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Abstract
Humans can meaningfully express their confidence about uncertain events. Normatively, these

beliefs should correspond to Bayesian probabilities. However, it is unclear whether the normative
theory provides an accurate description of the human sense of confidence, partly because the self-
report  measures  used  in  most  studies  hinder  quantitative  comparison  with  normative
predictions. To measure confidence objectively, we developed a dual-decision task in which the
correctness of a first decision determines the correct answer of a second decision, thus mimicking
real life situations in which confidence guides future choices. Whilst participants were able to use
confidence  to  improve  performance,  they  fell  short  of  the  ideal  Bayesian  strategy.  Instead,
behavior was better explained by a model with a few discrete confidence levels. These findings
question the descriptive validity of normative accounts, and suggest that confidence judgments
might be based on point-estimates of the relevant variables, rather than on their full probability
distributions.
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Introduction
Decision making is  faced with uncertainty  for  every organism. A growing amount  of  evidence

indicates that humans use estimates about the uncertainty of sensory data to guide their behaviour, for
example when combining information from multiple sources1. Moreover, other studies have shown that
humans can judge the accuracy of their perceptual decisions (an ability that belongs to the domain of
metacognition) and report degrees of confidence that correlates with their objective performance2. This
sense of confidence is an essential component of decision making (e.g. the decision to undertake a risky
operation  depends  on  the  confidence  in  a  correct  diagnosis),  but  the  underlying  computations  are
unclear. According to one popular view confidence is Bayesian: it should coincide with the posterior
probability that a choice was correct, computed following the rules of Bayesian inference. Although
human  confidence  judgements  tend  to  be  qualitatively  consistent  with  statistical  principles3,  such
qualitative agreement is neither necessary nor sufficient to conclude that the underlying computations
are  indeed  Bayesian4 -  in  the  sense  that  they  explicitly  use  probability  distributions  to  quantify
uncertainty. Indeed, other studies have shown deviations from Bayesian optimality5, which suggest that
confidence judgements could instead be based on simpler or approximated strategies.

One major issue for testing the Bayesian account of human confidence is methodological, and lies in
the difficulty of measuring subjective probabilities, i.e. the degrees of belief that a human observer
assigns to events. Subjective probability can be formally defined as the marginal rate of substitution6,7:
our subjective probability about the event  E occurring or having occurred would be  p(E) if we are
indifferent to gaining one unit of utility contingent on E against gaining p(E) units of utility for sure.
Methods that measure subjective probabilities in perceptual decisions using opt-out or post-decision
wagering techniques are straightforward operationalizations of this definition. A well known problem
with these methods, however, is that they rely on unverifiable assumptions about the utility function of
the  participant7 -  such  methods  cannot  disentangle  subjective  probability  from  factors  such  as
opportunity costs. More frequently used methods that requires explicit confidence ratings suffer from
miscalibrations  and  response  biases2,8,9 that  hinder  a  rigorous,  quantitative  comparison  of  human
behavior  with the predictions  of the Bayesian account.  Yet another   approach involves  confidence
forced-choice paradigms10, in which observers engaging in perceptual discrimination can improve their
performance  by  choosing  the  less  uncertain  among  pair  of  stimuli.  While  this  technique  allows
quantitatively accurate measurement of the ability to discriminate different levels of uncertainty across
stimuli  and  tasks,  it  cannot  detect  global  biases  in  confidence:  observers  may  make  accurate
comparative judgements while overestimating or underestimating by a large amount their probability of
being correct. 

Here,  we  present  an  approach  for  studying  subjective  probabilities  that  allows  us  to  detect
confidence  biases  and  directly  compare  human  behaviour  with  the  ideal  Bayesian  strategy  and
alternative models. In our experiments, human observers were presented with two consecutive signals
and asked to decide whether they were above or below a reference value. The key innovation was that
the statistics of the second signal were made contingent upon the decision-maker making a correct
decision about the first signal. More specifically, correct/incorrect first decisions resulted in signals
above/below the  reference  value  for  the  second decision.  An implementation  of  this  experimental
protocol is shown in Fig. 1A: participants first indicate whether the orientation of the random array of
lines is tilted left or right from vertical (first decision). After this response, they are presented with a
dynamic random-dot motion stimulus, and asked to report its direction (second decision). Crucially, the
direction of the random-dot stimulus depends deterministically on the correctness of the first decision:
if the first decision was correct, then the motion will be to the right in the second decision, otherwise it
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will be to the left. Participants were informed about this rule, and were requested to use it to maximize
their accuracy.  It was impossible to know with certainty whether the first decision was correct and
what the second response should be, as the difficulty of both stimuli was varied randomly from trial to
trial,  independently  of  whether  the correct  response was left  or  right.  However,  participants  could
assess their confidence in being correct on the first decision and use it to update prior expectations in
the second decision and improve their performance. This paradigm mimics realistic situations in which
confidence in past decisions, in absence of immediate feedback, is used to guide behaviour and inform
future decisions, rather than being reported onto a rating scale without real consequences. 

Figure 1. Dual-decision paradigm and results. A. Dual-decision paradigm: in this example the first decision is about the
average tilt of an array of lines, and is followed by a second decision about the predominant direction of a random dot
motion pattern. The central area of the screen where the stimulus was presented was sided by two dots, which were white
for the first decision but turned red and green for the second one, to remind which directions were to be expected in case of
incorrect  and  correct  first  response,  respectively.  The  difficulty  of  both  decisions  (the  opposite  of  the  evidence
discriminability, e.g. mean tilt from vertical or motion coherence, quantified as standard deviation of internal noise, σ) is) is
drawn from the same uniform distribution (and therefore is, on average, equal), however the direction of the signal in the
second decision (left vs right) was made dependent on the accuracy of first response. Each participants ran the task in both
ways (i.e. orientation-motion and motion-orientation) in both the dual decision task and in a control condition where the
direction  of  the  signal  was  randomly  drawn  regardless  of  their  responses.   B.  Performance  plotted  as  a  function  of
discriminability in the control conditions (top facets) and in the dual-decision conditions (lower facets).  In the dual-decision
task  performance  at  either  of  the  two  visual  tasks  is  higher  in  the  second  decision,  especially  for  trials  where  the
discriminability is small and, in the absence of prior information, performance near chance. Note that the data was grouped
according to the perceptual task (motion, orientation) to highlight the effect of decision order within a single perceptual
task. Thus, the panels displaying performance in motion and orientation judgments contain data from two different sessions
with alternated task order. Error bars represents standard errors of the mean across participants; the curves show probit fits
to the aggregated data.
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Results

Confidence as a prior in sequential decisions: the dual-decision task

The paradigm used in the experiments is illustrated in Fig. 1A with an example of the orientation-
motion discrimination task (experiment 1, see Methods for details). Participants made a first decision
about the mean tilt of the array of lines, followed by a decision about the direction of a random-dot
motion stimulus. Correct/incorrect first decisions determined whether the direction of the random dot
motion  pattern  was  rightward/leftward,  respectively,  and  this  rule  was  known to  participants.  All
participants also ran a version of the experiment with the two discrimination tasks presented in the
reverse order (first motion then orientation), see Methods for details. To control for sequential effects
on responses between first and second decisions we included a control condition in which the second
stimulus was independent of the first decision. We collected 2 independent datasets (with dataset 2
being a replication run on a different cohort of participants; see Methods). For completeness here we
present statistical tests conducted both on the aggregated data as well as on the two datasets separately.
Overall,we found a significant effect of decision order in the dual-decision condition (Fig. 1B): the
mean odds-ratio of participants responding correctly in the second decision relative to the first one was
greater than one: 1.51, 95% CI [1.28, 1.61],  t(28)=6.03, p=1.66×10-6. The effect was significant when
tested separately in dataset 1, mean odds-ratio 1.48, 95% CI [1.24, 1.64], t(13)=4.78, p=7.19×10-4; as
well as in dataset 2, mean odds-ratio 1.55, 95% CI [1.21, 1.74], t(14)=3.88, p=3.33×10-3 (Bonferroni-
corrected  p-values).  There  was  no  statistically  significant  effect  of  decision  order  in  the  control
condition: 1.07, 95% CI [0.96, 1.19], t(28)=1.21, p=0.23; the estimated Bayes factor (null/alternative)
indicated that the data were 3.46 times more likely under the null  hypothesis,  indicating moderate
support  for  the  null  hypothesis.  We obtained  similar  results  when analyzing  the  control  condition
separately for each dataset: dataset 1, mean odds-ratio 0.97, 95% CI [0.84, 1.15], t(13)=0.33, p=1.00;
dataset  2,  mean odds-ratio  1.17,  95% CI [1.00,  1.33],  t(14)=2.39,  p=0.06 (Bonferroni-corrected  p-
values). In sum, these analyses show that participants were able to exploit the structure of the task and
use their confidence to improve their performance in the second decision. Subsequent analyses focused
on the dual-decision condition and were conducted on the aggregated data; importantly the size of the
effect of decision order in the dual-decision condition did not differ across the two datasets: mean
difference  in  odds-ratio  0.07,  95%  CI  [-0.28,  0.41],  t(27)=0.18,  p=0.85,  the  Bayes  factor
(null/alternative) was 3.70, indicating moderate support for the null hypothesis.

