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Volcano Eruption Algorithm for Solving
Optimization Problems
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Abstract—Due to certain attractive features of meta-heuristics,
these algorithms have gained popularity in solving optimization
problems and have been considered by many researchers.Because
meta-heuristics solve just some of optimization problems, so
proposing a meta-heuristic to solve all optimization problems
in both kinds of discrete and continous problems could be
significant. This paper proposes an algorithm based on simulation
of volcano eruption process, which solves NP-hard problems
such as non-linear and multi-level programming problems. The
algorithm’s feasibility and efficiency is then evaluated by applying
it to solve a number of test problems reported in the literature.
Based on the solutions and number of required iterations, it is
concluded that the proposed meta-heuristic algorithm performs
remarkably well. Finally, the proposed algorithm solves some
large size benchmark linear programming and also the routing
problems in the Internet of Vehicles (IoV).

Index Terms—Volcano Eruption Algorithm, Meta-Heuristic
Approaches, Internet of Vehicles Problem, Optimization Prob-
lems.

I. INTRODUCTION

Meta-heuristic algorithms can be used to train neural net-
work in solving real-life problems, though every approach
has its own limitations. Some of the prominent meta-heuristic
algorithms include Particle Swarm Optimization (PSO) [1]
[22] and Autonomous Particles Groups for PSO, (AGPSO)
[23] Bat Algorithm (BA) [6] and its recent application in
optimizing beamforming for mmWave in 5G communication
[24], Fire Fly (FF) [9]. On the other hand, there are some more
nature creature inspired algorithms were proposed recently
to solve optimization problems, such as: Whale Optimization
Algorithm (WOA) [25], Ions Motion Optimization (IMO) [26]
and Grey wolf optimizer (GWO) [27]. While other are in-
spired from nature phenomena, such as: Chaotic Gravitational
Search Algorithm (CGSA) [28] and the recent application of
Multi-Verse algorithm in optimizing the accuracy of fraud
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detections in smart e-commerce ecosystem [29]. However, no
heuristic algorithm is the best suited to solve all optimization
problems. Moreover, limitations of expensive computational
cost, occurrence of premature convergence, mutation rate,
crossover rate, time consumingtness evaluation leads to en-
hance existing algorithm or propose new one. In machine
learning, classi cation is a supervised learning process to
determine appropriate dataset for a new observation based on
the performance through training set. In machine learning,
classification in a supervised learning process refers to the
process of computer learning to which class of data a new
set of observation belongs. This is based on a prior learning
conducted on a labeled training set. Evolutionary or nature-
inspired metahueristic algorithms can be a good option in
the process of designing/training a classification system. As
an example, Support Vector Machine (SVM) is an efficient
supervised learning algorithm that can be applied for classi-
fication [8]. The optimization of SVM parameters is possible
through algorithms like PSO or FF. Feature selection plays
a vital part of the classification. It turns out that feature
selection can be achieved through parameter optimization of
SVM using a meta-heuristic algorithm [8]. Feature selection
through this process is another example of an application
area where a metahueristic approach could be effective. It
should be noted however that there are certain challenges with
SVM such as: its high algorithmic complexity which leads
to higher computational cost, extensive memory requirements,
and selection of appropriate kernel parameters which may be
tricky [10]. As a result, success of a meta-heuristic approach
in one instance, may not guarantee a similar success in
another instance. Nevertheless, optimization researchers have
proposed heuristic approaches for solving some specific prob-
lems (e.g. see [1-3] and references cited therein). Additionally,
researchers have tried to solve optimization problems by
simulating several algorithms based on behavior of animals
and insects, natural phenomena, or scientific theories [4-
13]. Some of these proposed algorithms are: artificial bee
colony algorithm [4], krill herd algorithm [5], social spider
optimization [7], chicken swarm optimization (CSO) [8], big
bang algorithm (BBA) [10], laying chicken algorithm (LCA)
[11,18], modified genetic algorithm [12], [30], combined meta-
heuristic and classic algorithm [13]. Almost all previous meta-
heuristics have been inspired from behavior of animals or
insects and only one of them has been simulated from a sci-
entific theory [10]. Other related works about state-of-the-art
machine learning and optimization algorithms: Collaborative
Filtering Bandits [31], Distributed Clustering of Linear Bandits
in Peer to Peer Networks [32], Mining λ-Maximal Cliques



2

−2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
Epsilon=0.01

y

(a)

−2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
Epsilon=0.1

y

(b)

−2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
Epsilon=0.25

y

(c)

−3 −2 −1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

x
Epsilon=0.4

y

(d)

Fig. 1. Movement of initial population and generation of the next population
by different epsilons.

from a Fuzzy Graph [34], Stochastic Optimization Techniques
for Quantification Performance Measures [35].

