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Abstract—Neuromorphic vision sensing (NVS) devices repre-
sent visual information as sequences of asynchronous discrete
events (a.k.a., “spikes”) in response to changes in scene re-
flectance. Unlike conventional active pixel sensing (APS), NVS
allows for significantly higher event sampling rates at substan-
tially increased energy efficiency and robustness to illumination
changes. However, feature representation for NVS is far behind
its APS-based counterparts, resulting in lower performance in
high-level computer vision tasks. To fully utilize its sparse and
asynchronous nature, we propose a compact graph representation
for NVS, which allows for end-to-end learning with graph convo-
lution neural networks. We couple this with a novel end-to-end
feature learning framework that accommodates both appearance-
based and motion-based tasks. The core of our framework
comprises a spatial feature learning module, which utilizes
residual-graph convolutional neural networks (RG-CNN), for
end-to-end learning of appearance-based features directly from
graphs. We extend this with our proposed Graph2Grid block
and temporal feature learning module for efficiently modelling
temporal dependencies over multiple graphs and a long temporal
extent. We show how our framework can be configured for object
classification, action recognition and action similarity labeling.
Importantly, our approach preserves the spatial and temporal
coherence of spike events, while requiring less computation and
memory. The experimental validation shows that our proposed
framework outperforms all recent methods on standard datasets.
Finally, to address the absence of large real-world NVS datasets
for complex recognition tasks, we introduce, evaluate and make
available the American Sign Language letters (ASL-DVS), as
well as human action dataset (UCF101-DVS, HMDB51-DVS and
ASLAN-DVS).

Index Terms—Neuromorphic vision sensing, spatio-temporal
feature learning, graph convolutional neural networks, object
classification, human action recognition

I. INTRODUCTION

With the prevalence and advances of CMOS active pixel
sensing (APS) and deep learning, researchers have achieved
good performance in APS-based computer vision tasks, such
as object detection [1], [2], object recognition [3], [4] and
action recognition [5], [6] . However, APS cameras suffer from
limited frame rate, high redundancy between frames, blurriness

YB, AC, AA and YA are with the Electronic and Electrical Engineer-
ing Department, University College London, Roberts Building, Torrington
Place, London, WC1E 7JE, UK (e-mail: {yin.bi.16, aaron.chadha.14, al-
habib.abbas.13, i.andreopoulos}@ucl.ac.uk). EB is with the School of Com-
puter Science and Electronic Engineering, University of Essex, Wiwenhoe
Park, Colchester, CO4 3SQ, UK (e-mail: e.bourtsoulatze@essex.ac.uk). This
work was supported by EPSRC, grants: EP/R025290/1 and EP/P02243X/1
and also by the EC H2020 programme, project ENVISION 750254. Parts of
this work were presented at 2019 IEEE International Conference on Computer
Vision, IEEE ICCV, Seoul, Korea.

due to slow shutter adjustment under varying illumination, and
high power requirements [7] which limit the effectiveness of
APS-based frameworks. To solve these problems, researchers
have devised neuromorphic vision sensing (NVS) sensors such
as the iniLabs DAVIS cameras [8] and the Pixium Vision ATIS
cameras [9], which are inspired by the photoreceptor-bipolar-
ganglion cell information flow in mammalian vision. NVS
devices output events (i.e., spikes) asynchronously in response
to a change in illumination. That is, when the transient change
of illumination intensity in a scene exceeds a certain threshold,
an event is generated. The output of the NVS camera is
represented asynchronously as a collection of tuple sequences,
referred to as an Address Event Representation (AER) [10]
that is the standard interfacing protocol for neuromorphic engi-
neering. Each tuple corresponds to one event and it comprises:
the spatial coordinates, the timestamp and the polarity (i.e., ON
or OFF) of the event. The polarity indicates an increase (ON)
or decrease (OFF) in illumination intensity, where ON/OFF
can be represented via +1/-1 values. The operation of an NVS
camera is illustrated at the top part of Fig. 1, where impulses
represent the generated events.

In contrast to APS devices (i.e., conventional cameras) that
use a fixed-sampling rate in order to record entire frames at
fixed frame rates, each CMOS array position (a.k.a., pixel) in
an NVS sensor optimizes its own sampling rate independently,
according to the change it detects in illumination. Therefore,
the events produced from the entire NVS pixel array are sparse
and asynchronous and can be represented as a space-time
volume over a given time interval. This is illustrated at the
bottom part of Fig. 1, where the neuromorphic event stream
is overlaid with the corresponding RGB frames recorded at
the video framerate; events are plotted according to their
spatio-temporal coordinates and color coded as blue (OFF) and
red (ON). Notably, there are many more intermediate events
between the RGB frames, which indicates the substantially
higher framerate achievable with an NVS camera and asyn-
chronous outputs. Furthermore, the asynchronicity removes the
data redundancy from the scene, which reduces the power
requirement to 10mW, compared to several hundreds of mW
for APS cameras. Remarkably, NVS devices achieve this
with microsecond-level latency and robustness to uncontrolled
lighting conditions, as no synchronous global shutter is used.

Beyond event sparsity and asynchronicity, neuromorphic
event streams are naturally encoding spatio-temporal motion
information [7]; as such, they are extremely adaptable to tasks
related to moving objects such as action analysis/recognition,
object tracking or high-speed moving scenes. We, therefore,
look to perform feature learning directly on the raw neuro-
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Fig. 1: (top): NVS camera operation. (bottom): Recording
of archery action captured by APS and NVS cameras. APS
cameras capture frames at a fixed rate, while NVS cameras
output a stream of events. (Red:ON, Blue:OFF)

morphic events. Unfortunately, effective methods for repre-
sentation learning on neuromorphic events to solve complex
computer vision tasks are currently limited and outperformed
by their APS-based counterparts. This is partly due to lim-
ited research in the NVS domain, as well as a lack of
NVS data with reliable annotations to train and test on [7],
[11]. Yet, more so, the sheer abundance of asynchronous
and sparse events means that feature learning directly on
events can be particularly cumbersome and unwieldy. Thus
far, most approaches have attempted to solve this issue by
either artificially grouping events into frame forms [12], [13]
or deriving complex feature descriptors [14], [15], which do
not always provide for good representations for complex tasks
like object classification. Moreover, such approaches dilute the
advantages of the asynchronicity of NVS streams by limiting
the frame-rate, and may be sensitive to the noise and change of
camera motion or viewpoint orientation. Finally, these methods
fail to model long temporal event dependencies explicitly, thus
rendering them less viable for motion-based tasks.

More recent methods on feature representation have em-
ployed end-to-end feature learning, where a convolutional neu-
ral network (CNN) [16], [17] or spiking neural network (SNN)
[18], [19] is trained to learn directly from raw observations.
While these methods show great promise, CNN-based learning
methods require event grouping into frames. Therefore, they
suffer from the same drawbacks as above. On the other hand,
the biggest challenge of SNNs is that the activation functions
of spiking neurons are asynchronous and non-differentiable in
time. Hence, SNN-based methods cannot use well-established
gradient-based learning rules. This makes SNN-based methods
complex to train, resulting in lower performance compared
to gradient-based alternatives. In addition, SNN inference
requires bespoke hardware, which is less readily available than
CPUs and GPUs. These difficulties are compounded by the

fact that, from the sensing side, neuromorphic (spike) based
sensors activate in an asynchronous manner in time, thereby
producing data streams at irregular space-time coordinates,
which depend on the scene activity. Graph-based processing
is an ideal mechanism to deal with such asynchronous space-
time data capture mechanisms. Therefore, instead of using
CNNs or SNNs, we propose to leverage on graph-based
learning, by training an end-to-end feature learning framework
directly on neuromorphic events. By representing events as
graphs, we are able to maintain event asynchronicity and
sparsity, while performing training with traditional gradient-
based backpropagation. To the best of our knowledge, this
is the first attempt to represent neuromorphic spike events
as graphs, which allows to use graph convolutional neural
networks for end-to-end feature learning directly on neuro-
morphic events. Building partly on our previous work [20], our
proposed graph based framework is able to accommodate both
appearance and motion-based tasks; in this paper, we focus on
object classification, action recognition and action similarity
labelling as representative tasks. For object classification, we
design a spatial feature learning module, comprising graph
convolutional layers and graph pooling layers for processing a
single input event graph. For action recognition and action
similarity labeling, we extend this module with temporal
feature learning, in order to learn a spatio-temporal repre-
sentation over the entire input. Specifically, we introduce a
Graph2Grid block for aggregating a sequence of graphs over
a long temporal extent. Each event graph in the sequence
is first processed by a spatial feature learning module; the
mapped graphs are then converted to grid representation by
the Graph2Grid block and the resulting frames are stacked,
for processing with any conventional 2D or 3D CNNs. This
is inspired by recent work in APS-based action recognition
[21] that processes multiple RGB frames with 2D CNNs and
aggregates the learned representations with a 3D convolution
fusion and pooling.