Ideal Bayesian observer

We considered how a Bayesian observer would solve this task (Fig. 2A). The observer’s task is to
decide whether the stimulus value (e.g., the mean tilt from vertical in the orientation task) is greater or
smaller than a reference level, call it zero. However, the observer has access only to a noisy estimate of
the  stimulus  value.  To  decide  whether  the  stimulus  is  greater  or  smaller  than  zero,  the  Bayesian
observer would integrate the posterior probability of the stimulus over the corresponding semi-interval
and choose the most likely alternative. The probability of the chosen alternative also corresponds to
their confidence in the decision (the posterior probability that the choice was correct). The confidence
is then used to update prior expectations about the second signal: the Bayesian observer assigns a prior
probability  equal  to their  confidence to  the possibility  that  the second signal will  be positive (e.g.
corresponding to a ‘right’ tilt), and the complement of this probability to the alternative possibility.
Updating the prior amounts to shifting the criterion used for the second decision by an amount that

5



increases  with confidence  (Fig.  2B; see Supplementary  Information for details).  Trials  with higher
confidence in the first decision then result in a larger prior probability for ‘positive’ stimuli and, hence,
a stronger bias for responding ‘right’ in the second decision (Fig. 2B). This bias can be quantified by
examining how choice probabilities in the second decision vary as a function of the discriminability of
the first stimulus. Note that, because the signal sign in the second decision depends on the accuracy of
the first decision, an increase in the discriminability of the first stimulus will result in an increased rate
of responding ‘right’to the second stimulus regardless of observer’s use of confidence information (Fig.
2D). Thus, we examined differences in choice probabilities relative to baseline probabilities that would
be obtained given completely independent responses to the two stimuli. When averaged over all trials,
the observed pattern of choices displays a trend similar to that predicted by the Bayesian model (Fig.
2D), which is remarkable considering that this model is fully constrained by the data. To provide a
more  stringent  comparison between human behaviour  and the Bayesian model,  we next  split  data
according  to  the  accuracy  of  the  first  decision:  confidence  should  decrease  with  greater  signal
discriminability after an incorrect decision, and increase after a correct one3. However, while human
participants  closely  match  the  ideal  after  incorrect  first  decisions  (Fig.  2E,  left  sub-panel),   they
systematically chose ‘right’ less frequently than the Bayesian observer after correct first decisions (Fig.
2E,  right  sub-panel).  This  pattern  can  be  interpreted  as  an  under-confidence  bias  and  suggests
deviations  from  the  Bayesian  strategy.  Moreover,  the  finding  of  an  under-confidence  bias  is
inconsistent with sampling-based approximations of the Bayesian strategy, as these would predict an
opposite over-confidence pattern (see Supplementary Information).

Human performance is not explained by a fixed bias

One possible explanation for the observed sub-optimality of behaviour is that participants did not
monitor their confidence after each decision, but rather adopted a fixed bias towards responding ‘right’
in  the  second  decision.  Indeed,  since  they  performed  above  chance  in  the  first  decision  (mean
proportion of correct first decision: 0.80), a fixed bias would improve their performance in the second.
We estimated the best-fitting fixed bias for each participant and compared the predictions with the
observed  behaviour.  As  shown  in  Fig.  3A,  the  fixed  bias  model  fails  to  explain  how  choice
probabilities in the second decision vary with the discriminability of the first stimulus. As a further test,
we  fit logistic regressions for each participant to measure the influence of the accuracy of the first
decision  on the probability  of  choosing 'right'  on the second decision.  The results  of this  analysis
indicate that, even after controlling for stimulus values, participants were significantly more likely to
choose ‘right’ in the second decision after a correct first decision than after an incorrect one: odds-ratio
2.61, 95% CI [1.84, 3.55], t(28)=5.71, p=3.99×10-6 , indicating that they monitored their confidence on
a trial-by-trial basis rather than used a fixed strategy.  Moreover, when adding the discriminability of
the first stimulus as a predictor, we found that it modulates the probability of choosing ‘right’ in the
second decision: for each unitary increase in discriminability, the odds-ratio increases multiplicatively
by a factor of 1.95, 95% CI [1.42, 3.36], t(28)=2.95, p=0.006, after a correct response and decreases by
a factor of 0.68, 95% CI [0.49, 0.95], t(28)=2.18, p=0.037, after an incorrect response. Taken together
these results allow us to reject the hypothesis that the bias toward responding ‘right’ in the second
decision was constant across trials and instead conclude that participants adjusted their criterion on a
trial-by-trial basis
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Figure 2.  Ideal  Bayesian model  and comparison with human behaviour.  A.  Representation  of  probability  density
function and belief updating in the Bayesian observer, first and second decision  represented from left to right. The physical
stimulus evokes an internal estimate or response corrupted by Gaussian noise, η~NN(0, σ) is2). The ideal observer knows about
the variability of its perceptual system and computes a posterior distribution over possible stimulus values. After having
made the first decision, the ideal observer integrate the posterior distribution over the chosen semi-axis, to evaluate its
confidence, that is the subjective probability that the decision was correct, given the evidence. The confidence is then used
to update its prior for the second decision: a prior probability equal to the confidence is assigned to the possibility that the
stimulus values will be drawn from the positive (rightward) semi-axis. B. It can be shown (see Supplementary Information)
that updating the prior amounts to shifting the decision criterion: here we show on the left the optimal criterion shift as a
function of the confidence level, and on the right the psychometric functions which describe choice probabilities for several
confidence levels, ranging from 0.5 (grey) to 0.975 (yellow).  C. Optimal and observed performance in the second decision,
plotted as a function of both first and second stimuli discriminabilities (the 2D surface showing the observed performance
was computed by smoothing the accuracy  in individual trials,  pooled from all  observers,  with a Gaussian kernel  with
standard deviation of 0.2). Although participants were able to use the structure of the task to improve their performance in
the second decision (see also Fig.1B), their performance did not reach the ideal benchmark provided by the ideal Bayesian
observer, as shown also by the two example cross-section at the bottom. D. Choice probability in the second decision was
influenced  by  the  discriminability  of  the  first  stimulus.  This  pattern  is  better  appreciated  when  data  are  plotted  as  a
difference from the baseline, that is a psychometric function that describes what would be the choice probabilities in the
absence of prior information (corresponding to a confidence level of 0.5, illustrated with the grey dot and lines in panel B).
All error bars indicate bootstrapped standard errors.
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A biased-Bayesian model does not fully account for sub-optimal choice behaviour

An alternative  explanation  for  the under-confidence  pattern  (Fig.  2D) is  that  participants  might
systematically overestimate their sensory noise (see Supplementary Information for details). To test for
this  possibility we computed for each participant  how much the estimate of the noise should have
deviated  from the  true value  to  explain  the  under-confidence  pattern.  We  found  that  on  average
participants should have over-estimated their sensory noise by a factor of 2.94, 95% CI [1.99, 4.03].
This biased Bayesian model can account well for the under-confidence following correct first decisions
(and therefore improve the overall fit compared to the unbiased Bayesian model, since correct first
decisions were more frequent).  However, over-estimating the internal  noise reduce the bias toward
responding ‘right’ both after correct and incorrect first decisions, thus degrading the model’s ability to
predict performance after incorrect decisions (Fig. 3B).  This indicates that participants not only were
biased toward under-confidence (relative to the ideal) but also that  confidence bias varied depending
on the discriminability of the stimulus.

Non Bayesian models with discrete confidence levels provide the best description of human
behaviour

 The systematic deviations from Bayesian confidence exposed above could result from observers
that  are  under-confident  at  large  and  small  discriminability,  but  over-confident  at  intermediate
discriminability. In other words, the function linking evidence to confidence must have a slope much
larger than the one of the Bayesian observer in a small range of discriminabilities (going from small to
intermediate). The simplest function with these characteristics is a step function (Fig. 3C). We note that
a  step  function  would  result  naturally  if  observers  make  decisions  using  a  point  estimate  of  the
stimulus. In this case, confidence assessments must be obtained by comparing the estimate to fixed,
possibly learned, criteria. If the observer has only one confidence criterion, then the resulting evidence-
confidence function would have two confidence levels (low and high). In this case the observer would
shift their decision criterion to increase the probability of responding ‘right’ only when in the high-
confidence  state  (see  Supplementary  Information  for  details).  We estimated  the  parameters  of  the
discrete-confidence  model  and  compared  it  against  the  alternative  models  described  above.  We
compared the goodness of fit of models using the Akaike Information Criterion11 (AIC), which takes
into  account  model  complexity.  An  analysis  of  simulated  data  confirmed  that  the  models  were
distinguishable and correctly recovered (see Extended Data Figure 3). The smallest AIC, indicating
better fit,  was attained by the discrete-confidence model. The AIC difference between the discrete-
confidence  model  and other  models  (summed over subjects)  revealed  little  or no support35 for the
remaining models: the difference was 151 for the biased-Bayesian model, 95% CI [67, 253];  343 for
the fixed-bias model, 95% CI [163, 597]; and 1591 for the ideal Bayesian model, 95% CI [1020, 2240].
Additionally,  we  compared  the  models  using  a  random-effects  approach12,13,  which  assumes  that
different  participants  could  have  used  different  strategies,  corresponding  to  different  models,  to
generate  their  behavior  (see  Supplementary  Information for  details).  The  protected  exceedance
probability of the discrete model (the second-order probability that participants were more likely to use
this model to generate behavior) was >0.99 and the Bayesian omnibus risk (the posterior probability
that all models have the same frequencies) was 1.70×10-4 . The discrete model thus provides a better fit
than  the alternatives  and can explain  better  the pattern  of  under-confidence  following correct  first
decisions combined with the relatively high confidence following incorrect decisions (Fig. 3C). These
high-confidence errors would occur whenever the internal signal not only has the opposite sign to the
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physical stimulus (due to random noise fluctuations), but is also large enough to exceed the confidence
criterion. 

Figure 3.  Alternative  sub-optimal  models.  A.  Fixed-bias  model.  B.  Biased-Bayesian  model.  C.  Discrete  confidence
model. In both A, B and C the left panel shows the functions linking confidence to evidence in each of the models (for
comparison each also panel includes the function of the ideal Bayesian observer); these functions were generated using the
median of the estimated parameters across observers. Right panels show data and model predictions. Note in particular that
the biased-Bayesian model, whilst  providing an overall  good fit  to the data,  tends to under-estimate the probability of
choosing ‘right’ after a wrong decision more than the discrete model. This pattern is evident also in individual data (see
Extended Data Figure 1).  D.  Model comparison: the top panel represents model frequencies estimates using a random-
effects  approach  that  allows heterogeneity in  the models  that  participants  used to generate  behaviour12;  the annotation
reports  the  (protected)  exceedance  probability  of  the  winning  discrete-confidence  model,  together  with  the  Bayesian
omnibus risk (BOR), i.e. the probability that observed differences in model frequencies are due to chance. The bottom panel
represent  differences  in  the  Akaike  Information  Criterion,  relative  to  the  winning  model,  summed  over  subjects  (see
Extended Data Figure 2 for a plot of individual AIC values). All error bars and bands indicate bootstrapped standard errors.
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Discussion

We presented an approach to study confidence in perceptual decisions objectively.  Our protocol
involves a sequential decision task in which participants may improve their performance in a second
decision  by  using  their  confidence  in  the  first.  This  experimental  protocol  not  only  allows  for
investigation  of  metacognitive  monitoring,  but  also of metacognitive  control  of  behaviour14.  It  can
therefore be regarded as a laboratory proxy of real-life situations where current decisions might depend
on the pending outcomes of previous choices. One advantage of our experimental protocol is that it
permits  quantitative  testing  of  hypotheses  about  the  human sense  of  confidence  without  requiring
arbitrary assumptions,  for example about how participants map their  subjective confidence onto an
external rating scale in the case of self-report measures. Additionally,  the current approach has the
advantage that the decision strategy depends only on internal sources of uncertainty, as opposed to
external  ones, such as stochasticities in the environment,  that typically  elicit  conservative and sub-
optimal placements of decision criteria15.

