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New Noise-Tolerant ZNN Models with

Predefined-Time Convergence for Time-Variant

Sylvester Equation Solving
Lin Xiao, Yongsheng Zhang, Jianhua Dai, Jichun Li, and Weibing Li

Abstract—Sylvester equation is often applied to various fields
such as mathematics and control systems due to its importance.
Zeroing neural network (ZNN), as a systematic design method for
time-variant problems, has been proved to be effective on solving
Sylvester equation in the ideal conditions. In this work, in order
to realize the predefined-time convergence of the ZNN model
and modify its robustness, two new noise-tolerant zeroing neural
networks (NNTZNNs) are established by devising two novelly
constructed nonlinear activation functions (AFs) to find the ac-
curate solution of time-variant Sylvester equation in the presence
of various noises. Unlike the original ZNN models activated by
known AFs, the proposed two NNTZNN models are activated by
two novel AFs, therefore possessing the excellent predefined-time
convergence and strong robustness even in the presence of various
noises. Besides, the detailed theoretical analyses of the predefined-
time convergence and robustness ability for the NNTZNN models
are given by considering different kinds of noises. Simulation
comparative results further verify the excellent performance of
the proposed NNTZNN models, when applied to online solution
of time-variant Sylvester equation.

Index Terms—Zeroing neural network (ZNN), finite-time con-
vergence, nonlinear activation function, Sylvester equation, time-
variant problems.

I. INTRODUCTION

S
OLVING Sylvester equation is often found in mathe-

matics and control theory and applied to solve various

important problems such as eigenvalue assignment [1], and

image processing [2]. Therefore, it is a crucial issue to solve

Sylvester equation by designing various different schemes.

Numerical methods were usually used to solve the static

Sylvester equation in the past [3]–[14], such as Bartels-

Stewart, and Hessenberg-Schur iteration methods [8]–[14].
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However, when faced with the time-variant Sylvester equation,

numerical methods (such as Hessenberg-Schur method) may

be not suitable due to the high complexity and high sampling

in each period.

In the past 30 years, neural networks have been extensively

studied and applied in related fields such as robotics, automatic

control, and image processing [15]–[18]. In view of its superi-

or parallel processing and easy circuit implementation, neural

networks were also used to solve the Sylvester equation. For

example, the gradient neural network (GNN) was adopted to

solve static Sylvester equation effectively. However, for time-

variant Sylvester equation, when GNN is employed, it may not

be able to converge to its accurately solution, as there exists

a large delay error. In [19], Zhang et al. proposed a special

class of neural network (termed Zeroing neural network, ZNN)

to solve time-variant Sylvester equation, which is able to

achieve the exponential convergence. That is to say, the error

will gradually approach to zero, as time goes to infinity.

Considering the drawback of the ZNN model with infinite-

time convergence, which is difficult to meet the requirements

in real-time problems solving, a finite-time convergent ZNN

(FTCZNN) was proposed and used to solve static and time-

variant Sylvester equations [20]–[23]. Furthermore, the upper

bound of the finite-time convergence is theoretically calculated

in detail [24]–[31]. Nevertheless, the upper bound of the finite-

time convergence is closely related to the initial condition of

the FTCZNN model [32]–[36]. In other words, different initial

conditions of the FTCZNN model will result in different finite-

time convergence performance. However, the initial conditions

of some practical models are hard to be regulated or even

impossible to be evaluated, which can result in performance

degradation of the models. In order to address this problem, it

is important to propose a new ZNN model with a predefined

convergence time that is independent of the initial conditions.

It is worth pointing out that noise disturbance is ubiqui-

tous and unavoidable in real life. When noise disturbance

is injected, the above-mentioned GNN, ZNN and FTCZNN

models may not be able to converge to the accurate solution

of given problems. Therefore, it is also very meaningful

to study the robustness of the ZNN model against external

noise disturbance, in addition to convergence speed. Currently,

some ZNN models with noise tolerance have been proposed

and studied to solve various complex problems in front of

external noises [37]–[42]. For example, Jin et al. [37]–[40]

proposed an integration-enhanced ZNN (IEZNN) model to

solve the optimization problem accurately under a variety
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of noise interference. Guo et al. [43] further applied this

design method to realize kinematical control of redundant

manipulators. However, the convergence speed of the IEZNN

model only reaches the exponential convergence, instead of

finite-time convergence, not to mention the predefined-time

convergence.

Based on the above considerations, we are committed to

proposing new ZNN models for solving time-variant Sylvester

equation, which not only achieves the predefined-time conver-

gence, but also tolerates various different kinds of noises. To

do so, two novel nonlinear functions are skillfully devised to

activate the ZNN model to establish two new noise-tolerant

ZNN (NNTZNN) models for solving time-variant Sylvester

equation. It is noted that the design of two novel nonlinear

activation functions (AFs) are inspired by referring to the

idea of [33], [34], [36]. As compared with previous ZNN

models activated by some existing AFs (e.g., linear AF, bipolar

sigmoid AF, power AF, sign-bi-power AF) the proposed two

NNTZNN model not only have a predefined-time convergence

(instead of exponential convergence) but also have a better

robustness. The main advantage of the predefined-time conver-

gence is independent to initial states of the NNTZNN model,

which can modify the convergence speed greatly. Furthermore,

the convergence upper bounds of the proposed NNTZNN

models are analytically estimated in theory under different

kinds of external noises. Numerical comparison results further

verify the superiority of the proposed NNTZNN models to

existing ZNN models for time-variant Sylvester equation.

