Bulletin of Entomological Research

Walking behaviour in the ground beetle, Poecilus cupreus: dispersal potential, intermittency and individual variation. --Manuscript Draft--

Manuscript Number:	BER-D-19-00139R4
Full Title:	Walking behaviour in the ground beetle, Poecilus cupreus: dispersal potential, intermittency and individual variation.
Article Type:	Research Paper
Corresponding Author:	Joseph David Bailey University of Essex Colchester, Essex UNITED KINGDOM
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	University of Essex
Corresponding Author's Secondary Institution:	
First Author:	Joseph David Bailey
First Author Secondary Information:	
Order of Authors:	Joseph David Bailey
	Carly M Benefer
	Rod P Blackshaw
	Edward A. Codling
Order of Authors Secondary Information:	
Abstract:	Dispersal is a key ecological process affecting community dynamics and the maintenance of populations. There is increasing awareness of the need to understand individual dispersal potential to better inform population level dispersal, allowing more accurate models of the spread of invasive and beneficial insects, aiding crop and pest management strategies. Here, fine-scale movements of Poecilus cupreus, an important agricultural carabid predator, were recorded using a locomotion compensator and key movement characteristics were quantified. Net displacement increased more rapidly than predicted by a simple correlated random walk model with near ballistic behaviour observed. Individuals displayed a latent ability to head on a constant bearing for protracted time periods, despite no clear evidence of a population level global orientation bias. Intermittent bouts of movement and non-movement were observed, with both the frequency and duration of bouts of movement varying at the inter- and intra- individual level. Analysis suggests that individuals have the potential to rapidly disperse over a wider area than predicted by simple movement models parametrised at the population level. This highlights the importance of considering the role of individual variation when analysing movement and attempting to predict dispersal distances.

Response to Referee Comments: None

- 1 Walking behaviour in the ground beetle, *Poecilus cupreus*: dispersal potential,
- 2 intermittency and individual variation.
- 3 Joseph D. Bailey^{*1}, Carly M. Benefer², Rod P. Blackshaw³, Edward A. Codling¹
- ¹Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ,

5 UK.

- ²School of Biological and Marine Sciences, Plymouth University, Plymouth, PL4
 8AA.
- ³Blackshaw Research and Consultancy, Parade, Chudleigh, TQ13 0JF.
- 9 *Contact author: jbailef@essex.ac.uk

10 Abstract

Dispersal is a key ecological process affecting community dynamics and the 11 12 maintenance of populations. There is increasing awareness of the need to understand individual dispersal potential to better inform population level dispersal, 13 allowing more accurate models of the spread of invasive and beneficial insects, 14 15 aiding crop and pest management strategies. Here, fine-scale movements of Poecilus cupreus, an important agricultural carabid predator, were recorded using a 16 17 locomotion compensator and key movement characteristics were quantified. Net 18 displacement increased more rapidly than predicted by a simple correlated random 19 walk model with near ballistic behaviour observed. Individuals displayed a latent ability to head on a constant bearing for protracted time periods, despite no clear 20 21 evidence of a population level global orientation bias. Intermittent bouts of 22 movement and non-movement were observed, with both the frequency and duration 23 of bouts of movement varying at the inter- and intra-individual level. Variation in

24	movement behaviour was observed at both the inter- and intra- individual level.
25	Analysis suggests that individuals have the potential to rapidly disperse over a
26	wider area than predicted by simple movement models parametrised at the
27	population level. This highlights the importance of considering the role of
28	individual variation when analysing movement and attempting to predict dispersal
29	distances.

30 *Keywords:* dispersal, ground beetles, dispersal potential, intermittency, path
31 analysis, random walk.

32

33 1. Background

Dispersal is a key ecological process affecting population, species and community dynamics over small and large spatial scales. For species of ecological and economic importance, such as pest insects and their natural predators, it is essential to understand how dispersal behaviour leads to observed population distributions in order that effective management strategies can be implemented at appropriate scales (Petrovskii et al., 2014).

Ground beetles (Coleoptera: Carabidae) are widely recognised to be 40 41 important components of terrestrial ecosystems, playing a major role in the food 42 web as both predators of a wide range of invertebrates and as prey to a number of bird and mammal species, some of which are of conservation concern (Holland et 43 al., 2006; Pocock & Jennings, 2007). Carabids are also considered to be of bio-44 45 indicative value since they are sensitive to cultivation impacts, and particularly to intensification of agricultural practices (Rainio & Niemelä, 2003). For these 46 47 reasons, and because of their importance in the natural control of invertebrate pests and weed populations in agricultural land, the biology and ecology of species within 48

49 Carabidae have been extensively studied (Bohan et al., 2011; Kromp, 1999). 50 Critical to their function in controlling pest populations within fields is their dispersal ability. Many carabid species are highly mobile with movement mainly 51 52 via walking, though flight may be used under some circumstances, e.g. longer 53 distance dispersal (Lövei & Sunderland, 1996). Field margins act as refuges for 54 natural enemy species and movement occurs into cropped fields from these semi-55 natural areas (Thomas et al., 1997). As such, 'beetle banks' have been specifically 56 created in farmland across the UK and Europe as overwintering habitats for 57 beneficial invertebrates (MacLeod et al., 2004; Thomas et al., 1991). Knowledge of 58 dispersal into fields from such areas and the effects of biological characteristics of 59 individual species and how this leads to their observed distribution in agricultural 60 landscapes is key to understanding the maintenance of metapopulations and the 61 dynamics of predator-prey interactions (Banks et al., 2020; Bastola and Davis, 2018; Petrovskii et al., 2014). This is particularly relevant in the context of climate 62 63 change and habitat fragmentation, for which it is important to be able to predict effects of changes to the environment on species of economic and ecological 64 65 importance.