In order to address the lack of NVS data for evaluation,
we introduce the largest sourced NVS dataset for object
classification, which we refer to as ASL-DVS. The task is to
classify hand recordings as one of 24 letters from the American
Sign Language (ASL). For action recognition and action
similarity labeling, we leverage existing APS-based datasets
such as UCF101 [22], HMDB51 [23] and ASLAN [24], and
convert these to the NVS domain by recording a playback
of each dataset captured from a display with a DAVIS240c
NVS camera. The generated NVS datasets, UCF101-DVS,
HMDB51-DVS and ASLAN-DVS, include more content than
any previous NVS dataset in these action-based tasks.

We evaluate our framework on object classification, action
recognition and action similarity labelling, and show that our
framework achieves state-of-the-art results on both tasks com-
pared to recent work on conventional frame-based approaches.
We summarize our contributions as follows:
1) We propose a novel graph based representation for neuro-

morphic events, not only maintaining asynchronicity and
sparsity of events, but also allowing for fast end-to-end
graph based training and inference. To the best of our
knowledge, this paper and its corresponding conference



TO APPEAR IN IEEE TRANSACTIONS ON IMAGE PROCESSING 3

paper [20] are the first graph representations for NVS
streams.

2) Apart from graph representation and object classification
tasks that were also discussed in our recent work [20], in
this paper, we introduce a novel Graph2Grid block and a
temporal feature learning module for efficiently modelling
coarse temporal dependencies over multiple graphs. We
evaluate performance of the learning framework on action
recognition and action similarity labeling.

3) We introduce new datasets for action recognition (UCF101-
DVS and HMDB51-DVS) and action similarity labeling
(ASLAN-DVS) to address the lack of NVS data for training
and inference, and make these available to the research
community. This extends the NVS datasets proposed in
our corresponding conference paper [20] and provides a
comprehensive set of benchmark datasets for evaluation of
spatio-temporal learning with NVS representations.

In Section II we review related work. Section III details
our method for graph-based spatio-temporal feature learning
network. Three downstream applications (object classification,
human action recognition and action similarity labeling) are
presented in Section IV, where “downstream” denotes the
dependency of the applications on the learned features.Section
V concludes the paper.

II. RELATED WORK

In the field of neuromorphic vision, recent literature focuses
on two types of feature representation: handcrafted feature
extraction and end-to-end trainable feature learning. Hand-
crafted feature descriptors are widely used by neuromorphic
vision community. Some of the most common are corner
detectors and line/edge extraction [25], [26]. While these
efforts were promising early attempts for NVS-based object
classification, their performance does not scale well when
considering complex datasets. Inspired by their frame-based
counterparts, optical flow methods have been proposed as
feature descriptors for NVS [27], [28]. For a high-accuracy
optical flow, these methods have very high computational
requirements, which diminishes their usability in real-time
applications. In addition, due to the inherent discontinuity and
irregular sampling of NVS data, deriving compact optical flow
representations with enough descriptive power for accurate
classification and tracking still remains a challenge [27].
Lagorce et al. proposed event based spatio-temporal features
called time-surfaces [29]. This is a time oriented approach
to extract spatio-temporal features that are dependent on the
direction and speed of motion of the objects. Inspired by time-
surfaces, Sironi et al. proposed a higher-order representation
for local memory time surfaces that emphasizes the importance
of using the information carried by past events to obtain a
robust representation [14].These descriptors are very sensitive
to noise and strongly depend on the type of object motion
in scene. Moreover, they fail to take temporal information
into account and maintain a representation of dynamics over
a long time. Thus, they can only be used for static object
recognition, and not for long temporal applications such as
action recognition evaluated in this work.

End-to-end feature learning for NVS-based tasks consists
of two types of approaches: frame-based and event-based.
The main idea of frame-based methods is to convert the
neuromorphic events into synchronous frames of spike events,
on which conventional computer vision techniques can be
applied for the feature learning. Zhu et al. [12] introduced
a four-channel image form with the same resolution as the
neuromorphic vision sensor. Inspired by the functioning of
spiking neural networks (SNNs) to maintain memory of past
events, leaky frame integration has been used in recent work
[13], [30], where the corresponding position of the frame is
incremented by a fixed amount when a event occurs at the
same event address. Amir et al. use a cascade of temporal
filters to process the events, which is regarded as stacking
frames, and then feed these frames into a CNN [17]. Similary,
Ghosh et al. partitioned events into a three-dimensional grid
of voxels where spatio-temporal filters are used to learn the
features, and learnt features are fed as input to CNNs for
action recognition [16]. Chadha et al. [31] generated frames by
summing the polarity of events in each address as pixel, then
fed them into a multi-modal teacher-student framework for
action recognition. While useful for early-stage attempts, these
frame-based methods are not well-suited for the neuromorphic
event’s sparse and asynchronous nature since the frame sizes
that need to be processed are substantially larger than those
of the original NVS streams. The advantages of event-based
sensors are diluted if their event streams are cast back into
synchronous frames for the benefit of conventional processors
downstream, thus not providing efficient and power-saving
learning systems.

The second type of end-to-end feature learning methods
are event-based methods. The most commonly used archi-
tecture relies on spiking neural networks (SNNs) [18], [19]
for inference. While SNNs are theoretically capable of learn-
ing complex representations, they still fail to achieve the
performance of gradient-based methods due to the lack of
suitable training algorithms. Essentially, since the activation
functions of spiking neurons are not differentiable, SNNs are
not able to leverage on popular training methods such as
backpropagation. To address this, researchers currently follow
a hybrid approach [32], [33]: a neural network is trained off-
line using continuous/rate-based neuronal models with state-
of-the-art supervised training algorithms; then, the trained
architecture is mapped to an SNN. However, until now, despite
their substantial implementation advantages at inference, the
obtained solutions are complex to train and typically achieve
lower performance than gradient-based CNNs. Thus, other
directions for event-based feature learning for neuromorphic
vision sensing have been also explored. Wang et al. interpreted
an event sequence as a 3D point cloud in space and time [34],
which is hierarchically fed into PointNet [35] to capture the
spatio-temproal structure of motion. While providing useful
insights, all these methods were tested on simple datasets (e.g.,
the DVS128 Gesture dataset [17] of gestures and postures)
with a small number of classes and clean background. It
is, therefore, unlikely that these methods can obtain such
high accuracy for real-world scenarios, as they cannot capture
long-term temporal dependencies. When applied to complex
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Fig. 2: Framework of graph-based spatio-temporal feature learning for neuromorphic vision sensing. Our framework is able
to accommodate both object classification and action recognition/similarity labeling tasks. We first construct S graphs from
the event stream (where S = 1 for object classification). Each graph is passed through a spatial feature learning module.
For object classification, the output of this module is mapped to object classes directly by fully connected layers. For action
recognition and action similarity labeling, we model coarse temporal dependencies over multiple graphs by converting to a
grid representation via the Graph2Grid module and perform temporal feature learning with a 3D CNN.

datasets (e.g., UCF101 DVS) for human action recognition,
the performance of these methods degrades significantly.

