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Abstract: Methodologies developed for left-truncated right-censored failure time data can mostly be
categorized according to the assumption imposed on the truncation distribution, i.e., being completely
unknown or completely known. While the former approach enjoys robustness, the latter is more efficient
when the assumed form of the truncation distribution can be supported by the data. Motivated by data
from an HIV/AIDS study, we consider the middle ground and develop methodologies for estimation of a
regression function in a semiparametric setting where the truncation distribution is parametrically specified
while the failure time, censoring and covariate distribution are left completely unknown. We devise an
estimator for the regression function based on a local pseudo-likelihood approach that properly accounts for
the bias induced on the response variable and covariate(s) by the sampling design. One important spin-off
from these results is that they yield the adjustment for length-biased sampling and right-censoring; the
so-called stationary case. We study the small and large sample behaviour of our estimators. The proposed
method is then applied to analyze a set of HIV/AIDS data. The Canadian Journal of Statistics 00: 000–000;
2020 © 2020 Statistical Society of Canada
Résumé: La méthodologie développée pour les données tronquées à gauche et censurées à droite peut
généralement être classée en deux groupes selon les hypothèses à propos de la distribution de troncature,
à savoir si elle est complètement inconnue ou complètement connue. Alors que la première catégorie fait
preuve de robustesse, la seconde est plus efficace lorsque les données peuvent supporter la forme de la
distribution supposée pour la troncature. Motivés par des données sur le SIDA, les auteurs proposent un
compromis en introduisant un estimateur semi-paramétrique de la fonction de régression pour les données
tronquées à gauche et censurées à droite. Ils supposent un modèle paramétrique pour la troncature, tandis
que les distributions de la durée de survie et les covariables sont considérées comme inconnues. Ils adoptent
une approche de pseudo-vraisemblance locale pour développer leur estimateur en tenant compte du biais
induit par le plan d’échantillonnage. Un cas d’intérêt porte sur l’estimateur de la fonction de régression
pour les durées de survie biaisées par la longueur, le cas dit stationnaire. Les auteurs étudient les propriétés
théoriques et les performances numériques des estimateurs pour des échantillons petits et grands. Ils
illustrent finalement leur méthode d’estimation avec des données sur le SIDA. La revue canadienne de
statistique 00: 000–000; 2020 © 2020 Société statistique du Canada
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1. INTRODUCTION

Prospective cohort studies on incident cases, in which disease-free individuals are recruited and
followed until death, loss to follow-up, or study termination, is the gold standard when studying
the time between an initiating event, say the onset of a disease, and a terminating event, say death.
Logistic or other constraints may, however, preclude the possibility of recruiting incident cases.
A convenient alternative in such circumstances is to conduct a prevalent cohort study, whereby
groups of diseased individuals are recruited at some fixed time, their onset time is ascertained
retrospectively and followed until death or loss to follow-up. Under such design a response
time, say time from the disease onset to death, for an individual in the population of interest is
observed if this response time exceeds an associated truncation time. Despite its feasibility and
ease, this design generally leads to selecting subjects with longer survival times. Consequently,
the survival data collected on prevalent cases form a biased sample from the population of
interest. In other words, the survival times of subjects so recruited are left-truncated. When
identified cases are further followed-up, their lifetimes may also be subject to right-censoring.
Such censoring is informative. Another aspect of the truncation mechanism is the induced bias
on the covariate(s) (Bergeron, Asgharian & Wolfson, 2008).

In prevalent cohort studies, the truncation distribution reflects and explains the patterns of
disease incidence over a time period, and in some cases, this distribution can be recovered and
parameterized. Dementia incidence rate, for instance, is known to reasonably remain constant
over time, i.e., the truncation variable follows a uniform distribution (see Rabhi & Asgharian,
2017). As another example, the HIV-infection onset process was known to have an exponential
growth in the 1980’s because of its epidemic nature during this period (Wang, 1989, 1992). In this
case, the truncation variable can reasonably be modelled by one of the exponential distributions,
e.g., Weibull, Gamma, or Exponential cdf [see Figure 1(b)]. When the available information
about the truncation cdf is incorporated into a statistical model, the outcome is usually an efficient
estimation method as compared with a fully-nonparametric one (Wang, 1989; Asgharian, M’lan
& Wolfson, 2002; de Uña-Àlvarez & Iglesias-Pérez, 2010). This is what motivates our study and
this article.

In this article, we consider the semiparametric regression model

Y∗ = 𝜇(X∗) + 𝜀, (1)

where 𝜇(x) = E[Y∗|X∗ = x] is an unknown smooth function and 𝜀 is a random error (E[𝜀|X∗ =
x] = 0 and E[𝜀2|X∗ = x] < ∞), to study the relation between a positive response Y∗ (e.g., lifetime)
and a covariate X∗. The bivariate (Y∗,X∗) is subject to a random left-truncation T∗, meaning
that only subjects satisfying Y∗ ≥ T∗ are observed and followed. In addition, the response Y∗,
given Y∗ ≥ T∗, may be subject to right-censoring. Here, we consider a semiparametric model
that leaves the cdf of variables of interest Y∗ and X∗ unspecified, but parameterizes the cdf of
T∗. The objective is to nonparametrically estimate 𝜇 when the truncation distribution belongs
to a known parametric family

{𝜃, 𝜃 ∈ Θ
}

, with unknown parameter 𝜃. This will involve the
estimation of 𝜃, which makes the methodology presented in this article semiparametric in some
sense. It should be noted that accounting for biased sampling is crucial, and that failing to do so
leads to biased results.

Nonparametric estimation of regression function under biased sampling and right-censoring
has been mainly studied in two different settings. The first is general truncation, where the
truncation cdf is unknown and left unspecified (see Iglesias-Pérez & González-Manteiga, 1999;
Liang, de Uña-Àlvarez & Iglesias-Pérez, 2015; Gürler, 1996). The second is the length-biased
case, in which the truncation-times are assumed to be uniform, called the stationary assumption
(see Wu, 2000; de Uña-Àlvarez, 2003; Cristóbal, Ojeda & Alcalá, 2004), in the uncensored case,
and de Uña-Àlvarez & Iglesias-Pérez (2010) for fixed right-censoring]. While the first approach is
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more robust to the form of the truncation cdf, the second which incorporates available information
in the truncation variable is more efficient (see de Uña-Àlvarez & Iglesias-Pérez, 2010).

To the best of our knowledge, however, no methodology has been proposed in the literature
for nonparametric estimation of a regression function that combines the advantages of both
approaches. In this article, we introduce a semiparametric regression method that retains the
efficiency of the “known truncations” approach (see Theorem 1 and Corollary 1) and maintains
some robustness to the form of the truncation distribution H, that is, the method allows for the
possibility that H belongs to a class of parametric distributions𝜃 . Wang (1989) presented several
real examples that assume a parametric form for the truncation distribution is plausible. We
devise an estimator for 𝜇 based on a local pseudo-likelihood approach, and derive a conditional
MLE for the parameter 𝜃. Also, we develop a pseudo-likelihood estimator for 𝜇 when the
sampling is subject to uniform truncations and random censoring, showing its efficiency as
compared with a classical estimator for unspecified H (see Proposition 1(ii)). In addition, we
propose a bandwidth selection method to choose the smoothing parameter for the regression
function estimator. The rest of this article is organized as follows. In Section 2 we introduce the
estimator of the semiparametric regression function 𝜇 and study its asymptotic properties. The
estimation of 𝜇 under length-biased sampling and random censoring is discussed in Section 3,
while in Section 4 we introduce a bandwidth selection procedure to choose the smoothing
parameter. In Section 5 we study the finite sample behaviour of the semiparametric regression
estimator, by means of simulations, and apply our methodology to analyze a set of HIV/AIDS
data. The proofs of the main results are given in the Appendix.

2. SEMIPARAMETRIC REGRESSION MODEL

2.1. Data Setting and Notations
We start by defining the variables that represent the general population and the data obtained
from the cross-sectional (c-s) sampling, with follow-up. Let (Y∗,X∗) and T∗ be two independent
random vectors representing, respectively, the bivariate response-covariate (variables of interest)
and the truncation-time from the population (T∗ is a univariate vector). At the c-s sampling
time, one only observes the data (Y∗,X∗,T∗) given that Y∗ ≥ T∗. The resulting sample is biased,
as such, we denote by (Y ,X,T) the triplet of response-covariate-truncation associated with
the observed subjects, which arises from the conditional distribution of (Y∗,X∗,T∗) given that
Y∗ ≥ T∗. When the n selected subjects to the study are further followed-up, their residual lifetime
R = Y − T is subject to random right-censoring Rc.