The rest of this paper is organized as follows. For solving

online time-variant Sylvester equation, Section II gives the

design process of traditional ZNN model and some commonly

used AFs. In addition, on basis of known AFs, two novel

nonlinear AFs are presented to modify its comprehensive per-

formance. Section III proposes two NNTZNN models based on

two nonlinear AFs, and theoretically analyzes the convergence

speed as well as robustness in detail. Simulation results are

given in Section IV to show the advantages of two NNTZNN

models. Section V concludes the paper. Before ending this

section, the highlights of this work are summarized as below.

1) Two novel nonlinear activation functions (AFs) are skill-

fully devised to improve the comprehensive performance

of zeroing neural network (ZNN) according to the idea

of the predefined time convergence related to nonlinear

control systems.

2) Based on these two AFs, two new noise-tolerant zeroing

neural networks (NNTZNNs) are developed to solve

time-variant Sylvester equation in the presence of various

external noises.

3) Compared with the previous ZNN models for time-

variant Sylvester equation, the proposed two NNTZNN

models not only have the predefined-time convergence

performance, but also have the noise-enduring capability

against various external disturbances.

4) It is theoretically proved that the finite convergence time

for two NNTZNN models to find time-variant Sylvester

equation is predefined. Its advantage is that the predefined

time can be calculated as a priori and is independent of

initial conditions of practical models.

5) It is numerically demonstrated that two NNTZNN models

are effective on solving time-variant Sylvester equation

under the interference of various noises (such as constant

noises, time-dependent bounded noises, time-dependent

unbounded noises).

II. ZNN MODEL AND ACTIVATION FUNCTIONS

In this part, we first consider the following time-variant

Sylvester equation:

A(t)X(t)−X(t)B(t) = −C(t) ∈ R
n×n, (1)

where A ∈ R
n×n, B ∈ R

n×n and C ∈ R
n×n stand for known

time-variant coefficient matrices of appropriate sizes; and

X(t) ∈ R
n×n stands for an unknown matrix of appropriate

size that needs to be obtained. For convenience of presentation,

X∗ ∈ R
n×n is used to denote the theoretical solution of (1).

In the following, for completeness of this work, the design

process of ZNN for time-variant Sylvester equation is first

given. Then, we review some commonly-used AFs that were

adopted to activate neural models to modify the performance.

At last of this section, two novel nonlinear AFs are presented

by following the idea of the predefined time convergence.

A. ZNN Model

First, for solving time-variant Sylvester equation (1), we can

define a matrix-valued error function E(t):

E(t) = A(t)X(t)−X(t)B(t) + C(t) ∈ R
n×n. (2)

It is obvious that if each element of the error function E(t)
converges to 0, the corresponding X(t) is what we want to

find. That is, solving time-variant Sylvester equation (1) is

equivalently transformed into forcing E(t) converging to 0.

Then, to make the error function (2) decrease to 0, the

following ZNN design formula is employed [21], [22], [26]:

dE(t)

dt
= −γΦ(E(t)), (3)

where Φ(·) : Rn×n → R
n×n stands for an activation function

array and γ > 0 stands for a known adjustable parameter.

Then, by substituting error function (2) into ZNN design

formula (3) and considering the time derivative of the error

function E(t) is Ė(t) = A(t)Ẋ(t)+ Ȧ(t)X(t)− Ẋ(t)B(t)−
X(t)Ḃ(t) + Ċ(t), the following ZNN model for time-variant

Sylvester equation (1) is established:

A(t)Ẋ(t)− Ẋ(t)B(t) = Ȧ(t)X(t) + Ẋ(t)B(t)

− γΦ(A(t)X(t)−X(t)B(t)

+ C(t)) − Ċ(t).

(4)

For such a ZNN model, which can be regarded as an ordinary

differential equation, if an initial value X(0) is given, it can

converge to its equilibrium point and output the accurate

solution of time-variant Sylvester equation (1).
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B. Commonly-Used AFs

In the past decade, various different types of activation

functions have widely proposed and investigated to modify

the performance of neural networks [44]–[47]. These survey

results indicate different AFs would lead to different perfor-

mance of neural models, and most of nonlinear AFs have a

positive effect on the convergence speed of neural models.

Similarly, for ZNN model (4), choosing a better AF can

further modify its comprehensive performance when applied

to solving time-variant Sylvester equation (1) even in the

presence of external disturbances. Considering the importance

of AFs, in this part, several commonly-used AFs are reviewed

and presented as follows [44]–[47].

1) linear activation function (LAF): φ(x) = x;

2) bipolar sigmoid activation function (BPAF): φ(x) = (1−
exp(−ξx))/(1 + exp(−ξx)) with ξ > 1;

3) power activation function (PAF): φ(x) = xl with l > 3
indicating an odd integer;

4) power-sigmoid activation function (PSAF):

φ(x) =

{

xl, if |x| ≥ 1,
1+exp(−ξ)
1−exp(−ξ) ·

1−exp(−ξx)
1+exp(−ξx) , otherwise,

with l > 3 indicating an odd integer and ξ > 1;

5) hyperbolic sine activation function (HSAF): φ(x) =
(exp(ξx) − exp(−ξx))/2 with ξ > 1;

6) sign-bi-power activation function (SBPAF) : φ(x) =
(|x|l + |x|1/l)sgn(x)/2 with 0 < l < 1 and sgn(·) denoting

the signum function.

It is worth noting that the above all nonlinear AFs have been

used to accelerate the convergence speed of previous ZNN

models and the results are better than that using the linear AF.

In addition, if SBPAF is used, finite-time convergence can be

realized for ZNN models. However, these nonlinear AFs are

only used in the ideal conditions (i.e., no external noises exist).