III. METHODOLOGY

The architecture of our graph-based spatio-temporal fea-
ture learning network is illustrated in Fig. 2 and comprises
four parts: sampling and graph construction, a spatial feature
learning module, a graph-to-frame mapping module and a
temporal feature learning module. For object classification,
a single graph is constructed, whereas for action-based tasks
with longer temporal extent, multiple graphs are extracted over
the event stream duration. Specifically, neuromorphic events
are firstly sampled and represented by a sequence of graphs.
Graphs are then individually processed by a spatial feature
learning module, which consists of multiple graph convolution
and pooling layers to map the input to a coarser graph
encoding. For object classification, we obtain a single graph
encoding that we pass to a single fully connected layer for
prediction. Conversely, for action recognition and action sim-
ilarity labeling, we obtain multiple graph encodings. As such,
we convert the graphs to a grid representation with a graph-to-
frame mapping module which we denote as Graph2Grid, and
stack the resulting frames for temporal feature learning with a
3D CNN. In this way, we are able to effectively and efficiently
learn spatio-temporal features for motion-based applications,
such as action recognition. We provide more details on each
component of the framework in the following sections.

A. Graph Construction

Given a NVS sensor with spatial address resolution of H×
W , we express a volume of events V produced by a NVS
camera as a tuple sequence:

{ei}N = {xi, yi, ti, pi}N (1)

where (xi, yi) ∈ {1, 2, . . . H} × {1, 2, . . .W} is the spatial
address at which the spike event occurred, ti is the timestamp
indicating when the event was generated and is presented
in units of microseconds (µs), pi ∈ {+1,−1} is the event
polarity (with +1/-1 signifying ON/OFF events respectively),
and N is the total number of events.

To reduce the storage and computational cost, we use
non-uniform grid sampling [36] to sample a subset of M
representative events from the N total events in the sequence:
{ei}M ⊂ {ei}N , where M � N . Specifically, we group k
neighbouring events in the sequence into space-time volumes
based on their spatio-temporal distance. Then from each space-
time volume, we extract one event. In other words, if we
consider s{ei}ki=1 to be a space-time volume containing k
events, then only one event ei (i ∈ [1, k]) is randomly
sampled in this volume. We then define the M sampled
events {ei}{M} on a directed graph G = {ν, ε,U}, with ν
being the set of vertices, ε the set of the edges, and U the
coordinates of the nodes that locally define the spatial relations
of the nodes. The sampled events are independent and not
linked, therefore, we regard each event ei : (xi, yi, ti, pi) as
a node in the graph, such that νi : (xi, yi, ti), with νi ∈ ν.
We define the connectivity of nodes in the graph based on
the radius-neighborhood-graph strategy, which is a commonly
used term in graph theory [37]. The neighborhood construction
and connectivity steps involved in the graph construction are
illustrated in Fig.3 and are performed as follows. Nodes νi
and νj are connected with an edge only if their weighted
Euclidean distance di,j is less than radius distance R. For two
spike events ei and ej , the Euclidean distance between them
is defined as the weighted spatio-temporal distance:

di,j =
√
α(|xi − xj |2 + |yi − yj |2) + β|ti − tj |2 ≤ R (2)

where α and β are weight parameters compensating for the
difference in spatial and temporal grid resolution (timing
accuracy is significantly higher in NVS cameras than spatial
grid resolution). To limit the size of the graph, we constrain
the maximum connectivity degree for each node by param-
eter Dmax. We subsequently define u(i, j) for node i, with
connected node j, as u(i, j) = [|xi − xj | , |yi − yj |] ∈ U.

After connecting all nodes of the graph G = {ν, ε,U} via
the above process, we consider the polarity of events as a
signal that resides on the nodes of the graph G. In other words,
we define the input feature for each node i, as f (0)(i) = pi ∈
{+1,−1}.



TO APPEAR IN IEEE TRANSACTIONS ON IMAGE PROCESSING 5

 

(a) (b) (c) 

Fig. 3: Visualization of graph construction: (a) finding the
neighboring events within radius R; (b) connecting an event
to its neighbors within radius R; (c) a constructed graph from
raw events.

We introduce the parameter S to represent the number of
graphs constructed from one sequence of events. In other
words, S partitions are extracted from an event sequence
and a graph is constructed for each partition. Given that
object classification is appearance-based and typically only
requires a short temporal extent, we set S = 1. Specifically,
we randomly extract Tvol length events over the entire event
stream to construct a graph. Conversely, for action recognition
and action similarity labeling, we divide the event stream
into S volumes with the same time duration T/S, where
T is the time duration of entire sequence of events.We then
construct a graph for each volume in which Tvol < T/S length
events are randomly extracted to construct a graph, giving us
a set of graphs G = {Gn}Sn=1. In this way, we efficiently
model coarse temporal dependencies over the duration of the
sample, without constructing a single large and substantially
complex graph. The graphs can thus be processed individually
by our spatial feature learning module before fusion with
our Graph2Grid module and temporal feature learning. This
is inspired by recent work on action recognition with RGB
frames [21], which fuses representations over coarse temporal
scales with 3D convolutions and pooling; indeed, our graph-
based framework is substantially more lightweight and does
not suffer from the limitations of active pixel sensing.

B. Spatial Feature Learning Module

The constructed graphs are first fed individually into a
spatial feature learning module, where our framework learns
appearance information. An illustration of the components of
the spatial feature learning module is given in Fig.4. According
to the common architectural pattern for feed-forward neural
networks, these graph convolutional neural networks are built
by interlacing graph convolution layers and graph pooling
layers, where the graph convolution layer performs a non-
linear mapping and the pooling layer reduces the size of the
graph.

Graph convolution generalizes the convolutionl operator to
the graph domain. Similar to frame-based convolution, graph
convolution can be categorized into two types: spectral and
spatial. Spectral convolution [38], [39] defines the convolution
operator by decomposing a graph in the spectral domain and
then applying a spectral filter on the spectral components.
However, this operation requires identical graph input and
handles the whole graph simultaneously, so it is not suitable
for the variable and large graphs constructed from NVS. On

the other hand, spatial convolution [40], [41] aggregates a
new feature vector for each vertex, using its neighborhood
information weighted by a trainable kernel function. Because
of this property, we consider spatial convolution operation as
a better choice when dealing with graphs from NVS.

Similar to conventional frame-based convolution, spatial
convolution operations on graphs are also a one-to-one map-
ping between kernel function and neighbors at relative posi-
tions w.r.t. the central node of the convolution. Let i denote
a node of the graph with feature f(i), N (i) denote the set
of neighbors of node i and g(u(i, j)) denote the weight
parameter constructed from the kernel function g(·). The graph
convolution operator ⊗ for this node can then be written in
the following general form:

(f ⊗ g)(i) = 1

|N (i)|
∑

j∈N (i)

f(j) · g(u(i, j)) (3)

where |N (i)| is the cardinality of N (i). We can generalize (3)
to multiple input features per node. Given the kernel function
g = (g1, ..., gl, ..., gMin

) and input node feature vector fl,
with Min feature maps indexed by l, the spatial convolution
operation ⊗ for the node i with Min feature maps is defined
as:

(f ⊗ g)(i) =
1

|N (i)|

Min∑
l=1

∑
j∈N (i)

fl(j) · gl(u(i, j)) (4)

The kernel function g defines how to model the coordi-
nates U. The content of U is used to determine how the
features are aggregated and the content of fl(j) defines what
is aggregated. As such, several spatial convolution opera-
tions [40]–[42] on graphs were proposed by using different
choice of kernel functions. Among them, SplineCNN [40]
achieves state-of-the-art results in several applications, so in
our work we use the same kernel function as in SplineCNN.
In this way, we leverage properties of B-spline bases to
efficiently filter NVS graph inputs of arbitrary dimensional-
ity. Let ((Nm

1,i)1≤i≤k1
, ..., (Nm

d,i)1≤i≤kd
) denote d open B-

spline bases of degree m with k = (k1, ..., kd) defining d-
dimensional kernel size [43]. Let wz,l ∈W denote a trainable
parameter for each element z from the Cartesian product
Z = (Nm

1,i)i × · · · × (Nm
d,i)i of the B-spline bases and each

of the Min input feature maps indexed by l. Then the kernel
function gl : [a1, b1]× · · · × [ad, bd]→ R is defined as

gl(u) =
∑
z∈Z

wz,l ·
d∏

s=1

Ns,zs(us) (5)

We denote a graph convolution layer as Conv(Min,Mout),
where Min is the number of input feature maps and Mout

is the number of output feature maps indexed by l
′
. Then, a

graph convolution layer with bias bl and activation function
ξ(t), can be written as:

Convl′ = ξ
( 1

|N (i)|

Min∑
l=1

∑
j∈N (i)

fl(j) ·
∑
z∈Z

wz,l (6)

·
d∏

s=1

Ns,zs(us) + bl′
)
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Fig. 4: Visualization of spatial feature learning module that is
stacked by graph residual block and graph pooling layer.

where l
′

= 1, ..,Mout, indicates the l
′
th output feature

map. This defines a single graph convolutional layer. For C
consecutive graph convolutional layers, (Conv(c))c∈[0,C], the
c-th layer has a corresponding input feature map f (c) over
all nodes, with the input feature for node i of the first layer
Conv(0), f (0)(i) = pi ∈ {+1,−1}.