Previous studies investigating ground beetle dispersal have used mark-66 67 release-recapture techniques (Rijnsdorp, 1980; Thomas et al., 1998, 1997). This 68 approach results in the estimation of movement distance being limited to the 69 maximum distance at which pitfall traps are set. Others have used harmonic radar to 70 track individuals (Lövei et al., 1997; Wallin & Ekbom, 1994). These are similar in 71 principle to mark-release-recapture because individuals are tagged and then located at a later time point. However, neither of these approaches gives fine-scale detail of 72 73 walking movements since observation frequencies are low and often the majority of

74 individuals released are not recovered. To try to overcome these limitations, 75 individual-based simulation models have been used, incorporating spatial and 76 landscape parameters for forest carabids (Jopp & Reuter, 2005) and common 77 agricultural (*Pterostichus*) species (Benjamin et al., 2008; Firle et al., 1998), or 78 based on population level estimates of random walk movement parameters for a 79 range of insects including ground beetles (Byers, 2001). Although such models may 80 try to take into account factors that are likely to affect distribution and abundance in 81 the field, they are frequently based on data collected from field studies like those 82 described above, which do not explicitly consider inter- and intra-individual 83 variation in walking behaviours and how this affects dispersal distances. This is 84 particularly relevant when considering pest species and their natural predators, since 85 it is important to know the extent of dispersal in differing situations i.e. under 86 alternate cultivation practices. Studies using high resolution movement data in a homogenous featureless environment have been recorded for mealworm beetles 87 88 (*Tenebrio molitor*) (Reynolds et al., 2013), where a power law distribution in the beetles' step-lengths was found. In the same study, highly linear movements in 89 90 Poecilus beetles were reported, although a full analysis for this species was not undertaken. 91

Recent advances in tracking technology mean that fine-scale position data can now be more easily collected from real animal movement paths in both the field and laboratory. In this study we used a laboratory based technique, a locomotion compensator, to measure fine-scale walking movements of *Poecilus cupreus*, one of the most common carabid species in European agricultural land (Kromp, 1999; Luff, 2002). It is a diurnal, macropterous species which is active in spring-summer and is found in relatively dry warm habitats such as open grassland and agricultural

99 fields (Luff, 1998). Its abundance and dominance in these habitats makes it an ideal species for investigating movement behaviour within- and between- individuals. 100 Although the locomotion compensator is not a new technique (Kramer, 1976), to 101 102 our knowledge it has not been used in this way before. It should be noted that the 103 artificial setup of the experiment results in limitations as to the conclusions which 104 can be reliably drawn from these results. Whilst such problems regarding the 105 artificiality and low generality of the setup are a recognised flaw in model systems (Carpenter, 1996) and lead to the common 'replication versus realism' debate 106 (Srivastava et al, 2004; Schindler, 1998) there are inherent benefits of such model 107 systems, such as repeatability and ease of experimentation (Levins, 1984; 108 109 Srivastava et al, 2004). In this experimental setup the use of the TrackSphere 110 locomotion compensator allows for data to be collected with relative ease and 111 accuracy, giving data with high frequency and greater accuracy than would be expected from simple video analysis or from capture-recapture techniques. 112 113 Similarly, the setup removes any impedimentary effect a tracker attached to an individual would have. 114 Here we chose to focus on measuring the dispersal potential of *P. cupreus* as 115

Here we chose to focus on measuring the dispersal potential of *P. cupreus* as well as discerning whether there were significant differences in general movement patterns in an unobstructed environment. We give a detailed analysis of individual movement of *P. cupreus* which the novel use of the TrackSphere allows. We quantify the observed movement using standard path analysis measures and explore the level of inter- and intra-individual variation. We subsequently demonstrate how simple random walk movement models, parameterised at the population level from the observed data, do not adequately explain the observed dispersal behaviour.

123 **2. Methods**

124 **2.1 Insect Collection and Care**

Adult *P. cupreus* were captured daily using pitfall traps from a permanent 125 grazed grassland in Dartington, Devon, UK (1.7 acre field, centred at OS grid 126 127 reference SX 78366 62988) between 8th and 20th July 2012, coinciding with main activity period for this species. Pitfall traps consisted of 200 ml white plastic cups 128 dug into the ground, flush with the soil surface. Each trap was covered by a plastic 129 130 lid to prevent flooding during wet weather. No preservative or liquid was used inside the pitfall traps in order to retain live individuals. The beetles were 131 132 maintained at 16°C in tanks containing soil, leaf litter and dead wood in mixed populations with other ground beetle species and fed on fresh meat based (chicken) 133 cat food every few days until needed for the experiment, whereby identified 134 135 individuals were transferred to separate 20 ml universal tubes containing a small piece of damp tissue paper (Luff, 2002). 136 2.2 Tracking beetle walking behaviour 137 138 2.2.1 Use of TrackSphere A locomotion compensator (Tracksphere LC 300, Syntech, Hilversum, The 139 Netherlands; Syntech, 2004) was used to track and measure the movement paths 140 (measured in mm) for each beetle. The locomotion compensator consists of a 141 142 lightweight sphere (300mm diameter), with a camera located directly above to 143 measure displacements. The sphere rotates opposite to these displacements by

144 means of two electric motors, and two encoders contacting the sphere transmit the 145 rotational movements to a computer as incremental (x, y) coordinates, which are

146 recorded 10 times per second. The sphere is supported by a noiseless aerostatic

147 spherical bearing.