Taken  together  our  results  revealed  that  participants  performing  the  dual-decision  task  can
meaningfully use confidence in a prior choice to inform subsequent decisions. However participants
also exhibited specific and systematic deviations from the predictions of the ideal Bayesian model. Our
analysis  revealed  that  the  relationship  between the  internal  signals  (the  sensory  evidence)  and the
confidence does not have the shape that would be expected if subjective confidence were computed as
if by a Bayesian observer, by integrating a posterior probability distribution over the values of the
stimulus  that  are consistent  with the choice made.  The pattern found in our data  could instead be
accounted for by an alternative, non-Bayesian model with only two discrete levels of confidence. This
model posits that confidence is discretised in few distinct levels, as also suggested by previous work16.
More specifically, in our discrete model there would be two distinct confidence states: confident - i.e
more likely that the response was correct - vs. non-confident - i.e., equally likely that the response was
correct or incorrect (see Fig. 3C). This one confidence criterion variant of our model provided the best
and most parsimonious description of the empirical data.

In the discrete model, sensory evidence is transformed to confidence via a discrete step function.
This  suggests  that  human  observers  do  not  assign  numerically  precise  subjective  probabilities  to
perceptual interpretations and implies that confidence in a perceptual decision may be based on only a
single point estimate of the most likely stimulus, rather than on a full probability distribution over all
possible  stimuli5.  Whilst  this  algorithmic  description  of  the  mechanisms  underlying  subjective
confidence valuation may seem simplistic, it could be the natural consequence of a limit in how much
information  can  be  accessed  and  used  for  meta-perceptual  judgments.  In  fact  the  discrete  model
effectively compresses (in the information-theoretical sense) the amount of information that is encoded
from  the  first  decision  and  remembered  for  later  use  in  the  second  decision  (it  compresses  this
information to only 1 bit). One intriguing possibility therefore, is that the critical constraint preventing
subjects  from accurately assigning probabilities  and achieving optimality  is  a capacity  limit  in the
information that is encoded for later use. This constraint could be formulated as a maximum limit in the
mutual  information  between  the  internal  evidence  used  in  the  decision  and  the  internal  variable
representing  the  degree  of  confidence.  This  idea  fits  well  with  “second  order”  models  of  meta-
cognition, which postulate a separation (in space and/or time) of the internal states supporting decision
and confidence17 and assume that the samples of sensory evidence guiding decisions and confidence are
distinct, although coupled. Our results suggest an extension of this framework where the nature of this
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coupling  emerges from the loss of information during confidence valuation. According to this idea the
internal  states supporting decisions and confidence  could be viewed as the input and output  of an
information channel with limited capacity (i.e. with an upper bound on the rate at which information
can be transmitted reliably). Our results thus provide additional support for the idea that any rational
account of confidence needs to incorporate implementational constraints and resource limitations18 to
be descriptively accurate.

It is interesting to note that this pattern,  in which subjective probabilities both overestimate and
underestimate  the  objective  probability  in  distinct  sub-domains  of  the  same  task,  resembles  the
distortions of subjective probability that have been found also in non-perceptual tasks, such as those
involving decisions from experience19, suggesting that there may be common limitations in the internal
representation  of  subjective  probabilities  across  different  tasks.  Additionally,  the  finding  that
confidence can be used to improve performance in our dual-decision task across different perceptual
tasks (here motion and orientation) is, in principle, consistent with previous claims that confidence may
be  represented  on  a  common scale  and  act  as  a  ‘common currency’  between  different  perceptual
judgments20,21.  Indeed,  in  an  additional  ‘within-task’  experiment  that  involved  the  same  type  of
perceptual  judgment  in  both  decisions,  we  found  a  pattern  of  deviation  from optimality  that  was
qualitatively similar to that observed in our main experiment. However, quantitative modelling of the
within-task experiment failed to provide decisive evidence in favor of either the discrete or biased-
Bayesian models, leaving open the possibility that participants might be able to make slightly more
efficient  use  of  information  when  both  decisions  involve  the  same  perceptual  judgment  (see
Supplementary  Results  for  details  and  a  discussion  of  caveats  in  the  interpretation  of  within-task
experiments).

Finally,  our  results  have  implications  for  the  current  investigation  of  the  neural  substrate  of
confidence and metacognition,  because many of these studies assume, more or less explicitly,  that
subjective  confidence  corresponds to  the Bayesian posterior  probability22,23.  However,  the evidence
supporting  the  hypothesis  that  Bayesian  inference  is  algorithmically  implemented  in  the  brain  is
debated5,24,25 leaving open the possibility that the algorithms implemented by the brain may involve
heuristic  shortcuts25.  Distinguishing  these  possibilities  requires  novel  experimental  and  theoretical
approaches to test  the validity  of Bayesian inference as a  process model26 for the human sense of
confidence.  In the present study we have not only found further evidence that brain processes that
subtend confidence judgments do not conform to the ideal benchmark represented by the Bayesian
models, but also provided a new experimental protocol that we believe will be a valuable tool for future
investigations of confidence and metacognition and for translating advances in this field into concrete,
theory-driven applications27.
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Methods

Participants

All experiments were performed in accordance with the requirements of the Declaration of Helsinki.
The experimental protocols were approved by the Research Ethics Committee of the School of Health
Sciences of City, University of London and by the UCL Research Ethics Committee. A total of 31
subjects participated in the experiments (mean age 31, standard deviation 11; 12 females). The first 16
participants  (dataset  1)  ran  the  experiment  at  City  University  (London,  UK).  The  remaining  15
participants (datset 2) were testedt in a replication of the experiment ran at  the University College
London, Division of Psychology and Language Science (London, UK), using the same procedure and
an equivalent experimental setup.  Two participants displayed a very large response bias in one of the
two tasks (see Analysis) and were excluded from the analysis. No statistical methods were used to pre-
determine sample size; sample size was chosen to be similar to those reported in previous studies28,29.
All participants had normal or corrected-to-normal vision and gave their informed consent in written
form prior to participation. All participants were naïve to the specific purpose of the experiment. Naïve
participants were compensated with £10 pounds for each hour of experiment. 

Behavioural tasks

Behavioural protocols required participants to make a sequence of two perceptual decisions each
trial. There was no maximum time limit to give the response and in all tasks participants were explicitly
asked to prioritize accuracy over speed (nevertheless  response times covaried with confidence,  see
Supplementary Results, Analysis of response times). Experimental protocols were implemented using
MATLAB (The MathWorks Inc., Natick, Massachusetts, USA) and the Psychophysics Toolbox30,31.

Participants were asked in each decision to either discriminate the mean orientation (left or right
from vertical) of an array of lines, or the direction of motion (left or right) of dynamic, random-dot
motion stimulus. All trials always included both discrimination tasks (e.g., first orientation then motion,
as in Fig. 1, or vice-versa) but the order differed across sessions. The lines were 150 black and white
segments (0.7 degrees of visual angle or dva long, anti-aliased), presented on a grey background and
randomly placed using a uniform distribution over a circular area (diameter 8 dva) placed at the center
of the screen. The orientation of the lines were sampled from a Gaussian distribution with varying
mean and standard deviation fixed at 15 degrees. The random-dot stimulus was made of 200 black and
white dots (diameter 0.1 dva), presented within the same circular area, moving at a speed of 4 dva/sec,
with a lifetime of 4 refresh cycles (≈67 msec). Both lines and dots were presented for 300 msec. A
number (1 or 2) was present  on top of  the display to  remind the participants  whether  the current
decision was the first or the second of each trial, together with two dots on the left and right side of the
stimulus, which were both white for the first decision but red and green for the second, indicating the
expected alternative in case of incorrect and correct first decision, respectively. Stimuli were presented
on a LCD monitor, 51.5cm wide, placed at 77cm of viewing distance (the distance was kept constant
by means of a chin rest), in a quiet, dimly lit room. The monitor resolution was 1920×1200. 

The experiment was split into three sessions run on separate days; participants were compensated
with 10£ for each hour of experiment.  In the first session,  participants completed 300 trials  of the
control  task in  which  the  first  and second decisions  were  independent.  Each trial  comprisied  two
perceptual decisions. In one block (150 trials) the first decision was about the orientation of the lines
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while the second was about motion direction. This order was reversed in the second block. An auditory
beep after the second decision indicated whether subjects responded incorrectly in either of the two
decisions. 

In each of the following two sessions participants completed 300 trials of the dual-decision task,
where the correctness of the first response was predictive of the direction of the second stimulus. The
order  of  the  two  discrimination  tasks  varied  across  sessions  with  order  counter-balanced  across
participants.  Before  each  session  of  the  dual-decision  task,  participants  were  reminded  of  the
conditional rule and ran a short practice session. The practice continued until participants confirmed
they understood the structure of the experiment and were comfortable to continue to the experiment. In
the dual-decision trials, an auditory beep after each trial indicated if participants responded correctly to
the  second  decision.  Stimulus  discriminability  (mean  tilt  of  the  lines  or  motion  coherence)  were
sampled randomly from a uniform distribution, spanning from 0 to a maximum tilt of 12 degrees or
80% coherence in the initial control task. The maximum values in the subsequent two sessions were set
to 2 standard deviations of internal noise (σ) is, as estimated from control trials; see Analysis for details). 