A. Main Contribution

This paper proposes for the first time an algorithm which has
been inspired from a natural event, that is, volcano eruption.
The algorithm is a new optimizer for solving various types
of continuous and discrete optimization problems like linear
and non-linear, multi-level and multi-objective, transportation
and Internet of Vehicles (IOT), and so on. In this article,
we first present the underlying concept of Volcano Eruption
Algorithm (VEA) and will then present various steps, which
converts this natural process into an optimizer. VEA is then
implemented through few simple MATLAB codes which are
based on initial population, movement of solutions, explosion
and eruption in the space. Therefore, the algorithm has an
acceptable computational complexity. The proposed algorithm
originates from a scientific process, involves simple steps,
and implementation. Finally, VEA provides acceptable best
solution in relation to other meta-heuristics because it uses
different directions and large region of feasible space. On the
other hand, the algorithm requires a high number of solution in
each iteration because of changing of all solutions in different
directions.

II. MOTIVATION

An opening or a hole on the surface of earth that acts as a
vent for release of pressurized gases, ashes, and molten rock
or magma deep beneath the surface of earth is referred to as
a volcano. Deep under ground, pressurized magma is passed
through a passage way or a conduit, called the volcanic pipe.
Magma is referred to as lava when it reaches the hole on
the surface of earth and erupts out of it [14]. There are a
number of stages leading to formation of a volcano that can
be summarized as follows:

1) Rise of magma through cracks in the earth.
2) Build up of pressure.
3) Volcanic eruption and rise of magma to earth’s surface.
4) Formation of a crust as a result of lava’s cooling down.
5) Repetition of this process over time leading to several

layers of rock that builds up over time resulting in a
volcano.

In this section, volcano simulation as a new meta-heuristic
and volcano eruption algorithm (VEA), is discussed. In the
process of volcano eruption, mass of magma is needed at the
first step of this process, so VEA starts with some solutions
as initial population. In the volcano eruption process, magma
rises through pipes, hence, similar idea is used to move
some of solutions in different directions for certain determined
distances. In the next step, all solutions will come down and
move again in different directions just like the process of
volcano eruption. Finally some of solutions in the “pipes”,
and points near the surface of earth, are exploded in the region
of optimization programming problem. This steps comes from
eruption of volcano at the top of the mountain into the space.
Best solution of all populations will be found and the algorithm
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is continued using this solution as the initial solution for the
next iteration.

In general, the presented algorithm has been simulated based
on the process of volcanic eruption from the formation of
magma until explosion to the space. VEA is based on both
solution and population. In the other words, the algorithm
starts from a solution and tries to generate initial population
near it, and as it progresses, it changes and modifies the
population and set of solutions, in each iteration.

It should be noted, that each meta-heuristic is inspired
from either the behavior of animals, insects, or certain nat-
ural events. Chemical pheromone of ants is the fundamental
concept used for ant colony optimization; it is the direction and
global best for particle swarm optimization; and light of fire-
flies for fire fly algorithm. Similarly, laying chicken algorithm
is simulated based on warming of eggs as its main concept,
and big bang algorithm focuses on explosion of particles. In
the VEA algorithm presented below, the movement of magma
from inside the ground to top of mountain and its explosion
is the main concept for simulation of VEA.

III. THE VOLCANO ERUPTION ALGORITHM (VEA)

Details of VEA is discussed in this section. Mathematical
equations; details of volcano eruption simulation; and various
steps in the process of the algorithm to find the optimal
solution in an optimization problem are outlined in an orderly
fashion.