148 2.2.2 Experimental Design

149 Beetles were tested three times each between 1st and 8th August 2012. Between trials individuals were maintained at 16°C. Experiments were carried out 150 between 16.8 and 24.2°C, recorded at the beginning of each trial, and were 151 152 illuminated by a fluorescent light located directly behind the sphere. A white cardboard screen was placed around the sphere to prevent external influences 153 154 affecting beetle behaviour and the sphere was wiped clean with 70% ethanol after 155 each trial. Individual beetles were allowed to acclimatise on the sphere for one minute before recording began for ten minutes. However, due to the sphere failing 156 157 to properly compensate for the movements of eight beetles for the full ten minute period, the final analysis was performed on data recorded over a five minute span 158 starting from 10 seconds into the track and finishing 5 minutes later (this period of 159 160 data collection was available for all experimental trials). Trials in which beetles did 161 not move at all during this period were removed from the dataset completely, giving data from 22 individual beetles. In summary, walking movement data ((x, y))162 163 coordinates recorded 10 times per second) over a five minute period were obtained for 22 individual beetles, repeated three times each (66 observations in total). 164

165 2

2.3 Initial processing of movement path data

The raw movement data, recorded at a frequency of 10 Hz was found to 166 167 include artificial 'pixelisation' of the movement paths, leading to artificially high 168 turning angles being recorded. To overcome this problem, the raw data was sub-169 sampled at a sampling rate of 1 Hz to smooth the movement paths and avoid pixelisation effects (i.e. only every 10th location recorded in the raw data was 170 171 included in the analysis). The choice of 1 Hz as the sub-sampling rate was essentially an arbitrary choice, however other sampling rates of 2 Hz, 0.5 Hz and 172 0.2 Hz (i.e. respectively only every 5th, 20th or 50th raw data point included) were 173

also considered but did not qualitatively change the results (Supplementary TablesS1-10, Additional File 3).

176 A minimum instantaneous speed threshold was used to classify bouts of 'purposeful movement' (movement associated with relocation in space) and 'non-177 178 movement' (periods where beetles either paused to reorient or stopped moving entirely, leading to zero or limited relocation in space). This gave an objective way 179 180 to classify each step of the movement paths with instantaneous speeds above the minimum threshold classified as movement and those below as periods of non-181 182 movement. A range of minimum speed threshold values were considered: 5 mm/s, 10 mm/s and 15 mm/s, as well as no minimum speed threshold. The minimum 183 speed threshold of 5 mm/s was used for the main analysis as this retained the largest 184 185 number of data points while allowing objective classification of bouts. The use of different minimum speed thresholds did not lead to qualitatively different results 186 (Supplementary Tables S1-10, Additional File 3). 187 188 Using this threshold (5 mm/s) lead to movement and stationary bouts of very short length due to noise in the recording and processing of the data. To account for 189 190 this the movement data were smoothed, with bouts of movement and nonmovement identified using a cumulative sum algorithm similar to Knell & Codling 191 192 (2012) (see Additional File 1). Bouts that had not ended by the end of the 193 experiment were considered to have been artificially truncated and hence were not included in the analysis presented in the main paper, since their true duration was 194 indeterminable. However, results were qualitatively similar if these truncated bouts 195 196 were included, under the assumption that they terminated at the end point of the experiment (see Additional File 4). 197

198

%%Figure 1 about here%%

199 **2.4 Statistical analysis**

200 **2.4.1 Basic Path analysis measures**

201 Standard path analysis measures adopted from random walk theory were 202 quantified for each of the observed movement paths (Kareiva & Shigesada, 1983; 203 Kramer & McLaughlin, 2001; Goodwin & Fahrig, 2002; Codling et al, 2008). It is known that the precise form of the distributions underlying movement in step-turn 204 205 processes has large effects on the predicted movement and hence a detailed analysis 206 of individual movement is required in order to accurately predict movement 207 behaviour (Codling et al, 2010; Choules & Petrovskii, 2017). Therefore, for each 208 movement path the turning angles between the directions of successive movement 209 steps, the global direction of movement at each step, and step length / speed (step 210 length and the instantaneous speed are equivalent as we used a fixed sampling 211 frequency of 1 Hz), were calculated (Figure 1C-D). The observed speeds were then used to determine bouts of movement and non-movement as described in the 212 213 previous section. Summary statistics for each movement path were determined: total net displacement (mm; Figure 1B), mean cosine of turning angles, straightness 214 215 (total track length/total net displacement; a measure of tortuosity), average speed (mm/s; determined for bouts of movement only), number of bout transitions 216 217 (movement to non-movement and vice versa), average bout duration (s), variance in 218 bout duration (s^2) , and proportion of time spent moving (%). Temperature was 219 included as a covariate in the initial analyses but was found not to be significant and 220 so was excluded from subsequent analysis, as has been observed in other studies of 221 ground beetle movement (Tuf et al. 2012; Růžičková & Veselý, 2016). 2.4.2 Intra- and inter-individual variation 222