Analysis

Choices in the second decision (coded either as left vs right or correct vs incorrect) were analyzed
by means of logistic regressions fit at the individual level (for details of logistic regression models see
the Supplementary Information: Model-agnostic analyses). Effects were tested at the group level either
by computing bootstrapped confidence interval on the estimated odds-ratios, or by means of t-tests on
the coefficients of the logistic regression (which corresponds to the logarithm of the estimated odds-
ratios  and  whose  distribution  could  be  assumed  normal,  as  indicated  by  Shapiro-Wilk  tests).
Bootstrapped confidence intervals were computed using the bias-corrected and accelerated method32.
All tests were two-tailed and were run with an alpha level of 0.05. In the case of non significant t-tests,
evidence for the null hypothesis was estimated by means of Bayes factors (null/alternative), computed
using  the  JZS  prior33  (which  consists  of  a  Cauchy  prior  on  the  standardized  effect  size  and
uninformative Jeffreys prior on variances). All analyses were performed in the open-source software
R34.

Estimation  of  internal  noise. For  each  participant  we  estimated  the  standard  deviation  of  the
internal noise (σ) is) by considering only first decisions and control trials, in which the prior probability of
the  stimulus  was  identical  between  left  and  right  alternatives.  To  account  for  the  possibility  that
participants might have made attention lapses (e.g. stimulus-independent errors) or be biased, we fit 4
different psychometric functions, ranging from the simplest function with only one free parameter (that
is the noise parameter, σ) is), to a most complex function that had 3 free parameters, including a lapse rate
parameter and a bias term  (a non-zero location parameter). In all the 4 psychometric functions the
parametric  form was  a  cumulative  Gaussian  (see  Supplementary  Information  for  details),  so  each
function  included  the  same  noise  parameter  (σ) is).  Each  psychometric  function  provided  a  slightly
different estimate of the internal noise σ) is. For analyses, we combined the 4 estimates by weighting them
according to the Akaike weight35 of each psychometric function. This results in a more robust estimate
of the noise that is not conditioned on any of the specific psychometric functions considered but instead
permits all  scenarios whilst reducing the chance of overfitting.  The model-averaged estimates were
used to transform the values of the stimulus from raw units (degrees or coherence) to units of internal
noise (σ) is). Two participants were excluded from subsequent analyses because their first decisions in one
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of the two task displayed a large systematic bias (more than 2 standard deviations of the average bias of
all participants).

Computational modelling.

To model performance in our task we considered that observers can have access only to a noisy
estimates of the stimulus levels, corrupted by Gaussian noise (i.e. the internal response as defined in
signal detection theory). We then developed alternative computational models implementing different
strategies and compared their ability to account for performance in the second decision. We fit models
to individual data by numerically finding the values of the free parameters that maximized the (log)
likelihood of choices in the second decision. Only second decisions were used in the model comparison
since  all  the  models  make  similar  prediction  for  the  first  decision,  but  differ  in  how  they  use
information from the first choice to inform the second decision. We performed two types of model
comparisons, both based on the Akaike Information Criterion11 (AIC) as a measure of fit quality. First
we compared the AIC values of each model, summed across subjects. However, this analysis assumes
that all participants used the same strategy (corresponding to a given model) to generate their behavior.
Therefore we also performed a more conservative analysis, which takes into account the possibility that
different subjects may have used different models to generate their behavior and aims at inferring the
probability of each model12 (see Supplementary Information for details). Additionally, to ensure that
the models are distinguishable,  we generated synthetic data and verified that the generative models
could be correctly recovered based on their AIC values (see Extended Data Figure 3).

In  the  following  we  summarise  the  main  features  of  the  computational  models  tested;  the
mathematical details are provided in the Supplementary Information. 

Ideal Bayesian observer.  The ideal Bayesian observer has full knowledge of the statistics of the
internal noise and can use this knowledge to accurately compute the posterior probability of having
responded correctly (i.e. its confidence). The confidence is then used to update prior expectations for
the  second  stimulus;  in  the  Supplementary  Information  we  show that  updating  prior  expectations
amounts to shifting the decision criterion and we provide a derivation of the optimal shift in decision
criterion, given the internal response and the level of internal noise. The only parameter of the ideal
model  is  the internal  noise standard deviation  (σ) is),  however  since this  is  estimated  only from first
decisions, this model can be regarded as having no free parameters.

Bayesian sampler.  This class of models represents a sampling-based approximation of the ideal
Bayesian model. According to this model the observer does not have access to the full probability
distribution of their internal response, but can approximate it based on a finite number of samples. The
performance of this model will approach the ideal Bayesian model as the number of samples grow to
infinity,  however it is expected to display systematic biases for a small number of samples. In the
Supplementary Information we show that these biases are characterised by over-confidence, that is in
the opposite direction with respect to what we found for most of our subjects. These sampling-based
approximations of the ideal Bayesian model are thus inconsistent with our behavioural results.

Biased-Bayesian. This model performs a Bayesian computation, but is sub-optimal because it uses
an  incorrect  estimates  of  its  own  internal  noise.  Specifically,  while  the  variability  of  its  internal
response is described by a Gaussian distribution with standard deviation σ) is, to assess its confidence the
biased-Bayesian observer uses  mσ) is (with m>0). The only free parameter is the factor m characterising
the extent by which the internal noise is mis-estimated. If m=1 the biased-Bayesian model is equivalent
to the ideal  Bayesian,  whereas it  will  display systematic  global biases for values different  from 1.
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Values  of  m>1 indicate  over-estimation  of  the  internal  variability,  and  will  lead  to  global  under-
confidence biases, whereas values 0<m<1 indicate under-estimation of internal variability and will lead
to over-confidence.

Discrete confidence.  This model does not assume any knowledge about the nature of the internal
stochastic  processes  linking  the  stimulus  to  the  internal  response.  Therefore  the  only  information
available to monitor the uncertainty of the decision is the distance of the internal response (which can
be considered a point-estimate) to the decision criterion; specifically, it assess confidence by comparing
the internal response to an additional confidence criterion. This model’s confidence can therefore be
described as a set of discrete ‘states’: a ‘confident’ state that is obtained when the internal response
exceed the confidence criterion; and a complementary ‘uncertain’ state. Only when in the ‘confident’
state  will  it  shift  the  criterion  used for  the  second decision.  It  has  two free  parameters:  one  first
parameter determining the location of the confidence criterion, and a second parameter indicating by
how much it will shift the decision criterion (for the second decision) when ‘confident’ about the first. 

Fixed-bias.  This is the model of an observer that does not monitor uncertainty on a trial-by-trial
basis, and instead adopts a simple fixed-bias that increases the probability of choosing the ‘right’ option
in the second decision. It has one free parameter, which corresponds to the decision criterion used in
the second decision.

Data availability

The data that support the findings of this study are available at https://osf.io/w74cn/.

Code availability

The code for models and analyses that support the findings of this study is available at https://osf.io/
w74cn/.
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1 Supplementary methods

1.1 Computational models

1.1.1 Ideal Bayesian observer

To model performance in the dual-decision task, we assumed that the observer has only access to ri,
a corrupted version of the true stimulus value si, defined as ri = si+ηi, where the subscript i = 1, 2
indicate the decision at hand (first or second) and ηi is Gaussian noise with variance σ2

i . Note that
if the two decisions involve different perceptual judgments, the variance of the noise can be different
depending on the decision (first or second). The perceptual discrimination task amounts to deciding
whether si was above or below a reference level, call it zero. The ideal Bayesian observer has full
knowledge of the statistics of the internal noise, and to make a decision computes the posterior
probability that the variable si was positive or negative (i.e. above or below the reference level),
given the noisy internal response ri. Since the internal noise is Gaussian, the likelihood function
giving the probability of observing ri given si is a normal distribution with mean si and variance
σ2
i .

In the first decision, the prior probability of s1 is uniform within the range (−R,R), that is
p(s1) = 1/(2R) if –R ≤ s ≤ R, and 0 otherwise. Combining the prior and the likelihood function,
the unconditioned probability of observing r1 can be expressed as:

p (r1) =
R
∫
−R

p (r1|s1) p (s1) ds1

= 1
4R

[
erf
(
R+ r1

σ1
√

2

)
+ erf

(
R− r1

σ1
√

2

)]
.

The posterior probability of s1 after having observed r1 is obtained applying Bayes rule:

p (s1 | r1) = p (r1 | s1) p (s1)
p (r1) .

Finally, the decision variable c+
1 (r1), corresponding to the probability that the s1 was greater than

0 is given by

c+
1 (r1) =

R
∫
0
p (s1|r1) ds1 =

erf
(

r1
σ1
√

2

)
+ erf

(
R−r1
σ1
√

2

)
erf
(
R+r1
σ1
√

2

)
+ erf

(
R−r1
σ1
√

2

) . (1)

When c+
1 (r1) ≥ 1/2 the observer chooses ’right’ (i.e. they decide to report that s1 was positive,

an outcome hereafter indicated with the notation d+
1 ) otherwise they choose ’left’ (i.e. they report

that s1 was negative, hereafter notated as d−1 ). The posterior probability of being correct in
the first decision, which corresponds to the confidence of the ideal observer, is given by c1 =
max

[
c+

1 (r1) , 1− c+
1 (r1)

]
. The ideal observer uses the probability c1 to adjust prior expectations

for the second decision, specifically by assigning a prior probability equal to c1 to the possibility
that s2 will be drawn from the positive interval:

p (s2) =


c1
R , if 0 < s2 ≤ R
1−c1
R , if −R ≤ s2 < 0

0, otherwise.
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By applying the same calculation as above with the updated prior p(s2), one obtains the decision
variable c+

2 (r2) for the second decision:

c+
2 (r2) =

c1
[
erf
(

r2
σ2
√

2

)
+ erf

(
R−r2
σ2
√

2

)]
(1− c1) erf

(
R+r2
σ2
√

2

)
+ c1erf

(
R−r2
σ2
√

2

)
+ (2c1 − 1) erf

(
r2

σ2
√

2

) . (2)

This equation reduces to the one for the first decision variable (apart from the difference in the
variance of the noise) when c1 = 1/2, as it should.