A. The Solutions and populations

Initial solution is created randomly and initial population is
generated nearly the same as magma in the volcano eruption
process. In fact, initial population in VEA displays the mass
of magma deep inside the ground. In volcano eruption process
magma is distributed in different directions through pipes
(points near surface of the earth). This natural phenomenon
point to an appealing approach as to how to distribute solution
of initial population in different directions.

Each solution xi in initial population is created randomly
very near to initial solution x0 using one of following prob-
ability distribution functions, also provided in MATLAB: a)
Probability function of the binomial distribution (binomi-
alPF); b) probability function of the geometric distribution
(geometricPF); c) probability function of the hypergeometric
distribution (hypergeometricPF); d) probability function of
the Poisson distribution (poissonPF), and according to the
following formula:

||xi − x0|| ≤ ε (1)

In Rn, i=1,2,. . . ,n , ε is a small positive number.
In Figure 1, feasible solutions in the initial population (small

blue points) and their movement in different directions have
been shown for a given problem, the red large point on the
figure is the optimal solution. Next population (black points),
is distributed by random directions and formula (1) with ε=1,
ε=0.01. Movement in different directions is based on the
following equation:
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Fig. 2. Eruption and explosion of the population by different epsilon.

xj+1 = xj + λdrj (2)

drj is the jth random direction to up of the solution.

B. Explosion and eruption

Solutions of the current population (black points in Figure
2) will be exploded (green points) and erupted (red points) in
feasible space. This has been simulated based on explosion
and eruption of volcano at the top of the mountain. In fact,
solutions are changed in direction of the vector which connects
solutions and the center solution of the population. These
movements are according to the following equations:

xj+1 = xi + αdcj (3)

xj+1 = xi − βdcj (4)

where dcj is the vector which connects xc, xj and α, β
are positive constants and xc is the solution which comes
from initial solution in previous direction to compose this
population (center solution). Also, equation (3) represents the
formulation of the explosion, and (4) represents the eruption.

VEA finds the best solutions in all populations in
this iteration. All population includes: initial population,
second population which is created after movement of
initial population in different directions (black points), third
population which is generated after explosion using equation
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Fig. 3. Steps of the algorithm to solve a give problem.

(3) (green points), and finally the fourth population which is
constructed after eruption and using equation (4) (red points).
The best solution in this iteration is found and is shown by
large blue point. The algorithm will be continued using the
best solution as initial solution for the next iteration. This
process in the first iteration has been shown in Figure 2 with
ε=1, ε=0.01.

Algorithm 2 shows the pseudo code for this stage.

C. Algorithm
Pseudo code for this step is provided in Algorithm 1.

Algorithm 1 Pseudo code of solutions and populations
1: n: Number of solutions
2: ε: A given small positive number
3: Generate a random initial feasible solution
4: Generate initial population near initial solution according

to (1)
5: for i = 1ton do
6: Generate solution of population based on (2)
7: end for

Algorithm 2 Pseudo code of explosion and eruption
1: λ is given constant
2: n is the number of initial population
3: for j = 1ton do
4: xj+1 = xi + λd
5: end for
6: for i = 1ton do
7: xi+1 = xi + λd
8: end for

The algorithm can be summarized in various steps as
follows:

1) Initial solution will be generated randomly. It will be the
origin for constrained problems (optional).

2) Initial population is generated near to the initial solution.
Here ε is a given positive small number, j=1.

3) Solutions will be moved into different directions for a
specific distance. (Until pipes)

4) New solutions near pipes will be generated.
5) a) Explosion of the solutions near pipes.

b) Coming down of solutions near pipes from different
directions.

6) Find the best solution of the population. If j < 2, let
j=j+1 and go to the step 2 with the best solution serving
as the initial solution to the next population.

7) If d(f(xj+1), f(xj)) < ε , then the algorithm will
terminate and xj+1 is the best solution by VEA, xj is
the best solution in the jth iteration. Otherwise, let j=j+1
and go to step 2 where d is the following metric:

max
i

|f(xij+1)− f(xij)| = d(f(xj+1), f(xj)) (5)

The following theorem proves that the proposed VEA
algorithm as presented in the above steps is convergent.