To accelerate deep network training, we use batch normal-
ization [44] before the activation function. That is, the whole
node feature fl′ over the l

′
-th channel map is normalized

individually via

f
′

l′
=

fl − E(fl′ )√
Var(fl′ ) + ε

· γ + β l
′
= 1, ..,Mout (7)

where E(fl′ ) and Var(fl′ ) denote mean and variance of
fl′ respectively, ε is used to ensure normalization does not
overflow when the variance is near zero, and γ and β represent
trainable parameters.

Residual Graph CNNs: Inspired by the ResNet architec-
ture [45], we propose residual graph CNNs for our spatial
feature learning module, in order to resolve the well-known
degradation problem inherent with increasing number of layers
(depth) in graph CNNs [46]. Our residual graph CNN (RG-
CNN) is effectively composed of a series of residual blocks
and pooling layers. Considering equations (6) and (7) denote a
single graph convolutional layer with batch normalization [44]
that accelerates the convergence of the learning process, we
apply residual connections in spatial feature learning module
by summing element-wise the outputs of graph convolutions.
Our “shortcut” connection comprises a graph convolution
layer with kernel size K = 1 for mapping the feature
dimension to the correct size, and is also followed by batch
normalization. We denote the resulting graph residual block as
Resg(cin, cout), with cin input feature maps and cout output
feature maps.

A residual block is followed by max pooling over clusters
of nodes; given a graph representation, let us denote the
spatial coordinates for node i as (x′i, y

′
i) ∈ {1, 2, . . . H ′} ×

{1, 2, . . .W ′} and resolution as H ′×W ′. We define the cluster
size as sh × sw, which corresponds to the downscaling factor
in the pooling layer of

⌈
H′

sh

⌉
×
⌈
W ′

sw

⌉
. For each cluster, we

generate a single node, with feature set to the maximum over
node features f in the cluster, and coordinates set to the
average of node coordinates (x′i, y

′
i) in the cluster. Importantly,

if there are connected nodes between two clusters, we assume
the new generated nodes in these two clusters are connected
with an edge.

For object classification, where the entire event stream can
be modelled by a single graph, we can directly map the output
of the spatial feature learning module to the classes with a fully

connected layer. Given Min feature maps f ∈ RI×Min from
a graph with I nodes, similar to CNNs, a fully connected
layer in a graph convolutional network is a weighted linear
combination linking all input features to outputs. Let us denote
f spatiall (i) as the lth output feature map of the ith node of the
spatial feature learning module, then we can derive a fully
connected layer in the graph as:

fFCq = ξ
( I∑

i=1

Min∑
l=1

Fi,l,qf
spatial
l (i)

)
q = 1, ..., Q (8)

where Q is the number of output channels indexed by q,
F is an array of trainable weights with size I ×Min ×Q,
ξ(t) is the non-linear activation function, e.g. ReLU: ξ(t) =
max (0, t). For the remainder of the paper, we use FC(Q) to
indicate a fully connected layer with Q output dimensions.

C. Graph2Grid: From Graphs to Grid Snippet

For motion-based tasks, we need to model temporal depen-
dencies over the entire event stream. As discussed in Section
III-A, given a long sample duration, it is not feasible to
construct a single graph over the entire event stream, due
to the sheer number of events. It is more computationally
feasible to generate multiple graphs for time blocks of duration
Tvol. These are processed individually by the spatial feature
learning module. However, to model coarse temporal depen-
dencies over multiple graphs, we must fuse the spatial feature
representations. We propose a new Graph2Grid module that
transforms the learned graphs from our spatial feature learning
module to a grid representation and performs stacking over
temporal dimension, as illustrated in Fig. 2. In this way, we
are effectively able to create pseudo frames from the graphs,
with Min channels and timestamp (n− 1)Tvol, corresponding
to the n-th graph.

Again, denoting the output spatial feature learning map
as f spatiall (i) for the lth output feature map of the ith
node with coordinates (x′i, y

′
i) ∈ {1, 2, . . . ,Hspatial} ×

{1, 2, . . . ,Wspatial}, we define a grid representation fgrid of
spatial size Hspatial ×Wspatial as follows:

fgrida,b,l =

{
f spatiall (i), when a = x′i, b = y′i
0, otherwise

(9)

where (a, b) ∈ {1, 2, . . . ,Hspatial} × {1, 2, . . . ,Wspatial}.
The resulting grid feature representation fgrid ∈
RHspatial×Wspatial×Min is for a single graph; for S graphs over
the temporal sequence, we simply concatenate over a fourth
temporal dimension. We denote the resulting grid feature
over S graphs as Fgrid = fgrid,1||fgrid,2|| . . . ||fgrid,S , where
|| denotes concatenation over the temporal axis. Thus, the
dimensions of Fgrid are Hspatial ×Wspatial ×Min × S. This
grid feature matrix can therefore be fed to a conventional
3D convolutional neural network in our temporal feature
learning module, in order to learn both the coarse temporal
dependencies, but also a full spatio-temporal representation
of the input.
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Fig. 5: Visualization of 3D residual block as an example for
temporal feature learning module.

D. Temporal Feature Learning Module

The output feature matrix Fgrid contains both spatial and
temporal information over the entire sample duration, which
can be effectively encoded with a conventional 3D CNN [5]
in order to generate a final spatio-temporal representation
of the video input for action recognition. In this paper,
we consider three network architectures for the 3D CNN;
a plain architecture with interlaced 3D convolutional and
pooling layers, an I3D-based architecture comprising multiple
I3D blocks as configured in [6], and a 3D residual block
design. To illustrate temporal feature learning module, we
visualize an example of our 3D residual block design in Fig.
5; essentially for C consecutive convolutional layers, every
(c − 2)-th layer is connected to the c-th layer via a non-
linear residual connection, for all c ∈ {3, 5 . . . C − 2, C},
and every layer is followed by batch normalization. For all
architectures, we aggregate the features in the final layer of the
CNN with global average pooling and pass to a fully connected
layer for classification. We provide further experimental details
in Section IV, describing the number of input and output
channels per layer.

It is worth noting that while 3D CNNs are notorious for
being computationally heavy, typical NVS cameras like the
iniLabs DAVIS240c has spatial resolutions of the order of
240 × 180; in conjunction with the use of pooling in our
spatial feature learning module, this means that the spatial
size of Fgrid is at most 30 × 30. This is substantially lower
input resolution than APS-based counterparts ingesting RGB
frames, where the spatial resolution to the 3D CNN is typically
224× 224 or higher.

IV. EXPERIMENTAL DETAILS AND EVALUATION

In this section, we demonstrate the potential of our frame-
work as a method of representation learning for high-level
computer vision tasks with NVS inputs. In Section IV-A, we
focus on object classification as an appearance-based applica-
tion. Then in Sections IV-B and IV-C, we present results for
large-scale multi-class human action recognition and action
similarity labeling as motion-based applications. In all our
comparisons, we benchmark our results against state-of-the-art
methods that can be applied to NVS data, i.e., we do not extend
the comparison to methods that need APS data and generate
optical flow and other modalities from APS, as they go beyond
the realm of NVS-only sensing. Beyond evaluation on standard

Fig. 6: Examples of the ASL-DVS dataset (the visualizations
correspond to letters A-Y, excluding J, since letters J and Z
involve motion rather than static shape). Events are grouped
to image form for visualization (Red/Blue: ON/OFF events).