The observed data, obtained from such sampling, are of the form {(Ti,Xi,Zi, 𝛿i), i = 1,… , n},
where Z = T + 𝛾 , 𝛾 = min(R,Rc) and 𝛿 = I(R ≤ Rc) is the censoring indicator. In this work,
we only consider the case of uncensored covariate X (e.g., age of individual at disease onset).
However, as noted above, X suffers from a bias induced by the c-s sampling design. In
the sequel, we assume that Rc is independent of (Y ,X,T). This assumption is common in
right-censored left-truncated data settings, and is reasonable in most practical situations (see
Bergeron, Asgharian & Wolfson, 2008).

Let H, with density h, and G denote the respective distributions of the truncation-time and
the residual censoring. In this section, H is assumed to belong to a known parametric family
𝜃 with unknown 𝜃. The case of uniform truncations is discussed in §3. Let K denote a kernel
density function, bn a bandwidth sequence tending to 0, and Kb(t) = K(t∕bn). In the sequel, 
denotes the compact support set of the density of X∗ and  denotes the interval [lL, uL), where lL

and uL are the lower and upper bounds of the support of L(y) = P[Z ≤ y].

2.2. Estimators
In this section, we describe the methodology for estimating the regression function 𝜇 and the trun-
cation parameter 𝜃, when H ∈ 𝜃 , under right-censored left-truncated data. First, notice that the
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population distribution FY∗|X∗ (y|x) = P[Y∗ ≤ y|X∗ = x] is related to the cross-sectional-sample
distribution FZ,𝛿|X(y, 1|x) = P[Z ≤ y, 𝛿 = 1|X = x] through the equation

FY∗|X∗ (y|x) = ∫v≤y w−1(v; 𝜃) dFZ,𝛿|X(v, 1|x)
∫v>0 w−1(v; 𝜃) dFZ,𝛿|X(v, 1|x) , (2)

where w is a weight function, given by

w(z; 𝜃) = ∫
z

0

[
1 − G(z − u)

]
dH(u; 𝜃).

Our approach for estimating the conditional distribution FY∗|X∗ , and the regression function𝜇(x) =
∫y>0 y dFY∗|X∗ (y|x), is based on a local version of the pseudo log-likelihood of {(Zi,Ti)| (𝛿i =
1,Xi = x), i = 1,… , n}:

𝓁pl = log

{
n∏

i=1

[
1 − G(zi − ti)

]
dFY ,T ,X(zi, ti, x)

∫r≥0 ∫u−t≤r dFY ,T ,X(u, t, x) dG(r)

}

= log

{
n∏

i=1

[
1 − G(zi − ti)

]
dFT∗ (ti) dFY∗|X∗ (zi|x)

∫u>0 w(u; 𝜃) dFY∗|X∗ (u|x)
}

=
n∑

i=1

log

{
dFY∗|X∗ (zi|x)

∫u>0 w(u; 𝜃) dFY∗|X∗ (u|x)
}

+ Ct = 𝓁∗
pl + Ct,

(Ct does not depend on FY∗|X∗) given by

𝓁∗
lpl =

n∑
i=1

Kb(x − Xi) 𝛿i log

{
dFY∗|X∗ (zi|x)

∫u>0 w(u; 𝜃) dFY∗|X∗ (u|x)
}

. (3)

The local pseudo log-likelihood in (3) is defined over observations in the covariate neigh-
bourhood of the target point x, and is essentially a weighted version of 𝓁∗

lp. Covariate observations
Xi (i = 1,… , n) that are associated with uncensored responses and closer to x are given more
weight than the further ones. The nonparametric maximum pseudo-likelihood estimator of
pi = dFY∗|X∗(zi|x) (the mass attached to zi given X = x) derived from 𝓁∗

lpl is

p̂i =
Kb(x − Xi)w−1(Zi; 𝜃) 𝛿i∑n

𝑗=1 Kb(x − X𝑗)w−1(Z𝑗 ; 𝜃) 𝛿𝑗
. (4)

It remains to replace the unknown quantities in the expression of w by their estimates. When G
is unknown, one may replace G by its Kaplan-Meier (K-M) estimator Ĝ. Now, to estimate 𝜃, we
consider the conditional likelihood of the truncations times Ti given (Zi, 𝛿i,Xi), i = 1,… , n:

c(𝜃) =
n∏

i=1

dH(ti; 𝜃)
w(zi; 𝜃)𝛿i v(zi; 𝜃)1−𝛿i

{
dG(zi − ti)1−𝛿i

[
1 − G(zi − ti)

]𝛿i
}
, (5)

where v(z; 𝜃) = ∫ z
0 h(z − u; 𝜃) dG(u). This conditional likelihood approach was considered pre-

viously by Wang (1989), in the context of estimating the distribution of uncensored lifetimes
under parametric truncation model (see also Andersen, 1970). The terms G and dG in (5) can be
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ignored since they do not depend on 𝜃. The proposed estimator for 𝜃 is the MLE obtained from
the conditional likelihood c;

𝜃 = argmax
𝜃0

∗
c (𝜃0) = argmax

𝜃0

{
n∏

i=1

dH(ti; 𝜃0)

ŵ
(
zi; 𝜃0

)𝛿i v̂
(
zi; 𝜃0

)1−𝛿i

}
, (6)

where ŵ
(
z; 𝜃

)
= ∫ z

0

[
1 − Ĝ (z − u)

]
dH(u; 𝜃) and v̂

(
z; 𝜃

)
= ∫ z

0 h(z − u; 𝜃) dĜ(u). Now, replacing
the weight function w in (4) by its estimator

ŵ
(
y; 𝜃

)
= ∫

y

0

[
1 − Ĝ(y − u)

]
dH(u; 𝜃),

the estimator of FY∗|X∗ (.|x) is

F̂Y∗|X∗(y; 𝜃|x) = n∑
i=1

Kb(x − Xi) ŵ−1(Zi; 𝜃) 𝛿i∑n
𝑗=1 Kb(x − X𝑗) ŵ−1(Z𝑗 ; 𝜃) 𝛿𝑗

I(Zi ≤ y).

Hence, the semiparametric regression estimator of 𝜇 is

𝜇
(
x; 𝜃

)
=

n∑
i=1

Kb(x − Xi) ŵ−1(Zi; 𝜃) 𝛿i∑n
𝑗=1 Kb(x − X𝑗) ŵ−1(Z𝑗 ; 𝜃) 𝛿𝑗

Zi. (7)

This local pseudo-likelihood approach is equivalent to the case where we replace w and
FZ,𝛿|X(., 1|x), in the R.H.S. of Equation (2), by their respective estimates ŵ

(
.; 𝜃

)
and

F̂Z,𝛿|X(y, 1|x) = n∑
i=1

Kb(x − Xi)∑n
𝑗=1 Kb(x − X𝑗)

I(Zi ≤ y, 𝛿i = 1).

We note that the regression function estimator 𝜇 is defined on the set , and that ŵ and v̂ are
defined on , and the conditional functions estimators F̂Y∗|X∗ (y|x) and F̂Z,𝛿|X(y, 1|x) are defined
on  × .

2.3. Asymptotic Properties
We begin this section by establishing the limit distribution of 𝜇(.; 𝜃), evaluated at a fixed value
of 𝜃, defined by

𝜇
(
x; 𝜃

)
=

n∑
i=1

Kb(x − Xi) ŵ−1(Zi; 𝜃) 𝛿i∑n
𝑗=1 Kb(x − X𝑗) ŵ−1(Z𝑗 ; 𝜃) 𝛿𝑗

Zi.

The assumptions used in the next results are given in the Appendix.

Theorem 1. Let m(x) = E
[
H(Y∗; 𝜃)|X∗ = x

]
and 𝑓X(x) = (nhn)−1 ∑n

i=1 Kb(x − Xi) the kernel
estimator of the density 𝑓X(x) of X. Suppose B1, B2, K1, and K2 hold, then 𝜇(x; 𝜃), for x ∈ ,
admits the representation

𝜇(x; 𝜃) − 𝜇(x) = 1
nbn

n∑
i=1

Kb(x − Xi)
𝛿i

w(Zi)

[
Zi − 𝜇(x)

]
× m(x)
𝑓X(x)

+ op

(
1√
nbn

)
. (8)

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



6 RABHI AND ASGHARIAN Vol. 00, No. 00

Hence,
√

nbn

[
𝜇(x; 𝜃) − 𝜇(x)

] d
−−→ N

(
0, 𝜎2(x)

)
, with

𝜎2(x) = E
[(

Y∗ − 𝜇(x)
)2w−1(Y∗)|||X∗ = x

] m(x) ∫ K2(u) du

𝑓X(x)
.