The range R on which s1 and s2 takes values is immaterial. It is possible to simplify Eqs (1)
and (2) by taking the limit R→∞. In this limit one obtains:

c+
1 (r1) = 1

2

[
1 + erf

(
r1

σ1
√

2

)]
(3)

c+
2 (r2) =

c1
[
1 + erf

(
r2

σ2
√

2

)]
1 + (2c1 − 1) erf

(
r2

σ2
√

2

) .
The decision rules described by these equations amount to comparing the internal signal ri to a
criterion, and decide accordingly (i.e., if ri ≥ θ2, choose d+

2 , otherwise choose d−2 ). The criterion
for the first decision, θ1, can be expressed as:

c+
1 (θ1) = 1

2 ⇒ erf
(

θ1

σ1
√

2

)
= 0

which is satisfied for θ1 = 0. Similarly, the criterion for the second decision, θ2, can be expressed
as:

c+
2 (θ2) = 1

2 ⇒ erf
(

θ2

σ2
√

2

)
= 1− 2c1 (4)

which indicates that θ2 is a function of c1 (see Main text, Figure 2B). Using Eqs (1) and (4), we
can express θ2 as a function of the internal response, r1, as:

θ2 = −σ2
σ1
|r1|

Note that, if the noise is the same (i.e., σ1 = σ2), the optimal strategy amounts to shifting the
criterion by the same amount as the internal response, that is θ2 = − |r1|. Thus, when both de-
cisions involve the same perceptual judgment, the optimal strategy does not necessarily imply the
knowledge of the variability of the internal response. On the contrary, the optimal strategy does
indeed require the knowledge of σ1 and σ2 (at least their ratio) when the decisions are made in
different domains, as, e.g., in our experiment involving motion and orientation judgments (see Main
text, Figure 1A).

The likelihood of the Bayesian observer choosing d+
2 (after having chosen d+

1 in the first decision)
can be expressed as:

p
(
d+

2

∣∣∣ s2, d
+
1 , s1

)
=
∫ +∞

0
p
(
d+

2

∣∣∣ θ2 = −σ2r1/σ1, s2
)
p
(
r1
∣∣∣ d+

1 , s1
)
dr1

= 1
2 + 1

2p
(
d+

1 | s1
) · 1√

2πσ2
1

∫ +∞

0
erf
[ 1√

2

(
r1
σ1

+ s2
σ2

)]
exp

[
−
(
r1 − s1

σ1
√

2

)2
]
dr1.

(5)
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If instead the observer has chosen d−1 in the first decision the likelihood for the second decision
takes the form:

p
(
d+

2 |s2, d
−
1 , s1

)
=
∫ 0

−∞
p
(
d+

2

∣∣∣ θ2 = σ2r1/σ1, s2
)
p
(
r1
∣∣∣ d−1 , s1

)
dr1

= 1
2 −

1
2p
(
d−1 | s1

) · 1√
2πσ2

1

∫ 0

−∞
erf
[ 1√

2

(
r1
σ1
− s2
σ2

)]
exp

[
−
(
r1 − s1

σ1
√

2

)2
]
dr1.

(6)

The integrals in the Eqs (5) and (6) were evaluated numerically using the adaptive quadrature
algorithm as implemented in the function integrate() in R [10].

1.1.2 Biased-Bayesian observer

Similarly to the ideal Bayesian observer presented in the previous section, the biased-Bayesian
observer also makes decisions based on internal signals corrupted by Gaussian noise. However,
contrary to the ideal Bayesian observer, this model does not assume exact knowledge of the values
of σ1 and σ2. In this case, the adjusted criterion for the second decision is given by

θ2 = − 1
m

σ2 |r1|
σ1

= 1
m
θ

(opt)
2 ,

where θ(opt)
2 is the criterion of the Bayesian observer. When the ratio of the variances of the internal

noises is overestimated (m > 1), the criterion is shifted away from zero less than in the optimal
Bayesian model. This leads to an under-confidence bias, i.e., in the second decision the observer
chooses as if the first decision was correct more frequently than expected if their performance
was optimal. Conversely, when the ratio of the variances of the internal noises is underestimated
(m < 1), the criterion is shifted more than in the optimal Bayesian model, leading to an opposite
over-confidence bias.

1.1.3 Discrete confidence model

As an alternative to the optimal Bayesian model we considered a class of models that do not assume
any knowledge about the nature of the internal stochastic process linking the stimulus si with the
internal observation ri. These non-Bayesian observers perform similarly to the Bayesian model for
the first decision, that is when r1 ≥ 0 they choose d+

1 , and d−1 otherwise. However, they cannot
estimate a full probability distribution over the values of si, and therefore can assess confidence
only by comparing the internal response ri - which can be described as a point-estimate - to a set of
one (or possibly more) fixed criteria. In the case of a single confidence criterion, this non Bayesian
observer is in a high-confidence state when the internal signal exceeds the confidence criterion, and
uncertain otherwise. When confident about the first response, the observer shifts the criterion for
the second decision by a fixed amount (thereby increasing the probability of choosing d+

2 ). If only
one criterion is used the model has 2 discrete confidence levels (e.g., ‘uncertain’ vs ‘confident’).
In such a ‘discrete’ model, if the confidence criterion is w1, the probability of the observer being
confident about their first decision, after having responded d+

1 , can be expressed as:

p
(
confident

∣∣∣ s1, d
+
1

)
=

1− Φ
(
s1−w1
σ1

)
1− Φ

(
−w1
σ1

)
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where Φ is the cumulative distribution function of the standard normal distribution. Note that
this probability does not denote the confidence of the observer about their choice, which instead is
assumed here to be a discrete binary state. Applying the law of total probability, the probability
of the observer reporting d+

2 in the second decision can be expressed as:

p
(
d+

2

∣∣∣ s2
)

= p
(
confident

∣∣∣ s1, d
+
1

)
Φ
(
s2 − θ2
σ2

)
+
[
1− p

(
confident

∣∣∣ s1, d
+
1

)]
Φ
(
s2
σ2

)
where θ2 is the shift in criterion for the second decision applied by the observer when they are
confident in their first decision. w1 and θ2 are free parameters that we fit to the data by maximum
likelihood estimation. It is straightforward to extend the model in order to have more than two
confidence levels, however we find that increasing the number of additional levels in the model
provides, in the current dataset, only a negligible increase in likelihood which is not sufficient to
justify the additional complexity. The difference in AIC score between the simple model with only 2
confidence levels outlined above and a model with one additional confidence criterion (and therefore
3 total confidence levels) was 102 ± 5 (summed over subjects) favouring the simpler model with
only 2 confidence levels.

1.2 Sampling-based approximation of Bayesian observer

An interesting alternative to the models presented in the previous sections is represented by models
where the observer does not have access to the full probability distribution of their internal signals,
but bases their decision on a limited number of samples. In these models the posterior probability
that the choice is correct (the confidence) is approximated on the basis of a fixed number n of
samples x1, x2, ..., xn drawn from the posterior distribution p (si | ri). The performance of these
sampling-based models will approach the optimal Bayesian model as n → ∞, however they are
expected to display systematic biases and deviations from the optimal model for a small number
of samples [12]. Here we show that the sampling-based approximation of the Bayesian observer
will display a systematic over-confidence bias, that is in the opposite direction to that displayed by
most participants in our study, and is thus inconsistent with the behavioural pattern found in our
data.

1.2.1 Sampling bias and over-confidence

It has been shown that when a probability p is estimated from a small sample, as the empirical
frequency of successes k out of n random trials, p̂ = k/n, the risk of over-estimation (that is p̂ > p)
or under-estimation, (p̂ < p) depends in a complex way on both the probability p and the sample
size n [13]. This is however for estimating a single, fixed probability p. What would instead be the
average (expected) bias, over many repeated estimations, when the probability p varies randomly
within a given range? In our experiments confidence is the posterior probability that a binary choice
is correct, and as such it varies from complete uncertainty, p = 0.5, to complete certainty, p = 1,
hence p ∈ [0.5, 1]. We show here that when a set of probabilities p1, ..., pm uniformly distributed in
the interval [0.5, 1] is estimated using a limited number of samples n, the expected bias is one of
over-estimation.
For a given n and p the probabilities of over- and under- estimation can be expressed as:

p (p̂ > p|n, p) =
n∑

k=bnpc+1

(
n

k

)
pk(1− p)n−k
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p (p̂ < p|n, p) =
dnpe+1∑
k=1

(
n

k

)
pk(1− p)n−k

where d.e and b.c are the ceiling and the floor operators, i.e. functions that map a number to the
smallest following integer or the largest previous integer, respectively. Following Shteingart and
Loewenstein [13] we consider the difference between these two, denoted as probability estimation
bias, which takes the form:

∆p = p (p̂ > p|n, p)− p (p̂ < p|n, p) .

When ∆p is positive, it indicates that the probability p is more likely to be overestimated than
underestimated, and vice versa for negative values. Assuming that all values of p in the interval
are equally likely, the expected bias can be computed by integrating ∆p over the range of p (that
is [0.5, 1]):

E [∆p] = 1
2

1∫
0.5

∆p dp.

A positive value of the expected probability estimation bias (that is E [∆p] > 0) indicates that, on
average, the probabilities in this interval are more frequently overestimated rather than underes-
timated. This integral can be evaluated numerically, and in Supplementary Figure 1A we plotted
the expected probability estimation bias as a function of the number of samples, for two different
ranges. When p varies within the range of confidence, [0.5, 1], the value of the probability estima-
tion bias is always positive, although modulated by the number of samples, indicating that in the
range [0.5, 1] overestimation is more likely than underestimation.

1.2.2 Fixed-n Bayesian sampler

Here we present the details of a model based on a sampling approximation of the Bayesian observer,
and confirm by simulation that it will results in an over-confidence bias. We consider a fixed-n
policy, where the observer draws a fixed number of samples for each decision. Although alternative
decision policies are possible (such as an accumulator policy, where the decision is taken after a
minimum number of samples is accumulated in favour of one of the options), these have been shown
elsewhere to result in very similar performances as the fixed-n policy [15].