 

N-MNIST CIFAR10-DVS 

N-Caltech101 

ASL-DVS 

N-CARS 

MNIST-DVS 

Fig. 7: Comparison of NVS datasets w.r.t. the number of
classes and the total size.

datasets, we introduce our newly proposed ASL-DVS dataset
in Section IV-A, which is the largest-source dataset for object
classification. We additionally generate the largest NVS-based
action recognition and action similarity labelling datasets by
converting standard APS datasets, UCF101, HMDB51 and
ASLAN, to the NVS domain and explain the recording process
prior to evaluation in Sections IV-B and IV-C respectively.

A. Object Classification

Object classification finds numerous applications in visual
surveillance, human-machine interfaces, image retrieval and
visual content analysis systems. We first introduce the datasets
we evaluate on, including our new ASL-DVS dataset, before
discussing implementation details and presenting results. We
compare with recent state-of-the-art methods and perform
complexity analysis.

Datasets: Many neuromorphic datasets for object classi-
fication are converted from standard frame-based datasets,
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such as N-MNIST [47], N-Caltech101 [47], MNIST-DVS
[48] and CIFAR10-DVS [49]. N-MNIST and N-Caltech101
were acquired by an ATIS sensor [9] moving in front of an
LCD monitor while the monitor is displaying each sample
image. Similarly, MNIST-DVS and CIFAR10-DVS datasets
were created by displaying a moving image on a monitor and
recording with a fixed DAVIS sensor [50]. Emulator software
has also been proposed in order to generate neuromorphic
events from pixel-domain video formats using the change of
pixel intensities of successively rendered images [26], [51].
While useful for early-stage evaluation, these datasets cannot
capture the real dynamics of an NVS device due to the limited
frame rate of the utilized content, as well as the limitations
and artificial noise imposed by the recording or emulation
environment. To overcome these limitations, N-CARS dataset
[14] was created by directly recording objects in urban envi-
ronments with an ATIS sensor. Despite its size, given that
it only corresponds to a binary classification problem, N-
CARS cannot represent the behaviour of object classification
algorithms on more complex NVS-based tasks.

We present a large 24-class dataset of handshape recordings
under realistic conditions. Its 24 classes correspond to 24
letters (A-Y, excluding J) from the American Sign Language
(ASL), which we call ASL-DVS. Examples of recordings are
shown in Fig 6. The ASL-DVS was recorded with an iniLabs
DAVIS240c NVS camera set up in an office environment
with low ambient noise and constant illumination. For all
recordings, the camera was at the same position and orientation
to the persons carrying out the handshapes. Five subjects
were asked to pose the different static handshapes relative
to the camera in order to introduce natural variance into the
dataset. For each letter, we collected 4,200 samples (total of
100,800 samples) and each sample lasts for approximately
100 milliseconds. Fig. 7 shows a comparison of existing
NVS datasets w.r.t. the number of classes and the total size.
Within the landscape of existing datasets, our ASL-DVS is
a comparably complex dataset with the largest number of
labelled examples. We, therefore, hope that this will make it a
useful resource for researchers to build comprehensive models
for NVS-based object recognition, especially given the fact
that it comprises real-world recordings. ASL-DVS and related
code are available online 1.

Implementation Details: For simple datasets N-MNIST
and MNIST-DVS, our spatial feature learning module is
only comprised of two graph residual blocks. Graph residual
blocks are described in Section III-B, and we fix the kernel
size K = 5 for all convolutional layers outside of the
skip connection. We denote a graph convolutional layer as
Convg(cin, cout), fully connected layer as FC(cin, cout) and
graph residual block as Resg(cin, cout), where cin and cout
are the input and output channels respectively. Additionally,
we denote max graph pooling layers as MaxPg(sh, sw),
where sh and sw represent the cluster size. With this
notation, the architecture of our network for these can be
written as Convg(1, 32)−→MaxPg(2, 2)−→Resg(32, 64)
−→MaxPg(4, 4)−→Resg(64, 128)−→MaxPg(7, 7)−→

1https://github.com/PIX2NVS/NVS2Graph

FC(128, 128)−→FC(128, Q), where Q is the number of
classes of each dataset. For the remaining datasets, three resid-
ual graph blocks are used, and the utilized network architecture
is Convg(1, 64)−→MaxPg(sh, sw)−→Resg(64, 128)−→
MaxPg(sh, sw)−→Resg(128, 256)−→MaxPg(sh, sw)−→
Resg(256, 512)−→MaxPg(sh, sw)−→FC(512, 1024)−→
FC(1024, Q). Since the datasets are recorded from different
sensors, the spatial resolution of each sensor is different
(i.e., DAVIS240c: 240×180, DAVIS128 & ATIS: 128×128),
leading to various maximum coordinates for the graph. We,
therefore, set the cluster size in pooling layers to: (i) 4×3,
16×12, 30×23 and 60×45 for N-Caltech101 and ASL-DVS
datasets; (ii) 4×4, 6×6, 20×20 and 32×32 for CIFAR10-DVS
and N-CARS datasets. We also compare the proposed residual
graph networks (RG-CNNs) with their corresponding plain
graph networks (G-CNNs), which utilize the same number
of graph convolutional and pooling layers but without the
residual connections. The degree of B-spline bases m of all
convolutions in this work is set to 1.

For the N-MNIST, MNIST-DVS and N-CARS datasets, we
use the predefined training and testing splits, while for N-
Caltech101, CIFAR10-DVS and ASL-DVS, we follow the
experiment setup of Sironi [14]: 20% of the data is randomly
selected for testing and the remaining is used for training.
During the non-uniform sampling, the maximal number of
events k in each space-time volume is set to 8. When con-
structing graphs, the radius R is 3, weight parameters α and
β are set to 1 and 0.5 × 10−5, respectively, the maximal
connectivity degree Dmax for each node is 32, and Tvol = 30
millisecond length events are randomly extracted to form the
graph. In particular, α and β are selected so that the spatial and
temporal components (µs) of (2) are balanced in magnitude
as best as possible. Despite NVS cameras being frameless,
NVS events can be grouped and visualized as sparse “frames”
with frame rate being as high as 2000 fps (i.e., 1 frame
containing the grouping of multiple NVS events appearing
every 0.5ms as reported for the Samsung Dynamic Vision
Sensor). This observation shows that a window of events
corresponding to 30ms is sufficient for graph construction in
our applications. In order to reduce overfitting, we add dropout
with probability 0.5 after the first fully connected layer and
also perform data augmentation. In particular, we spatially
scale node positions by a randomly sampled factor within
[0.95, 1), perform mirroring (randomly flip node positions
along 0 and 1 axis with 0.5 probability) and rotate node
positions around a specific axis by a randomly sampled factor
within [0, 10] in each dimension. Networks are trained with the
Adam optimizer and the cross-entropy loss between softmax
output and the one-hot label distribution for 150 epochs with
batch size 64 and learning rate 0.001 step-wise decreasing by
0.1 after 60 and 110 epochs.

Results: We compare Top-1 classification accuracy obtained
from our model with that from HOTS [15], H-First [52], SNN
[19], [53] and HATS [14]. We report results from Sironi et al.
[14], since we use the same training and testing methodology.
The results are shown in Table I. For the simple N-MNIST and
MNIST-DVS datasets, whose accuracy is already close to near-
perfect classification, our models achieve comparable results.
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TABLE I: Top-1 accuracy of our graph CNNs w.r.t. the state-of-the-art, other graph convolution networks and deep CNNs.