The proof of Theorem 1 is given in the Appendix. Let ḣ, ẇ, and v̇ denote the respective
derivatives of h, w, and v with respect to 𝜃. Denote F0(t) = P[Z ≤ t, 𝛿 = 0], F1(t) = P[Z ≤ t, 𝛿 =
1],

𝜒
F1
i = ∫

uL

𝓁L

[
1

w(t; 𝜃)
𝜒 ẇ

i (t) −
ẇ(t; 𝜃)
w2(t; 𝜃)

𝜒w
i (t)

]
dF1(t),

𝜒
F0
i = ∫

uL

𝓁L

[
1

v(t; 𝜃)
𝜒 v̇

i (t) −
v̇(t; 𝜃)
v2(t; 𝜃)

𝜒v
i (t)

]
dF0(t),

𝜒
𝓁c
i =

ḣ(Ti; 𝜃)
h(Ti; 𝜃)

− 𝛿i
ẇ(Zi; 𝜃)
w(Zi; 𝜃)

− (1 − 𝛿i)
v̇(Zi; 𝜃)
v(Zi; 𝜃)

,

and 𝜙𝜃(Ti,Zi, 𝛾i, 𝛿i) = 𝜒
F1
i + 𝜒

F0
i − 𝜒

𝓁c
i , where 𝜒w

i , 𝜒 ẇ
i , 𝜒v

i and 𝜒 v̇
i (i = 1,… , n) are defined in

the Appendix. In the next result we establish the limiting distribution of the truncation parameter
estimate 𝜃. This result (Theorem 2 below) along with Theorem 1 will lead to the asymptotic
normality of the semiparametric regression estimator 𝜇(.; 𝜃) in (7).

Theorem 2. Suppose assumptions B1, B3, and B4 hold, and let 𝛾 = R ∧ Rc. We have

𝜃 − 𝜃 = Ω−1
𝜃

1
n

n∑
i=1

𝜙𝜃(Ti,Zi, 𝛾i, 𝛿i) +
(

op
(
n−1∕2

)
,… , op

(
n−1∕2

) )t
,

where Ω𝜃 is defined in the Appendix. Thus,
√

n
(
𝜃 − 𝜃

) d
−−→ N

(
0,Σ1

)
, with

Σ1 = Ω−1
𝜃 E

[
𝜙𝜃(T ,Z, 𝛾, 𝛿)𝜙t

𝜃
(T ,Z, 𝛾, 𝛿)

]
Ω−1

𝜃 .

The proof is detailed in the Appendix. The asymptotic distributions of 𝜇(.; 𝜃) is stated in
Corollary 1.

Corollary 1. Under the assumptions of Theorems 1 and 2, we have for x ∈ √
nbn

[
𝜇(x; 𝜃) − 𝜇(x)

] d
−−→ N

(
0, 𝜎2(x)

)
,

where 𝜎2(x) is defined in Theorem 1.

The proof of Corollary 1 is given in the Appendix. Notice that the limit distributions of
𝜇(.; 𝜃), for a fixed value of 𝜃, and 𝜇(.; 𝜃), for an estimate of 𝜃, are the same. This is caused by the
fact that 𝜃 has a faster convergence rate, i.e., p(n−1∕2), than the regression function estimator 𝜇,
i.e., p

(
(nb)−1∕2

)
. Note that the asymptotic variance of 𝜇

𝜎2(x) = ∫
(
y − 𝜇(x)

)2w−1(y) dFY∗|X∗ (y|x) × m(x) ∫ K2(u) du

𝑓X(x)
,
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can be estimated by replacing 𝜃, w, FY∗|X∗ and 𝜇 by their respective estimators 𝜃, ŵ(.; 𝜃), F̂Y∗|X∗
and 𝜇(.; 𝜃) (defined in Section 2.2), and 𝑓X by 𝑓X(x) (defined in Theorem 1). Note that m(x) can
be estimated by ∫y>0 H(y; 𝜃) dF̂Y∗|X∗ (y|x), K is known, and b can be substituted by b̂opt defined in

(12). The asymptotic variance of 𝜃 in Theorem 2 involves several complicated terms, so much
so that it renders a direct estimation of Σ1 particularly difficult. In this case, we suggest using
bootstrap methods to estimate Σ1.

3. THE LENGTH-BIAS CASE

Analogously to the approach described in Section 2.2, and following similar steps, we introduce
an estimator for the regression function 𝜇 when the data are length-biased and are subject to
random censoring. Under uniform truncations, the local pseudo log-likelihood in (3) becomes

𝓁u
lpl =

n∑
i=1

Kb(x − Xi) 𝛿i log

{
dFY∗|X∗ (zi|x)

∫t>0 wu(t) dFY∗|X∗ (t|x)
}

,

with nonparametric maximizer

p̂u
i =

Kb(x − Xi)w−1
u (Zi) 𝛿i∑n

𝑗=1 Kb(x − X𝑗)w−1
u (Z𝑗) 𝛿𝑗

, (9)

where wu(z) = ∫ z
0

[
1 − G(t)

]
dt. The weight function wu in (9), which replaces w of Section 2.2,

can be estimated by ŵu(z) = ∫ z
0

[
1 − Ĝ(t)

]
dt, with Ĝ the K-M estimator of G. Thus, we estimate

the conditional distribution FY∗|X∗ by

F̂Y∗|X∗(y|x) = n∑
i=1

Kb(x − Xi) ŵ−1
u (Zi) 𝛿i∑n

𝑗=1 Kb(x − X𝑗) ŵ−1
u (Z𝑗) 𝛿𝑗

I(Zi ≤ y), (10)

and the regression function 𝜇 by

𝜇u
(
x
)
=

n∑
i=1

Kb(x − Xi) ŵ−1
u (Zi) 𝛿i∑n

𝑗=1 Kb(x − X𝑗) ŵ−1
u (Z𝑗) 𝛿𝑗

Zi. (11)

The estimator in (10) generalizes the estimator of de Uña-Àlvarez & Iglesias-Pérez (2010), from
fixed residual-censoring to random censoring. The authors introduced a general estimator in
Remark 1 (of their paper); however, they did not study its consistency nor its asymptotic theory.
Their estimator is different from ours. Unlike our case, they consider possible dependency
between the residual-censoring Rc and the observed covariate X. Next, we establish the limit
distribution of 𝜇u.

Theorem 3. Under assumptions B1, B2, K1, and K2, 𝜇u(x), for x ∈ , admits the representa-
tion

𝜇u(x) − 𝜇(x) = 1
nbn

n∑
i=1

Kb(x − Xi)
𝛿i

wu(Zi)

[
Zi − 𝜇(x)

]
× 𝜇(x)
𝑓X(x)

+ op

(
1√
nbn

)
.
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Therefore,
√

nbn

[
𝜇u(x) − 𝜇(x)

] d
−−→ N

(
0, 𝜎2

u (x)
)

, with

𝜎2
u (x) = E

[(
Y∗ − 𝜇(x)

)2
w−1

u (Y∗)
||||X∗ = x

]
𝜇(x) ∫ K2(u) du

𝑓X(x)
.

The proof is similar to that of Theorem 1. In the following result, we show the effi-
ciency of F̂Y∗|X∗ in (10) as compared with the product-limit estimator of Iglesias-Pérez &
González-Manteiga (1999) for unspecified truncation cdf H. The limit variance of the authors’
estimator is

S2(x, y) = F
2
Y∗|X∗ (y|x) ∫ y

0
C−2

x (t) dFZ,𝛿|X(t, 1|x) ∫ K2(u) du

𝑓X(x)
,

where Cx(t) = P[T ≤ t ≤ Z|X = x]; the proportion of recruited subjects who are at risk to fail at
time t given X = x.

Proposition 1. Suppose B1, B2, K1 and K2 hold. We have for (x, y) ∈  × ,

1.
√

nbn

[
F̂Y∗|X∗ (y|x) − FY∗|X∗ (y|x)] d

−−→ N
(

0,Vu(x, y)
)

, with

Vu(x, y) = E
[(

I(Y∗ ≤ y) − FY∗|X∗ (y|x))2
w−1

u (Y∗)
||||X∗ = x

]
𝜇(x) ∫ K2(u) du

𝑓X(x)
.