Similarly to the other models, we assume that the observer has only access to r1, a corrupted
version of the stimulus s1, r1 = s1 + η1, where η1 is Gaussian noise with variance σ2

1. In the first
decision the prior is flat and, taking the limit of the stimuli range R→∞, the posterior distribution
p (s1|r1) results in a Gaussian distribution centred on the internal observation r1. The probability
that a sample from this distribution is above 0 (the criterion for the first decision) can be computed
as:

p (xn > 0|r1) = 1
2

[
1 + erf

(
r1

σ1
√

2

)]
= Φ

(
r1
σ1

)
.

The conditional probability that the observer chooses d+
1 given r1 is obtained by summing the

probability of all the set of samples with at least
⌈
n
2
⌉

samples above 0 and can be expressed as:

p
(
d+

1

∣∣∣ r1
)

=
n∑

k=dn
2 e

(
n

k

)
Φ
(
r1
σ1

)k[
1− Φ

(
r1
σ1

)]n−k
.
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In other words the observer choses d+
1 when the majority of samples is above 0. The observer’s

confidence in his decision, c1 = max
[
c+

1 , 1− c+
1

]
, is given by the proportion of samples in favor of

the choice made:
c+ = 1

n

n∑
i=1

1xi>0 (7)

where 1xi>0 denotes the indicator function (1x>0 = 1 if x > 0, and 0 otherwise). The probability
that the observer chooses d+

1 given s1 can be calculated by integrating the probability p
(
d+

1

∣∣∣ r1
)

over all possible values of r1:

p
(
d+

1

∣∣∣ s1
)

=
n∑

k=dn
2 e

(
n

k

) ∞∫
−∞

Φ
(
r1
σ1

)k[
1− Φ

(
r1
σ1

)]n−k
p (r1 | s1) dr1. (8)

In the second decision the prior probability of the stimulus s2 is different for stimuli above or
below 0. From the point of view of the observer, the prior probability that the stimulus for the
second decision s2 is above 0 corresponds to the confidence c1 that the first decision was correct and,
conversely, p (s2 < 0) = 1− c1. Updating the prior probability for the second decision amounts to a
shift in the decision criterion, as demonstrated for the full Bayesian model. The shift in criterion for
the second decision θ2 is a function of the confidence in the sampling model as in the full Bayesian
model

θ2 = σ2
√

2 erf−1 (1− 2c1) . (9)

However, and differently from the full Bayesian model, the confidence is limited to a finite set of
values determined by the number of samples n. The number of possible confidence levels is

⌈
n+1

2

⌉
,

and each of these corresponds to a value of θ2. If the observer’s first decision was d+
1 , then the

probability of the confidence level cj

p
(
cj
∣∣∣ s1, d

+
1

)
=
(
n

k

) ∞∫
−∞

Φ
(
r1
σ1

)k[
1− Φ

(
r1
σ1

)]n−k
p (r1|s1) dr1

where j ∈
(
1, ...,

⌈
n+1

2

⌉)
is an index linked to the number of samples above the criterion, k,

according to k =
⌊
n−1

2

⌋
+ j. Conversely, if the observer’s first decision was instead d−1 , then the

probability of the confidence level cj is

p
(
cj |s1, d

−
1

)
=
(
n

k

) ∞∫
−∞

{
1− Φ

(
r1
σ1

)k[
1− Φ

(
r1
σ1

)]n−k}
p (r1|s1) dr1 (10)

and the relation between the index of confidence level j and the number of samples above 0, k,
becomes k = n−

(⌊
n−1

2

⌋
+ j

)
.

A level of confidence cj would result in a shift in decision criterion θj , calculated according to Eq
(9). The probability of choosing d+

2 in the second decision is

p
(
d+

2

∣∣∣ s2, s1, cj
)

=
n∑

k=dn
2 e

(
n

k

) ∞∫
−∞

Φ
(
r2 − θj
σ2

)k[
1− Φ

(
r2 − θj
σ2

)]n−k
p (r2|s2) dr2.
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Taking everything together, the probability of the observer choosing d+
2 given s2, s1 and the first

decision can be expressed as:

p
(
d+

2

∣∣∣ s2, d
+
1 , s1

)
=
dn+1

2 e∑
j=1

p
(
cj |s1, d

+
1

)
p
(
d+

2

∣∣∣ s2, s1, cj
)
.

1.2.3 Simulation of sampling model

We simulated the model for values of n ranging from 2 to 20. In order to compare the model
with the full Bayesian observer, the values of σ for each n are adjusted so as to obtain the same
proportion of correct responses in the first decision. For each value of n and for 100 iterations
we first estimated the σ for the sampling models based on the set of first decisions made by the
participants (this was done using maximum likelihood estimation and equation 8) and simulated
second decisions from the sampling model, conditioned on the actual set of observed first decisions
made by the participants. The proportion of responses ‘right’ (d+

2 ) in the second decision produced
by the sampling models are plotted in Supplementary Figure 1C. As expected, they show a pattern
of marked over-confidence: all sampling models tended to respond d+

2 more often than the optimal
model, despite similar accuracy in the first decision. The bias is generally larger for models with
smaller number of samples, and decreases approaching the optimal Bayesian model as n increases.
Importantly, this bias is incompatible with the observed behavioral data, which instead showed a
marked under-confidence bias.
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Supplementary Figure 1: Sampling-based approximation of the Bayesian model. A. Expected probability
estimation bias ∆p plotted as a function of the number of samples when the probability p varies randomly (uniformly)
either in the range [0.5, 1], plotted in grey, or in the range [0, 1]. It can be seen that when p varies within the range
of confidence, from chance to certainty [0.5, 1] the predominant bias is one of over-estimation (because ∆p is always
positive, grey line). Only when p varis over the whole domain of probability, [0, 1], the expected bias is on average
zero and over-estimation and under-estimation are equally likely (black line). B. Proportions of responses ’right’
(d+

2 ) in the second decision as a function of the difficulty of the first decision, as predicted by the full Bayesian model
(red line) and the fixed-n Bayesian sampler model. The black dots and lines indicate the choices made by human
participants (error bars are bootstrapped standard errors).
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1.3 Model estimation and comparison

In our analyses we compared each model’s ability to explain performance in the second decision.
The first step was to estimate the standard deviation of the internal noise, using only decisions
where the prior probability was equal for the two alternatives (that is first decisions and control
conditions). In fact in the first decision s1 is uniformly chosen from an interval centred around 0
(i.e., s1 will be above 0 with probability 1/2), and there is no prior information about the sign of s1.
Therefore, for all the models presented in the previous sections (with the exception of the sampling
approximation of the ideal Bayesian observer discussed in the previous section), the probability
p
(
d+

1 | s1
)

of the observer choosing d+
1 can be expressed as:

p
(
d+

1

∣∣∣ s1
)

= 1
2

[
1 + erf

(
s1

σ1
√

2

)]
= Φ

(
s1
σ1

)
.

We estimated by maximum likelihood σ̂1 for each participant and task. We also estimated other
psychometric models, that extended this simple model to account for the possibility that the ob-
server was biased, p(d+

1 | s1) = Φ
(
s1−b
σ1

)
(where b indicates the bias), or made stimulus-independent

errors (e.g. attention lapses) with non-zero probability, p(d+
1 | s1) = λ + (1 − 2λ)Φ

(
s1
σ1

)
(where λ

is the lapse probability); or both p(d+
1 | s1) = λ + (1 − 2λ)Φ

(
s1−b
σ1

)
. Since we were interested in

estimating the internal noise, rather than selecting one of these models, we averaged the estimates
of σ̂ obtained with each of these psychometric models according to their Akaike weights [1, 16].
In more detail, we first calculated the Akaike Information criterion (AIC) of each psychometric
models m as

AICm = 2V − 2 ln L̂m
where L̂m is the maximized value of the likelihood function of model m and V its number of free
parameters. The AIC values are first transformed into differences with respect to the best model,
∆m = AICm−min AIC. These differences are then transformed on a likelihood scale and normalized
to obtain the Akaike weights wm, which can be directly interpreted as conditional probabilities for
each model [16]

wm =
exp

(
−1

2∆m

)
K∑
k=1

exp
(
−1

2∆k

) .
Finally, the model-averaged estimate of the noise parameter is computed as the average of each
estimated weighted by the Akaike weight of the respective models

σ̄1 =
K∑
k=1

wkσ̂
(k)
1 .

The advantage of this approach is that it avoids the need to choose and commit to a particular
form of the psychometric function. Furthermore, because the Akaike weights take into account
the complexity of the psychometric functions (i.e. the number of free parameters V), the resulting
estimate optimises the balance between model fidelity to the data and the need to avoid overfitting
(i.e. of fitting a model that is too complex to be supported by the data). Indeed the model-averaged
estimate is more likely to perform better than the alternatives in accounting for new data [1].
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In our analysis we used the model-averaged estimate for transforming the stimuli from physical
units to units of internal noise. This simplifies the analysis (since first and second decisions involved
different perceptual judgements) and guarantees that any differences between models would be due
only to differences in explaining performance in the second decision. The same was done for the
estimates of the bias term, b̂, which was then subtracted from the stimuli value to take into account
subjective decision biases in the computation of models’ likelihoods. The remaining free parameters
for the biased-Bayesian and the non-Bayesian observer were estimated by numerically maximising
the (log) likelihood of the data (the observed patterns of second decisions). Maximum likelihood
fits were obtained via the BOBYQA algorithm [9], implemented in the optimx package [7, 8] in
R [10]. The relative quality of models’ fit was assessed with the AIC, which we report pooled over
subject in the main text; individual differences in AIC values are represented in Extended Data
Figure 1.