Model N-MNIST MNIST-DVS N-Caltech101 CIFAR10-DVS N-CARS ASL-DVS
H-First [52] 0.712 0.595 0.054 0.077 0.561 -
HOTS [15] 0.808 0.803 0.210 0.271 0.624 -

Gabor-SNN [19], [53] 0.837 0.824 0.196 0.245 0.789 -
HATS [14] 0.991 0.984 0.642 0.524 0.902 -
GIN [54] 0.754 0.719 0.476 0.423 0.846 0.514

ChebConv [38] 0.949 0.935 0.524 0.452 0.855 0.317
GCN [55] 0.781 0.737 0.530 0.418 0.827 0.811

MoNet [42] 0.965 0.976 0.571 0.476 0.854 0.867
VGG 19 [56] 0.972 0.983 0.549 0.334 0.728 0.806

Inception V4 [57] 0.973 0.985 0.578 0.379 0.864 0.832
ResNet 50 [45] 0.984 0.982 0.637 0.558 0.903 0.886

G-CNNs 0.985 0.974 0.630 0.515 0.902 0.875
RG-CNNs (proposed) 0.990 0.986 0.657 0.540 0.914 0.901

For the other datasets, our proposed RG-CNNs consistently
set the new state-of-the-art on these datasets.

Table I also includes the classification results stemming
from other graph convolutional networks; namely, GIN [54],
ChebConv [54], GCN [55] and MoNet [42]. The architectures
of these networks are the same as our plain graph networks
(G-CNNs) introduced in this section, with the only difference
being the graph convolutional operation. The training details
and data augmentation methods are the same as described
before. The Top-1 classification accuracy stemming from all
networks of Table I indicates that our proposed RG-CNN and
G-CNN outperform all the other graph convolutional networks.

To further validate our proposal, we compare our results
with conventional deep convolutional networks. There are no
conventional CNNs specifically designed for NVS events, so
we train/evaluate on three well-established CNNs, namely
VGG 19 [56], Inception V4 [57] and ResNet 50 [45]. The
format of the required input for these CNNs is frame-based, so
we convert neuromorphic spike events to frame form similarly
to the grouping of Zhu et al. [12]. We thereby introduce a
two-channel event image form with the same resolution as the
NVS sensor: the two channels encode the number of positive
and negative events that have occurred at each position. In
addition, each frame grouping corresponds to a random time
segment of 30 ms of spike events. To avoid overfitting, we
supplement the training with heavy data augmentation: first,
we resize the input images such that the smaller dimension is
256 and keep the aspect ratio; then, we use a random cropping
of 224×224 spatial samples of the resized frame; finally, the
cropped volume is randomly flipped and normalized according
to its mean and standard deviation. We train all CNNs from
scratch using stochastic gradient descent with momentum set
to 0.9 and L2 regularization set to 0.1 × 10−4. The learning
rate is initialized at 10−3 and decayed by a factor of 0.1 every
10k iterations. As shown in Table I, despite performing com-
prehensive data augmentation and L2 regularization to avoid
overfitting, the results acquired from conventional CNNs are
still below the-state-of-the-art since event images contain far
less information (see Fig. 1). Thus, except for the CIFAR10-
DVS dataset, the accuracy of our proposals surpasses that of
conventional frame-based deep CNNs.

Complexity Analysis: We now turn our attention to the
complexity of our proposals and compare the number of
floating-point operations (FLOPs) and the number of parame-

TABLE II: Complexity (GFLOPs) and size (MB) of networks.

Model GFLOPs Size (MB)
VGG 19 [56] 19.63 143.65

Inception V4 [57] 12.25 42.62
ResNet 50 [45] 3.87 25.61

G-CNNs 0.39 18.81
RG-CNNs 0.79 19.46

ters of each model. In conventional CNNs, we compute FLOPs
for convolution layers as [58]:

FLOPs = 2HW (CinK
2 + 1)Cout (10)

where H , W and Cin are height, width and the number of
channels of the input feature map, K is the kernel size, and
Cout is the number of output channels. For graph convolution
layers, FLOPs stem from 3 parts [40]; (i) for computation of B-
spline bases, there are Nedge(m+1)d threads each performing
7d FLOPs (4 additions and 3 multiplications), where Nedge

is the number of edges, m the B-spline basis degree and
d the dimension of graph coordinates; (ii) for convolutional
operations, the FLOPs count is 3NedgeCinCout(m+1)d, with
factor 3 stemming from 1 addition and 2 multiplications
in the inner loop of each kernel and Cin and Cout is the
number of input and output channels, respectively; (iii) for
scatter operations and the bias term, the FLOPs count is
(Nedge + Nnode)Cout, where Nnode is the number of nodes.
In total, we have

FLOPs = Nedge(m+ 1)d(3CinCout + 7d)

+ (Nedge +Nnode)Cout (11)

For fully connected layers, in conventional CNNs, G-CNNs
and RG-CNNs, we compute FLOPs as [58] FLOPs =
(2I − 1)O, where I is the input dimensionality and O is
the output dimensionality. As to the number of parameters,
for each convolution layer in CNNs, G-CNNs and RG-CNNs,
it is (CinK

2 + 1)Cout, while in fully connected layers, it is
(Cin+1)Cout. As shown by (11), FLOPs of graph convolution
depend on the number of edges and nodes. Since the size of
input graph varies per dataset, we opt to report representative
results from N-Caltech101 in Table II. G-CNNS and RG-
CNNs have the smaller number of weights and require the less
computation compared to deep CNNs. The main reason is that
the graph representation is compact, which in turn reduces the
amount of data that needs to be processed. For N-Caltech101,
the average number of nodes of each graph is 1000, while
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grouping events to 2-channel image makes the input size equal
to 86,400.

B. Action Recognition

Action recognition has numerous applications in intelligent
surveillance, human behavior analysis, and other motion-based
tasks [5], [6], [59]. Unlike recognition in static scenes that
focuses on visual appearance, one crucial factor of action
recognition is the motion dynamics. The performance of
action recognition system largely depends on whether the
dynamics of motion can be effectively represented and uti-
lized [60].We firstly introduce datasets for evaluation, then
proceed to discussing implementation details for framework,
detailing the architectures of the spatial feature learning mod-
ule, Graph2Grid block and temporal feature learning module.
Finally, we present results and complexity analysis on datasets
for variants of our framework and other recent state-of-the-art
methods.

Datasets: Previous work on neuromorphic vision sensing
for action recognition evaluates on the DVS128 Gestures
Dataset [17] and posture dataset [61]. DVS128 Gesture Dataset
comprises 1,342 instances of 11 hand and arm gestures,
while the posture dataset includes only three human actions,
namely, “bend”, “sit/stand” and “walk”. Both datasets were
collected from an experimental setting environment with a
monotonous background, and relative to equivalent datasets for
APS-based evaluation datasets, both are modest in their size
and class count; as such, they cannot represent complex real-
life scenarios and are not robust to evaluation for advanced
algorithms. Moreover, previous work [17], [34], [61], [62]
already achieves high accuracies on them. This is why, it is
necessary to establish larger and more complex datasets for
the evaluation of our proposal and for future proposals on
NVS-based action recognition.

We provision two new neuromorphic event datasets, namely
UCF101-DVS and HMDB51-DVS. Both datasets were re-
spectively captured from playbacks of the UCF101 [22] and
HMBD [23] datasets, which are well established datasets
for the evaluation of action recognition in the APS domain.
UCF101 comprises 13,320 videos of 101 different human
actions, while HMDB51 includes 6,766 videos with 51 human
action categories. Of relevance is the work of Hu et al.
[63] which previously recorded UCF50 by displaying existing
benchmark videos to stationary neuromorphic vision sensors
under controlled lighting conditions. We follow a recording
procedure similar to that of [63] to wholly capture remaining
of UCF101 and HMDB51. Displayed videos are recorded by
a neuromorphic vision sensor DAVIS240c that is adjusted to
cover the region of interest on the monitor. Our captured
datasets are the largest neuromorphic datasets for action recog-
nition, and recorded UCF101-DVS and HMDB51-DVS can be
found Online 2.