5

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−3

−2

−1

0

1

2

3

4

5

6

x

y

(a) Solutions near(1.5,-2) and optimal solution

−6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

x

y

(b) Generation 1

−6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

x

y

(c) Generation 2

−6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

x

y

(d) Generation 2

Fig. 4. Finding optimal solution by VEA- Example 1.
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Fig. 5. Process of finding optimal solution by VEA- Example 2.
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Theorem 1: The sequence of Fk which was proposed in
steps of VEA, [5], is convergent to the optimal solution.

Proof: Let
(Fv) = (F (tv)) = (F (tv1), F (t

v
2), ..., F (t

v
n)) = (F

(v)
1 , F

(v)
2 , ..., F

(v)
n )

According to step 6

max |f(xij+1)−f(xij)| = d(f(xj+1), f(xj)) = d(Fj+1, Fj) < ε1

Therefore |f(xij+1)−f(xij)| for each i. There is large number
such as N which k + 1 > k > N and j = 1, 2, ..., n. . Now
we have:

|F (k+1)
j , F

(k)
j | < ε1

Now let m=k+1, r=k then we have:

|F (m)
j , F

(r)
j | < ε1 For m > r > n

This shows that for each fixed j, 1 ≤ j ≤ n, the sequence
(F

(1)
j , F

(2)
j , ...) is Cauchy of real numbers, then it converges,

say to Fk. Using these n times, we define (F1, F2, ..., Fn)
and if m=k+1, r=k,

d(Fm, Fr) < ε1

Now if Fk we have

d(Fm, Fr) ≤ ε1

This shows that F is the limit of Fm and the sequence is
convergent, hence proving the Theorem.

Figure 3 shows the steps and progress of the algorithm in
finding the optimal solutionR2.

D. Mathematical nature of the algorithm

Mathematical nature of the algorithm is based on four
phases:

1) Generation of feasible initial solution and population.
2) Movement of solutions to improve population and reach-

ing better s tions.
3) Termination of the algorithm to propose the best solution.
4) Convergent of the algorithm.

Firstly, a feasible solution is created randomly in the feasible
region. So to produce feasible initial population, it is generated
near enough to initial solution based on the following formula:√

(xi1 − x01)2 ++(xi2 − x02)2 + ...+ (xin − x0n)2 ≤ ε
In this phase, the algorithm tries to move solutions of initial
population in different random directions to have high chance
for finding better solutions. This movements is based on
equation (2).
In the second phase, explosion and eruption of volcano is
simulated by going up and then coming down based on
equations (3) and (4).
In the third phase, termination of the algorithm is based on
the following condition:
If d(f(xj+1), f(xj)) = Max|f(xij+1) − f(xij)| < ε hen the
algorithm will be finished and xj+1 is the best solution by
VEA xj is the best solution in jth iteration.

Finally, convergence feature of VEA has been proven by the
above condition and theorem 1.

IV. COMPUTATIONAL RESULTS

To show efficiency of the algorithm, two classes of opti-
mization problems are considered and solved: a) continuous
problems with small size, and b) discrete and practical prob-
lems with large size. Then VEA is used to solve internet of
vehicles problem.

A. Continuous Problems

In this subsection, almost all kinds of continuous optimiza-
tion problems: constrained, unconstrained, linear, non-linear,
multi-level and multi-objective will be solved.

Example 1 [15](Constrained - Non-linear)

Consider the following non-linear programming problem:

min−(x1 − 4)2 − (x2 − 4)2

subject to

x1 − 3 ≤ 0

−x1 + x2 − 2 ≤ 0

x1 + x2 − 4 ≤ 0

x1, x2 ≥ 0

(6)

Comparison between VEA and other classical methods in
references is shown in Table I.

In Figure 4, the initial and optimal solutions and different
populations of the algorithm for Example 1 is shown. The
large blue point in Figure 4 is the optimal solution which has
been found by solutions after 2 iterations.