C. Two Novel Nonlinear AFs

As mentioned above, nonlinear AFs can improve the con-

vergence rate even to finite-time convergence performance

of ZNN models, but the noise disturbances are essentially

not taken into account. That is to say, the above nonlinear

AFs activated ZNN models may no longer work effectively

when the noise is disturbed. Therefore, on basis of these

AFs, inspired by the idea of the predefined-time stability

for nonlinear dynamic systems [32]–[34], [36], two novel

nonlinear AFs have been developed to activate ZNN model

(4), which can make it not only converge to the equilibrium

point in a predefined time, but also tolerate various different

external disturbances. Specifically, such two novel nonlinear

AFs are presented as follow:

ψ1(x) = (a1|x|
η + a2|x|

w)sgn(x) + a3x+ a4sgn(x), (5)

ψ2(x) = b1exp(|x|p)|x|1−psgn(x)/p+ b2x+ b3sgn(x), (6)

where design parameters 0 < η < 1, w > 1, a1 > 0, a2 > 0,

a3 > 0, a4 > 0, 0 < p < 1, b1 > 0, b2 > 0, and b3 > 0.

In the simulation part, for the purposes of comparison, three

typical AFs (i.e., LAF, PSAF, and SPBAF) will be used to

activate ZNN model (4) for finding the solution of time-variant

Sylvester equation (1) under different noise disturbances.

III. NNTZNN MODELS AND THEORETICAL ANALYSIS

In this section, on basis of two novel AFs (5) and (6), two

new noise-tolerant ZNN (NNTZNN) models are proposed to

solve time-variant Sylvester equation (1). In addition, the de-

tailed theoretical analyses of the predefined-time convergence

for two NNTZNN models are discussed in the presence of

various different kinds of external disturbances.

A. NNTZNN-1 Model

In the above section, two novel AFs are presented to modify

the comprehensive performance of ZNN model (4) when ap-

plied to time-variant Sylvester equation (1) solving. Note that

AFs (5) and (6) are standardly scalar-valued functions, while

ZNN model (4) is a matrix-valued neural model. Therefore,

AFs (5) and (6) are needed to be extended to matrix-valued

ones. To do so, we use Ψ1(x) ∈ R
n×n to denote the matrix-

valued AF array, which is consist of n×n AF (5). Therefore,

when AF array Ψ1(x) ∈ R
n×n is used to activate ZNN model

(4), we can obtain the first new noise-tolerant zeroing neural

network (NNTZNN) model:

A(t)Ẋ(t)− Ẋ(t)B(t) = Ȧ(t)X(t) + Ẋ(t)B(t)

− γΨ1(A(t)X(t)−X(t)B(t)

+ C(t)) − Ċ(t).
(7)

For easy presentation, this model is called the NNTZNN-

1 model. As compared with ZNN model (4) activated by

existing AFs, NNTZNN-1 model (7) has a superior predefined-

time convergence regardless of whether there exist external

disturbances, which can be calculated as a priori and is

independent of initial conditions of NNTZNN-1 model (7).

This feature is important for some practical models where their

initial conditions are hard to be regulated or even impossible

to be evaluated.

Before the main theoretical results of NNTZNN-1 model

(7) are given, the following lemma is first presented as a basis

for further discussion [33], [34], [36].

Lemma 1: For a nonlinear dynamic system ẋ(t) =
g(x(t), t), t ∈ [0,+∞) where g(·) denotes a nonlinear func-

tion, if there exists a continuous radially unbounded function

V : Rn → R+ ∪ {0} such that V (ζ) = 0 and any solution

ζ(t) satisfies

V̇ (t) 6 −τV ς(ζ(t)) − ρV µ(ζ(t)),

where parameters τ > 0, ρ > 0, 0 < ς < 1 and µ > 1
are constants, then the predefined convergence time for this

system is

Tmax =
1

τ(1 − ς)
+

1

ρ(µ− 1)
.

Then, we have the following theorem to ensure the

predefined-time convergence of NNTZNN-1 model (7) under

the ideal conditions.
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Theorem 1: Beginning with a random initial matrix X(0) ∈
R

n×n, NNTZNN-1 model (7) outputs an accurate solution of

time-variant Sylvester equation (1) in a predefined time tc:

tc 6
1

γa1(1− η)
+

1

γa2(w − 1)
,

where design parameters γ, a1, a2, η, w are defined as before.

Proof: First, we can conclude that NNTZNN-1 model (7)

is equivalent to Ė(t) = −γΨ1(E(t)) with E(t) denoting error

function (2), of which the i, jth subsystem is written as

ėi,j(t) = −γψ1(ei,j(t)) with i, j ∈ {1, 2, · · · , n}, (8)

where ei,j(t) and ėi,j(t) are the i, jth elements of matrices

E(t) and Ė(t), respectively.

If this subsystem (8) is proved to be the predefined-time

stability, it can be concluded that NNTZNN-1 model (7) is

also the predefined-time stability. To prove the predefined-

time stability of the i, jth subsystem (8), a Lyapunov function

candidate is first defined as

u(t) = |ei,j(t)|.

Its time derivative is computed as below:

u̇(t) = ėi,j(t)sgn(ei,j(t)) = −γψ1(ei,j(t))sgn(ei,j(t)).

Since AF (5) is used, we have

u̇(t) = −γ(a1|ei,j(t)|
η + a2|ei,j(t)|

w + a3|ei,j(t)|+ a4)

6 −γ(a1|ei,j(t)|
η + a2|ei,j(t)|

w)

= −γ(a1u
η(t) + a2u

w(t)).

By comparing it with the conclusion of Lemma 1, the prede-

fined convergence time of NNTZNN-1 model (7) is directly

given by

tc 6
1

γa1(1− η)
+

1

γa2(w − 1)
.

Since this convergence time tc is independent of the initial

states, NNTZNN-1 model (7) outputs an accurate solution of

time-variant Sylvester equation (1) in a predefined time. The

proof is thus complete.