In addition to the AIC, we compared the models using a random-effects approach [11,14] which
allows for the possibility that different participants could have used different strategies (correspond-
ing to different models) to generate their behaviour. In this approach models are treated as random
effects that could differ between subjects and have a fixed (unknown) distribution in the population.
The uncertainty around model frequencies is described by a Dirichlet distribution (a multivariate
generalisation of the Beta distribution), whose parameters are estimated according to an itera-
tive variational Bayesian procedure, described in [14]1, starting from a measure of the evidence
supporting each model (here we used the AIC). Having obtained the optimised parameters of the
Dirichlet distribution a useful way to rank the model is according to their exceedance probability,
that is the second-order probability that participants were more likely to choose a certain model to
generate their behaviour rather than any other alternative model. If r1, . . . , rK are the estimated
frequencies of the K models, the exceedance probability (EP ) of model k is formally defined as
EPk = p (rk > rj | data), with k 6= j. Since we are considering more than two models, the ex-
ceedance probabilities need to be approximated via simulation [14]. We simulated 106 multivariate
Dirichlet samples r̃1, . . . , r̃K and calculated the exceedance probability of model k as

EPk =
∑
1r̃k>r̃j

106 ,∀j ∈ {1, . . . ,K, j 6= k}

where 1 is the indicator function (1x>0 = 1 if x > 0 and 0 otherwise), summed over the total
number of multivariate samples drawn. Protected exceedance probabilities (PEP ) [11] are a fur-
ther extension of exceedance probabilities corrected for the possibility that the observed model
differences are due to chance. They are calculated as PEPk = (1− Bor)EPk + Bor/K, where
Bor is the Bayesian omnibus risk, that is the posterior probability that all models have the same
frequency [11]. See Main Text and Figure 3B for a plot of the estimated model frequencies with
the associated exceedance probabilities and Bayesian omnibus risk.

1.4 Model-agnostic analyses

We report here the details of analyses that did not involve fitting the decision models presented in
Section 1.1. We analysed performance by means of a series of logistic regressions. For the analysis
of response accuracy, we estimated logistic regression of the form

logit [p(correct)] = β0 + β1 |s|+ β2 DecisionOrder + β3 Dual + β4 (Dual×DecisionOrder) (11)
1Implemented in an R package available at http://github.com/mattelisi/bmsR
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where logit [p] = log p
1−p , |s| is the absoluted value of the stimulus (i.e. the evidence discriminabil-

ity, expressed in units of internal noise, σ) and DecisionOrder (first vs second) is a dummy variable
that was set to 1 in the case of second decisions and 0 otherwise. Dual was also a dummy variable,
set to 1 for the dual-decision condition, and 0 for the control condition. In the main text we report
95% CI on the odds-ratio of a correct response in the second decision relative to that in the first
decision; for example, in equation (11) this would be calculated as eβ2 for the control condition and
as eβ2+β4 for the dual-decision condition.

We performed further analyses to assess the possibility that the sub-optimality of human be-
haviour could be explained by a fixed-bias model which does not adjust decision criterion dynami-
cally depending on the stimulus observed at the first decision. We analysed the proportion of ‘right’
alternatives chosen in the second decision as a function of the stimulus value in the second decision
and the accuracy of the first decision

logit [p(choose right)] = β0 + β1s2 + β2 Acc1

where Acc1 is a dummy variable set to 1 in the case of correct first decisions. This logistic regression
showed that participants were more likely to choose ‘right’ after correct first decisions (see Main
Text). This logistic regression was also extended to include the interaction between accuracy and
evidence discriminability in the first decision, that is

logit [p(choose right)] = β0 + β1s2 + β2 Acc1 + β3s1 + β4 (|s1| ×Acc1) .

This analysis showed that the proportion of ‘right’ choices (in the second decision) significantly
increased or decreased with the discriminability of the first stimulus (|s1|) depending on whether
the first decision was correct or wrong (see Main Text and Figure 1B).

11



2 Supplementary results

2.1 Analysis of response times

We conducted additional analyses to investigate how the response time (RT, an approximation
of the deliberation time required to form the decision) in the second decision was related to the
confidence in the first decision. Note that this analysis is not aimed at discriminating between
models. In fact our models do not consider the dynamical aspects of the decision process, and
do not make specific predictions about how degree of confidence and speed of decision should
be related. Moreover, in our experiments we explicitly asked participants to prioritise accuracy,
without worrying about the speed of their responses. Nevertheless, it is known that the confidence
in a decision is usually inversely correlated with the response time [5]. Our goal here is therefore
to provide a description of the relationship between confidence and speed of response in our dual
decision paradigm, in order to provide a more complete description of the data and inspire future
studies on the relationship between speed and confidence in the context of sequential decisions.
The rationale of the analysis is the following: we begin by partialling out the effect of stimulus
discriminability (both first and second) on the RT of the second decision. Next we calculate the
expected confidence of the first decision (according to the ideal-Bayesian model, which corresponds
to the objective probability of a correct response) and examine whether and how the expected
confidence can account for the residual variations in RTs.

Given that participants had as much time as they wanted to respond, the RT distributions are
likely to be contaminated by outliers. Therefore, prior to this analysis we removed trials with RTs
longer than 5 sec after the offset of the stimulus (≈ 0.28% of total trials). The average RT (measured
from the onset of the stimulus) in the first decision was 0.74 sec (SD across participants 0.19 sec),
slightly slower than that of the second decision, 0.68 sec (SD 0.19 sec), t(28) = 2.73, p = 0.01 (see
Supplementary Figure 2A). This difference was found only in the dual-decision condition: in the
control condition RTs in the first and second decision had similar duration: first decision, mean
0.80 sec, SD 0.23 sec; second decision, mean 0.81 sec, SD 0.22 sec; t(28) = 0.57, p = 0.57, the Bayes
factor (null/alternative) was 5.96, providing moderate support for the null hypothesis.

To control for the effect of stimulus discriminability on RTs, we fit a linear model to the logarithm
of RTs, which included as predictors both the stimuli of first and second decisions as well as their
interactions. Furthermore, given that RTs also tend to differ between correct and wrong responses,
we also included the accuracy of first and second decisions as predictors. The regression model thus
had the form

log (ResponseTime) = β0 + β1 |s1|+ β2 |s2|+ β3 |s1| × |s2|+ β4Acc1 + β5Acc2 + ε

where |s1| , |s2| denote the absolute values of the stimuli in first and second decisions (the evidence
discriminability), Acc1 and Acc2 the accuracy of first and second decisions, and ε a normally
distributed residual error. The model was fit individually for each participant. The residuals of
this model (i.e. the trial-by-trial differences between the observed and predicted logarithm of RTs)
represent the residual variation in response times that was not accounted for by the stimuli levels
and response accuracy.

Next, we computed the expected confidence according to the ideal observer. We do not have
access to the noisy internal response of the participants (r1), however we can calculate its expected
value given the entire sequence of stimuli (s1, s2) and decisions (d1, d2). The distribution of the noisy
internal response is a Gaussian centered on the true stimulus value. After observing the first decision
of the participants, we can infer on which side of the decision criterion the internal response fell.
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Supplementary Figure 2: Analysis of response times. A. Average response times in the dual-decision task,
split by decision order and plotted as a function of the stimulus value (in units of internal noise). This plot shows
that response times tend to be faster in the second decision than in the first, and particularly so for difficult decisions,
mimicking the effect found in response accuracies (see Figure 1, Main text). Furthermore, this plot shows that
response times decreases approximately linearly with the discriminability of the stimulus (i.e. with the average
distance of the stimulus from the decision criterion). B. The residual variation in the response times of the second
decision (after partialling out the effects of the two stimuli level and response accuracies, see text for details) is plotted
as a function of the expected confidence of the Bayesian model in the first decision. Each point is the average residual
(in logarithmic units) across participants for a given interval of confidence levels; error bars represent standard error
of the mean. Bins are chosen such that each bin contains approximately the same number of trials. The smooth
grey line represents a smooth GAM fit to the unbinned residuals (with 95% confidence interval). The color of each
dot reprents the average response time in that bin, in seconds. Finally, the vertical blu line is the confidence level
corresponding to the location at which participants placed the confidence criterion, according to the discrete model.

Therefore, the probability density function of the internal responses becomes a truncated Gaussian
distribution. For example, when the decision is d+

1 , the distribution of r1 can be expressed as

p
(
r1 | d+

1 , s1
)

=
φ
(
r1−s1
σ1

)
σ1
(
1− Φ

(
−s1
σ1

))
which is a truncated Gaussian bounded from below at 0. (Φ and φ are the cumulative distribution
function and the probability density function of the standard normal distribution, respectively.)
The distribution of the internal response is then obtained by applying Bayes theorem

p (r1 | d1, s1, d2, s2) = p (d2 | s2, r1) p (r1 | d1, s1)
∞∫
−∞

p (d2 | s2, r1) p (r1 | d1, s1) dr1

.

For each trial, we computed the expected value of the internal response, that is E [r1 | d1, d2, s1, s2] =∫∞
−∞ r1 p (r1 | d1, s1, d2, s2) dr1, and plugged it into equation (3) to obtain the expected confidence

level.

We found that the expected confidence level (in the first decision) can explain the residual
variation of RTs in the second decision. Specifically, second decisions are faster or slower - relative
to the conditional mean of the log RT predicted by the regression model - when confidence in
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the first decision was higher or lower, respectively, as shown in Supplementary Figure 2B. Thus,
this findings indicates that dynamical aspects of the second decision were adjusted based on trial-
by-trial confidence in the first decision. Furthermore, we find that the RT residuals do not seem
to decrease linearly with confidence, but rather are above the marginal mean when confidence
is below a certain level (approximately corresponding to the average confidence level at which
participants placed their confidence criterion w1, as estimated by the discrete model, ≈ 0.77) then
decrease rapidly below the conditional mean when confidence exceeds this level. This suggests a
possible chronometric correlate of the discrete confidence states that we inferred from modelling
participants’ decisions. Although serendipitous, we believe this is an interesting result that could
inspire future studies to apply dynamical models of decision making (e.g. drift diffusion models)
in a dual-decision setting.