Example 2 [16] (Multi-Level)

Consider the following linear bi-level programming prob-
lem:

minx− 4y

subject to

min y

subject to

x+ y ≥ 3

−2x+ y ≤ 0

2x+ y ≤ 12

3x− 2y ≤ 4

x, y ≥ 0

(7)

Using KKT conditions the problem will be converted into the
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TABLE I
COMPARISON OF VEA AND OTHER METHODS - EXAMPLE 1

Algorithms N. Agents N. Iterations Optimal Solu-
tion

F Min ε Initial
Soltion

VEA 16 1 (0.4,0.09) -28.17 1 (1.5,-2)
VEA 16 2 (0.2,0.09) -29.65 1 (1.5,-2)
Other Methods [15] (0,0) -32

following problem:

minx− 4y

subject to

−λ1 + λ2 + λ3 − 2λ4 = −1
λ1(−x− y + 3) = 0

λ2(−2x+ y) = 0

λ3(2x+ y − 12) = 0

λ4(3x− 2y − 4) = 0

−x− y + 3 ≤ 0

−2x+ y ≤ 0

2x+ y − 12 ≤ 0

3x− 2y − 4 ≤ 0

x, y, λ1, λ2, λ3, λ4 ≥ 0

(8)

The bi-level programming problem is NP-Hard because of its
two objective functions. In fact, these two objective functions
should be optimized in two different levels at the same time.
Therefore, proposing a solution for this problem is significant.
VEA proposed the optimal solution same as exact algorithms
according to Table II. Number of iterations to find the optimal
solution is completely down.

Behavior of solutions, constraints of the problem and
optimal solution have been shown in Figure 5.

Example 3 [20] (Multi-Objective)

Here VEA is used for solving DTLZ benchmark problems
[21]. Behavior of the algorithm in finding the pareto optimal
for DTLZ1 problem is shown in Figure 6. The fact that some
of solutions in the population have reached to pareto optimal
solution, illustrates the feasibility of the algorithm as shown
in Figures 6-c, 6-d, which also indicate the initial population.
Also, efficiency of the algorithm is obvious by comparison
of Figure 6-a, 6-f. Most of solutions are completely far from
pareto optimal at first, but during the process, the algorithm
solutions achieve pareto optimal. Figure 6-f shows that the
last population has surrounded pareto optimal solutions.

Table III shows the comparison of best solutions to get
Pareto optimal of DTLZ problems by VEA and the best
method in [21].
Example 4
Consider Rastrigin Function (RF) which is a non-convex
optimization problem.

min 20 + (x2 − 10cos(2πx)) + (y2 − 10cos(2πy)) (9)

Figure 7 shows the process of finding optimal solution by VEA
for Example 4.
Example 5

Consider Ackley Function the (AF):

min−20exp(−0.2
√

0.5(x2 + y2))− exp(0.5(cos(2πx) + cos(2πy))) + exp(1) + 20
(10)

Figure 8 shows the process of finding optimal solution and the
results of it respectively.
Example 6

Consider Hölder Table Function (HTF):

min−|sin(x)cos(y)exp(|1−
√
(x2 + y2)/π|)| (11)

The problem has been solved by VEA, the process of the
algorithm, initial population, optimal solution of generations
and constraints of the problems have been shown for two
iterations in Figure 9.
Example 7

Consider Mishra’s Bird Function (MBF):

min sin(x)exp((1− cos(y))2) + cos(y)exp((1− sin(x))2) + (x− y)2
(12)

The problem has been solved by MVA, the process of the
algorithm, initial population, optimal solution of generations
and constraints of the problems have been shown for two
iterations in Figure 10.

B. Large size practical problems
To show efficiency of the algorithm for real life/size prob-

lems, in this section three kinds of practical problems have
been solved: large size real linear programming problems,
transportation problems and internet of vehicles problems.

Some benchmark linear programming have been solved and
the results of Table IV indicates VEA can solve large size
problems. Through a comparison with “Linprog”, the Matlab
tool for solving linear programming problems, the superiority
of VEA has been demonstrated.

Absolute error of “Linprog” and VEA from the optimal
solution in Table V indicates that the classic method is
completely impractical and VEA is strongly efficient.

Finding a suitable feasible solution of transportation prob-
lem is remarkable, so VEA was applied to some random
transportation problems [3]. The results are shown in Table
VI.

In Table VII, comparison with Vogel algorithm, which is
the best algorithm to find feasible solutions of transportation
problem,confirms the superiority of the proposed VEA.



