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A Noise Tolerant Zeroing Neural Network for

Time-Dependent Complex Matrix Inversion Under

Various Kinds of Noises

Abstract—Complex-valued time-dependent matrix inversion
(TDMI) is extensively exploited in practical industrial and en-
gineering fields. Many current neural models are presented to
find the inverse of a matrix in an ideal noise-free environment.
However, the outer interferences are normally believed to be
ubiquitous and avoidable in practice. If these neural models
are applied to complex-valued TDMI in a noise environment,
they need take a lot of precious time to deal with outer
noise disturbances in advance. Thus, a noise-suppression model
is urgent to be proposed to address this problem. In this
study, a complex-valued noise-tolerant zeroing neural network
(CVNTZNN) on the basis of an integral-type design formula is
established and investigated for finding complex-valued TDMI
under a wide variety of noises. Furthermore, both convergence
and robustness of the CVNTZNN model are carefully analyzed
and rigorously proved. For comparison and verification purposes,
the existing zeroing neural network (ZNN) and gradient neural
network (GNN) have been presented to address the same problem
under the same conditions. Numerical simulation consequences
demonstrate the effectiveness and excellence of the proposed
CVNTZNN model for complex-valued TDMI under various kinds
of noises, by comparing the existing ZNN and GNN models.

Index Terms—Zeroing neural network (ZNN), complex-valued
matrix inversion, convergence, robustness, time-varying.

I. INTRODUCTION

A
S a basic algebraic problem, matrix inversion is widely

used in scientific research and practical applications,

such as Gaussian regression [1], MIMO [2], [3], robotic arm

tracking [4], [5], image processing [6], control engineering [7],

[8], etc. In order to solve the matrix inversion accurately, some

numerical methods such as Newton iterative method have been

proposed and studied [9], [10]. Since the minimum complexity

of the numerical iterative algorithms is proportional to the cube

of the matrix dimension, they may exist terrible problems such

as long running time and too large algorithm complexity, when

faced with high-dimensional or large-scale matrix operations.

Unlike numerical methods, contributing to excellent na-

tures including distributed storage, parallel computing, and

hardware-implementable features, neural network methods

have been extensively developed for various practical applica-

tions in the last 30 years. Especially, neural network methods

based on potential parallel processing were also successfully

applied to solve matrix inversion problems [5], [11]–[16]. In

[12], a gradient neural network (GNN) model activated by

an odd activation function (AF) is proposed and employed to

effectively solve the static matrix inversion. Nevertheless, a

certain error occurs while the GNN model [14] is exploited to

solve a time-dependent problem. Since the GNN model cannot

track the solution at each moment of the time-dependent prob-

lem, it can only approach the theoretical inversion infinitely,

rather than converging to the exact inversion. To overcome

the resultant error of GNN in dynamic situation, a zeroing

neural network (ZNN), which can make the most of the

time derivative of coefficient matrix to track time-dependent

solutions, is proposed and employed to find the accurate

solution of time-dependent matrix inversion (TDMI) problem

[5], [11], [13]. In addition, the state solution of ZNN, starting

from an arbitrary initial state, can globally converge to the

theoretical inversion at an exponential rate. In order to speed

up the convergence rate, a finite time zeroing neural network

model (FTZNN) [17] is carefully constructed and employed

for TDMI, and the upper bound of finite convergence time can

be calculated theoretically.

Note that GNN, ZNN, and FTZNN models mentioned

above were employed to find the inversion of the reversible

matrix in an idealized undisturbed environment. However,

some external noises inevitably emerge during the hardware-

implementation process of the neural network modes. These

noises can be treated as constant noise, random noise, hybrid

noise, etc. Although noises can be processed in advance, for

example, error compensation can be handled by using a low-

pass filter according to the specific time-dependent noise, extra

valuable time is wasted. That is to say, considering the noise

disturbance in solving the TDMI problem is meaningful for

the hardware implementation of the neural network. Thus,

some ZNN models with noise-tolerant performance have been

researched and developed [18]–[24]. In [18], an integration-

enhanced ZNN (IEZNN) model is proposed by Jin et al. and

employed to solve the TDMI problem in the real domain,

and this IEZNN model can still converge to the theoretical

inversion of the TDMI problem when a wide variety of

noises are present. Continuing this research, an integration-

enhanced noise-tolerant ZNN model has been proposed for

solving outer inverse problems in the presence of various kinds

of noise, with good performance achieved [25]. In addition,

a nonlinearly activated integration design formula has been

designed to construct a new ZNN model, which has both finite-

time convergence and noise tolerance performance [26], [27].

However, the above mentioned noise-tolerant ZNN models are

limited in the real domain.

On the basis of the above researches as well as for better

hardware implementation, this paper is devoted to constructing

a complex-valued ZNN model to find the inversion of the

invertible matrix in the complex domain rather than the

real domain. Therefore, a complex-valued noise-tolerant ZNN

(CVNTZNN) model is proposed to find the inversion of

complex-valued TDMI problem, and its global exponential

convergence and noise tolerance are theoretically analyzed.
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Besides, for comparison and verification purposes, GNN and

ZNN are also employed to work out the same time-dependent

complex-valued matrix inversion problem with the same noise

attendance. The comparison results show the superiority of the

proposed CVNTZNN model in the existence of a wide variety

of noises.