223 *Repeatability*

224	To measure the consistency of behaviour among individuals the
225	repeatability, r , was calculated (also known as the intra class coefficient, ICC,
226	(Lessels & Boag, 1987)). Where $r = V_{ind}/(V_{ind} + V_{\varepsilon})$ with V_{ind} being the variance
227	between individuals and V_{ε} the residual variance, which is equivalent to the
228	variation within individuals (Nakagawa & Schielzeth, 2010; Dingemanse &
229	Dochtermann, 2013; Houslay & Wilson 2017). Therefore, r , indicates the relative
230	strength of the variance between individuals compared to the total variance (V_{ind} +
231	V_{ε}) (Brommer, 2013; Dingemanse & Dochtermann, 2013; Dosmann et al. 2015).
232	These variances were found using Linear Mixed Effect Models using Restricted
233	Maximum-Likelihood parameter estimation following the method described in
234	Nakagawa & Schielzeth (2010) by use of the <i>rptR</i> package (Stoffel et al, 2017) in <i>R</i>
235	(R Core Team, 2018).

236 *Correlation*

237 Correlation between any of the parameters at either the between- or within-238 individual level was calculated by dividing the covariance between two parameters by the square root of the product of the two variances (Dosmann et al, 2015). These 239 values we found using a bivariate (two-trait) mixed model, with the individual 240 241 beetle as the random intercept, the experiment number (centred) as the repeat 242 number, and the parameters (centred and scaled) as the random effects, as per 243 Houslay & Wilson (2017). The model was implemented by the MCMCglmm 244 package (Hadfield, 2010) in R (R Core Team, 2018). In order to ensure autocorrelation was not an effect, 500,000 iterations were run with a 'burn-in' period of 245 15,000 and a thinning of 100. Results were significant if the confidence intervals 246 247 (95%) did not span 0, as is standard with Bayesian CI's (Houslay & Wilson 2017).

248 2.4.3 Global Movement Direction

Global orientation of movement directions were considered at both population and individual level, to ascertain whether a global or an individual preference in direction existed. A Watson test checked for uniform distribution of global movement directions and a Rayleigh test determined whether the distribution corresponded to a unimodal wrapped distribution with specific resultant vector (where a resultant vector close to 1 would indicate a strong preference in movement direction, whereas a vector close to 0 would indicate no preference in direction).

256 **2.4.4 Turning Angles**

257 The observed turning angles were fitted to two standard circular probability distributions: the von Mises (a close approximation to the normal distribution on a 258 circle) and the wrapped Cauchy (a heavy-tailed circular distribution). These were 259 260 fitted using the CircStats package in R (R Core Team, 2018). The Kuiper and the Watson- U^2 tests were used to check the validity of both models, with the Akaike 261 Information Criterion (AIC) used to indicate the closer fitting distribution (Mardia 262 263 & Jupp, 2009). Evidence of unimodal turning angle distributions centred around 0 would indicate persistence in the beetles' movements. 264

265 2.4.5 Step lengths (instantaneous speeds) & Intermittency

Four distributions were considered for fitting the observed distribution of 266 267 step lengths (instantaneous speeds), with the same distributions also considered for 268 the movement and non-movement bout durations: power-law, exponential, Weibull and log-normal. Distributions were fitted using the *fitdistrplus* package in R (R 269 Core Team, 2018), except for the power-law that was fitted using the *power.law.fit* 270 271 function in the iGraph package in R (R Core Team, 2018). The power-law was considered in two circumstances. Firstly, to check if a power-law fitted all the data, 272 a restricted power-law was considered. The x_{min} value in this case was set at the 273

274 smallest non-zero value of the data rather than the value for x_{min} calculated by *power.law.fit* function (Virkar & Clauset, 2014). Secondly, a power-law fitting only 275 the tail of the data was considered as this is an indicative features of Lévy walk 276 277 behaviour (Edwards et al., 2007; Sims et al., 2007; Reynolds et al., 2013; Ahmed et al., 2018). The tail of the data was calculated by using the best fit x_{min} value 278 calculated by the *power.law.fit()* function. The potential distributions were fitted 279 280 only to data points which were greater than this minimum value. As the fitting algorithm for the power-law utilised a maximum likelihood estimation (MLE) 281 282 method to maximise the p-value for the Kolmogorov–Smirnov (K-S) test, a G-test

was also used to consider the fit of the distributions (Edwards et al., 2007).

284 2.4.6 CRW v BRW Behaviour

To investigate whether the characteristics of the beetle movement paths could be classified best as either a correlated random walk (CRW; i.e. movement is persistent but not globally directed) or a biased random walk (BRW; i.e. movement is globally directed), we measured the Δ statistic from (Marsh & Jones, 1988):

289
$$\Delta = \frac{1}{n^2} \left[(\sum \cos \theta_i)^2 + (\sum \sin \theta_i)^2 \right] - \frac{1}{(n-1)^2} \left[(\sum \cos \omega_i)^2 + (\sum \sin \omega_i)^2 \right]$$
(1)

where, θ_i is the global orientation and ω_i is the turning angle, at time *i*. The Δ statistic gives a relative measure of how well the observed data fits each of the two types of random walk movement model (see details in Additional File 5).