Considering that various external disturbances exist during

the model hardware implementation, we further investigate the

following noise-perturbed NNTZNN-1 model:

A(t)Ẋ(t)− Ẋ(t)B(t) = Ȧ(t)X(t) + Ẋ(t)B(t)

− γΨ1(A(t)X(t)−X(t)B(t)

+ C(t))− Ċ(t) + Y(t),

(9)

where Y(t) denotes an additive noise. In the following, we

mainly study two kinds of additive noises: one is the dynamic

bounded vanishing noise, and the other is the dynamic bound-

ed non-vanishing noise.

1) Case 1: When the additive noise Y(t) is a dynamic

bounded vanishing noise, we have the following result for the

noise-perturbed NNTZNN-1 model (9).

Theorem 2: If Y(t) is a dynamic bounded vanishing noise

with its i, jth element satisfying |yi,j(t)| 6 δ|ei,j(t)| where

δ ∈ (0,+∞) and |ei,j(t)| denotes the absolute value of

the i, jth element of error function E(t), beginning with a

random initial matrix X(0) ∈ R
n×n, the noise-perturbed

NNTZNN-1 model (9) outputs an accurate solution of time-

variant Sylvester equation (1) in a predefined time tc:

tc 6
1

γa1(1 − η)
+

1

γa2(w − 1)
,

as long as γa3 > δ.

Proof: Similarly, the noise-perturbed NNTZNN-1 model

(9) can be simplified as Ė(t) = −γΨ1(E(t)) + Y(t) with

i, jth subsystem formed by

ėi,j(t) = −γψ1(ei,j(t)) + yi,j(t), (10)

where yi,j(t) denotes the i, jth element of matrix Y(t).
To prove the predefined-time stability of this noise-

perturbed subsystem, the following Lyapunov function can-

didate is chosen:

u(t) = |ei,j(t)|
2.

Besides, u̇(t) is computed as below:

u̇(t) = 2ei,j(t)ėi,j(t) = 2ei,j(t)(−γψ1(ei,j(t)) + yi,j(t)).

Since AF (5) is used and γa3 > δ, we have

u̇(t) = −2γ(a1|ei,j(t)|
η+1 + a2|ei,j(t)|

w+1)− 2γa4|ei,j(t)|

+2(ei,j(t)yi,j(t)− γa3|ei,j(t)|
2)

6 −2γ(a1|ei,j(t)|
η+1 + a2|ei,j(t)|

w+1)

+2(δ|ei,j(t)|
2 − γa3|ei,j(t)|

2)

6 −2γ(a1|ei,j(t)|
η+1 + a2|ei,j(t)|

w+1)

= −2γ(a1u
η+1

2 (t) + a2u
w+1

2 (t)).

According to Lemma 1, the predefined time of the noise-

perturbed NNTZNN-1 model (9) is calculated as

tc 6
1

γa1(1 − η)
+

1

γa2(w − 1)
.

That is to say, if γa3 > δ, the noise-perturbed NNTZNN-

1 model (9) outputs an accurate solution of time-variant

Sylvester equation (1) in a predefined time under a dynamic

bounded vanishing noise.

2) Case 2: When the additive noise Y(t) is a dynamic

bounded non-vanishing noise, we have the following result

for the noise-perturbed NNTZNN-1 model (9).

Theorem 3: If Y(t) is a dynamic bounded non-vanishing

noise with its i, jth element satisfying |yi,j(t)| 6 δ where

δ ∈ (0,+∞), beginning with a random initial matrix X(0) ∈
R

n×n, the noise-perturbed NNTZNN-1 model (9) outputs an

accurate solution of time-variant Sylvester equation (1) in a

predefined time tc:

tc 6
1

γa1(1 − η)
+

1

γa2(w − 1)
,

as long as γa4 > δ.

Proof: Compared with Theorem 2, only the additive noise

Y(t) is different. As a result, according to the subsystem (10),

the following Lyapunov function candidate is constructed as

u(t) = |ei,j(t)|
2.

Similarly, u̇(t) is computed as below:

u̇(t) = 2ei,j(t)ėi,j(t) = 2ei,j(t)(−γψ1(ei,j(t)) + yi,j(t)).
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Since AF (5) is used and γa4 > δ, we have

u̇(t) = −2γ(a1|ei,j(t)|
η+1 + a2|ei,j(t)|

w+1)− 2γa3|ei,j(t)|
2

+2(ei,j(t)yi,j(t)− γa4|ei,j(t)|)

6 −2γ(a1|ei,j(t)|
η+1 + a2|ei,j(t)|

w+1)

+2(δ|ei,j(t)|
2 − γa4|ei,j(t)|)

6 −2γ(a1|ei,j(t)|
η+1 + a2|ei,j(t)|

w+1)

= −2γ(a1u
η+1

2 (t) + a2u
w+1

2 (t)).

According to Lemma 1, the predefined time of the noise-

perturbed NNTZNN-1 model (9) in this case is calculated as

tc 6
1

γa1(1− η)
+

1

γa2(w − 1)
.

That is to say, if γa4 > δ, the noise-perturbed NNTZNN-

1 model (9) outputs an accurate solution of time-variant

Sylvester equation (1) in a predefined time under a dynamic

bounded non-vanishing noise.

B. NNTZNN-2 Model

In this part, AF (6) is explored to activate ZNN model (4).

For obtaining the new neural model, AF (6) has to be extended

to matrix-valued one. Similar with AF (5), we use Ψ2(x) ∈
R

n×n to denote the corresponding activation function matrix

array of ψ2(x). So, for emphasizing the importance of this

activation function, the following new noise-tolerant zeroing

neural network (NNTZNN) is presented as below:

A(t)Ẋ(t)− Ẋ(t)B(t) = Ȧ(t)X(t) + Ẋ(t)B(t)

− γΨ2(A(t)X(t) −X(t)B(t)

+ C(t))− Ċ(t).