At the end of this part, the primary highlights of this work

are exhibited as follows.

1) In this work, a complex-valued noise-tolerant zeroing

neural network (CVNTZNN) is designed and analyzed

for the complex-valued TDMI solving in the existence of

a wide variety of noises.

2) Unlike the traditional GNN and ZNN models, the pro-

posed CVNTZNN is on the basis of a novel design

formula with integral term, which is very different from

the design formulas of GNN and ZNN models.

3) The global exponential convergence and robustness of

the proposed CVNTZNN model for solving the complex-

valued TDMI problem are theoretically proved.

4) It is numerically verified that the proposed CVNTZNN

model is still efficient for complex-valued TDMI in the

existence of a wide variety of noises, while the above

mentioned GNN and ZNN models are no longer valid.

II. PROBLEM FORMULATION

In this paper, we focus on solving the following complex-

valued TDMI problem [28]–[33]:

A(t)K(t) = I ∈ C
n×n, or K(t)A(t) = I ∈ C

n×n, (1)

where A(t) ∈ Cn×n represents a known time-dependent

complex matrix, K(t) ∈ Cn×n represents a target matrix to

be figured out, and I ∈ Cn×n represents an identity matrix of

appropriate size. For the convenience of the rest of this paper,

K−1(t) ∈ Cn×n is set to represent the theoretical inversion of

(1). It is worth noting that any complex matrix is composed of

its real and imaginary parts [34], i.e., A(t) = Are(t)+iAim(t),
K(t) = Kre(t) + iKim(t) and I = Ire + iIim, where i =

√
−1

represents an imaginary unit. Thus, the complex-valued TDMI

(1) can be directly revised as

[

Are(t) + iAim(t)
] [

Kre(t) + iKim(t)
]

= Ire + iIim. (2)

Considering that the real part and imaginary part on both

sides of equation (2) always correspond to each other, we have:
{

Are(t)Kre(t)− Aim(t)Kim(t) = Ire ∈ R
n×n,

Are(t)Kim(t) + Aim(t)Kre(t) = Iim ∈ R
n×n.

(3)

The compact matrix form of (3) can be revised as
[

Are(t) −Aim(t)
Aim(t) Are(t)

] [

Kre(t)
Kim(t)

]

=

[

Ire
Iim

]

∈ R
2n×n. (4)

Thus, by using the above procedure, the complex-valued

TDMI (1) can be transformed into (4) with equal solutions.

To make (4) more compact and easy to operate, equation (4)

can be rewritten as

P(t)χ(t) = M ∈ R
2n×n, (5)

where P(t) ∈ R2n×2n, χ(t) ∈ R2n×n and M ∈ R2n×n are

defined as

P(t) =

[

Are(t) −Aim(t)
Aim(t) Are(t)

]

, χ(t) =

[

Kre(t)
Kim(t)

]

,M =

[

Ire
Iim

]

.

In order to ensure that the theoretical solution K−1(t) ∈
Cn×n of problem (1) is present and unique, we limit the known

coefficient matrix A(t) ∈ Cn×n to satisfy det (P(t)) 6= 0 at

each time instant throughout this paper, where the operator

det(·) represents the determinant of P(t).

III. GNN AND ZNN MODELS

For comparison, the traditional gradient neural network

(GNN) and zeroing neural network (ZNN) are also constructed

for complex-valued TDMI problem (1) solving in this section.

Following the conventional GNN’s design procedure [28],

[31], an energy function ε(t) is firstly defined as

ε(t) =
1

2
||P(t)χ(t) −M ||2F,

where ‖ · ‖F represents the Frobenius norm of a matrix.

By utilizing the negative gradient descent formula −∂ε(t)
∂χ ,

the traditional GNN model can be obtained [12], [14], [35]:

χ̇ = −α
∂ε(t)

∂χ
= −αP(t)T(P(t)χ(t) −M), (6)

where (·)T represents the transpose of a matrix, and α > 0
represents a design parameter.

The design process of the ZNN model is different from the

GNN model for solving the complex-valued TDMI problem

(1). To monitor and control the solving process of the ZNN

model for (1), the matrix-based error function E(t) is firstly

defined as below [36]–[40]:

E(t) = P(t)χ(t)−M ∈ R
2n×n. (7)

To ensure that each element eij(t) in E(t) can converge to 0,

the design formula of the ZNN model is presented as

dE(t)

dt
= −αE(t). (8)

Substituting (7) into (8), the traditional ZNN model is attained:

P(t)χ̇(t) = −α(P(t)χ(t)−M)− Ṗ(t)χ(t), (9)

where the parameter α is defined as before.

When external additive noise is injected, the noise-polluted

ZNN model can be written as:

P(t)χ̇(t) = −α(P(t)χ(t) −M)− Ṗ(t)χ(t) + Z(t), (10)

where Z(t) ∈ R2n×n represents an external additive noise.