Implementation Details: We present our results on
action recognition in Table III and Table IV, where the
total number of graphs constructed from each event stream
S is set to either 8 or 16. Events within Tvol = 1/30

2https://github.com/PIX2NVS/NVS FeatureLearning

seconds are constructed into one spatial graph, where
individual nodes are connected to their nearest neighbor.
Given that we construct multiple graphs from events
sampled from multiple consecutive 30ms time windows,
our representation can cover a sufficiently long temporal
extent. Spatial features are learned using our proposed
residual graph CNNs (RG-CNN) where two residual blocks
are stacked, each followed by a graph max-pooling layer.
Specifically, for DVS128 Gesture Dataset [17] we use the
architecture: Resg(1, 64)−→MaxPg(2, 2)−→Resg(64, 128)
−→MaxPg(4, 4). Similarly, for UCF101-DVS and
HMDB51-DVS we use three residual blocks, and the
architecture is: Resg(1, 32)−→MaxPg(2, 2)−→Resg(32, 64)
−→MaxPg(4, 3) −→Resg(64, 128) −→MaxPg(8, 6). For
the temporal feature learning module, we explore three types
of architectures as described in Section III-D:

1) Plain 3D: We first consider a series of consecutive 3D
convolutional and pooling layers, where each intermediate
convolution layer is followed by batch normalization layer
and a ReLU activation function. We use Conv3D(cin, cout)
to denote traditional 3D convolutional layers with batch nor-
malization and activation functions, where cin and cout are
the number of input and output channels respectively. 3D max
pooling and global average pooling are denoted as Pool3D
and GlobAvgP respectively, fully connected layers as FC and
task classes as Q. Plain 3D convolution architectures are thus
represented as follows: Conv3D(128, 128) −→ Pool3D −→
Conv3D(128, 256) −→ Pool3D −→ Conv3D(256, 512) −→
Pool3D −→ Conv3D(512, 512) −→ Pool3D −→ GlobAvgP
−→ FC(Q). With the notation (h,w, t) denoting height, width
and time dimensions, we note that the kernel size and stride in
every convolution layer is (3, 3, 3) and (1, 1, 1) respectively,
and the window size and stride of all 3D max pooling layers is
(2, 2, 2), expect for the first pooling layer, where the stride is
(2, 2, 1) to ensure that temporal downscaling is not aggressive
early on.

2) Inception-3D(4): We next consider an Inception-3D
architecture, comprising a series of four consecutive I3D
blocks. In order to ensure that temporal feature learning
is not bottlenecked, we restrict the number of I3D blocks
to four. Similar to [6], our implementation of the I3D
block is a concatenation of four streams of convolutional
layers with varying kernel sizes. Where we use the
shorthand Incb(cin, cout) to denote each b-th I3D block,
we setup our architecture as: Inc1(128, 480) −→ Pool3D
−→ Inc2(480, 512) −→ Pool3D −→ Inc3(512, 512)−→
Pool3D −→ Inc4(512, 512) −→ Pool3D −→ GlobAvgP
−→ FC(Q). The number of output channels of the n-th
convolutional layer for the s-th stream is labelled as cout[s][n],
and the number of output channels per convolutional layer
for each I3D block is: [[128], [128, 192], [32, 96], 64]],
[[192], [96, 208], [16, 48], 64]], [[160], [112, 224], [24, 64], 64]]
and [[128], [128, 256], [24, 64], 64]].

3) Residual 3D: Finally, we consider 3D residual CNNs,
where we effectively replace the I3D block with a 3D residual
block. The 3D residual block design for temporal feature
learning is illustrated in Fig. 5; essentially, there are two 3D
convolutional layers in the base stream of the block, with a
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Fig. 8: Visualization of samples from DVS128 Gesture Dataest [17] and UCF101-DVS [22]. (A) DVS128 Gesture Dataset
: A-1: hand clap; A-2: right hand rotation clockwise; A-3: air drums; A-4: forearm roll. (B) UCF101-DVS: B-1: basketball
dunk; B-2: bowling; B-3: wall pushups; B-4: biking

non-linear residual connection from the input of the first to the
output of the second layer. We can define a 3D residual block
as Res(cin, cinter, cout), where cinter represents the number of
input channels to the second convolutional layer in the base
stream and cin and cout are the respective number of input
and output channels to the residual block. The 3D residual
CNN is defined as follows: Res(128, 256, 512) −→ Pool3D
−→ Res(512, 512, 1024) −→ Pool3D −→ GlobAvgP −→
FC(Q). Again, denoting (h,w, t) as the height, width and time
dimensions, the kernel size is (3, 3, 3) and stride is (1, 1, 1)
for all convolutional layers in the base stream.

In all of our tests, sampled graphs are spatially scaled by
random sampling factors within [0.8, 1], and are randomly left-
right flipped with a probability of 0.5. For all of our reported
results, we train using the Adam optimizer for 150 epochs,
with batch sizes respectively set to 32 and 16 for S = 8 and
S = 16. The learning rate is set to 0.001, with stepwise decay
by a factor of 0.1 after 60 epochs.

Reference Networks: We compare action recognition re-
sults of our proposed RG-CNN + Plain 3D, RG-CNN + Incep.
3D(4) and RG-CNN + Res. 3D models with previous proposals
for the APS domain, where we repurpose their use to the NVS
domain by maintaining the spatial coherence of events to pass
them as input frames. As external benchmarks, we include
C3D [5], I3D [6], 3D ResNet with 34 layers [45], P3D with 63
layers [64], R2+1D [65] and 3D ResNext with 50 layers [66].
In contrast to our framework, these aforementioned proposals
are entirely grid-based, and we construct independent frames
for their use by summing events within a 1/30 seconds
duration at each spatial position of the NVS sensor. In this
way, resulting event frames are represented by two channels,
where ON and OFF events are grouped independently, and in
order to align event maps with the number of input graphs
utilized in our framework, we produce S = 8 or S = 16
sampled frames for each input volume of events. To avoid
over-fitting during training, we supplement training with data
augmentation, where we normalize the input and re-size the
input frames such that the smaller side is 128 (178 for P3D,
256 for I3D) and keep the aspect ratio, and use a random
cropping to acquire appropriately sized inputs, and cropped
volumes are randomly left-right flipped with a probability of

0.5. We randomly initialize the parameters of all models and
use stochastic gradient descent with momentum set to 0.9, and
learning rate initialized at 0.01 with a decay factor of 0.1 every
50 epochs.

Results: We first evaluate our method on the DVS128
Gesture Dataset, and compare with both recent state-of-theart
methods and reference networks. The results are shown in
Table III, and for all recent methods, considered event record-
ing durations are set to 0.25 and 0.5 seconds. We follow
the same set up to set the number of graphs, enabling a
fair comparison. Examining the results, we find LSTM-based
methods [67] to be outperformed by others, and we attribute
this to the fact that LSTMs regard event streams as pure
temporal sequences and only learn temporal features from
events, without encoding spatial dependencies. In contrast,
PointNet-based methods [34], [35], [68] are more accurate,
and consider inputs as point clouds to learn to summarize
their geometric features. With regards to reference networks,
although I3D [6] and 3D ResNet-34 [45] perform spatio-
temporal feature learning, there is no explicit modelling of
event dependencies as events are directly grouped into frames.
As such, our proposal outperforms all existing works and ref-
erence networks on this dataset and sets a new benchmark. We
attribute this to the combination of our graph representation,
spatial feature learning and temporal feature learning over
multiple graphs, which results in learning a more informative
spatio-temporal representation of the input.

TABLE III: Top-1 classification accuracies on the DVS128G
gestures dataset. Performance is reported for input duration
with temporal depths of 0.25 and 0.5 seconds.