Data for turning angles and step lengths (speeds) were fitted at the population level (10045 data points from 66 movement paths) and at the individual path level (between 37 and 298 data points for each movement path). The Δ statistic was calculated for each individual movement path separately and also for all turning and global orientation angles aggregated at the population level. Data for bout durations were fitted only at the population level due to the limited number of datapoints from each individual path (326 data points from 66 movement paths).

300 **3. Results**

301 **3.1 Basic path analysis measures**

Figure 1C illustrates how the observed movement paths consisted of bouts of high speed and highly persistent movement (where the mean cosine of turning angles is close to 1), interspersed with bouts of low speed (5-10 mm/s) in which the distribution of turning angles is more uniform.

The beetles' net displacement ranged from 14 to 9785 mm (Figure 2A) with

the measure of straightness of each individual path varying from 0.98 (near straight-

line movement) to 0.21 (tortuous) (Additional File 2; Supplementary Figure S1).

The average of the mean cosine values was found to be 0.780 with a standard

deviation of 0.146, indicating a small range of values for the mean cosine across all

trials (Figure 2C). On average the beetles as a population spent 55.5% of the

experiment moving, recording an average speed when moving in the range of 5.65

mm/s to 36.3 mm/s with the population average being 12.5 mm/s (Figure 2B;

Additional File 2, Supplementary Figure S1). The number of transitions from bouts

of movement to non-movement (and vice-versa) in a single trial varied from 0 to 12

across the population, with individuals exhibiting a wide range in the number of

transitions across their individual 3 trials (Figure 2D). Correspondingly the average

bout length varied from 17s, for the individual trial which displayed 12 completed

bouts, to 293s for the individual trial which displayed only one complete bout

320 during the experiment.

321 **3.2 Intra- and inter-individual variation**

322 *Repeatability*

323	The number of bouts, time spent moving (%) and average speed when
324	moving were found to be repeatable implying that the beetles displayed individual
325	consistency across the three trials. ($p < 0.05$). All of these gave a repeatability of
326	over 0.2, with the highest being average speed when moving, $r = 0.282$. However,
327	when considering the 95% confidence intervals, only average speed had an interval
328	which did not span 0, indicating that average speed was the only consistent
329	movement behaviour (Table 1).
330	The repeatability results demonstrate that between 12.7-36.2% of the
331	variance in the parameters was caused by differences between individuals and
332	therefore the majority of the variation in the parameters is due to the differences
333	within-individuals (Additional File 2; Table S1).
334	% Table 1 about here %
335	Correlation in parameters
336	At the between individual level all parameter combinations had CI's which
337	span 0 indicating no evidence of statistically significant correlation (Additional File
338	2; Table S2). At the within-individual level, a strong positive correlation ($p <$
339	0.01) between displacement, straightness and time spent moving was observed, as
340	well as between displacement and average speed, as might be expected from
341	standard movement. A strong negative correlation ($p < 0.01$) between the average
342	bout duration and the number of bout transitions was anticipated: the longer a bout,
343	the fewer there can be in a given time period. However, a significant positive
344	correlation ($p < 0.01$) between the average speed when moving and the time spent
345	moving was also found, indicating that the longer the time the beetles spent moving,
346	the faster on average they moved (Additional File 2; Table S3).
347	% Figure 2 about here %

3.3 Global movement direction 348

349	Figure 1D shows a near uniform distribution in the global orientation angle,
350	relative to the associated turning angle for the pooled data across all beetles and
351	trials. This suggests that, at the population level, there is no consistent reorientation
352	towards a specific global movement direction. A Rayleigh test at the population
353	level revealed a slight bias towards a global movement direction of $\overline{\mu} = 59^{\circ}$,
354	although the resultant vector was low ($\overline{R} = 0.194$) suggesting this was only a weak
355	effect

356 At the individual level, beetles were observed to have highly consistent

oriented movements (resultant vector, \overline{R} , ranging from 0.194 to 0.972, with mean = 357

358 0.662, sd = 0.213). The Watson test rejected the possibility of a uniform

distribution of global movement directions for each individual, indicating 359

movement at the individual level was highly directed. 360

361 **3.4 Turning Angles**

When considering the distribution of turning angles at the population level, 362 both the wrapped Cauchy (MLE parameters: $\rho=0.859$, $\mu=0.005$) and von Mises 363 distributions (MLE parameters: $\kappa = 6.43$, $\mu = 0.001$) were rejected by the Watson 364 test ($U_{wc}^2 = 2.42, p < 0.01; U_{vM}^2 = 51.9, p < 0.01$) and the Kuiper test ($V_{wc} =$ 365 6.79, p < 0.01; $V_{\nu M} = 21.1$, p < 0.01) (Supplementary Tables S1-S2, Additional 366 File 3). However, the AIC favoured the wrapped Cauchy over the von Mises 367 $(AIC_{wc} = 7032, AIC_{vM} = 10668)$, and visual inspection indicates that the wrapped 368 369 Cauchy is the better fit (Figure 3A). Tests at other sampling rates and speed thresholds revealed no significant differences from these results (Supplementary 370 Tables S1-S2, Additional File 3). 371

At the individual level, a wrapped Cauchy distribution was found to be the best fitting distribution for 58 of the 66 trials. The resultant vectors for each of the individual trials were high, indicating persistence in movement (\overline{R} ranging from 0.397 to 0.913 with mean = 0.780, sd = 0.147).