Remark 1: As mentioned in [41], [42], the noise-polluted

ZNN mode (10) may not converge to the theoretical inversion

of (1). Next, let us theoretically analyze this reason. First,

substituting E(t) = P(t)χ(t)−M into the noise-polluted ZNN

model (10) yields to

dE(t)

dt
= −αE(t) + Z(t),
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of which the ijth subsystem is given as follows:

deij(t)

dt
= −αeij(t) + zij(t), (11)

where eij(t) and zij(t) represent the ijth element of E(t)
and Z(t) respectively. Then, by defining a Lyapnov function

candidate V (t) = |eij(t)|2 /2 for this subsystem, its time

derivative can be computed as

V̇ (t) =
dV (t)

dt
= eij(t)

deij(t)

dt
= eij(t)(−αeij(t) + zij(t))

= −αe2ij(t) + eij(t)zij(t)

≤ −αe2ij(t) + |zij(t)| |eij(t)|

= −α(|eij(t)| −
|zij(t)|
2α

)2 +
z2ij(t)

4α
.

(12)

Supposing |eij(t)| > |zij(t)|/α, one can easily obtain
∣

∣

∣

∣

eij(t)−
|zij(t)|
2α

∣

∣

∣

∣

≥ |eij(t)| −
|zij(t)|
2α

>
|zij(t)|
2α

, (13)

from which it can be concluded that V̇ (t) < 0. According

to this conclusion, equation (12) falls into the following two

cases.

1) Once |eij(t)| > |zij(t)|/α is valid, one could naturally

derive that V̇ (t) < 0. Therefore, when t → +∞,

eij(t) → 0.

2) While |eij(t)| > |zij(t)|/α for some time instant t,
in view of (12), V̇ (t) will be less than a positive

value, which means eij(t) might not converge to 0 as

expected. This will lead to two possibilities: V̇ (t) ≤ 0
or V̇ (t) > 0. Even in the worst situation V̇ (t) > 0,

V (t) = |eij |2 /2 will increase, and |eij(t)| could not

exceed the upper bound |zij(t)|/α since V̇ (t) < 0 when

|eij(t)| > |zij(t)|/α.

Hence, from the above discussions, it can be readily concluded

that ‖E(t)‖F =
√

Σ2n
i=1Σ

n
j=1e

2
ij ≤

√
2n|zij(t)|/α.

IV. CVNTZNN MODEL

In Section III, GNN model (6) and ZNN model (9) were

presented to solve the complex-valued TDMI problem (1). In

general, GNN model (6) can be used to solve static problems

effectively, but while dealing with some time-dependent prob-

lems, it may cause a certain lagging error and cannot solve

these time-dependent problems accurately. However, ZNN

model (9) can solve time-dependent problems accurately in

a global exponential manner without noise disturbance. When

noise is present, ZNN model (9) may be invalid for solving

TDMI problem (1). Hence, a complex-valued noise-tolerant

ZNN model (CVNTZNN) with noise-tolerant performance is

proposed and analyzed in this section to address this problem.

A. Model design

In this part, the design process of the CVNTZNN model is

listed as follows.

First, an error function E(t) is defined:

E(t) = P(t)χ(t)−M ∈ R
2n×n. (14)

Then, unlike the design process of ZNN model (9), a new

design formula with an integral term is adopted:

dE(t)

dt
= −αE(t)− β

∫ t

0

E(τ)dτ, (15)

where α and β are adjustable positive parameters.

At last, substituting error function (14) into evolution for-

mula (15), the following CVNTZNN model can be attained:

P(t)χ̇(t) = − Ṗ(t)χ(t)− α(P(t)χ(t) −M)

− β

∫ t

0

(P(τ)χ(τ) −M)dτ.
(16)

When external additive noises are injected into CVNTZNN

model (16), the disturbed CVNTZNN model can be deter-

mined by

P(t)χ̇(t) =− Ṗ(t)χ(t)− α(P(t)χ(t) −M)

− β

∫ t

0

(P(τ)χ(τ) −M)dτ + Z(t),
(17)

where Z(t) ∈ R2n×n represents external additive noises.

B. Theoretical Analysis without Noises

In this subsection, the global stability and exponential

convergence of the proposed CVNTZNN model (16) will be

strictly proved in the absence of noise.

Theorem 1: Given a complex-valued time-dependent in-

vertible matrix A(t) defined in (1), starting from an arbitrary

initial value χ(0), CVNTZNN model (16) is globally stable

in sense of Lyapunov theory.

Proof: Obviously, CVNTZNN model (16) can be simpli-

fied as Ė(t) = −αE(t) − β
∫ t

0 E(τ)dτ , which is a compact

matrix-form of the following set of 2n2 equations:

ėij(t) = −αeij(t)− β

∫ t

0

eij(τ)dτ. (18)

Hence, for proving the stability of CVNTZNN model (16),

we only need to prove the stability of the ijth subsystem (18).

Following [43], the following Lyapunov function candidate

can be defined for the ijth subsystem (18):

vij(t) = e2ij(t) + β
(

∫ t

0

eij(τ)dτ
)2
.