Method Duration(0.25s) Duration(0.5s)
LSTM [67] 0.882 0.865

PointNet [35] 0.887 0.902
PointNet++ [68] 0.923 0.941

Amir CVPR2017 [17] - 0.945
Wang WACV2019 [34] 0.940 0.953

ResNet 34 [45] 0.943 0.955
I3D [6] 0.951 0.965

RG-CNN + Plain 3D 0.954 0.968
RG-CNN + Incep. 3D 0.957 0.968
RG-CNN + Res. 3D 0.961 0.972

As shown in Fig. 8, DVS128 Gesture Dataset contain salient



TO APPEAR IN IEEE TRANSACTIONS ON IMAGE PROCESSING 12

pattern differences, while UCF101-DVS comprises more com-
plex event volumes, and as shown in Table III, results of the
best performing models on DVS128 Gesture Dataset are close
to achieving complete accuracy. Therefore, we further evaluate
our algorithms on our newly introduced datasets, UCF101-
DVS and HMDB51-DVS, which contain more classes and
overall present a more challenging task for action recognition.
We note that when evaluating current NVS-based methods
for action recognition on UCF101-DVS and HMDB51-DVS,
the accuracy obtainable is only around 5%-7%, since these
methods only perform spatial (PointNet, PointNet++) or tem-
poral (LSTM) feature learning, and thus leaning to degenerate
solutions. Therefore, we focus our comparison on reference
networks for these datasets.

The Top-1 recognition accuracy of all models is reported
in Table IV for UCF101-DVS and HMDB51-DVS, where it
shows that all variants of our architecture outperform tested
benchmarks. Specifically, the highest performance obtained
from reference models is from I3D, while our base model
(RG-CNN + Plain 3D) outperforms I3D by 3.3% on UCF101-
DVS and by 6.1% on HMDB51-DVS when S = 8. The
accuracy of our models is further increased when considering
the Inception-3D and Residual-3D variants, where our model
performance increases slightly due to the higher capacity of
these architectures.

TABLE IV: Top-1 classification accuracy of UCF101-DVS
and HMDB51-DVS w.r.t. various model.

Model UCF101-DVS HMDB51-DVS
S = 8 S = 16 S = 8 S = 16

C3D [5] 0.382 0.472 0.342 0.417
ResNet-34 [45] 0.513 0.579 0.350 0.438

P3D-63 [64] 0.484 0.534 0.343 0.404
R2+1D-36 [65] 0.496 0.628 0.312 0.419
ResNext-50 [66] 0.515 0.602 0.317 0.394

I3D [6] 0.596 0.635 0.386 0.466
RG-CNN + Plain 3D 0.629 0.663 0.447 0.494
RG-CNN + Incep. 3D 0.632 0.678 0.452 0.515
RG-CNN + Res. 3D 0.627 0.673 0.455 0.497

Complexity Analysis: We compare the complexity of tested
models, and do so with respect to the number of floating-point
operations (FLOPs) and required parameter counts. For graph-
based convolutional and fully-connected layers, FLOPs and
parameter counts are calculated as detailed in Section IV-B.
For conventional 3D convolutional layers, we compute FLOPs
as 2HWT (CinK

3 + 1)Cout multi-add operations, where H ,
W , and T are the height, width, and temporal length of input
maps, Cin is the number of input feature channels, K is
the kernel size, and Cout is the number of output channels.
Using similar notation, parameter counts of conventional 3D
convolutional layers are calculated as (CinK

3+1)Cout. FLOPs
of graph convolutions depend on edge and node counts (see
Section IV-B), and we specifically report results for UCF101-
DVS in Table V. For each sample, 16 graphs are sampled
as inputs to the spatial feature learning module, and FLOPs
in respective modules are the averages over the whole of
UCF101-DVS. Our results show how graph convolutions can
manage with smaller or comparably sized input volumes
relative to all reference models. As for complexity, though our

models require more floating-point operations when compared
to P3D-63 and ResNext-50, they achieve better performance
on all three datasets. On the other hand, accuracies of I3D are
close to ours while requiring complexities which are two to
three times higher.

TABLE V: Comparison of models w.r.t. complexity (GFLOPs)
and size of architecture parameters.

Model GFLOPs Parameters(×106)
C3D [5] 39.69 78.41

ResNet-34 [45] 11.64 63.70
P3D-63 [64] 8.30 25.74

R2+1D-36 [65] 41.77 33.22
ResNext-50 [66] 6.46 26.05

I3D [6] 30.11 12.37
RG-CNN + Plain 3D 12.46 6.95
RG-CNN + Incep. 3D 12.39 3.86
RG-CNN + Res. 3D 13.72 12.43

C. Action Similarity Labeling

Action similarity labeling is a binary classification task
wherein alignments of action pairs are predicted. In other
words, models are required to learn to evaluate the similarity of
actions rather than recognize particular actions. The challenge
of action similarity labeling lies in that the actions of test sets
belong to separate classes and are not available during training
[24]. That is to say, training does not provide an opportunity
to learn actions presented at test time. To the best of our
knowledge, as of yet there is no work on similarity detection
in the neuromorphic domain, and no existing dataset can be
used for evaluation. We use the ASLAN [24] dataset which
comprises 3,697 samples from 432 different action classes.
Using a similar setting to the one described in Section IV-B,
we captured an equivalent neuromorphic dataset ASLAN-DVS
to be publicly provisioned for relevant research. Our captured
ASLAN-DVS can be found online 3.

Training Details: We use the “View-2” method as detailed
in [24] to split samples into 10 mutually exclusive subsets,
where each subset contains 600 video pairs, with 300 to be
classified as ”similar” and 300 to be classified as ”not similar”.
We report our results by averaging scores of 10 separate
experiments in a leave-one-out cross validation scheme. In this
application, we used models trained for action recognition as
feature extractors, and extracted L2-normalised output features
from the last GlobalAvgP and Pool3D layers to acquire two
distinct types of representation. Similar to [24], we indepen-
dently compute 12 different distances for said features and for
every pair of actions. Finally, a support vector machine with a
radial basis kernel is trained to classify whether action pairs are
of similar or different activities. As baselines, we consider the
performance of reference architectures detailed in Sec. IV-B,
where features are extracted as the outputs of the last two
layers, and classifications are performed by support vector
machines. The complexity of our proposed spatio-temporal
feature learning and other reference models remain the same
as in Section IV-B.

In Table VI we report the performance of different models as
measured accuracies and areas under ROC curves (AUC). Our

3https://github.com/PIX2NVS/NVS FeatureLearning
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RG-CNN + Incep. 3D framework outperforms state-of-the-art
results acquired from I3D by 2.6% on accuracy and 3.1%
on AUC, which clearly indicates that graph-based models are
better suited for feature learning for the purposes of action
similarity labeling.

TABLE VI: Action similarity labeling performance

Model Acc. AUC
ResNet-34 [45] 0.605 0.643

P3D-63 [64] 0.598 0.638
R2+1D-36 [65] 0.615 0.652
ResNext-50 [66] 0.605 0.643

I3D [6] 0.623 0.659
RG-CNN + Plain 3D 0.635 0.674

RG-CNN + Incep. 3D(4) 0.649 0.690
RG-CNN + Res. 3D 0.641 0.684

V. CONCLUSION

In this work we develop an end-to-end trainable graph-based
feature learning framework for neuromorphic vision sensing.
We first represent neuromorphic events as graphs, which are
explicitly aligned with the compact and non-uniform sampling
of NVS hardware. We couple this with an efficient end-
to-end learning framework, comprising graph convolutional
networks for spatial feature learning directly from graph
inputs. We extend our framework with our Graph2Grid module
that converts the graphs to grid representations for coarse
temporal feature learning with conventional 3D CNNs. We
demonstrate how this framework can be employed for object
classification, action recognition and action similarity labeling,
and evaluate our framework on all tasks with standard datasets.
We additionally propose and make available three large-scale
neuromorphic datasets in order to motivate further progress
in the field. Finally, our results on all datasets show that we
outperform all recent NVS-based proposals while maintaining
lower complexity.

Potential proposals of this work can be extended in future
work. Firstly, we observed that the size of graphs tends to be
large even though we apply non-uniform sampling over events.
One interesting direction is to construct graphs dynamically
and adaptively based on various scenes instead of using events
within a fixed time window, thus making them more compact
and representative. In addition, instead of propagating graphs
into grids and using 3D CNNs for temporal feature learning,
it may be more efficient to propose a graph convolution that
can directly aggregate features over multiple graphs, as graph
convolution will be over sparse nodes, requiring less memory
and computation. Finally, due to the limited availability of
NVS data, an important direction is to use the newly-released
datasets to develop robust few-shot learning methods that can
learn to make reliable predictions from small datasets.
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