2. Vu(x, y) ≤ S2(x, y).

The proof of Proposition 1 is given in the Appendix. Note that the estimation of the variances
𝜎2

u in Theorem 3 and Vu in Proposition 1 is similar to that of 𝜎2, as discussed in Section 2.3.

4. BANDWIDTH SELECTION

One critical issue to the estimation process of the regression function 𝜇 is the choice of the
smoothing parameter b. For right-censored and left-truncated data, there is a need for a selection
method that accounts for both truncation and censoring mechanisms. To choose the bandwidth
parameter, we may minimize with respect to b the weighted integrated squared error

WISE(b) = ∫x>0

[
𝜇∗(x; b) − 𝜇(x)

]2
dFX∗ (x),

where 𝜇∗(x; b) = 𝜇(x; 𝜃) if H ∈ 𝜃 (with unknown 𝜃) and 𝜇∗(x; b) = 𝜇u(x) for uniform trunca-
tions. This is equivalent to choosing b that minimizes

WISE∗(b) = ∫x>0
𝜇∗ 2(x; b) dFX∗ (x) − 2 ∫x>0 ∫y>0

y𝜇∗(x; b) dFX∗ ,Y∗ (x, y),

by noticing that 𝜇(x) dFX∗ (x) = ∫y>0 y dFX∗ ,Y∗ (x, y). It remains to replace the unknown bivariate
distribution FX∗ ,Y∗ and its marginal FX∗ in the expression of WISE∗(b) by their estimates. One
can show that FX∗,Y∗ and FX∗ can consistently be estimated by

F̂X∗ ,Y∗ (x, y) =
n∑

i=1

ŵ−1
∗ (Zi)𝛿i∑n

𝑗=1 ŵ−1
∗ (Z𝑗)𝛿𝑗

I(Xi ≤ x, Zi ≤ y),
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F̂X∗ (x) =
n∑

i=1

ŵ−1
∗ (Zi)𝛿i∑n

𝑗=1 ŵ−1
∗ (Z𝑗)𝛿𝑗

I(Xi ≤ x),

respectively, where ŵ∗ = ŵ(.; 𝜃) if H ∈ 𝜃 and ŵ∗ = ŵu if H is uniform. The derivation of F̂X∗ ,Y∗ ,
under uniform H, have been studied in Rabhi & Bouezmarni (2020). The data driven bandwidth
is then

b̂opt = argmin
b

{
n∑

i=1

ŵ−1
∗ (Zi)𝛿i∑n

𝑗=1 ŵ−1
∗ (Z𝑗)𝛿𝑗

[
𝜇∗
−i(Xi; b) − Zi

]2
}

, (12)

where 𝜇∗
−i is a leave-one-out estimate of 𝜇 at x, given by

𝜇∗
−i(x; b) =

n∑
k=1
k≠i

Kb(x − Xk) ŵ−1
∗ (Zk) 𝛿k∑n

𝑗=1
𝑗≠i

Kb(x − X𝑗) ŵ−1
∗ (Z𝑗) 𝛿𝑗

Zk.

Note that the weights ŵ−1
∗ (Zi)𝛿i∕

∑n
𝑗=1 ŵ−1

∗ (Z𝑗)𝛿𝑗 in (12) account for the truncation and censoring
mechanisms, via the weight function ŵ∗, and replace the uniform weight 1∕n in the empirical
version of ĥopt for complete data (see Härdle & Marron, 1985).

5. DATA ANALYSIS

5.1. Simulation Study
The following simulation study is carried out to evaluate the finite-sample efficiency performance
of the semiparametric regression estimator 𝜇(.; 𝜃) in (7) as compared with the nonparametric
estimator of Iglesias-Pérez & González-Manteiga (1999) for unspecified H. We study the
integrated squared error (ISE) of the latter authors’ estimator (denoted P-M) and that of 𝜇, given
by

ISE(𝜇) = ∫x>0

[
𝜇(x; 𝜃) − 𝜇(x)

]2
dx,

for various truncation models, under two levels of censoring 25% and 40%. We consider two
regression models for the failure time Y∗. The homoscedastic regression model

Y∗ = 𝜇1(X∗) + 𝜀, with 𝜇1(x) = 2.9 − 0.25 x,

where X∗ ∼ Unif[6, 10] and 𝜀 ∼ Unif[−0.3, 0.3], and the nonlinear regression model

Y∗ = 𝜇2(X∗) + 𝜀, with 𝜇2(x) = x2 + 0.25 x,

where X∗ ∼ Unif[1, 3] and 𝜀 ∼ Unif[−1, 1]. In the simulation experiment, we generate indepen-
dently the lifetime data y∗i (i = 1, 2,…) from the aforementioned models and the truncation data
t∗i (i = 1, 2,…) from a distribution H(.; 𝜃). We truncate (exclude) the triple (y∗i , t

∗
i , x

∗
i ) if y∗i < t∗i ,

otherwise we keep generating the data until n observations are collected. The resulting sample
is {(xi, yi, ti), i = 1,… , n}. Define ri = yi − ti (i = 1,… , n). We then independently generate n
residual censoring data rc,1,… , rc,n from a gamma distribution G. This allows us to define the
data {(xi, ti, zi, 𝛿i), i = 1,… , n}, where zi = ti + min(ri, rc,i) and 𝛿i = I

(
ri ≤ rc,i

)
.

Tables 1 and 2 show that the new semiparametric estimator 𝜇(.; 𝜃), which incorporates
the available information of the truncation distribution H, outperforms the full nonparametric
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TABLE 1: Comparative efficiency between the semiparametric estimator 𝜇 and the P-M estimator (based
on ISE), for various truncation models in the homoscedastic regression (×10−2).

n = 100 n = 200 n = 400

FT∗ (.; 𝜃) Censoring 𝜇(.; 𝜃) P-M 𝜇(.; 𝜃) P-M 𝜇(.; 𝜃) P-M

Gamma(2, 0.5) 25% 1.94 2.86 1.11 1.74 0.607 0.757

40% 2.11 3.30 1.19 1.82 0.645 0.804

Weibull(2, 5) 25% 2.24 4.40 1.25 1.73 0.724 0.896

40% 2.39 4.67 1.33 1.84 0.777 0.945

logNorm(1, 1) 25% 2.15 3.94 1.23 1.93 0.727 1.380

40% 2.27 4.23 1.31 2.08 0.779 1.440

logLogit(4, 2) 25% 2.16 3.84 1.19 1.72 0.690 0.882

40% 2.40 4.36 1.32 1.89 0.758 0.948

Gompertz(.05, 2) 25% 1.79 2.41 0.97 1.22 0.563 0.654

40% 1.97 2.75 1.08 1.35 0.613 0.708

TABLE 2: Comparative efficiency between the semiparametric estimator 𝜇 and the P-M estimator (based
on ISE), for various truncation models in the nonlinear regression.

n = 100 n = 200 n = 400

FT∗ (.; 𝜃) Censoring 𝜇(.; 𝜃) P-M 𝜇(.; 𝜃) P-M 𝜇(.; 𝜃) P-M

Gamma(5.5, 0.5) 25% 4.63 6.90 2.66 4.60 1.46 2.88

40% 4.79 7.00 2.70 4.66 1.48 3.04

10.Weibull(2, 5) 25% 0.66 1.45 0.22 0.74 0.11 0.28

40% 0.70 1.78 0.27 0.76 0.13 0.30

logNorm(3, 1) 25% 0.70 1.85 0.27 1.18 0.14 0.62

40% 0.73 1.90 0.29 1.20 0.15 0.64

logLogit(20, 2) 25% 0.54 1.28 0.19 0.50 0.10 0.25

40% 0.58 1.34 0.20 0.52 0.12 0.28

estimator (P-M) of Iglesias-Pérez & González-Manteiga (1999), which leaves H unspecified, in
all cases considered in our simulation. As expected the average ISE decreases with increasing
n, the sample size, and increases with as the censoring rate increases. The efficiencies of the
estimators are based on the average of 1,000 simulations of ISE.

In Table 3, the simulated ratio of the mean-integrated-squared-errors of 𝜇(.; 𝜃), MISE(Mis-
specified truncation model)/MISE(True truncation model), indicates that we do not lose much
efficiency when the truncation-model used is either Weibull, gamma, Gompertz or log-normal,
while the true model is one of the first three models. However, when the true truncation-model
is log-normal, there is a relative loss in efficiency if the model used is different from the later.
Note that the MISE is computed from the average of 1,000 simulations of ISE.
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TABLE 3: Ratio of the mean integrated squared errors of 𝜇, MISE(misspecified truncation
model)/MISE(true model). Sample size n = 400 and censoring level = 25%.