It is obvious that vij(t) is positive definite; i.e., vij(t) > 0

for any eij(t) 6= 0 or
∫ t

0
eij(τ)dτ 6= 0, and vij(t) = 0 only

for eij(t) =
∫ t

0 eij(τ)dτ = 0. Thus, its time derivative is

computed as

dvij
dt

= 2eij(t)ėij(t)+2βeij(t)

∫ t

0

eij(τ)dτ = −2αe2ij(t) ≤ 0.

Based on the Lyapunov theory, one can conclude that eij(t)
defined in the ijth subsystem (18) globally converges to 0 for

any i ∈ {1, 2, · · · , 2n} and j ∈ {1, 2, · · · , n}. Consequently,

it can be concluded that E(t) can globally converge to 0,

i.e., the proposed CVNTZNN model (16) can converge to its

theoretical solution globally. This proof is complete.

Remark 2: In general, in order to prove the global stability

of ZNN, we will define a Lyapunov function. Unlike ZNN, the
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Lyapunov function of the proposed CVNTZNN model for the

global stability is defined as vij(t) = e2ij(t)+β
( ∫ t

0 eij(τ)dτ
)2

,

and its novelty is to add an integral term β
( ∫ t

0
eij(τ)dτ

)2
. The

integral term β
( ∫ t

0
eij(τ)dτ

)2
inspired by the design formula

ensures the simplicity of its derivative expression, which

makes the judgment of negative definiteness very simple.

Theorem 2: Given a complex-valued time-dependent in-

vertible matrix A(t) defined in (1), the transient solution

χ(t) of CVNTZNN model (16), starting from an arbitrary

initial value χ(0), can exponentially converge to the theoretical

solution A−1(t).
Proof: Define ǫ(t) =

∫ t

0
E(τ)dτ and let eij(t), ǫij(t),

ǫ̇ij(t), ǫ̈ij be the ijth element of E(t), ǫ(t), ǫ̇(t), ǫ̈(t),
respectively. Hence, the ijth subsystem of the second-order

system Ė(t) = −αE(t)− β
∫ t

0 E(τ)dτ can be obtained as

ǫ̈ij(t) = −αǫ̇ij(t)− βǫij(t). (19)

Define ξ1 = (−α +
√

α2 − 4β)/2 and ξ2 = (−α −
√

α2 − 4β)/2. Seeing that the initial values ǫij(0) = 0
and ǫ̇ij(0) = eij(0), the analytical solution of (19) has the

following three cases.

• For ξ1 6= ξ2 and ξ1 and ξ2 being real numbers, i.e., α2 >
4β,

ǫij(t) =
eij(0)(exp(ξ1t)− exp(ξ2t))

√

α2 − 4β
,

and one further obtains

eij(t) =
eij(0)(ξ1 exp(ξ1t)− ξ2 exp(ξ2t))

√

α2 − 4β
.

Hence, the error can be regarded as

E(t) =
E(0)(ξ1 exp(ξ1t)− ξ2 exp(ξ2t))

√

α2 − 4β
.

• For ξ1 = ξ2, i.e., α2 = 4β,

ǫij(t) = eij(0)t exp(ξ1t),

and one further obtains

eij(t) = eij(0) exp(ξ1t) + eij(0)ξ1t exp(ξ1t).

Hence, the error can be regarded as

E(t) = E(0) exp(ξ1t) + E(0)ξ1t exp(ξ1t).

• For ξ1 = κ1 + iκ2 and ξ2 = κ1 − iκ2 being conjugate

complex numbers, i.e., α2 < 4β,

ǫij(t) = eij(0) sin(κ2t) exp(κ1t)/κ2,

and one further obtains

eij(t) = eij(0) exp(κ1t)(κ1 sin(κ2t)/κ2 + cos(κ2t)).

Hence, the error can be regarded as

E(t) = E(0) exp(κ1t)(κ1 sin(κ2t)/κ2 + cos(κ2t)).

Considering the above three cases and Theorem 1 in [44],

one can conclude that for the invertible matrix A(t) defined

in (1), the transient solution χ(t) of CVNTZNN model (17),

starting from an arbitrary initial value χ(0) ∈ Cn×n, can

exponentially converge to the theoretical inverse A−1(t). This

proof is complete.

C. Theoretical Analysis under External Noises

In this subsection, three theorems are given to study the

robustness performance of the disturbed CVNTZNN model

(17) when three different kinds of noises are taken into

account.
1) Constant Noise: When there is a constant noise, the

following theorem can ensure the robustness of the disturbed

CVNTZNN model (17).

Theorem 3: Given a complex-valued time-dependent in-

vertible matrix A(t) defined in (1), when a constant noise is

present, the transient solution χ(t) of the disturbed CVNTZNN

model (17), starting from an arbitrary initial value χ(0), can

globally converge to the theoretical solution A−1(t) regardless

of the value of constant noise Z(t) = Z ∈ R2n×n.

Proof: For the ijth subsystem of the disturbed CVNTZN-

N model (17), when the constant noise Z is present, by using

the Laplace transform [45], we have

seij(s)− eij(0) = −αeij(s)−
β

s
eij(s) + zij(s), (20)

i.e.,

eij(s) =
s(eij(0) + zij(s))

s2 + sα+ β
. (21)

Therefore, the transfer function is s/(s2 + sα + β) with its

poles being s1 = (−α +
√

α2 − 4β)/2 and s2 = (−α −
√

α2 − 4β)/2. For α > 0 and β > 0, we can find that both

poles are in the left half-plane, which means that the system

is stable. Since constant noise zij can be viewed as a step

signal, its Laplace transform can be solved as zij(s) = zij/s.