(11)

For easy presentation, the above new neural model is termed

the NNTZNN-2 model. Furthermore, we can obtain the follow-

ing theoretical result about the predefined-time convergence of

NNTZNN-2 model (11).

Theorem 4: Beginning with a random initial matrix X(0) ∈
R

n×n, NNTZNN-2 model (11) outputs an accurate solution of

time-variant Sylvester equation (1) in a predefined time tc:

tc 6
1

γb1
,

where design parameters γ and b1 are defined as before.

Proof: Similarly, we can also conclude that NNTZNN-2

model (11) is equivalent to Ė(t) = −γΨ2(E(t)), of which

the i, jth subsystem is written as

ėi,j(t) = −γψ2(ei,j(t)) with i, j ∈ {1, 2, · · · , n}. (12)

According to Lyapunov theory, for proving the stability of

the i, jth subsystem (12), the following Lyapunov function

candidate is chosen:

u(t) = |ei,j(t)|.

In addition, u̇(t) is calculated as below:

u̇(t) = ėi,j(t)sgn(ei,j(t)) = −γψ2(ei,j(t))sgn(ei,j(t)).

Since AF (6) is used, we have

u̇(t) = −γ(b1exp(|ei,j(t)|
p)|ei,j(t)|

1−p/p+ b2|ei,j(t)|+ b3)

6 −γb1exp(|ei,j(t)|
p)|ei,j(t)|

1−p/p

= −γb1exp(up(t))u1−p(t)/p.

For obtaining the predefined convergence time, we have to

calculate u̇(t) 6 −γb1exp(up(t))u1−p(t)/p. Therefore, for the

i, jth subsystem (12), we have

ti,j 6
1− exp(−up(0))

γb1
.

Because exp(−up(0)) = exp(−|ei,j(0)|
p) ∈ (0, 1], for

NNTZNN-2 model (11), we finally obtain:

tc = max(ti,j) 6
1

γb1
.

That is to say, the upper bound of the convergence time for

NNTZNN-2 model (11) is a constant and independent of the

initial states, so NNTZNN-2 model (11) outputs an accurate

solution of time-variant Sylvester equation (1) in a predefined

time. The proof is thus complete.

Considering that various external disturbances exist during

the model hardware implementation, we further investigate the

following noise-perturbed NNTZNN-2 model:

A(t)Ẋ(t)− Ẋ(t)B(t) = Ȧ(t)X(t) + Ẋ(t)B(t)

− γΨ2(A(t)X(t)−X(t)B(t)

+ C(t))− Ċ(t) + Y(t),

(13)

where Y(t) denotes an additive noise. In the following, we

also mainly study two kinds of additive noises: one is the dy-

namic bounded vanishing noise, and the other is the dynamic

bounded non-vanishing noise.

1) Case 1: When the additive noise Y(t) is a dynamic

bounded vanishing noise, we have the following result for the

noise-perturbed NNTZNN-2 model (13).

Theorem 5: If Y(t) is a dynamic bounded vanishing noise

with its i, jth element satisfying |yi,j(t)| 6 δ|ei,j(t)| where

δ ∈ (0,+∞) and |ei,j(t)| denotes the absolute value of the

i, jth element of error function E(t), beginning with a random

initial matrix X(0) ∈ R
n×n, the noise-perturbed NNTZNN-

2 model (13) outputs an accurate solution of time-variant

Sylvester equation (1) in a predefined time tc:

tc 6
1

γb1
,

as long as γb2 > δ.

Proof: First, NNTZNN-2 model (13) is also equivalent

to Ė(t) = −γΨ2(E(t))+Y(t), and its i, jth subsystem is the

same as

ėi,j(t) = −γψ2(ei,j(t)) + yi,j(t).

To prove the predefined-time stability of this subsystem, the

following Lyapunov function candidate is selected:

u(t) = |ei,j(t)|
2.

Besides, u̇(t) is calculated as below:

u̇(t) = 2ei,j(t)ėi,j(t) = 2ei,j(t)(−γψ2(ei,j(t)) + yi,j(t)).
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Fig. 1. Transient behavior of state solutions X(t) generated by NNTZNN-1 model (9) and NNTZNN-2 model (13) when solving time-variant Sylvester
equation of Example 1 with noise Y(t) = 0.

Because AF (6) is used and γb2 > δ, one further can obtain:

u̇(t) = −2γb1exp(|ei,j(t)|
p)|ei,j(t)|

2−p/p− 2γb3|ei,j(t)|

+2(ei,j(t)yi,j(t)− γb2|ei,j(t)|
2)

6 −2γb1exp(|ei,j(t)|
p)|ei,j(t)|

2−p/p

+2(δ|ei,j(t)|
2 − γb2|ei,j(t)|

2)

6 −2γb1exp(|ei,j(t)|
p)|ei,j(t)|

2−p/p

= −γb1exp(u
p

2 (t))u
2−p

2 (t)/(p/2).

In a same way, the predefined convergence time of NNTZNN-

2 model (13) can be computed by solving u̇(t) 6

−γb1exp(u
p

2 (t))u
2−p

2 (t)/(p/2), and the result is

ti,j 6
1− exp(−u

p

2 (0))

γb1
.

As exp(−u
p

2 (0)) = exp(−|ei,j(0)|
p

2 ) ∈ (0, 1], it can also be

concluded that:

ti,j 6
1− exp(−u

p

2 (0))

γb1
6

1

γb1
,

which suggests that the upper bound of the convergence time

for the i, jth subsystem is a constant and independent of initial

states when γa4 > δ. Therefore, if γa4 > δ, the noise-

perturbed NNTZNN-2 model (13) outputs an accurate solution

of time-variant Sylvester equation (1) in a predefined time

under a dynamic bounded vanishing noise. In addition, the

predefined convergence time of NNTZNN-2 model (13) is

tc = max(ti,j) 6
1

γb1
.