8

TABLE II
COMPARISON OF VEA AND OTHER METHODS (O.M)- EXAMPLE 2

Algorithms N. Agents N. Iterations Optimal Solu-
tion

F Min ε Initial
Soltion

VEA 24 1 (3.4,3.1) -9 1 (2,1)
VEA 24 2 (4,4) -12 1 (2,1)
Other Methods [16] (4,4) -12
Other Methods [16] (3.9,4) -12.1

TABLE III
COMPARISON OF VEA AND OTHER METHODS FOR DTLZ PROBLEMS

Problems k ParEGO VEA
min mean max min mean max

DTLZ1 3 13.42 52.47 112.7 9.13 31.24 78.18
DTLZ1 4 18.63 45.45 87.76 11.57 32.21 59.32
DTLZ1 10 NA NA NA 1.12 1.78 2.95
DTLZ2 3 0.151 0.191 0.243 0.093 0.105 0.164
DTLZ2 4 0.289 0.337 0.408 0.099 0.187 0.275
DTLZ2 10 NA NA NA 0.081 0.123 0.187
DTLZ3 3 81.15 145.5 261.6 52.56 123.26 213.77
DTLZ3 4 66.93 138.1 209.4 43.32 107.41 186.24
DTLZ3 10 NA NA NA 0.85 1.14 1.96

TABLE IV
RESULTS OF VEA FOR MORE TEST PROBLEMS

Name Size Optimal Linprog VEA N.
Iterations

agg 489 163 -3.5991767287E+07 -3.9217e+16 - 3.59917e+07 10
qap8 913 1632 2.0350000000E+02 -1.6987e+16 2.144e+02 20
SC50A 51 48 -6.4575077059E+01 -6.5313e+20 -6.4879e+01 5
AFIRO 28 32 -4.6475314286E+02 -1.4505e+29 -4.7361e+02 5
Random
Problem

1000 5000 -400.6831e+36 -124.3891e+07 500

TABLE V
COMPARISON ERRORS OF VEA AND CLASSIC METHODS

Name Error of
Linprog

Error of VEA

agg 3.9217e+16 67
qap8 1.6987e+16 11
SC50A 6.5313e+20 0.3
AFIRO 1.4505e+29 8.9

C. Route Optimization Design in Internet of Vehicles environ-
ment

The objective of this problem is to maximize the con-
nectivity probability and link quality of the available routes
from source to destination as illustrated in Fig. 11 [19].
The maximization process is subject to Signal to Interference
and Noise Ratio threshold (SINRth) in order to find more
reliable and connected route in urban SDN based vehicular
scenarios. The city road networks in vehicular scenario is
represented as graph model G(i,e) where i is an intersec-
tion and e is the road segment between two intersections.
Therefore, each optimal route ζ consists of a set of in-
tersections (i1, i2, i3, i4, i5, i6, ......., im) and a set of streets
(e1, e2, e3, e4, e5, e6, ......., en), where n=m-1. According to

the aforementioned assumptions, the objective function of the
optimization problem can be written as:

max
ζ

F (ζ) = λ1 × PC(ζ) + λ2 × SINR(ζ) (13)

where PC(ζ) =

n∏
i=1

PC(ei),

SINR(ζ) =

∑n
i=1 SINR(ei)−

∑n
i=1 SINRth(ei))∑n

i=1 SINR(ei)
,

(14)
subject to

SINR(ζ) ≥ SINRth(ζ).
(15)
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TABLE VI
COMPARISON AMONG VEA AND OTHER ALGORITHMS FOR LARGE SIZE PROBLEMS

Problems Size North-West Vogel VEA
Transportation 1 80 20 132804 30123 22150
Transportation 2 100 25 177666 26462 24367
Transportation 3 160 40 185366 85456 62859
Transportation 4 200 50 297629 26566 21578
Transportation 5 210 70 322356 27619 23160
Transportation 6 261 87 245311 152930 119526
Transportation 7 10000 10000 12736903 10321697 5896123

TABLE VII
IMPROVEMENT AMOUNT OF VOGEL ALGORITHM BY VEA

Problems Size Vogel VEA Improvement
byVEA

Transportation 1 80 20 30123 22150 0.26
Transportation 2 100 25 26462 24367 0.08
Transportation 3 160 40 85456 62859 0.26
Transportation 4 200 50 26566 21578 0.19
Transportation 5 210 70 27619 23160 0.16
Transportation 6 261 87 152930 119526 0.22

where F(ζ) is defined as the objective function with a
set of routes ζ from source to destination. λ1 and λ2 are
the weights that empirically set in the simulation and their
summation is equal to 1. PC(ζ) and SINR(ζ) connectivity
and reliability of routes respectively. PC(ζ) and SINR(ζ)
connectivity and reliability of routes respectively. PC(ei)
and SINR(ei) representing the street’s connectivity and link
reliability. Fig. 11 illustrates the routing process in SDIoV.