For (21), applying the final value theorem [45], we have

lim
t→∞

eij(t) = lim
s→0

seij(s)

= lim
s→0

s2(eij(0) + zij/s)

s2 + sα+ β

= 0.

Thus, one can conclude that limt→∞ ‖E(t)‖F = 0. This proof

is complete.
2) Linear Noise: In the above, we analyzed the robustness

of the disturbed CVNTZNN model (17) under external con-

stant noises. In this part, linear time-dependent noises are con-

sidered in the disturbed CVNTZNN model (17). In addition,

we have the following theorem to ensure the robustness of the

disturbed CVNTZNN model (17) under linear time-dependent

noise disturbance.

Theorem 4: Given a complex-valued time-dependent in-

vertible matrix A(t) defined in (1), when a linear time-

dependent noise Z(t) = Zt ∈ R2n×n is present, the transient

solution χ(t) of the disturbed CVNTZNN model (17), starting

from an arbitrary initial value χ(0) ∈ C
n×n, approaches the

theoretical inverse A−1(t) with the upper bound of the steady-

state residual error limt→∞ ‖E(t)‖F being ‖Z‖F/β. Besides,

the error norm ‖E(t)‖F can converge to 0 as β → ∞.

Proof: For the ijth subsystem of the disturbed CVNTZN-

N model (17), when the linear time-dependent noise Z(t) =
Zt ∈ Rn×n is considered, by using the Laplace transform

[45], we have

seij(s)− eij(0) = −αeij(s)−
β

s
eij(s) + zij/s

2,
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where zij/s
2 is the Laplace transform of zijt. Considering the

final value theorem, we further have

lim
t→∞

eij(t) = lim
s→0

seij(s)

= lim
s→0

s2(eij(0) + zij/s
2)

s2 + sα+ β

=
zij
β

.

Thus, one can conclude that

lim
t→∞

‖E(t)‖F =
‖Z‖F

β
.

Besides, we have limt→∞ ‖E(t)‖F → 0 when β → ∞. This

proof is complete.

3) Bounded Random Noise: In this part, a bounded random

noise is considered in the disturbed CVNTZNN model (17),

and we have the following theorem to ensure its robustness.

Theorem 5: Given a complex-valued time-dependent in-

vertible matrix A(t) defined in (1), when a bounded random

noise Z(t) = ̺(t) ∈ R2n×n is present, the transient solution

χ(t) of the disturbed CVNTZNN model (17), starting from an

arbitrary initial value χ(0), approaches the theoretical inverse

A−1(t) with the steady-state residual error limt→∞ ‖E(t)‖F

bounded by 2
√
2n sup0≤τ≤t |̺ij(τ)|/

√

α2 − 4β for α2 > 4β,

or 4
√
2nβ sup0≤τ≤t |̺ij(τ)|/(α

√

4β − α2) for α2 < 4β,

where ̺ij(t) denotes the ijth element of ̺(t). In addition,

with a suitable value of β, limt→∞ ‖E(t)‖F can be arbitrarily

small when α is large enough.

Proof: When a bounded random noise Z(t) = ̺(t) ∈
R2n×n is considered, the disturbed CVNTZNN model (17) is

transformed as

Ė(t) = −αE(t)− β

∫ t

0

E(τ)dτ + ̺(t),

where the ijth subsystem can be written as

ėij(t) = −αeij(t)− β

∫ t

0

eij(τ)dτ + ̺ij(t). (22)

For different relationships between α and β, we can consider

the following three situations.

• When α2 > 4β, for (22), we have

eij(t) =
eij(0)(ξ1 exp(ξ1t)− ξ2 exp(ξ2t))

(ξ1 − ξ2)

+
(

∫ t

0

(ξ1 exp(ξ1(t− τ)) − ξ2 exp(ξ2(t− τ)))

̺ij(τ)dτ
) 1

(ξ1 − ξ2)
,

where ξ1 and ξ2 are defined as before, i.e., ξ1,2 =

(−α±
√

α2 − 4β)/2. Considering the triangle inequality,

we have

|eij(t)| ≤
|eij(0)(ξ1 exp(ξ1t)− ξ2 exp(ξ2t))|

(ξ1 − ξ2)

+

∫ t

0 |ξ1 exp(ξ1(t− τ))| · |̺ij(τ)|dτ
(ξ1 − ξ2)

+

∫ t

0 |ξ2 exp(ξ2(t− τ))| · |̺ij(τ)|dτ
(ξ1 − ξ2)

.

Furthermore, one can obtain

|eij(t)| ≤
|eij(0)(ξ1 exp(ξ1t)− ξ2 exp(ξ2t))|

(ξ1 − ξ2)

+
2

(ξ1 − ξ2)
max
0≤τ≤t

|̺ij(τ)|

=
|eij(0)(ξ1 exp(ξ1t)− ξ2 exp(ξ2t))|

(ξ1 − ξ2)

+
2

√

α2 − 4β
max
0≤τ≤t

|̺ij(τ)|.