The proof is thus complete.

2) Case 2: When the additive noise Y(t) is a dynamic

bounded vanishing noise, we have the following result for the

noise-perturbed NNTZNN-2 model (13).

Theorem 6: If Y(t) is a dynamic bounded non-vanishing

noise with its i, jth element satisfying |yi,j(t)| 6 δ where

δ ∈ (0,+∞), beginning with a random initial matrix X(0) ∈
R

n×n, the noise-perturbed NNTZNN-2 model (13) outputs an

accurate solution of time-variant Sylvester equation (1) in a

predefined time tc:

tc 6
1

γb1
,

as long as γb3 > δ.

Proof: Similar to Theorem 5, the Lyapunov function

candidate u(t) = |ei,j(t)|
2 is first chosen for the i, jth

subsystem of NNTZNN-2 model (13), and u̇(t) is computed

as follows:

u̇(t) = 2ei,j(t)ėi,j(t) = 2ei,j(t)(−γψ2(ei,j(t)) + yi,j(t)).

Since AF (6) is used and γb3 > δ, one can obtain:

u̇(t) = −2γb1exp(|ei,j(t)|
p)|ei,j(t)|

2−p/p− 2γb2|ei,j(t)|
2

+2(ei,j(t)yi,j(t)− γb3|ei,j(t)|)

6 −2γb1exp(|ei,j(t)|
p)|ei,j(t)|

2−p/p

+2(δ|ei,j(t)|
2 − γb3|ei,j(t)|

2)

6 −2γb1exp(|ei,j(t)|
p)|ei,j(t)|

2−p/p

= −γb1exp(u
p

2 (t))u
2−p

2 (t)/(p/2).

Similar to the proof process of Theorem 5, we can also

conclude that the predefined convergence time for NNTZNN-2

model (13) in this case is

tc 6
1

γb1
.

Hence, if γb3 > δ, the noise-perturbed NNTZNN-2 model (13)

outputs an accurate solution of time-variant Sylvester equation

(1) in a predefined time under a dynamic bounded vanishing

noise. The proof is thus complete.

IV. ILLUSTRATIVE VERIFICATION

In Section III, two NNTZNN models and the correspond-

ing noise-perturbed ones [i.e., NNTZNN-1 model (9) and

NNTZNN-2 model (13)] are proposed for solving the time-

variant Sylvester equation (1). Different from the previous

existing AFs, when AF (5) and AF (6) are used to activate

ZNN, the predefined-time convergence can be achieved even

if there are noise interruptions. In addition, the predefined-time

convergence analyses are provided according to different kinds

of noises. In this section, to verify the superior performance

of the proposed neural models, three different time-variant

Sylvester equation examples are used to test the efficiency.



7

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

t (s)t (s)

‖A(t)X(t)−X(t)B(t) + C(t)‖F‖A(t)X(t)−X(t)B(t) + C(t)‖F

(a) By NNTZNN-1 model (9)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

t (s)

‖A(t)X(t)−X(t)B(t) + C(t)‖F

(b) By NNTZNN-2 model (13)

Fig. 2. Transient behavior of residual errors ‖A(t)X(t) − X(t)B(t) + C(t)‖F generated by NNTZNN-1 model (9) and NNTZNN-2 model (13) when
solving time-variant Sylvester equation of Example 1 with noise Y(t) = 0.
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Fig. 3. Transient behavior of residual errors ‖A(t)X(t) − X(t)B(t) + C(t)‖F synthesized by NNTZNN-1 model (9) activated by AF (5), NNTZNN-2
model (13) activated by AF (6) and ZNN model (4) activated by LAF, PSAF, and SBPAF under different kinds of noises Y (t).

A. Example 1

Without loss of generality, design parameters are set as

γ = a1 = a2 = a3 = a4 = b1 = b2 = b3 = 1, η =
p = 0.25, w = 4 and the coefficient matrices of time-variant

Sylvester equation (1) as follows:

A(t) =

[

sin(2t) cos(2t)
− cos(2t) sin(2t)

]

, B(t) = 0, and C(t) = −I.

Obviously, the predefined time of NNTZNN-1 model (9)

for solving the time-variant Sylvester equation (1) can be

calculated as tc = 5/3 ≈ 1.67s, and the one for NNTZNN-

2 model (13) can be calculated as tc = 1s. In addition,

the theoretical solution X∗(t) of the given example can be

calculated as

X∗(t) =

[

sin(2t) − cos(2t)
cos(2t) sin(2t)

]

,

which can be used as a criterion for measuring the correctness

of each model to solve the time-variant Sylvester equation

(1). First, NNTZNN-1 model (9) and NNTZNN-2 model (13)

models are used to solve the time-variant Sylvester equation

(1) problem without noises [i.e., Y (t) = 0], and the main

simulation results are plotted in Figs. 1-2. When AF (5) is

activated, the state solution X(t) of NNTZNN-1 model (9) for
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Fig. 4. Transient behavior of state solutions X(t) generated by NNTZNN-1 model (9) and NNTZNN-2 model (13) when solving time-variant Sylvester
equation of Example 2 with noise Y(t) = 1.

time-variant Sylvester equation is plotted in Fig. 1(a). From

it, we can see that the blue solid line coincides with the red

dotted line in a very short time, where the blue solid line

represents each element of the state solution X(t) from the

starting point X(0) ∈ [−3, 3]2×2, while the red dashed line

represents each element of the theoretical solution X(t). When

AF (6) is activated, the state solution X(t) of NNTZNN-2

model (13) for time-variant Sylvester equation is plotted in

Fig. 1(b), which also show that the convergence time required

is also very short for coinciding between the blue solid line

and the red dotted line.