True truncation model

Model used Weibull Gamma Gompertz Log-normal

Weibull 1 1.003 1.011 2.521

Gamma 1.025 1 1.023 3.472

Gompertz 1.030 1.005 1 2.765

log-Normal 1.080 1.084 1.037 1
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FIGURE 1: One thousand simulated curves of the estimator 𝜇(.; 𝜃) (grey) and the homoscedastic
regression function (black). (a and b) Weibull truncations, (c and d) gamma truncations. (a and

c) n = 200, (b and d) n = 400 (censoring level = 40%).

The plots in Figures 1 and 2 display 1,000 simulated curves of the estimator 𝜇(.; 𝜃) (grey)
and the true regression function (black), in the homoscedastic and nonlinear models, for several
truncation distributions. Note that the computational cost of the length-biased estimator (11) is
similar to the cost of the estimator of Iglesias-Pérez & González-Manteiga (1999). However,
for the estimator given by Equation A7, the computational cost is a bit higher. This is due
to the optimization step of estimating the parameter 𝜃. We pay this price, of course, for the
gain in efficiency as indicated in Tables 1 and 2. In this article, we used the kernel function
K(x) = 0.75(1 − x2) I[−1,1](x) and the formula (12) to select the bandwidth bn for our estimator
𝜇(.; 𝜃). For the P-M estimator 𝜇PM, we chose the bandwidth that minimizes the ISE of 𝜇PM. Note
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FIGURE 2: One thousand simulated curves of the estimator 𝜇(.; 𝜃) (grey) and the nonlinear
regression function (black). (a and b) Log-logistic truncations, (c and d) log-normal truncations.

(a and c) n = 200, (b and d) n = 400 (censoring level = 25%).

that we computed the ISE of 𝜇(.; 𝜃) and 𝜇PM over the intervals [6 + b, 10 − b] and [1 + b, 3 − b]
in the homoscedastic and nonlinear models, respectively, and we estimated 𝜇 in those regions.

5.2. HIV-Infection and AIDS Data
We illustrate the semiparametric estimation method in Section 2 on a set of prevalent cohort
data from the Amsterdam Cohort Study on HIV infection and AIDS (see Geskus, 2000). The
data were, initially, collected among men who have sex with men (MSM) who have experienced
HIV-infection prior to study recruitment and had not developed AIDS. Those who developed
AIDS before the recruitment were not a part of the study, as discussed in Geskus (2000).
Ascertaining the date of seroconversion is a source of difficulty in AIDS studies. In most cohort
studies on HIV infection, the seroconversion dates can be left-, right- or interval-censored. While
for those who are prospectively identified we can consider the midpoint of the date of the last
seronegative test and the first seropositive test as the date of seroconversion, for seroprevalent
cases the situation is different. Geskus (2000) has thoroughly studied this issue and presented
a marker-based approach, using CD4 counts, for imputing missing dates of seroconversion for
such cases.

In this analysis, we considered a sample of n = 204 individuals who have been infected by
HIV before the beginning of the follow-up (prevalent cases). The response Y∗ is defined as the
time from HIV-infection to AIDS, the covariate X∗ is age at HIV-infection and the left-truncation
T∗ is the time between HIV-infection and study recruitment. Among 204 patients, the responses
(Y∗) of 57 individuals were right-censored by the end of study.

The purpose of the present example is to study the impact of the factor age at HIV-infection
on the response Y∗. First, we used the nonparametric method of Wang (1991) to estimate
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FIGURE 3: (a) Semiparametric regression estimator 𝜇(.; 𝜃) for 204 patients with HIV-infection
under Weibull truncation model (blue line). (b) Nonparametric estimator (red line) and parametric

estimator based on Weibull family (blue dashed) of H.

the truncation distribution. Figure 3(b) shows this estimator (red curve) and indicates an
exponential trend between 1.5 and 2.5 years. The Weibull distribution Weibull(𝜃1, 𝜃2) (blue
dashed) is well supported by the nonparametric estimator (red line), where (𝜃1, 𝜃2) is estimated
by the conditional MLE, defined in (6), with value (𝜃1, 𝜃2) = (4.80, 2.042). We then used the
semiparametric estimator 𝜇(., 𝜃) based on the Weibull truncation model. Note that we employed
the kernel K(x) = 0.75(1 − x2) I[−1,1](x) and the bandwidth b̂ = 3.2, using formula (12).

Figure 3(a) displays the curve (blue line) of the semiparametric estimator 𝜇(., 𝜃). The
regression function estimator is almost constant in the range [20, 40] years, but after that, it starts
decreasing. This indicates that individuals who have been infected by HIV at an older age are
more likely to develop AIDS than those infected at a younger age. Some caution is needed for
the interpretation of this downtrend, as it may be due to some boundary effect.

6. SUMMARY AND CONCLUSIONS

In this article, we developed a new methodology for estimating the regression function
𝜇(x) = E[Y∗|X∗ = x] under biased sampling and random censoring. The proposed approach
is semiparametric. In the setting of the article, we considered a nonparametric model for the
response-covariate (Y∗,X∗) (variables of interest) and a parametric model for the truncation
distribution. The main contribution of our article is to devise a new estimation procedure that
uses the information in the parametric form of the truncation distribution to increase efficiency.

We approach this question by first estimating the conditional cdf FY∗|X∗=x(y). To this end,
we take a likelihood approach by considering the log-likelihood 𝓁∗

pl of the data {(Zi,Ti) | (𝛿i =
1,Xi = x), i = 1,… , n}. More specifically, we employed a weighted version of 𝓁∗

pl, given by
𝓁∗

lpl in (3), where the weights are chosen using a kernel approach, which is the reason for using
the word “local”. The estimator of pi (the mass attached to zi given X = x) is then obtained
by maximizing 𝓁∗

lpl (see Eq. 4). Given this estimator involves the truncation parameter 𝜃 and

the censoring distribution G (through w), we estimated G by the Kaplan-Meier estimator Ĝ and
used the likelihood c in Equation (A5) to estimate 𝜃, and hence, we obtain the estimators of
FY∗|X∗=x(y) and 𝜇(x).
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Several examples are discussed and assessed, on the basis of which we conclude that our
semiparametric estimator outperforms classical estimators for unspecified truncation distribution
(e.g., Iglesias-Pérez & González-Manteiga, 1999). It should be noted that we employed a standard
kernel approach in our estimation procedure. If interest is directed toward boundary regions
(which is not the case in our article), we recommend using boundary kernels for regression
function estimation. For instance, local-linear kernel smoothing (see Fan & Gijbels, 1996).
However, there is a price to pay for using these kernels. Such methods could lead to negative
values for the estimation of the regression function even if it’s positive. Our asymptotic results
are still valid if we use local-linear kernel smoothing. Note that the methodology and theorems
can be extended to kernel regression with multiple predictors. The easiest way to achieve this is
by using product kernel functions. Effective implementation of the resultant methods, however,
requires much larger sample sizes. This is so because the devised estimators converge much
more slowly to their target. In such case, parametric and semiparametric approaches are more
appropriate when X is a vector, especially if it is of high-dimension.

APPENDIX

Notations
We introduce, and recall, some notations used in the proofs below. For a general distribution F,
lF and uF represent the respective lower and upper bounds of the support of F, with F = 1 − F.
We denote by ̇𝑓 and 𝑓 the first and second derivatives of a function 𝑓 (x; 𝜃) with respect to 𝜃,
respectively, and by 𝑓 (i) the ith derivative of 𝑓 (x; 𝜃) with respect to x. Let F0(t) = P[Z ≤ t, 𝛿 = 0],
F1(t) = P[Z ≤ t, 𝛿 = 1], FZ|X(y|x) = P[Z ≤ y|X = x], LG(t) = P[𝛾 ≤ t], LG

0 (t) = P[𝛾 ≤ t, 𝛿 = 0]
and

𝜒G
i (t) = G(t)

⎡⎢⎢⎣
I(𝛾i ≤ t, 𝛿i = 0)

LG(𝛾i)
− ∫

t∧𝛾i

0

dLG
0 (t)

LG
2
(t)

⎤⎥⎥⎦ (i = 1,… , n),

the i.i.d. random term in the representation of the KM-estimator Ĝ (see Lo, Mack & Wang,
1989). Denote for i = 1,… , n

