson methodology is that it can return extremely small figures and still represent a
statistically detachable patent thicket compared to its near universe. For example, in Clarkson
(2004), a patent pool that has been externally verified as presenting a thicket is identified with a
density measure of .03. For a measure that varies between zero and one, this low measure as an
indication of a potential thicket “problem” is in itself problematic. Hence, if we use a broad patent
class as our comparison group, we note that this means that the Clarkson thicket measure may be

quite biased towards returning a thicket where none exists.



As Clarkson himself points out, patents linked by citations do not necessarily generate thicket
problems: while his measure may identify a thicket in a narrow sense of a technical linkage, it may
not identify a thicket that matters in any sense of creating a bargaining problem. Indeed, if the
linkages are sparse enough, parties should be able to bargain around those linkages in many cases.
Hence, the bargaining problem that underlies a patent thicket problem requires a dearth of choice in
partnering that is not well captured by ignoring the absolute magnitude of the density or the parties
that are linked. Hence, the measure also is noisy as a reflection of thickets. For our purposes, we
are concerned with whether representing our overall data set with a model of non-strategic
patenting behaviour is a good reflection of the “average” behaviour of our data. If it is either the
case that a low density measure reflects patents are sparsely connected (so that bargaining or other
strategic problems are unlikely to be bad in an overall sense), or just a few patents are very highly
linked (so that strategic behaviour affects a small part of our sample), our approach for the data set
as a whole will be valid. Indeed, our preferred interpretation of this density measure is that the
larger the magnitude of the statistic, the higher the probability that a thicket and its associated
strategic behaviour would arise. This is similar to the way we would interpret a high concentration
ratio in an industry: the higher it is, the more we would be vigilant to problems, but problems need

not necessarily arise’.

As a way of generating a more appropriate comparison group, one possibility is to compare our
density figures with the density of the narrowly defined data sets of Clarkson’s paper. These two
data sets — the MPEG-3 and PRK data sets — are associated with patent thickets that have been
identified externally by legal evaluation as thickets. Clarkson’s adjusted density measures for these

data sets are, respectively, 0.029 and 0.203.

These figures differ by an order of magnitude of ten, so more investigation of which is the more
appropriate figure is in order. First, we could consider the technologies involved to pick the data set
that is closer to our technology class. MPEG-3 involves (roughly speaking) electronics while PRK
involves a medical technology. In this sense, the latter might be more appropriate. Still, neither is
very close to prosthetics as a technology class. We can add to this, however, Newberg’s (2001)
detailed outline of the difference between these two sets of patents and the thicket issues each
presents. The first is a set of patents that present thicket issues because of complementarity. In

other words, the technology they relate to requires a large set of complementary patents in order to

! As afinal note, it is not clear that Clarkson uses net citations in his calculations. Citations of a firm to its own
patents should not create a problem of hold up, as we would associate with thickets nor would it create
strategic issues between firms. Hence, the magnitude of his measures -- as he calculates them -- should
overstate the thicket problem. On the other hand, the control data set in his work also is not based on net
citations, it seems, to it is not clear that the difference between the two is affected by the use of all citations.



be able to perform a function that is valued by consumers. Indeed, the MPEG-3 pool was aimed at
creating a set of standard essential patents covering a wide set of technologies. Hence, the patents
underlying this data set are not necessarily technically related, but they are related legally. This
would not necessarily generate citation linkages between the underlying patents, however, so that
Clarkson’s citations-based measure is probably a poor reflection of the underlying strategic issues
linking these patents. Hence, it is perhaps not surprising that this identified thicket returns such a
low figure by Clarkson’s index. The second — those related to the PRK patent pool -- refer to a set of
patents that by and large are related by substitutability (of two methods of performing a medical
procedure). The rationale for the PRK patent pool was, according to Newberg, primarily to resolve
infringement issues among these patents so that the procedures could be used flexibly by
practitioners. This is much more likely to be an issue that will be well-reflected by patent citation
patterns. Accordingly, this thicket returns a much higher figure by Clarkson’s methodology: his

method is capturing a larger proportion of the thicket issues in the second case.

Our data set does not concern a complex technology, so that any strategic issues would be expected
to be infringement issues rather than standards or other complementarity issues. As such, patent
citations would be a relatively good measure of strategic issues among patents. As our data also
relates to medical technology, we take the PRK database as the more appropriate comparison if we
want a narrow technology group. We also compare our dataset against the broad technology class

within which most of its citations fall in order to follow Clarkson’s methodology.