376 **3.5 Step-lengths (Instantaneous speeds) & Intermittency**

When considering the distribution of the instantaneous speeds at the 377 population level, both the Kolmogorov-Smirnov (K-S) test and G-test rejected all 378 four distributions (p < 0.01) when fitted to the tail of the data. The AIC indicated 379 that the Weibull distribution (MLE parameters; $\gamma = 0.992$, $\alpha = 9.67$) was the 380 closest fit (Supplementary Tables S3-S5, Additional File 3). When considering the 381 full data set and using a restricted power-law with $x_{min} = 5$, the K-S test and G-test 382 still rejected all the distributions (p < 0.01), but the AIC now favoured the log-383 normal distribution (Figure 3B) with MLE parameters $\mu = 1.69$, $\sigma^2 = 1.28$ 384 (Supplementary Tables S6-S8, Additional File 3). Choosing different values for the 385 sampling rate and speed threshold did not qualitatively change these results 386 387 (Supplementary Tables S3-S8, Additional File 3). At the individual level, the lognormal and the Weibull distributions were favoured in 65 of the 66 trials when 388 considering the full data set, and 61 of the 66 when looking only at the tail of the 389 390 data.

391 3.6 Intermittency (movement and non-movement bouts)

Both the Weibull (MLE parameters; $\gamma = 0.97$, $\alpha = 45.7$) and log-normal (MLE parameters; $\mu = 3.30$, $\sigma^2 = 1.04$) distributions were accepted by the G-test for the distribution of the bouts of movement with the AIC value distinguishing between them by favouring the log-normal distribution. For the bouts of non-

396	movement, the G-test and K-S test reject all the distributions ($p < 0.01$); although,
397	the log-normal distribution (MLE parameters; $\mu = 3.00, \sigma^2 = 0.94$) was favoured
398	by the AIC (AIC _{log-norm} = 1373, AIC _{exp} = 1420, AIC _{weib} = 1422). Visual
399	inspection implies a reasonable fit here (Figures 3C-D; Supplementary Tables S9-
400	S10, Additional File 3).
401	As predicted by the lognormal distribution an inverse relation was found
402	between lengths of following bouts, with a long bout often followed by a short bout,
403	and bouts close to the median bout length mostly followed by bouts of comparable
404	length (Additional File 3, Supplementary Figure S1).
405	% Figure 3 about here %
406	3.7 CRW v BRW behaviour
407	At the individual level the Marsh-Jones Δ statistic indicated that the
408	observed data did not fit with the expected result from either a CRW or BRW, with
409	60 paths giving an indeterminate result, 5 paths identified as most like a CRW and
410	only one most like a BRW (Additional File 5; Supplementary Table S1). Similarly,
411	at the population level, the statistic did not coincide with the expected result for
412	either a BRW or a CRW. However, in this case the value ($\Delta = -0.335$) was
413	strongly negative and much closer to the expected CRW value, indicating that the
414	population movement was more similar to a CRW.
415	When the observed net displacement was compared with the expected
416	displacement of a CRW (parameterised by calculated population level values of the
417	speed and turning angle mean resultant length), it is clear that the beetles dispersed
418	considerably faster than expected by simple CRW movement (Figure 4). With an
419	initial period of super-ballistic behaviour followed by a sustained linear increase in
420	net displacement over time as predicted by a purely ballistic movement process.

422 **4 Discussion**

Movement data of 22 P. cupreus beetles were collected over three replicate 423 trials on a locomotion compensator. Analysis of observed trajectories highlighted 424 425 high levels of inter- and intra-individual variation in movement path characteristics 426 (Figure 1 & 2), with a correlation between time spent moving and instantaneous 427 speed, suggestive of possible 'flee' behaviour. Observed turning angles were best 428 fitted by the wrapped Cauchy distribution with step lengths (instantaneous speeds) best described by a log-normal distribution with no evidence of power-law 429 430 behaviour (Figure 3A-B). Beetle movements were observed to be highly persistent 431 at the individual level, with beetles able to maintain forward movement towards a 432 chosen direction over a sustained period. At the population level, a weak preference in global movement direction appeared to be present, however, further inspection 433 434 highlighted that this weak global directional bias was directly correlated to the 435 initial movement direction of the beetles at the start of recording, (presumably 436 related to the initial orientation of the beetle as they were released onto the tracking 437 sphere'), and the global bias towards this specific orientation had disappeared by 438 the end of each trial (Additional File 5; Supplementary Figure S1). Hence, there was no strong evidence for a consistent global bias at the population level (see 439 440 Figure 1A). This could be an artefact of the experimental setup where such an unfamiliar setting caused the beetles to engage in 'flee' behaviour where movement 441 442 was in a constant direction away from the starting location. Assuming the beetles 443 were not placed facing exactly the same direction at the start of the experiment, 444 along with the beetles' inherent ability to travel in a straight line could explain the 445 lack of global direction.