Finally,

lim
t→∞

‖E(t)‖F ≤ 2
√
2n

√

α2 − 4β
sup

0≤τ≤t
|̺ij(τ)|.

• When α2 = 4β, for (22), we have

eij(t) = eij(0)tξ1 exp(ξ1t) + eij(0) exp(ξ1t)

+

∫ t

0

((t− τ)ξ1 exp(ξ1(t− τ)))̺ij(τ)dτ

+

∫ t

0

exp(ξ1(t− τ))̺ij(τ)dτ,

where ξ1 is defined as before, i.e., ξ1 = (−α +
√

α2 − 4β)/2 = −α/2. Considering the proof of Theo-

rem 1 in [44], there exist µ > 0 and ν > 0 such that

|ξ1|t exp(ξ1t) ≤ µ exp(−νt). (23)

On the basis of the inequality (23) and the triangle

inequality, one can obtain

|eij(t)| ≤|eij(0)(ξ1t exp(ξ1t) + exp(ξ1t))|

+

∫ t

0

|µ exp(−ν(t− τ))| · |̺ij(τ)|dτ

+

∫ t

0

| exp(ξ1(t− τ))| · |̺ij(τ)|dτ

≤|eij(0)(ξ1t exp(ξ1t) + exp(ξ1t))|

+
(µ

ν
− 1

ξ1

)

max
0≤τ≤t

|̺ij(τ)|.

Finally,

lim
t→∞

‖E(t)‖F ≤
(µ

ν
− 1

ξ1

)
√
2n sup

0≤τ≤t
|̺ij(τ)|.

• When α2 < 4β, for (22), we have

eij(t) =eij(0) exp(κ1t)(κ1 sin(κ2t)/κ2 + cos(κ2t))

+

∫ t

0

(

κ1 sin(κ2(t− τ)) exp(κ1(t− τ))/κ2

+ cos(κ2(t− τ)) exp(κ1(t− τ))
)

̺ij(τ)dτ,

where κ1 and κ2 are defined as κ1 = −α/2 and κ2 =
√

4β − α2)/2. On the basis of the triangle inequality,
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Fig. 1. State output results of the disturbed CVNTZNN model (17) for
solving complex-valued TDMI problem (24) with α=β=10 and noise Z(t) =
0.
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Fig. 2. Error norm output results computed by the disturbed CVNTZNN
model (17) for solving complex-valued TDMI problem (24) with different
design parameters under no noise [i.e., Z(t) = 0].

one can similarly obtain

|eij(t)| ≤|eij(0) exp(κ1t)(κ1 sin(κ2t)/κ2 + cos(κ2t)))|

−
√

κ2
1 + κ2

2

κ1κ2
max
0≤τ≤t

|̺ij(τ)|

=|eij(0) exp(κ1t)(κ1 sin(κ2t)/κ2 + cos(κ2t))|

+
4β

α
√

4β − α2
max
0≤τ≤t

|̺ij(τ)|.

Finally,

lim
t→∞

‖E(t)‖F ≤ 4
√
2βn

α
√

4β − α2
sup

0≤τ≤t
|̺ij(τ)|.

From the above discussion, one can conclude that the

error norm ‖E(t)‖F of the disturbed CVNTZNN mod-

el (17) is bounded when the the bounded random nois-

es ̺(t) is injected. Besides, the steady-state error norm

limt→∞ ‖E(t)‖F of the disturbed CVNTZNN model (17) is

bounded by 2
√
2n sup0≤τ≤t |̺ij(τ)|/

√

α2 − 4β for α2 > 4β,

or 4
√
2nβ sup0≤τ≤t |̺ij(τ)|/(α

√

4β − α2) for α2 < 4β. In

other words, with a suitable size of β, limt→∞ ‖E(t)‖F can

be arbitrarily small, when when α is large enough. This proof

is complete.
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Fig. 3. State output results of the disturbed CVNTZNN model (17) for
solving complex-valued TDMI problem (24) with α=β=10 and constant noise
zij(t) = 10.
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Fig. 4. Error norm output results computed by the disturbed CVNTZNN
model (17) GNN model (6) and ZNN model (9) for solving complex-valued
TDMI problem (24) with different design parameters under constant noise
zij(t) = 10.

TABLE I
CATEGORIES OF NOISE USED IN THE PAPER

Type Constant Linear Random Time-varying

Example 1 10 0.8t [14, 16] 0.5 sin(0.1t)

Example 2 10 t [−0.5, 0.5] 0.1 exp(0.1t)

V. COMPARATIVE VERIFICATION

To solve complex-valued TDMI problem (1), in Sections

III and IV, GNN model (6), ZNN model (9), and CVNTZNN

model (17) were presented. For comparison and illustration

purposes, in this section, two numerical examples are used to

verify the validity and superiority of the disturbed CVNTZNN

model (17) when various noises are injected. Besides, the

category of noises is shown in Tab. I.