In sum, we implement both Clarkson’s unadjusted and adjusted measures as he calculates them for
the purposes of this paper; however, we note that a very small figure for the density measure would
give us less confidence in the existence of a thicket than a higher figure. In other words, even if the
measure is statistically different from zero, or from the background measure, we would view the
magnitude of the measure as important in gauging the threat that a set of patent linkages forms. As
our magnitude should reflect the full extent of the patent thicket, similar to the PRK case, we would
compare our figures in the first instance to the network density in that case in order to judge our
data by a similarly narrow technology group. A low reading in comparison to the PRK case or
absolutely would suggest that we should proceed with the non-strategic interpretation of our overall

data set.

Our near universe for the Clarkson methodology uses the technology classes of the bulk of the stent
data, which is primary US classification 623. In some cases class 623 only enters as a secondary
classification, however. We then take a near universe as patents with technology class 623 either as

a primary or a secondary designation. Most patents within this sample refer to prosthetics of some
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type. We eliminate patents that occur within our original data set. As performing the Clarkson
calculation can be onerous for large data sets, we use a random sample of our near universe and

assume this random sample reflects the characteristics of the sample as a whole.

In addition to Clarkson’s statistic, we also verify Cohen et al (2000)’s intuitive classification of
technology classes into discrete and complex technologies and von Graevenitz et al’s (2011)
empirical implementation on EPO data for the applicable broad technology class. These three
measures get at different aspects of patent thickets: Clarkson’s measures reflects the potential for
patent interference of the technology for this particular data set only; von Graevenitz et al’s results
reflect the same potential for a broader technology class containing our technology; Cohen et al’s
reflects of how much conflict and interference actually is felt to occur for the technology class that

contains our data.

Il: Data Set

We gathered data on 887 US patents related to medical stents granted between 1976 and 1999.
The starting year reflected the first appearance of medical stent patents at the US PTO and the end
date was chosen to minimise truncation bias and to minimise the effects of changes in the patent
system itself introduced under the American Inventors Protection Act. Also, after 1999
technological changes in patent examination became prominent, affecting review times (see Chin,
2009). Only those patents granted prior to 1996 were included in the final study to minimise any
selection bias that could result from patents at the end of the data set being precisely those that
were approved the most quickly. This leaves us with a final sample of 658 patents. As most patents
in the data set have approval delays of less than three years, a three year window was viewed as
appropriate to minimise selection effects while maintaining as large a data set as possible. Finally, as
our latest patents had a fifteen year citation history, virtually no citations were still accumulating for
our latest patents. Hence, we do not truncate our citations, as was done in Regibeau and Rockett
(2010) to “level the playing field” across time: we assume we have virtually the entire citation

distribution for all our patents.

The data set involves what is probably best phrased as a technology application or an incremental
technology. This distinguishes our data set from our earlier data on GM food. The earlier data
involved not only a radically different methodology from earlier methods but also a technology
where patentability itself was in question. Indeed, the questions involving how patents should be
written for genetic modification applications were not resolved fully until after the final date of our

earlier data set. The data set underlying this paper involves arterial stents. This technology is
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conceptually closer to its precedents in the broadly defined field of prosthetics than genetic
modification. While many new issues arise in our stent patents, they are those that an examiner
would be familiar enough with that wrestling with how to write the patent and whether the material
was patentable in the first place should not have involved any fundamental challenges for the
examiners. Hence, we expect a much more muted learning effect in this data set compared to our

earlier work.

Our comparison data set for the purposes of calculating our thicket measure is a random sample
drawn from patents with 623 as one of the patent classes. This sample of 154 patents mainly
consists of prosthesis patents, although some other categories are present as well. This sample was
chosen as it captures the patent categories that both our stent data set and the set of patents that
they cite falls into. We also looked at measures where 623 was the primary patent class, although

the results did not change greatly.