446 Intermittency in movement was observed, with the lengths of the bouts of movement and non-movement both best described by log-normal distributions 447 (Figure 2C-D). Movement bouts were found to highly vary between individuals at 448 449 both the inter- and intra-individual level, with some trials consisting of bouts of 450 constant movement and others involving highly intermittent stop-start behaviour. 451 The intermittency in movement behaviour, along with the observation that bouts of 452 short length are often followed by bouts of similar length (Additional File 3, Figure S1), has been characterised as foraging or searching behaviour in aphids 453 454 (Mashanova et al, 2010) and has been reported for a number of species including crickets, copepods and ghost crabs (Kramer & McLaughlin, 2001). 455

456 The ability for individual beetles to disperse over much larger distances than predicted by a simple CRW movement model, while showing no evidence of a 457 458 global preferred direction at the population level, is an interesting finding. The beetles in this study showed an innate ability to travel on a near constant bearing 459 460 with high persistence (Figure 1A) a phenomena found in other insects such as dung 461 beetles (Byrne et al, 2003) but has been shown to not be present in other animals 462 such as humans (Souman et al, 2009). It is known that small errors in attempted 463 straight line movement compound over time (Biegler, 2000; Cheung et al, 2007), therefore, if an individual can continue on a constant bearing for a protracted time 464 period without any obvious external cues, the method by which these small errors 465 466 are negated is interesting and may be due to some unknown internal cue. Similar 467 underestimates of total displacement have also been reported when considering 468 parameterised CRW models for T. confusum beetles (Morales & Ellner, 2002) and 469 three *Eleodes sp.* (Crist et al, 1992). A possible explanation for these discrepancies is that the parameterised models do not consider the use of internal mechanisms or 470

external cues that enable deviations in heading to be corrected so that forward
movement is maintained. However, it is far from clear in this context what such
mechanisms might be since there were no known visual navigation cues in the
immediate walled environment of the locomotion compensator that could have been
utilised.

Other insect species, such as bumblebees and other arthropods, (Chittka et 476 477 al, 1999; and references therein) are thought to possess an internal magnetic 478 compass that allows forward navigation in the absence of other cues. Bumblebees also use odour cues to direct movement within a featureless environment (Chittka et 479 480 al, 1999) and are able to discriminate between hydrocarbon scent marks excreted from the tarsi left by themselves and conspecifics on flowers (Pearce et al, 2017); P. 481 *cupreus* has been observed to use chemical cues to navigate, orienting towards prev 482 483 such as *Heteromurus nitidus*, a ground dwelling springtail (Mundy et al, 2000) therefore a similar mechanism might allow them to track their own footprints on the 484 485 locomotion compensator, although we have no direct evidence that this is the case. Polarization of light has been shown to act as a method of navigation in many 486 487 species of insect and beetles (Scwhind, 1991; Wehner, 2001). Dung beetles (e.g. Scarabaeus sp. and Scarabaeini sp) have been shown to use the polarisation of light 488 to move with high persistence (Dacke et al, 2004; Baird et al, 2012), Although 489 there were no direct visual cues in our experimental arena, there was a fixed light 490 source on the ceiling of the laboratory and it is possible that *P. cupreus* are using 491 492 the polarisation of the light source relative to their initial starting direction to maintain their forward movement. This could be simply tested by running a similar 493 494 experimental setup incorporating a light polariser, similar to the method used to

demonstrate the use of light polarisation in dung beetle navigation (Dacke et al,
2004; Baird et al, 2012).

Whilst the experimental setup allowed for the collection of data both at a 497 498 high frequency and high level of accuracy, giving answers to the questions regarding the dispersal potential and variability in movement behaviour of P. 499 *cupreus*, the experimental setup itself causes the conclusions and applications of our 500 501 findings to be limited. Due to the featureless conditions, caution must be taken in generalising these results as they are not indicative of movement in natural 502 environments, in which encounters with obstacles or changing conditions would be 503 504 present. However, a similar tracking device was used in Dahmen et al, 2018 to compare the movement of desert ants (Cataglyphis sp.) under experimental 505 conditions to those observed in an open test field. They recorded movement in a 506 507 test arena both outside with natural light and inside a laboratory with a polarised 508 light source, comparing the observed movement to that recorded by using a 509 cushioned tracking sphere under similar conditions. The findings reported no 510 significant differences between the movement recorded using the tracking sphere to 511 that in the open test field. Whilst this may be the case for this specific species of 512 ant, as we did not engage in similar direct comparisons of movement in natural settings to that on the TrackSphere, it is not necessarily clear that movement 513 recorded on such a device can act as a sensible approximation for real world 514 515 movement

Although the homogeneity of the experimental setup has been highlighted as a flaw in scaling up our findings to movement in the real world, the agricultural landscapes *P. cupreus* often inhabit, are by their cultivated nature more homogeneous relative to non-agricultural landscapes. Therefore, our recorded

movement behaviour could be beneficial to studies which attempt to understand theinvasive potential of *P. cupreus* in crop management.