𝜒w
i (t) = ∫

t

0
𝜒G

i (u) dH(t − u; 𝜃),

𝜒 ẇ
i (t) = ∫

t

0
𝜒G

i (u) dH(t − u; 𝜃),

𝜒v
i (t) = 𝜒G

i (t) h(0; 𝜃) − ∫
t

0
𝜒G

i (u) dh(t − u; 𝜃),

𝜒 v̇
i (t) = 𝜒G

i (t) ḣ(0; 𝜃) − ∫
t

0
𝜒G

i (u) dḣ(t − u; 𝜃),

𝜒
F1
i = ∫

uL

𝓁L

[
1

w(t; 𝜃)
𝜒 ẇ

i (t) −
ẇ(t; 𝜃)
w2(t; 𝜃)

𝜒w
i (t)

]
dF1(t), (A1a)

𝜒
F0
i = ∫

uL

𝓁L

[
1

v(t; 𝜃)
𝜒 v̇

i (t) −
v̇(t; 𝜃)
v2(t; 𝜃)

𝜒v
i (t)

]
dF0(t), (A1b)

𝜒
𝓁c
i =

ḣ(Ti; 𝜃)
h(Ti; 𝜃)

− 𝛿i
ẇ(Zi; 𝜃)
w(Zi; 𝜃)

− (1 − 𝛿i)
v̇(Zi; 𝜃)
v(Zi; 𝜃)

, (A1c)

𝜙𝜃(Ti,Zi, 𝛾i, 𝛿i) = 𝜒
F1
i + 𝜒

F0
i − 𝜒

𝓁c
i . (A1d)
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Ω𝜃 = E
[(

ḧ(T; 𝜃)
h(T; 𝜃)

− ḣ(T; 𝜃) ḣt(T; 𝜃)
h(T; 𝜃) h(T; 𝜃)

)
− 𝛿

(
ẅ(Z; 𝜃)
w(Z; 𝜃)

− ẇ(Z; 𝜃) ẇt(Z; 𝜃)
w(Z; 𝜃)w(Z; 𝜃)

)
− (1 − 𝛿)

×
(

v̈(Z; 𝜃)
v(Z; 𝜃)

− v̇(Z; 𝜃) v̇t(Z; 𝜃)
v(Z; 𝜃) v(Z; 𝜃)

)]
. (A1e)

Assumptions
The following regularity conditions are needed to establish the asymptotic results in this article.
Let Q be the cdf of the residual lifetime R, and lF and uF denote the lower and bounds of the
support of a general distribution F.

Assumption B1:

(i) lG ∧ lQ > 0 and lH > 0.
(ii) uG ≤ uQ with G(uG) < 1.
(iii) 0 < lL < uL < ∞.

The first part of Assumption (i) essentially means that there is no immediate failure or censoring
at the beginning of the study, while the second part of the assumption means that all subjects
recruited to the study are prevalent cases. This condition reflects the settings of the HIV-AIDS
data and in general is reasonable in most prevalent cohort studies. Assumption (ii) means that
the lifetimes of some individuals, who are still alive at the end of the study, will be censored.
This is common in the follow-up studies and is due to the limited time of the follow-up. The
condition lL > 0 is a direct consequence of lH > 0, while uL < ∞ means that the observed lifetime
of individual is finite.

Assumption B2: Let 𝑓X∗ be the density of FX∗ .

(i) 𝑓X∗ is bounded and bounded away from zero in its compact support .
(ii) If [a, c] is contained in the support of 𝑓X , then

0 < 𝛽1 = inf
x∈I𝛼

{
𝑓X(x)

}
< sup

x∈I𝛼

{
𝑓X(x)

}
= Γ < ∞,

where I𝛼 = [a − 𝛼, c + 𝛼] and 0 < 𝛼Γ < 1. For y ∈ [lL, uL], infx∈I𝛼

{
FZ|X(y|x)} > 𝛽2 > 0.

(iii) For x ∈ I𝛼 , 𝑓X(x), x → FZ|X(y|x) and x → FZ,𝛿|X(y, 1|x) have bounded continuous second
derivatives and 𝑓 (2)

X (x) is bounded away from zero.

Assumptions B2(ii,iii) (see Dabrowska, 1989) are needed for the uniform convergence rate of
F̂Z,𝛿|X(y, 1|x). The first part of B2(ii), which we only need in the proofs, is a consequence of
B2(i). The regularity condition B3, below, is required for the asymptotic representation and
normality of

√
n
(
𝜃 − 𝜃

)
.

Assumption B3:

(i) H (with density h) and G are continuous.
(ii) h(x; 𝜃) is bounded and continuously differentiable in x and in 𝜃. h(1)(x; 𝜃) is differentiable in

𝜃 and continuous in x. ḧ(x; 𝜃) exists and is continuous in 𝜃.

Assumption B4: Let Ψn(𝜃) = n−1𝜕 log(∗
c (𝜃))∕𝜕𝜃 and Ψ(𝜃) = E[Ψn(𝜃)].

(i) Ψ and Ψn, for sufficiently large n, have only one zero, at 𝜃0 and 𝜃0, respectively.
(ii) det(Ω𝜃) > 0.
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Assumption B4(i) is essentially identifiability (see Wang, 1989; Andersen, 1970), while B4(ii)
is essentially positive-definiteness of the information matrix. The latter condition rarely fails
to hold provided that identifiability and some smoothness conditions hold (see Theorem 3 in
Asgharian, 2014). The kernel function K and the bandwidth bn satisfy the conditions

Assumptions K1, K2:

K1: K is supported on (−1, 1), of bounded total variation and ∫ t K(t) dt = 0.
K2: log(n)∕nbn = o(1) and nb5

n∕ log(n) = O(1), as n → ∞ and bn → 0.

Proofs

Proof of Theorem 1. Denote 𝜉(y, 1|x) = FZ,𝛿|X(y, 1|x), 𝜉 = F̂Z,𝛿|X(y, 1|x), w(x) = w(x; 𝜃) and
recall that

𝜇(x; 𝜃) =
∫y>0 y ŵ−1(y; 𝜃) d𝜉(y, 1|x)
∫y>0 ŵ−1(y; 𝜃) d𝜉(y, 1|x) .

By using the uniform results ‖ŵ(.; 𝜃) − w(.)‖ = a.s.

(√
n−1 log log n

)
, which follows from ‖Ĝ −

G‖ = a.s.

(√
n−1 log log n

)
, and ‖𝜉 − 𝜉‖ = a.s.

(√
(nb)−1 log n

)
, established by Dabrowska

(1989) in Theorem 2.1’s proof and Corollary 2.2 (see also Theorem 1 in Iglesias-Pérez &
González-Manteiga, 1999), the difference 𝜇 − 𝜇 can be written as

𝜇(x; 𝜃) − 𝜇(x) = 1
∫y>0 w−1(y) d𝜉(y, 1|x)

{
− ∫y>0

y
w2(y)

[
ŵ(y; 𝜃) − w(y)

]
d𝜉(y, 1|x)

+ ∫y>0

y
w(y)

d
[
𝜉(y, 1|x) − 𝜉(y, 1|x)]}

+
∫y>0 y w−1(y) d𝜉(y, 1|x)[∫y>0 w−1(y) d𝜉(y, 1|x)]2

{
∫y>0

1
w2(y)

[
ŵ(y; 𝜃) − w(y)

]
d𝜉(y, 1|x)

− ∫y>0

1
w(y)

d
[
𝜉(y, 1|x) − 𝜉(y, 1|x)]} + r′n(x),

where supx |r′n(x)| = oa.s.

((
nb
)−1∕2

)
. Now, by employing the fact that ŵ(y; 𝜃) − w(y) =

p

(
n−1∕2

)
and 𝜇(x) = ∫y>0 y w−1(y) d𝜉(y, 1|x)∕ ∫y>0 w−1(y) d𝜉(y, 1|x), we find

𝜇(x; 𝜃) − 𝜇(x) = m(x)
{
∫y>0

y
w(y)

d𝜉(y, 1|x) − 𝜇(x) ∫y>0

1
w(y)

d𝜉(y, 1|x)} + r′n(x) + r′′n (x)

where m(x) =
[ ∫y>0 w−1(y) d𝜉(y, 1|x)]−1

and r′′n (x) = p

(
n−1∕2

)
. Hence, we deduce repre-

sentation (8). The limit distribution of
√

nb
[
𝜇(x; 𝜃) − 𝜇(x)

]
follows from (8) by using the

Lindberg-Feller’s CLT Theorem and Slutsky’s Theorem. ◼
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Proof of Theorem 2. (1) The following proof is given for a uni-dimensional parameter 𝜃,
i.e., d = 1, the proof is similar for d ≥ 2. To show the consistency of 𝜃, we adopt similar
regularity conditions to the conditional-approach-parameter-estimation of Wang (1989) and
Andersen (1970) (assumption B4(i)). Assumption B4(i) is a more relaxed condition than the one
used by Wang (1989). Let Ψn(𝜃0) = (𝜕∕𝜕𝜃0) log(∗

c (𝜃0))∕n and Ψ(𝜃0) = E[Ψn(𝜃0)]. The function

𝜃0 → Ψn(𝜃0) is continuous and Ψn(𝜃0)
P
−→ Ψ(𝜃0) for every 𝜃0. By Lemma 5.10 in van der Vaart

(1998) (p. 47) and assumption B4(i), 𝜃
P
−→ 𝜃.