lll: Results

Referring to Cohen et al (2000) classification, medical equipment is probably the most relevant
category for our data. Cohen et al classify this as a complex technology, using their system of
dividing their sample at ISIC code 2900 into discrete (less than 2900) or complex ( 2900 or above).
They acknowledge, however, that this system undoubtedly glosses over some heterogeneity within
groups. Von Graevenitz, Wagner, and Harhoff (2011) find, using EPO data and a complexity
classification measure adapted to EPO procedures, that medical equipment has a rather low
complexity score comparable to other ISIC codes classified as discrete by Cohen et al (2000). While
Von Graevenitz et al have no absolute cut-off of when their measure indicates the likelihood of a
problematic patent thicket and when it doesn’t, similar to our discussion they seem to assume that
higher values of their measure raise the likelihood that thickets and their associated strategic
behaviour will arise. Hence, these two methods differ on whether the medical equipment class is or
is not complex so that we are left unsure from these measures whether our technology should be

considered complex — and hence subject to thickets — or not. We turn to Clarkson to resolve this.

All medical equipment is a much larger technological classification than our data set, which is
restricted to a single and rather narrow technological application. Implementing Clarkson’s
unadjusted network density measure to this data, we find that our data set exhibits a measure of
0.0154 (sd 0.0306) if we use outdegrees (backwards citations) and 0.0082 (sd 0.0173) if we use
indegrees (forward citations). Both of these measures are extremely small, and while they are not

statistically different from zero, they are significantly different from the background measures of
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0.0013(sd 0.0045) in outdegrees and 0.0007 (sd 0.0039) in indegrees, using a standard t-test. Given
that the density measures have a range of 0 to 1, these figures are unlikely to be associated with any
effect on strategic behaviour. By this measure, this subset of medical technology is not a prime

candidate to suffer significant strategic patenting problems.

When we use the adjusted network density measure, while the control group’s figure changes
relatively little, rising to 0.0025, the figure for the stent data set rises considerably to 0.0247. While
this figure still is very small, and likely to create no strategic effects if one looks at the absolute
magnitude, the rise in the figure is of concern. The change is due to a large effect of controlling for
the citing population on our narrow data set since it follows a single technology from birth — where
the citing population starts at zero and rises greatly) — compared to little effect on the control data
set (where the change in population belonging to this technology class is not large over the
measurement period). The citing population, then, changes drastically for our data set and very
little for the control group. As a result, it is hardly surprising that the adjusted measure rises much
more for our data set than for the control. On the other hand, it points out that our control is not
really the same type of data set as our original: it does not follow a single technology from inception.
The narrowness of our technology compared to our control group may be making it appear that we
have a problematic thicket where one does not exist. While we are following Clarkson’s

methodology, we are not necessarily following the right methodology.

Comparing our measure to Clarkson’s PRK measure, a similarly narrow technology, we see that ours
(0.025) is about a tenth of the PRK figure (0.203). Comparing it to the PRK case, then, the measure

for our data set is considerably (ten times) smaller.

Taking these together, we tentatively conclude on the basis of the absolute magnitude of our
measure and on the basis of a comparison with a similarly narrow patent data set that our data is no
likely to present strategic patenting behaviour as a result of thicket considerations. We note,
however, that the thicket measures clearly need more work: patent citations are not necessarily
capturing important thicket issues and are noisy measures of strategic behaviour in any case. We

leave a full analysis of thicket measures to future work and now move on to the rest of our analysis.

Importance and cumulative age of the technology are negatively and significantly related in our
sample? while complexity of the patent application rises with the cumulative age. We observe,

however, that combining these two opposing effects of rising potential learning with rising potential

? Relating importance to age of the technology, we obtain a coefficient of -0.0153***, while relating
complexity to age of the technology we obtain a coefficient of 0.00062**.
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complexity of the task, patent examiner delay does not fall over time significantly in simple

tabulations®.

With this as background, we can now replicate the earlier results of Regibeau and Rockett (2010) on
the Stent dataset. We present our results in tables 1 and 2, in equations controlling for examiner

and attorney effects but not reporting these coefficients®. Several features stand out.

Tables 1 and 2 about here

First, our main result that importance of a patent, as measured by citations, is negatively related to
patent pendency is supported by this data. Second, claims enter into pendency with significant and
positive coefficients, reflecting the effect on pendency of the complexity of the task facing the

examiner. Both of these results confirm those of Regibeau and Rockett (2010).