2.2 Dual-decision within the same perceptual task

Here we report the results of an additional experiment in which both decisions involved the same
perceptual task, specifically a judgment about the duration of a visual stimulus (Supplementary
Figure 3A). Although overall the results show a pattern similar to that found in our main ‘crossed-
task’ experiment, they are also suggestive of slightly more efficient use of confidence information
when the two decisions involve the same (‘within-task’), as opposed to different (‘crossed-task’),
perceptual judgments. At first sight, a benefit in within-task relative to crossed-task experimental
designs would seem to challenge the notion of confidence as a common currency [2, 3] (i.e. repre-
sented on a common scale) between different perceptual judgments. However, as explained below,
within-task designs present some limitations. This, combined with differences in procedure across
the twp experiments, makes strong conclusions based unwarranted.

One issue with within-task designs is that they are less constrained in terms of the possible
strategies adopted by participants and, as a result, are less informative about the nature of the
probability representations underlying performance in the dual decision task. To see that, recall
the relationship that we found between the internal response r1, elicited by the first signal and the
optimal criterion θ2 for the second decision, i.e.,

θ2 = −σ2
σ1
|r1| . (12)

If the two decisions involve the same preceptual judgement, it is not unreasonable to assume that
σ1 = σ2, and then θ2 = − |r1|. An observer aware of this mapping could achieve optimal perfor-
mance having available only a point-estimate of the first signal, without needing any knowledge
about the internal noise. Such an observer would be indistiguishable from the optimal Bayesian
model whilst using an entirely non-probabilistic strategy [6].

Our main crossed-task experiment instead used 2 different perceptual judgments. Since the
signals upon which these judgments are based are different in nature (mean tilt from vertical
versus signed motion coherence), they are processed by distinct neural mechanisms and likely
encoded in different internal representations. Optimal performance in this task requires comparing
the uncertainty in these two representations, and therefore implies some knowledge about their noise
statistics (at the very least the ratio between the internal noises in the two tasks, σ1 and σ2, since the
optimal mapping becomes θ2 = −σ2

σ1
× |r1|). Our results from the crossed-task experiment indicate

that participants do not use this mapping, but rather seem to rely on the simpler strategy of shifting
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Supplementary Figure 3: Dual-decision within the same perceptual task. A. Experimental protocol of the
within-task experiment on duration judgments. B. Probability of correct first and second decisions in control and
dual-decision condition; error bars are bootstrapped standard errors across observers, and smooth lines are probit
functions fit to the aggregated data. C. Probability of choosing ‘right’ in the second decision broken down by the
accuracy of the first response. D. Difference in AIC relative to the discrete confidence model, summed over subjects;
error bars are boostrapped standard errors. E. Ranked individual AIC differences.
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the second decision’s criterion by a fixed amount whenever their point-estimate of the first signal
exceed a fixed confidence criterion (i.e. the discrete model). In the case of a within-task design,
however, participants may use the trial-by-trial point-estimate of the first signal (already available
to them) directly as criterion in the second decision. Furthermore, they could use this optimal (but
heuristic) mapping only in a fraction of trials while falling back on the simpler strategy in other
trials. This creates an interpretational confound that complicate disentangling if performance in
the within-task case is truly underpinned by a Bayesian decision strategy.

2.2.1 Methods

The experiment was run at the Université Paris Descartes, and the protocol of the experiments was
approved by the Paris Descartes University Ethics Committee for Non-invasive Research (CERES).
A total of 14 in Experiment 2 (mean age 33, standard deviation 7; 6 females, 2 authors) participated
in the experiment. An additional group of 5 subjects participated in the control condition (mean
age 27, standard deviation 3; 3 females). All participants had normal or corrected-to-normal vision
and gave their informed consent in written form prior to participation. All participants (except
the two authors) were näıve to the specific purpose of the experiment. Näıve participants were
compensated with either 10€ for each hour of experiment.

The visual display of the within-task design consisted of a central fixation point and four
placeholders, Supplementary Figure 3A, continuously visible on a uniform grey background. The
four placeholders were circles (anti-aliased) measuring 2.8 dva in diameter, whose centers were
placed at 1.8 dva from the fixation point. Two placeholders were light grey, and were placed above
the horizontal mid-line; the other two were placed below the mid-line and were colored in red
the one on the left, and in green the one on the right. Stimuli consisted of white Gaussian blobs
(standard deviation 0.65 deg), presented sequentially in the two placeholders (left/right). The
order of presentation (left/right stimulus first) was balanced with respect to the longer/shorter
duration of presentation. Participants were asked to indicate the location (left/right) of the longer
duration blob. The shorter duration was always set to 600 ms, and the difference between shorter
and longer durations was discretized in bins determined by the refresh rate of the monitor (100
Hz). The minimum duration difference was one single monitor refresh interval (≈ 12 ms). The
display screen was a 22 inches CRT monitor (screen resolution 1600× 1200); viewing distance was
60 cm, controlled by means of a chin rest. Before the dual decision task, we measured individual
sensitivities using a weighted up-down staircase procedure [4]. The purpose of this pre-test was to
quickly obtain an estimate of the internal noise (σ) to adapt the range of stimuli in the dual-decision
condition. The staircase procedure continued until 30 reversals were counted. The initial step size
(the size of the decrease/increase of the difference between the two stimuli) was 4 refresh interval
and was diminished 1 refresh after the second reversal. Stimuli in these pre-test measurements
were presented only in the top placeholders. 5 participants run a version of the experiments where
discrimination difficulties in the first and second decisions were drawn independently. The remaining
9 participants run a version of the experiment where we biased the probability of association between
discrimination difficulties in the first and second decision. Specifically when the discriminability of
the first stimulus was less than half the maximum possible value, there was a 0.7 probability that
the discriminability of the second stimulus would be greater than half, and vice-versa. This was
intended to encourage participants to make use of the rule, however we did not find any differences
in performance across these two versions of the task and therefore data were pooled together in
subsequent analyses. The number of trials were 300 and 500 for the version with biased and
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random association between discrimination difficulties, respectively, to ensure balanced numbers of
trial with transitions from easy to difficult decisions and viceversa.

2.2.2 Results

We applied the same exact analysis procedure used for the crossed-task experiment (see Main Text
and Supplementary Methods). We found that decision order had no statistically significant effect
in the control condition: 1.05, 95% CI [0.85, 1.31], t(13) = 0.35, p = 0.74; and that it had a
significant effect in the dual-decision condition (Supplementary Figure 3B): the mean odds-ratio
that participants responded correctly in the second decision relative to the first one was greater
than one, 2.05, 95% CI [1.72, 2.51], t(13) = 7.17, p = 7.12 × 10−6. The size of this effect however
was found to be larger than in the crossed-task experiment, t(41) = 3.18, p = 0.003.

When including the accuracy of the first decision as predictor, we found that also in this
experiment participants were significantly more likely to choose ‘right’ in the second decision after
a correct first decision than after an incorrect one: odds-ratio 2.36, 95% CI [1.69, 3.36], t(13) =
4.72, p = 7.12 × 10−6. The magnitude of this effect did not differ significantly from the crossed-
task experiment, t(41) = 0.58, p = 0.56; the estimated Bayes factor (null/alternative) was 3.63,
providing moderate support for the null hypothesis.

Moreover, by adding the discriminability of the first stimulus as a predictor, we found that it
significantly influences the odds-ratio of choosing ‘right’ in the second decision: for each unitary
increase in discriminability, the odds-ratio increases multiplicatively by a factor of 1.58, 95% CI
[1.30, 1.95], t(13) = 4.27, p = 9.13×10−4, after a correct response and decreases by a factor of 0.74,
95% CI [0.57, 0.98], t(13) = 2.07, p = 0.05, after an incorrect response. There was no statistically
significant difference in the size of both effects across the experiments: t(41) = 0.62, p = 0.54;
and t(41) = 0.32, p = 0.75, respectively (the estimated Bayes factors, 3.55 and 4.02 respectively,
providing moderate support for the null hypothesis).

Overall, these model-agnostic analyses indicate that although participants in the within-task
experiment displayed a greater boost in performance (in decision 2 relative to decision 1), the extent
by which the probability of choosing ‘right’ in the second decision changed as a function of first de-
cision difficulty and accuracy did not differ significantly (in fact the Bayes factor provided evidence
in favour of the null hypothesis of no difference between the two experiments). It thus remains
unclear why participant in the within-task experiment achieved a greater boost in performance in
the second decision: this may be due to the two decisions involving more similar judgments, or
other differences in experimental procedures. For example, in the within-task experiment the range
of stimuli was adjusted by running a staircase procedure, instead of a separate control condition,
and on average it resulted in a slightly narrower range of stimuli when expressed in units of noise:
the average range of stimuli in the within-task condition was ±2.05σ, whereas it was ±2.67σ in the
crossed-task experiment, t(41) = 2.78, p = 0.008.

Breaking down the trials according to the correctness of the first decision (Supplementary
Figure 3C) reveals a pattern of deviations form the optimal Bayesian model very similar to what
was observed in the crossed-task experiment, characterized by under-confidence after correct first
decisions, albeit less evident, and with relatively higher-confidence errors. This pattern was again
captured better by the discrete confidence model (compare data and model fit in Supplementary
Figure 3C). However, in this case we find that the quality of model fit, as quantified by the AIC, did
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not differ significantly between the discrete model and the biased-Bayesian model (Supplementary
Figure 3D and E). The difference in AIC (summed over subjects) was 1.04± 11.26 in favour of the
discrete model; the estimated Bayes factor (null/alternative) was 4.97, providing moderate evidence
for the null hypothesis. These differences in quality of model fit, together with the greater boost
in performance in the second decision, may indicate a more efficient use of confidence information
in the within-task experiment. However, as explained above, there may be different explanations
for this pattern that cannot be readily disentangled within the current set of results. On the one
hand, it could indicated greater ‘transmission fidelity’ between internal states supporting decisions
and confidence, i.e. a more precise and less noisy mapping between sensory evidence, confidence
information and prior expectations when all decisions involve the same kind of sensory signals. On
the other hand, it could indicate a greater heterogeneity in the strategies adopted by participants,
since for this task the optimal strategy can be achieved effectively without needing additional
information about noise or uncertainty. Since these difference computations may give rise to the
same predicted behavioural outcome disentangling between them may require recording of neural
activity in addition to modelling of behavioral data.
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