In addition, the residual errors ‖A(t)X(t) − X(t)B(t) +
C(t)‖F synthesized by NNTZNN-1 model (9) and NNTZNN-

2 model (13) are plotted in Fig. 2. As shown in Fig. 2(a),

the residual error of NNTZNN-1 model (9) converges to zero

about 0.6 seconds. This means that NNTZNN-1 model (9)

only needs about 0.6 seconds to solve time-variant Sylvester

equation of Example 1 accurately, and this convergence time

satisfies the requirement of the predefined time tc ≤ 1.67
seconds. Besides, as shown in Fig. 2(b), the residual error of

NNTZNN-2 model (13) converges to zero in a shorter time

(about 0.3 seconds), which also satisfies the requirement of

the predefined time tc ≤ 1 seconds.

For comparison purposes, ZNN model (4) activated by other

AFs [such as LAF, PSAF and SBPAF] are also used to solve

time-variant Sylvester equation of Example 1 under different

noises, and all comparison results are shown in Fig. 3. If noise

Y (t) = 0, all residual errors can converge to 0, but NNTZNN-

2 model (13) has the fastest convergence rate (approximately

0.3 seconds). Followed by NNTZNN-1 model (9), the time

required for the residual error converging to zero is about

0.6 seconds), while ZNN model (4) activated by LAF, PSAF,

and SBPAF takes longer time to converge to zero (i.e., using

SBPAF takes about 2.8 seconds, using PSAF needs about 3

seconds, and using LAF takes about 6 seconds). The results

verify the advantages of the proposed two neural models for

time-variant Sylvester equation in the presence of no noise.

When the external disturbance is a dynamic bounded van-

ishing noise Y (t) = 0.45|ei,j|, comparison results about the

residual errors are shown in Fig. 3(b). From it we can see

that the convergence time for NNTZNN-1 model (9) and

NNTZNN-2 model (13) seems to be unchanged, and the others

are correspondingly slower, as compared with the results of

Fig. 3(a). When the external disturbance is a constant noise

Y (t) = 1, the corresponding residual errors are plotted in

Fig. 3(c), which demonstrates residual errors of NNTZNN-

1 model (9) and NNTZNN-2 model (13) can still converge

to zero quickly, while the residual errors activated by LAF,

PSAF, SBPAF gradually tends to a stable non-zero value that

is usually related with the external disturbance. This means

that ZNN model (4) activated by LAF, PSAF, and SBPAF

may be no longer effective in the presence of a constant

noise, when applied to time-variant Sylvester equation solving.

However, the proposed two NNTZNN models can still solve

the time-varying Sylvester equation quickly and accurately.

When the external disturbance is a dynamic bounded non-

vanishing noise noise Y (t) = 0.45 cos(2t), the corresponding

residual error convergence is shown in Fig. 3(d). It can be

seen from Fig. 3(d) that the residual errors of NNTZNN-1

model (9) and NNTZNN-2 model (13) can still rapidly drop

to zero in a short time, while the residual errors of ZNN model

(4) activated by LAF, PSAF, SBPAF always fluctuate all the

time. In a word, the superiority of NNTZNN-1 model (9) and

NNTZNN-2 model (13) is firmly validated in the presence of

various external noises.

B. Example 2

To further validate the superiority of the proposed two

NNTZNN models, the time-variant Sylvester equation coming

from [20] is considered, and its coefficients are described by

A(t) =

[

sin(4t) cos(4t)
− cos(4t) sin(4t)

]

, B(t) =

[

2 0
0 3

]

,

and

C(t) =

[

sin(t) cos(t)
− cos(t) sin(t)

]

.

For consistency, in this example, design parameters of all ZNN

models are the same with these of Example 1. According

to the theoretical analysis, when NNTZNN-1 model (9) is

hired to solve the above time-variant Sylvester equation, it

will converge to the theoretical solution within the predefined
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model (4) activated by LAF, PSAF, and SBPAF under different kinds of noises Y (t) with γ = 1.
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time tc = 1.67 seconds, and when the NNTZNN-2 model

(13) is hired, the corresponding predefined time tc equals to

1 second.

First, NNTZNN-1 model (9) and NNTZNN-2 model (13)

are employed to solve the above time-variant Sylvester e-

quation in the presence of constant noise Y (t) = 1, and

the corresponding transient behavior of state solutions is

plotted in Fig. 4. From Fig. 4(a), it can be observed that

each element of state solution X(t) for NNTZNN-1 model

(9) from a randomly starting point X(0) coincides with the

one of the theoretical solution quickly in predefined time 1

second. In addition, from Fig. 4(b), it follows that the state

solutions X(t) of NNTZNN-2 model (13) can converge to

the theoretical solution X∗(t) under the same conditions in

a shorter predefined time (about 0.3 seconds). Note that, in

this situation, the convergence time of NNTZNN-1 model (9)

and NNTZNN-2 model (13) can satisfy the requirement of the

theoretically-computed predefined time.

Fig. 5 shows some comparison results of the residual errors

solved by the proposed two NNTZNN models and ZNN model

(4) activated by existing AFs under different external noise dis-

turbance (including the situation of constant noise Y (t) = 1).