The effect of the evolution of the technology is insignificant on the truncated data set, suggesting
that learning effects are small; however the technology is not a conceptually large step from earlier
work so this is not surprising. Indeed, importance and delay are negatively related even if the data is
taken in cross section’, confirming that when learning is modest defining the technology narrowly is
sufficient to recover the negative relation between importance and delay. We note that Harhoff and
Wagner (2009) present a model where they define technology more narrowly than Johnson and
Popp (2003) but where learning effects are not a focus. They recover the negative relation between
importance and delay, as we do. Our results suggest that their approach can be valid if learning

effects are not too large.

The effect of applicant type also is insignificant in our data, as private firms do not behave
significantly differently from other types of applicant. Hence, while Regibeau and Rockett
postulated that patent filer behaviour, such as eagerness and promptness to satisfy examiner
requests, could be the driving force behind their importance-patent delay relation, and that those
incentives would be stronger for private firms, no such effects appear to be present in this data set

despite the presence in the earlier analysis. Hence, our results are perhaps more consistent with the

® Relating examiner delay to age of the technology, we obtain an insignificant coefficient of 0.00003.

* Full results are available from the authors. While some examiner and attorney coefficients are significant —
and as a group they are significant — they do not present much interest in themselves.

> Not surprisingly, the coefficient on the cross section is barely different from the reported results at
-0.000482*** when claims are controlled for.

14



model variant where delays are attributable to patent office -- rather than patent filer — behaviour
for this data. Lacking data in the US on examiner and applicant delays in the examination process,
this is probably the closest we can come to determining empirically which side of the negotiations is
driving the pattern of behaviour we observe. Indeed, Palangkaraya et al (2008) find evidence of
strategic delay by applicants in an international patent matched sample, but takes applicant delay at
the US patent office as zero. Given that we analyse US data, it is perhaps unsurprising that we find

most delay attributable to patent office behaviour, then.

Moving on to the examiner and attorney dummies, while these are not reported for space reasons a
large number of the dummies are significant. Indeed, the effects of individual examiners and
attorneys is of higher magnitude than in our earlier data set. Including the examiner and attorney

effects in the regression affects the magnitude of the coefficients, but only modestly however.
We report the results of a workload analysis in table three.
Table 3 about here

Focussing on individual examiner workload effects and individual examiner learning about the “job
of being an examiner”, we find inconsistent effects of congestion effects within our data set -- and
hence, controlling for the technology reviewed. These effects are found controlling for the age of
the technology, and hence the familiarity of the underlying concepts. For the majority of examiners,
the effect of congestion is negative (although they are not always significant): the higher the
workload, the less time the examiner puts into each patent, all else equal. This is consistent the
concern of Lemley and Shapiro (2005) that increased workloads might result in less time (and in their
view, perhaps sloppier) reviews. Our support for their contention is qualified, however. First, we do
not have any evidence that reviews decrease in quality in this data set, however, as there is no legal
case history related to this dataset to date. Second, the effect is not consistent: for one examiner, a
a heavier workload increases time spent per patent significantly, and for some others it has no
significant effect. It may be, then, that examiners react in different ways to increased demands from
the job and that this concern is not particularly serious across all examiners. Finally, we note that
our data is drawn from a time when technological change in the process of examining had not really
taken effect so that increased proficiency learning the new computerised system is probably not at

the heart of our results.

The effect of experience in the job also is mixed. We take only consider the effects of learning
within the time an examiner served as primary examiner. This usually occurs after a significant

period of serving as secondary examiner, so that one would expect that most learning already would
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have occurred for our examiners. By and large this is true, with few significant coefficients and with
a minimal effect even when the coefficient is significant. Most significant coefficients are negative
as one would expect for an examiner “learning the job”, but for one examiner the effect is significant
and positive. Probably the right interpretation is to treat this examiner as an exception: we must

assume that our controls are insufficient to take into account this person’s circumstances.