This problem is addressed by both mathematical and heuris-
tic algorithms. Laying Chicken Algorithm (LCA) [12] has
been used to find optimal route from source to destination [19].
The comparison of results of LCA and VEA are provided in
Table VIII.

For each problem an initial solution has been generated
randomly and these initial solution are different for both LCA
and VEA algorithms. Table IX shows improvement of their
initial solutions after five iterations.

V. CONCLUSION

A novel and new meta-heuristic optimization algorithm
inspired from a natural phenomenon as opposed to commonly
considered behavior of creatures was proposed in this article.
VEA is an easy to simulate algorithm which can optimize all
kinds of optimization problems.
Numerical results presented in this paper show that the
proposed approach can solve unconstrained and constrained,
linear and nonlinear, single level and multi level problems
with small and large feasible regions very effectively and
more efficiently.
The following briefly outline areas for future work in this
exciting area:

1) Explore the possibility of solving some NP hard problems
such as travelling salesman problem using the proposed
VEA.

2) VEA should be attempted to solve big data because it
has appropriate complexity

3) The algorithm should be extended for solving discrete
problems such as shortest path problem, etc.

4) Combination of proposed algorithm as an inspired
approach with exact methods. For example finding an
approximate gradient vector by VEA for using methods
such as simplex which use gradient directly.

5) Implementation of similar ideas like floods, hurricanes,
earthquakes and so on.

VI. CONFLICT OF INTEREST

The author certifies that following details of affiliation or
involvement in an organization or entity with a financial
or non-financial interest in the subject matter or materials
discussed in this manuscript.
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TABLE VIII
COMPARISON OF LCA AND VEA FOR INTERNET OF VEHICLES

Problems Size Best Solution by LCA Best Solution by VEA
IoV 1 100 100 775.8550 917.3405
IoV 2 200 200 9.9319e+03 1.3014e+04
IoV 3 500 500 5.8147e+04 6.9372e+04
IoV 4 1000 1000 2.5991e+05 2.8461e+05
IoV 5 2000 2000 9.8622e+05 1.2831e+06
IoV 6 5000 5000 6.2266e+06 6.6281e+06
IoV 7 10000 10000 2.4950e+07 2.7145e+07
IoV 8 30000 30000 3.7632e+09 3.7916e+09

TABLE IX
IMPROVEMENT OF VEA AND LCA FROM THEIR RANDOM INITIAL SOLUTIONS (RIS) IN FIVE ITERATIONS

Problems Size Improvement of RIS by
LCA

Improvement of RIS by
VEA

IoV 1 100 100 0.031 0.221
IoV 2 200 200 0.005 0.318
IoV 3 500 500 0.008 0.202
IoV 4 1000 1000 0.002 0.097
IoV 5 2000 2000 0.002 0.303
IoV 6 5000 5000 0.001 0.064
IoV 7 10000 10000 0.0001 0.081
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Fig. 6. Generations of VEA to find optimal solution - Example 3.

(a) Initial population

(b) Generation 2

(c) Generation 4 and optimal solution for BLPP

(d) Generation 4 and optimal solution for BLPP

Fig. 7. Process of finding optimal solution by VEA- Example 4
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Fig. 8. Process of finding optimal solution by VEA- Example 5

(a) Initial population

(b) Generation 2
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(d) Generation 4 and optimal solution for BLPP

Fig. 9. Process of finding optimal solution by VEA- Example 6
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(a) Initial population

(b) Generation 2

(c) Generation 4 and optimal solution for BLPP

(d) Generation 4 and optimal solution for BLPP

Fig. 10. Process of finding optimal solution by MV- Example 7
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Fig. 11. Optimal routing process in IoV environment
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