First, Fig. 5(a) shows the results in the presence of constant

noise Y (t) = 1, from which, the residual errors generated
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Fig. 7. Transient behavior of residual errors ‖A(t)X(t) −X(t)B(t) + C(t)‖F synthesized by NNTZNN-1 model (9), NNTZNN-2 model (13) and ZNN
model (4) activated by LAF, PSAF, and SBPAF under different kinds of noises Y (t) with γ = 1.

by NNTZNN-1 model (9) and NNTZNN-2 model (13) can

converge to 0 with the predefined time, while generated by

ZNN model (4) activated by existing AFs cannot converge to

zero over time. Fig. 5(b) shows that when a fading noise is

added, there is a delay for ZNN model (4) activated by existing

AFs, as compared to the results of Fig. 3(a), while there is

no delay in NNTZNN-1 model (9) and NNTZNN-2 model

(13). Besides, time-variant bounded noise Y(t) = 0.6 cos(2.5t)
and time-variant unbounded noise Y(t) = 0.125 exp(0.2t) are

considered, and the corresponding comparison results are plot-

ted in Fig. 5(c) and (d), respectively. As seen from such two

subfigures, the residual errors of NNTZNN-1 model (9) and

NNTZNN-2 model (13) can converge to zero in a predefined

time, while ZNN model (4) activated by existing AFs cannot

converge to zero all the time, which means that using existing

AFs [such as LAF, PSAF, and SBPAF] may no longer be

suitable for solving time-variant Sylvester equation (1) when

the time-variant noise is injected. In contrast, NNTZNN-1

model (9) and NNTZNN-2 model (13) can still solve the time-

variant Sylvester equation accurately within a predefined time.

It is worth noting that the design parameter γ has an

important impact on the solution process of the ZNN models.

A time-variant non-vanishing noise Y(t) = 2.1t and a large

constant noise Y(t) = 18.5 are both considered when the

values of the design parameter γ are adjusted to 10 and 20, re-

spectively. The corresponding comparison results are described

in Fig. 6(a) and (b), respectively. Fig. 6(a) demonstrates

that the residual errors of NNTZNN-1 (9) and NNTZNN-2

models (13) can converge to zero. The convergence time for

NNTZNN-1 model (9) is reduced to about 0.06 seconds, and

for NNTZNN-2 model (13) is reduced to about 0.05 seconds.

Considering γ = 10, the predefined convergence time for

NNTZNN-1 (9) and NNTZNN-2 model (13) is computed as

0.16 and 0.1 respectively. Obviously, both NNTZNN-1 model

(9) and NNTZNN-2 model (13) satisfy the predefined time

convergence in the presence of Y(t) = 2.1t when γ = 10.

However, the residual errors of ZNN model (4) activated by

existing AFs shown in Fig. 6(a) have a certain error and cannot

converge to zero. This conclusion is also demonstrated by

Fig. 6(b) conducted in the presence of a large constant noise

Y(t) = 18.5 and γ = 20.

C. Example 3

In this example, a 3-dimensional time-variant Sylvester

equation is considered with coefficients being

A(t) =





2 + sin(2t) cos(2t) cos(2t)/2
cos(2t) 2 + sin(2t) cos(2t)

cos(2t)/2 cos(2t) 2 + sin(2t)



 ,

B(t) = 0 ∈ R
3×3, and C(t) = −I ∈ R

3×3.

The value of the design parameters is consistent with the pre-

vious two examples. NNTZNN-1 model (9) and NNTZNN-2

model (13) are hired to solve the above time-variant Sylvester

equation in the presence of four different kinds of noise
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with γ = 1, and the corresponding transient behavior of

residual errors is plotted in Fig. 7. As seen from Fig. 7,

one can found that all residual errors of NNTZNN-1 model

(9) and NNTZNN-2 model (13) can converge to 0 within

1 second, which satisfying the predefined-time requirement

[i.e., tc = 1.67 s for NNTZNN-1 model (9) and tc = 1
s for NNTZNN-2 model (13)]. In contrast, when external

noise Y(t) = 1, Y(t) = 0.5 sin(1.6t) or Y(t) = 0.1 exp(0.1t)
is present, the residual errors of ZNN model (4) activated

by LAF, PSAF and SBPAF cannot converge to 0. When a

fading noise Y(t) = 0.5|ei,j| is present, all residual errors can

converge to 0, but the convergence time of two NNTZNN

models’ residual errors is much shorter, as compared with

ZNN model (4) activated by LAF, PSAF and SBPAF.

In summary, according to the above comparison result-

s, it follows that, as compared with ZNN model (4) acti-

vated by LAF, PSAF and SBPAF, NNTZNN-1 model (9)

and NNTZNN-2 model (13) have superior predefined-time

convergence and noise-tolerant performance when applied to

time-variant Sylvester equation (1) solving in the presence of

various kinds of external disturbances.

V. CONCLUSION

By adopting two nonlinear activation functions (AFs), two

new noise-tolerant zeroing neural networks (NNTZNNs) are

established to solve time-variant Sylvester equation under

various external disturbances. Compared with the ZNN model

activated by existing AFs for time-variant Sylvester equation,

such two NNTZNN models have superior the predefined-

time convergence and noise-tolerant performance. In addition,

the related theorems are rigorously analyzed under no noise,

dynamic bounded vanishing noise and dynamic bounded non-

vanishing noise. Comparison results further show that the

proposed two NNTZNN models converge to the accurate

solution of the time-variant Sylvester equation in regardless

of whether there exist external noises, while the ZNN model

activated by LAF, PSAF and SBPAF cannot converge to

the accurate solution under the same conditions. It is worth

noting that this is the first co-design of the predefined-time

convergence and the noise-tolerant performance for ZNN to

solve time-variant Sylvester equation, making it have the better

performance in terms of convergence speed and robustness in

ZNN field. However, the proposed two NNTZNN models have

a relatively high complexity, as compared with the ZNN model

activated by other existing AFs. The future work may optimize

the structure of the NNTZNN models and further extend them

to some real engineering applications.
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