Conclusions

We replicate and confirm that patent importance and patent examination delay are negatively
related. We confirm that a narrow definition of a technology cycle can be sufficient to recover this
relation where learning effects are modest. We use new measures of patent thickets to confirm that
strategic filing behaviours probably are not affecting our results. That being said, while our measure
of patent interactions is quite small in an absolute sense we do note that more work needs to be
done on thicket measures. In particular, defining the correct comparison group appears quite
important for the methodology we implement. We leave a full re-working of thicket measures to
future work, however, and proceed with our discussion based on Regibeau and Rockett (2010). We
note that in our data set, filer behaviour is not supported as the main cause our importance-delay
relation since private firms and non-private entities appear to be insignificantly different. Examiner
fixed effects are strong and including them increases the magnitude of our main relation modestly.
Examiner workload results are consistent with the view that overloaded examiners devote little time
to any single patent, but this relation does not seem to hold consistently across the entire examiner
group. This suggests that while this is a concern, it may not be a concern that has serious effects on

patent examination as a whole.
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Tables

Table 1: OLS, Cox and Weibull Results for Complete and Truncated Samples using linear time trend

variable (File Date)’

oLS oLS Cox Complete | Cox Weibull Weibull
Complete truncated Truncated Complete Truncated
Constant 7.049%* 6.511%** NA NA NA NA
(0.160) (0.200)
File Date -0.0000458*** | 0.00000 1.000168*** 1.000052 1.000272*%** | 1.000153**
(0.0000126) (0.0000) (0.0000466) (0.000047) (.0000365) (0.0000753)
Citations -0.000365%** | -0.00044%** 1.00101%** 1.00101*** 1.001443%** | 1.001515%**
(0.000114) (0.00002) (0.000334) (0.00034) (0.000344) (0.000423)
Claims 0.0046*** 0.00424*** 0.9893335%** 0.98863*** 0.9892634*** | 0.98838***
(0.001) (0.00137) (0.00266) (0.0035) (0.00295) (0.00389)
Private 0.0315 0.0563 0.9446 0.92 0.906 0.866
Firm (0.0306) (0.0375) (0.0846) (0.096) (0.0786) (0.103)
Dummy

Standard errors in paretheses; * p<0.10, **p<0.05, ***p<0.01. Coefficients greater than 1 in

survival analysis correspond to negative OLS coefficients in our specification. See Regibeau and
Rockett (2010).

"Examiner and attorney dummies not reported.

Table 2: OLS, Cox and Weibull results for complete and truncated samples using yearly time

dummies’
OoLS OoLS Cox Cox Weibull Weibull
Complete truncated Complete Truncated Complete Truncated
Constant 6.505%** 6.485%** NA NA NA NA
(0.0439) (0.052)
Citations -0.00045*** -0.00047*** 1.001463%** 1.00136*** 1.001843%** | 1.0016***
(0.00012) (0.000131) (0.000376) (0.0004) (0.000394) (0.000413)
Claims 0.00443*** 0.00428*** 0.987733*** 0.98738*** 0.987842*** 0.98732***
(0.001) (0.00134) (0.00241) (0.00355) (0.00274) (0.00391)
Private 0.0361 0.0520 0.9289 0.926 0.911 0.911
Firm (0.03) (0.0356) (0.0824) (0.0968) (0.0885) (0.102)
Dummy

Standard errors in paretheses; * p<0.10, **p<0.05, ***p<0.01. Coefficients greater than 1 in survival

analysis correspond to negative OLS coefficients in our specification. See Regibeau and Rockett

(2010).

"Examiner and attorney dummies not reported
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Table 3: Congestion and Experience effect per examiner (only top 15 examiners in terms of patents

reviewed within the sample are included)

Examiner Congestion effect Experience effect

1 -0.0154** -0.00051
(0.0072) (0.0004)

2 -0.0021** -0.00048
(0.001) (0.0004)

3 0.00737 -0.00239*
(0.006) (0.00146)

4 0.00005 0.00019
(0.0047) (0.0005)

5 -0.00219 -0.00003
(0.005) (0.0007)

6 -0.00745 0.00196
(0.005) (0.0017)

7 -0.00384*** 0.0001
(0.0012) (0.0002)

8 -0.0044* 0.0003
(0.0025) (0.00022)

9 -0.00284 0.000174
(0.0055) (0.0014)

10 0.00168 -0.00128%**
(0.0011) (0.00039)

11 0.00036 -0.00016*
(0.00087) (0.00008)

12 -0.00107 -0.000054
(0.00082) (0.000056)

13 -0.0376*** 0.01896***
(0.0115) (0.00536)

14 -0.00234** 0.00005*
(0.001) (0.00003)

15 0.0871%** -0.0025***
(0.008) (0.00029)

Standard errors in paretheses; * p<0.10, **p<0.05, ***p<0.01
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