(2) Let F̂0(t) and F̂1(t) be the respective empirical counterparts of F0(t) = P[Z ≤ t, 𝛿 = 0]
and F1(t) = P[Z ≤ t, 𝛿 = 1], and 𝔽k(t) = F̂k(t) − Fk(t) for k = 0, 1. Denote w(x) = w(x; 𝜃), v(x) =
v(x; 𝜃),

𝓁c(𝜃0,G) = n−1 log(c(𝜃0)) =
1
n

log

{
n∏

i=1

dH(ti; 𝜃0)

w
(
zi; 𝜃0

)𝛿i v
(
zi; 𝜃0

)1−𝛿i

}
,

𝓁c(𝜃0, Ĝ) = n−1 log(∗
c (𝜃0)) and, respectively, by 𝓁̇c and 𝓁c the first and second derivatives of 𝓁c

with respect to 𝜃0. Using a first order Taylor expansion, we have

𝜃 − 𝜃 =
[
𝓁c(𝜃∗, Ĝ)

]−1
{
𝓁̇c(𝜃,G) − ∫

uL

𝓁L

( ̇̂w(t; 𝜃)
ŵ(t; 𝜃)

− ẇ(t)
w(t)

)
dF1(t) − ∫

uL

𝓁L

( ̇̂v(t; 𝜃)
v̂(t; 𝜃)

− v̇(t)
v(t)

)
dF0(t)

− ∫
uL

𝓁L

( ̇̂w(t; 𝜃)
ŵ(t; 𝜃)

− ẇ(t)
w(t)

)
d𝔽1(t) − ∫

uL

𝓁L

( ̇̂v(t; 𝜃)
v̂(t; 𝜃)

− v̇(t)
v(t)

)
d𝔽0(t)

}
,

where 𝜃∗ ∈ [𝜃 ∧ 𝜃, 𝜃 ∨ 𝜃]. By using the uniform convergence rate of Ĝ, we find that

𝜃 − 𝜃 =
[
𝓁c(𝜃∗, Ĝ)

]−1
{
𝓁̇c(𝜃,G) − ∫

uL

𝓁L

[ ̇̂w(t; 𝜃) − ẇ(t)
w(t)

− ẇ(t)
w2(t)

(
ŵ(t; 𝜃) − w(t)

)]
dF1(t)

− ∫
uL

𝓁L

[ ̇̂v(t; 𝜃) − v̇(t)
v(t)

− v̇(t)
v2(t)

(
v̂(t; 𝜃) − v(t)

)]
dF0(t)

− ∫
uL

𝓁L

[ ̇̂w(t; 𝜃) − ẇ(t)
w(t)

− ẇ(t)
w2(t)

(
ŵ(t; 𝜃) − w(t)

)]
d𝔽1(t)

− ∫
uL

𝓁L

[ ̇̂v(t; 𝜃) − v̇(t)
v(t)

− v̇(t)
v2(t)

(
v̂(t; 𝜃) − v(t)

)]
d𝔽0(t)

}
+ rn (A2)

=
[
𝓁c(𝜃∗, Ĝ)

]−1
{

1
n

n∑
i=1

[
𝜒
𝓁c
i − 𝜒

F1
i − 𝜒

F0
i

]
− I1 − I2

}
+ rn, (A3)

where rn = a.s.
(
n−1 log log n

)
, and I1 and I2 denote the last two terms inside the brackets of

Equation (A2), respectively. Note that 𝜒𝓁c
i , 𝜒F1

i and 𝜒
F0
i are defined in the notation section of

the Appendix.
(3) The next step is to show that I1 and I2 are of order oa.s.

(
n−1∕2

)
. First, notice that

d[ŵ(t; 𝜃) − w(t)] = ∫
t

0

[
G(t − u) − Ĝ(t − u)

]
dh(u; 𝜃) dt +

[
G(t) − Ĝ(t)

]
h(0; 𝜃) dt, (A4)
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where d[ ̇̂w(t; 𝜃) − ẇ(t)] has a similar expression by replacing h by ḣ, and

d[̂v(t; 𝜃) − v(t)] = ∫
t

0

[
Ĝ(t − u) − G(t − u)

]
dh(1)(u; 𝜃) dt +

[
Ĝ(t) − G(t)

]
h(1)(0; 𝜃) dt

+ h(0; 𝜃)d
[
Ĝ(t) − G(t)

]
, (A5)

where d[ ̇̂v(t; 𝜃) − v̇(t)] has a similar form by replacing h and h(1) by ḣ and ḣ(1), respectively. Now,
using partial integration, we have

I1 =
[ ̇̂w(t; 𝜃) − ẇ(t)

w(t)
− ẇ(t)

w2(t)
(
ŵ(t; 𝜃) − w(t)

)]
𝔽1(t)

|||||
t=uL

t=𝓁L

−
{
∫

uL

𝓁L

[ ̇̂w(t; 𝜃) − ẇ(t)
]
𝔽1(t) d

(
1

w(t)

)
− ∫

uL

𝓁L

[
ŵ(t; 𝜃) − w(t)

]
𝔽1(t) d

(
ẇ(t)
w2(t)

)}
−
{
∫

uL

𝓁L

𝔽1(t)
1

w(t)
d
[ ̇̂w(t; 𝜃) − ẇ(t)

]
− ∫

uL

𝓁L

𝔽1(t)
ẇ(t)
w2(t)

d
[
ŵ(t; 𝜃) − w(t)

]}
,

and by employing Equation (A4) and using the uniform convergence rates of ŵ(.; 𝜃) − w and
̇̂w(.; 𝜃) − ẇ, which follow from the uniform convergence rate of Ĝ, we find that

I1 = a.s.
(
n−1 log log n

)
. (A6)

Analogously, by using partial integration, Equation (A5) and the uniform convergence rates
of v̂(.; 𝜃) − v and ̇̂v(.; 𝜃) − v̇, we find that

I2 = r2,n − ∫
uL

𝓁L

[
ḣ(0; 𝜃)

v(t)
− v̇(t) h(0; 𝜃)

v2(t)

]
𝔽0(t) d

[
Ĝ(t) − G(t)

]
(A7)

where r2,n = a.s.
(
n−1 log log n

)
. For the second term in the R.H.S. of (A7), divide [𝓁L, uL]

into m sub-intervals [y0, y1], [y1, y2],… , [ym−1, ym] (y0 = 𝓁L, ym = uL) of equal length l =
a0n−1∕2(log n)q (q ≥ 1∕2 and a0 > 0 is some constant), so m is of order  (

n−1∕2(log n)−q
)
.

We have

|||||∫
uL

𝓁L

[
ḣ(0; 𝜃)

v(t)
− v̇(t) h(0; 𝜃)

v2(t)

]
𝔽0(t) d

[
Ĝ(t) − G(t)

]|||||
≤

m−1∑
i=0

|||||∫
yi+1

yi

[
ḣ(0; 𝜃)

v(t)
− v̇(t) h(0; 𝜃)

v2(t)

]
𝔽0(t) d

[
Ĝ(t) − G(t)

]|||||
≤

m−1∑
i=0

‖‖‖‖‖ ḣ(0; 𝜃)
v(.)

− v̇(.) h(0; 𝜃)
v2(.)

]
‖‖‖‖‖ . ‖‖‖𝔽0

‖‖‖ ∫ yi+1

yi

|||d[Ĝ(t) − G(t)
]|||

≤ ‖‖‖‖‖ ḣ(0; 𝜃)
v(.)

− v̇(.) h(0; 𝜃)
v2(.)

‖‖‖‖‖ . ‖‖‖𝔽0
‖‖‖ m−1∑

i=0

sup
u,v∈[yi,yi+1]

|||[Ĝ(v) − G(v)
]
−
[
Ĝ(u) − G(u)

]||| . (A8)
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The sup-norm term, inside the summation, on the R.H.S. of (A8) is of order

a.s.