A. Example I

First of all, the following complex time-dependent matrix

is considered [40]:

A(t) =

[

exp(8it) −i exp(−8it)
−i exp(8it) exp(−8it)

]

. (24)

In order to verify the validity of the disturbed CVNTZNN

model (17), the corresponding theoretical inverse A−1(t) of
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Fig. 5. Error norm output results computed by the disturbed CVNTZNN
model (17) GNN model (6) and ZNN model (9) for solving complex-valued
TDMI problem (24) with different design parameters under linear noise
zij(t) = 0.8t.
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Fig. 6. Error norm output results computed by the disturbed CVNTZNN
model (17) GNN model (6) and ZNN model (9) for solving complex-valued
TDMI problem (24) with different design parameters under random noise
zij(t) = [14, 16]2×2.

the above complex-valued matrix can be calculated as

A−1(t) =

[

0.5 exp(8it) 0.5i exp(8it)
0.5i exp(−8it) 0.5 exp(−8it)

]

. (25)

Besides, according to the specific expression of A(t), we

can obtain the corresponding P(t) as

P(t) =









cos(8t) − sin(8t) − sin(8t) cos(8t)
sin(8t) cos(8t) cos(8t) sin(8t)
sin(8t) − cos(8t) cos(8t) − sin(8t)

− cos(8t) − sin(8t) sin(8t) cos(8t)









.

We first check the effectiveness and convergence of the

disturbed CVNTZNN model (17) for solving this example

without noise [i.e., Z(t) = 0]. With β = α = 10, the

corresponding simulation outputs are demonstrated in Fig. 1-

2. The solid blue line in Fig.1 represents state solution of the

disturbed CVNTZNN model (17), while the red dotted line

represents the theoretical inverse A−1(t) of (24). As observed

from Fig. 1, the solid blue lines in all subgraphs can quickly

coincide with the solid red line in about 6 s. That is, the

state solution χ(t) starting from an arbitrary initial matrix

χ(0) ∈ [−1, 1]2×2 can converge to the theoretical solution

χ−1(t) accurately. To fully verify the excellent convergence

of the disturbed CVNTZNN model (17), the transient state

of the error norm ‖E(t)‖F is demonstrated in Fig. 2. As

observed from Fig. 2(a), all of error norms ‖E(t)‖F of the

disturbed CVNTZNN model (17) with 10 arbitrary initial

states χ(0) ∈ [−1, 1]2×2 for (24) can descend to 0 within

6 s. Increasing the design parameters from β = α = 10
to β = α = 100, we can find from Fig. 2(b) that all
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Fig. 7. Error norm output results computed by the disturbed CVNTZNN
model (17) GNN model (6) and ZNN model (9) for solving complex-valued
TDMI problem (24) with different design parameters under time-varying noise
zij(t) = 0.5 sin(0.1t).
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Fig. 8. Error norm output results computed by the disturbed CVNTZNN
model (17) GNN model (6) and ZNN model (9) for solving complex-valued
TDMI problem (24) with different design parameters under time-varying noise
zij(t) = 0.1 exp(0.1t).

of the 10 residual errors can descend rapidly to 0. These

simulation results are consistent with the above mentioned

global exponential convergence.

In practical applications, noise disturbances are ubiquitous

and unavoidable. For comparison and verification purposes,

several types of noises are also considered in this simulation

part. GNN model (6) and ZNN model (9) are also employed

to solve (24) under the same noise interferences, and the

simulation results are demonstrated in Fig. 3-8.

When a constant noise zij(t) = 10 is injected, with

α = β = 10 and starting from an arbitrary initial matrix χ(0),
the transient path of the state solution χ(t) for the disturbed

CVNTZNN model (17) is demonstrated in Fig. 3, from which

it can be concluded that the solid blue line [i.e., state solution

χ(t)] coincides well with the red dashed line [i.e., theoretical

solution χ−1(t)] after about 6 s. In other words, the state

solution χ(t) of the disturbed CVNTZNN model (17) can

converge to the theoretical solution χ−1(t) when polluted by

a constant noise zij(t) = 10. Fig. 4 shows error norm output

results computed by the disturbed CVNTZNN model (17)

GNN model (6) and ZNN model (9) for solving complex-

valued TDMI problem when polluted by the constant noise

zij(t) = 10. As demonstrated in Fig. 4(a), the error norm

of the disturbed CVNTZNN model (17) drops to 0 within

about 6 s even if it is disturbed by noise zij(t) = 10. On the

contrary, the error norms of ZNN model (9) and GNN model

(6) cannot converge to 0. There is a large error for these two

models. Increasing the values of β and α from 10 to 100 (i.e.,

α = β = 100), as demonstrated in Fig. 4(b), the convergence

speed of the error norm for the disturbed CVNTZNN model
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Fig. 9. Error norm output results computed by the disturbed CVNTZNN model (17) for solving complex-valued TDMI problem (24) with the same α
[i.e., α = 10] and different β [i.e., β = 10, 25, 35] under different noises.

(17) is further accelerated, while the error norms of GNN

model (6) and ZNN model (9) still cannot converge to 0.