(
n

−3
4 (log n)

1+q
2

)
, as n → ∞, by the oscillation result in Meng, Bassiakos & Lo (1991)

(see proposition 1, page 6). Since ‖𝔽0‖ and m are of order a.s.

(
n−1∕2

(
log log n

)1∕2
)

and

 (
n−1∕2(log n)−q

)
, respectively, the term on the R.H.S. of (A8) is of order a.s.

(
n−3∕4(log n)𝛼1

)
(𝛼1 ≥ 1). Hence,

I2 = a.s.
(
n−3∕4(log n)𝛼1

)
. (A9)

Now, since 𝓁c(𝜃∗, Ĝ) converges to Ω𝜃0
by the consistency of Ĝ to G and that of 𝜃 to 𝜃, it

follows from (A3), (A6), and (A9) that

𝜃 − 𝜃 = Ω−1
𝜃

1
n

n∑
𝑗=1

[
− 𝜒

𝓁c
i + 𝜒

F1
i + 𝜒

F0
i

]
+ op

(
n−1∕2

)
.

This completes the proof. ◼

Proof of Corollary 1. Recall that 𝜃 → 𝜇(x; 𝜃), defined in (7), is differentiable. We have√
nbn

[
𝜇(x; 𝜃) − 𝜇(x; 𝜃)

]
=
√

nbn
[
𝜇(x; 𝜃) − 𝜇(x; 𝜃)

]
+
√

nbn
[
𝜇(x; 𝜃) − 𝜇(x; 𝜃)

]
=
√

nbn
̇̂𝜇(x; 𝜃∗)

(
𝜃 − 𝜃

)
+
√

nbn
[
𝜇(x; 𝜃) − 𝜇(x; 𝜃)

]
,

by using a first order Taylor expansion, where 𝜃∗i is between 𝜃i and 𝜃i, i = 1,… , d (𝜃i and 𝜃i

denote the respective ith elements of 𝜃 and 𝜃). Notice that√
nbn

̇̂𝜇(x; 𝜃∗)
(
𝜃 − 𝜃

)
=
√

bn
̇̂𝜇(x; 𝜃∗)

[√
n(𝜃 − 𝜃)

]
,

where
√

n(𝜃 − 𝜃) converges to a Gaussian random variable, by Theorems 2, and ̇̂𝜇(x; 𝜃∗)
converges to 𝜇̇(x), which follows from the consistency of Ĝ to G and that of 𝜃 to 𝜃. Hence, as
bn → 0 and n → ∞ √

nbn
̇̂𝜇(x; 𝜃∗)

(
𝜃 − 𝜃

) P
−−→ 0,

and the result follows from Theorem 1, under the assumptions of Theorems 1 and 2. ◼

Proof of Proposition 1. (1) Following similar arguments to that of Theorem 1’s proof, we can
show that F̂Y∗|X∗ in (10) admits the representation

F̂Y∗|X∗ (y|x) − FY∗|X∗ (y|x) = 1
nbn

n∑
i=1

Kb(x − Xi)
𝛿i

wu(Zi)
[
I(Zi ≤ y) − FY∗|X∗ (y|x)] × 𝜇(x)

𝑓X(x)

+ op

(
1√
nbn

)
,

where 𝑓X(x) = (nb)−1 ∑n
i=1 Kb(x − Xi). The limit distribution of F̂Y∗|X∗ follows then from the

above representation, by employing the Lindberg-Feller and Slutsky theorems.
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(2) Under uniform truncations, one can show that

dFZ,𝛿|X(t, 1|x) = wu(t) dFY∗|X∗ (t|x)
𝜇(x)

and

Cx(t) =
wu(t)FY∗|X∗ (t|x)

𝜇(x)
.

The formula of S2(x, y) then becomes

S2(x, y) = F
2

Y∗|X∗ (y|x) ∫ y

0
F

−2

Y∗|X∗ (t|x) dFY∗|X∗ (t|x)
wu(t)

×
𝜇(x) ∫ K2(u)du

𝑓X(x)
.

Therefore, one needs to prove that

F
2

Y∗|X∗ (y|x) ∫ y

0
F

−2

Y∗|X∗ (t|x) dFY∗|X∗ (t|x)
wu(t)

≥ E
[(

I(Y∗ ≤ y) − FY∗|X∗ (y|x))2
w−1

u (Y∗)
||||X∗ = x

]

= F
2

Y∗|X∗ (y|x) ∫ y

0

dFY∗|X∗ (t|x)
wu(t)

+ F2
Y∗|X∗ (y|x) ∫∞

y

dFY∗|X∗ (t|x)
wu(t)

,

which is equivalent to showing that

F
2

Y∗|X∗ (y|x) ∫ y

0

[
F

−2

Y∗|X∗ (t|x) − 1
] dFY∗|X∗ (t|x)

wu(t)
≥ F2

Y∗|X∗ (y|x) ∫∞

y

dFY∗|X∗ (t|x)
wu(t)

.

By remarking that the weight function wu is nondecreasing, we find that

F
2

Y∗|X∗ (y|x) ∫ y

0

[
F

−2

Y∗|X∗ (t|x) − 1
] dFY∗|X∗ (t|x)

wu(t)
≥ F

2

Y∗|X∗ (y|x)
wu(y) ∫

y

0

[
F

−2

Y∗|X∗ (t|x) − 1
]

dFY∗|X∗ (t|x)
=

FY∗|X∗ (y|x)F2
Y∗|X∗ (y|x)

wu(y)
,

and

F2
Y∗|X∗ (y|x) ∫∞

y

dFY∗|X∗ (t|x)
wu(t)

≤ FY∗|X∗ (y|x)F2
Y∗|X∗ (y|x)

wu(y)
.

Thus, S2(x, y) ≥ Vu(x, y).
◼

Remark 1. Note that failing to account for the selection bias in the sample leads to biased
results. In the length-biased sample case, for instance, it is well known that 𝑓lb(x, y) =
y𝑓 (x, y)∕E[Y∗] , where 𝑓lb and 𝑓 are the respective bivariate densities from the sampled and
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targeted populations, and Y∗ is the selection-variable (e.g., lifetime) (see Rabhi ς Bouezmarni,
2020). This leads to the relationship

𝑓lb(y|x) = y𝑓 (y|x)
∫∞0 y𝑓 (y|x)dy

,

with 𝑓lb(y|x) and 𝑓 (y|x) the conditional densities from the sampled and targeted populations,
and therefore,

E[Y|X = x] = ∫
∞

0
y𝑓lb(y|x)dy = E[Y∗ 2|X∗ = x]

E[Y∗|X∗ = x]
= E[Y∗|X∗ = x] + Var[Y|X∗ = x]

E[Y∗|X∗ = x]
.

If one ignores the fact that the data are left-truncated (i.e., (X,Y) ≠ (X∗,Y∗))), then 𝜇(x)
(estimator of 𝜇(x)) will converge to E[Y|X = x] = 𝜇(x) + Var[Y|X∗ = x]∕E[Y∗|X∗ = x] > 𝜇(x),
which means that 𝜇(x) is inconsistent. In the general biased sampling case, note that the
conditional cumulative hazard of Y given X = x is ΛY|X(y|x) = ∫ y

0 [1 − FZ|X(t|x)]−1dFZ,𝛿|X(t, 1|x)
(see Dabrowska, 1989), p. 1157), if left-truncation is ignored. However, notice that ΛY|X can be
written as

ΛY|X(y|x) = ∫
y

0

P[t ≤ Z|X = x])
P[T ≤ t ≤ Z|X = x]

dFZ,𝛿|X(y, 1|x)
P[T ≤ t ≤ Z|X = x]

= ∫
y

0

P[t ≤ Z|X = x])
P[T ≤ t ≤ Z|X = x]

dΛY∗|X∗ (t|x),
where ΛY∗|X∗ is the cumulative hazard from the targeted population (see Iglesias-Pérez ς
González-Manteiga, 1999, p. 217), and therefore

E[Y|X = x] = ∫
∞

0
[1 − FY|X(y|x)] dy = ∫

∞

0
exp

[
− ∫

y

0

P[t ≤ Z|X = x])
P[T ≤ t ≤ Z|X = x]

dΛY∗|X∗ (t|x)] dy.

This implies that 𝜇(x) will converge to E[Y|X = x] > ∫∞0 exp
[
− ∫ y

0 dΛY∗|X∗ (y|x)] dy = 𝜇(x), if
left-truncation is not accounted for, and hence, 𝜇(x) is inconsistent.
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