When a linear time-dependent noise zij(t) = 0.8t is

injected, the error norms ‖E(t)‖F of the disturbed CVNTZNN

model (17), GNN model (6), and ZNN model (9) for solving

(24) are demonstrated in Fig. 5. As illustrated in Fig.5(a),

with α = β = 10, the error norm convergence of the

disturbed CVNTZNN model (17) is best among these three

neural models. In addition, increasing the values of β and

α from 10 to 100 (i.e., α = β = 100), simulation results

plotted in Fig. 5(b) further validate the dominance of the

disturbed CVNTZNN model (17) under noise zij(t) = 0.8t,
as compared with GNN model (6) and ZNN model (9).

When a bounded random noise zij(t) ∈ [14, 16] is injected,

with α = β = 10, the error norms ‖E(t)‖F computed by

the disturbed CVNTZNN model (17), GNN model (6), and

ZNN model (9) for solving (24) are illustrated in Fig. 6.

As illustrated in Fig. 6(a), the error norm ‖E(t)‖F of the

disturbed CVNTZNN model (17) rapidly drops to 0, and the

convergence time is about 6 s. On the contrary, the error

norm ‖E(t)‖F of ZNN (9) can only drop to about 6, and the

error norm of GNN model (6) drops to about 4.2 and keeps

fluctuating. Increasing the values of β and α from 10 to 100

(i.e., α = β = 100), as illustrated in Fig. 6(b), the error norm

of the disturbed CVNTZNN model (17) rapidly drops to 0 at

a faster rate with the order of 10−3, whereas error norms of

ZNN model (9) and GNN model (6) only drops to around 0.5.

In addition, we further consider two different types of time-

dependent noises [i.e., zij(t) = 0.5 sin(0.1t) and zij(t) =
0.1 exp(0.1t)], and the corresponding simulation results are

illustrated in Figs. 7 and 8. Similar to the previous mentioned

situations, Figs. 7 and 8 further validate the superiority of the

disturbed CVNTZNN model (17) to ZNN model (9) and GNN

model (6) under these two types of time-dependent noises.

In summary, the comparison results authenticate the superi-

ority of the proposed CVNTZNN model (17) for solving (24)

compared to ZNN model (9) and GNN model (6), regardless

of the disturbed noise is constant noise, linear time-dependent

noise, bounded random noise, or nonlinear time-dependent

noise or unbounded time-dependent noise.

B. Example II

To further verify the excellent robustness of the disturbed

CVNTZNN model (17), a higher dimensional Toeplitz matrix

A(t) ∈ C4×4 is considered as following:

A(t) =

[

4+sin(it) cos(it) cos(it)/2 cos(it)/3
cos(it) 4+sin(it) cos(it) cos(it)/2

cos(it)/2 cos(it) 4+sin(it) cos(it)
cos(it)/3 cos(it)/2 cos(it) 4+sin(it)

]

, (26)

The corresponding matrix P(t) from (26) contains 64 elements

and is omitted here. In this example, the design parameter α is

set to α = 10, and β is set to β = 10, 25, 35, which represent

three cases of α2 − 4β > 0, α2 − 4β = 0 and α2 − 4β < 0,

respectively.

The simulation results computed by the disturbed

CVNTZNN model (17) for solving the complex-valued TDMI

problem (26) are demonstrated in Fig. 9. Considering that

when there is noise disturbance, ZNN model (9) and GNN

model (6) have a large error in solving the TDMI problem, so

their simulations are omitted in this example. As demonstrated

in Fig. 9(a), error norms ‖E(t)‖F of the disturbed CVNTZNN

model (17) for solving complex matrix (26) can converge

to 0 accurately (the order is 10−6) when there is no noise

disturbance. Besides, as demonstrated in Fig. 9(b), when

polluted by a constant noise, the error norms ‖E(t)‖F of the

disturbed CVNTZNN model (17) for solving complex matrix

(26) can approach to 0 quickly. Also, as demonstrated in

Fig. 9(c), when disturbed by a linear noise, error norms of

the disturbed CVNTZNN model (17) can approach 0 quickly

and remain stable (no rising trend). In addition, the larger

the parameter β is, the smaller the error norm is. Moreover,

as demonstrated in Fig. 9(d), when disturbed by a random

noise, error norms of the disturbed CVNTZNN model (17) for

solving the complex-valued TDMI problem (26) can converge

to 0 in an accurate way (order is 10−2). In summary, the

comparison results of this example verify the validity and

accuracy of the disturbed CVNTZNN model (17) for solving

the complex-valued TDMI problem (26) under various noise

perturbations.

VI. CONCLUSION

To find the accurate inverse of complex-valued time-

dependent matrix in the complex domain, a complex-valued

noise-tolerant zeroing neural network (CVNTZNN) is de-

signed and proposed in this paper. The detailed theoretical

analyses of the CVNTZNN model are discussed when differ-

ent types noises are considered. It is proved that the CVNTZN-

N model is robust and convergent to the theoretical solution
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accurately of the complex-valued time-dependent matrix under

various noises attendance. Furthermore, for comparison as

well as verification, the GNN and ZNN models are also em-

ployed to deal with the same time-dependent complex-valued

matrix inversion problem under the same noise disturbance.

The comparison of the two examples verify the validity and

excellence of the proposed CVNTZNN model. The future

directions of this work may include the convergence speedup

by adding nonlinear activation functions, model discretization,

and hardware implementations.
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