Banks et al (2020) looked at the expected affect ladybirds and P. cupreus 522 had on controlling aphid invasions of agricultural fields, with the aim of providing a 523 524 pest management structure to efficiently eradicate aphid populations. Their model concluded that using a population of ladybirds was the most effective compared to a 525 mixture of the two predators. However, the model explicitly relied on predicted 526 527 movement rates of *P. cupreus* which had been aggregated at the population level. Therefore, applying our findings of the dispersal potential and movement behaviour 528 in similar studies may affect the outcome, leading to alternative crop management 529 strategies. 530

532 **References**:

- Ahmed DA, Petrovskii SV and Tilles PFC (2018) The "Lévy or Diffusion" controversy: how
 important is the movement pattern in the context of trapping? *Mathematics* 6,
 77.
- Baird E, Byrne MJ, Smolka J, Warrant EJ and Dacke M (2012). The dung beetle dance: an
 orientation behaviour? *PLoS One* 7, e30211.
- Banks JE, Laubmeier AN and Banks HT (2020) Modelling the effects of field spatial scale
 and natural enemy colonization behaviour on pest suppression in diversified
 agroecosystems. Agricultural and Forest Entomology 22, 30-40.
- 541 Bastola A and Davis JA (2018) Determining in-field dispersal of the redbanded stink bug
 542 (Hemiptera: Pentatomidae) in soybean fields using a protein based mark-capture
 543 method. Crop Protection 112, 24–32.
- Benjamin R, Cédric G and Pablo I (2008) Modeling spatially explicit population dynamics
 of *Pterostichus melanarius* (Coleoptera: Carabidae) in response to changes in the
 composition and configuration of agricultural landscapes. *Landscape and Urban Planning* 84, 191–199.
- 548 Biegler R (2000) Possible uses of path integration in animal navigation. *Animal Learning & Behavior* 28, 257-277.
- Bohan DA, Boursault A, Brooks DR and Petit S (2011) National-scale regulation of the
 weed seedbank by carabid predators. *Journal of Applied Ecology* 48, 888–898
- Brommer JE (2013) On between-individual and residual (co) variances in the study of
 animal personality: are you willing to take the "individual gambit"? *Behavioral Ecology and Sociobiology* 67, 1027-1032
- Byrne M, Dacke M, Nordström P, Scholtz C and Warrant E (2003) Visual cues used by
 ball-rolling dung beetles for orientation. *Journal of Comparative Physiology A* 189,
 411-418.
- 558 Byers JA (2001) Correlated random walk equations of animal dispersal resolved by
 559 simulation. *Ecology* 82, 1680–1690.
- 560 Carpenter SR (1996) Microcosm experiments have limited relevance for community and
 561 ecosystem ecology. *Ecology* 77, 677-680
- 562 Cheung A, Zhang S, Stricker C and Srinivasan MV (2007) Animal navigation: the difficulty
 563 of moving in a straight line. *Biological Cybernetics* 97, 47-61.
- 564 Chittka L, Williams NM, Rasmussen H and Thomson JD (1999) Navigation without vision:
 565 bumblebee orientation in complete darkness. *Proceedings of the Royal Society of* 566 London. Series B: Biological Sciences 266, 45-50.
- 567 Choules JD and Petrovskii S (2017) Which random walk is faster? Methods to compare
 568 different step length distributions in individual animal movement. Mathematical
 569 Modelling of Natural Phenomena 12, 22-45.
- 570 Codling EA, Plank MJ and Benhamou S (2008) Random walk models in biology. *Journal of* 571 *the Royal Society Interface* 5, 813-834.
- 572 Codling EA, Bearon RN and Thorn GJ (2010) Diffusion about the mean drift location in a
 573 biased random walk. *Ecology* 91, 3106-3113
- 574 Crist TO, Guertin DS, Wiens JA and Milne BT (1992) Animal movement in heterogeneous
 575 landscapes: an experiment with *Eleodes* beetles in shortgrass prairie. *Functional* 576 *Ecology*, 536-544.
- 577 Dacke M, Byrne MJ, Scholtz CH and Warrant EJ (2004) Lunar orientation in a beetle.
 578 Proceedings of the Royal Society of London. Series B: Biological Sciences 271, 361 579 365.
- 580 Dahmen H, Wahl VL, Pfeffer SE, Mallot HA and Wittlinger M (2017) Naturalistic path
 581 integration of *Cataglyphis* desert ants on an air-cushioned lightweight spherical
 582 treadmill. *Journal of Experimental Biology* 220, 634-644.

583 Dingemanse NJ and Dochtermann NA (2013) Quantifying individual variation in 584 behaviour: mixed-effect modelling approaches. Journal of Animal Ecology 82, 39-585 54 586 **Dosmann AJ, Brooks KC and Mateo JM** (2015) Within-individual correlations reveal link 587 between a behavioral syndrome, condition, and cortisol in free-ranging belding's 588 ground squirrels. Ethology 121, 125-134. 589 Edwards AM, Phillips RA, Watkins NW, Freeman MP, Murphy EJ, Afanasyev V, Buldyrev 590 SV, Luz MGE, Raposo EP, Stanley HE and Viswanathan GM (2007) Revisiting Lévy 591 flight search patterns of wandering albatrosses, bumblebees and deer. Nature 592 **449**, 1044–1048. 593 Firle S, Bommarco R, Ekbom B and Natiello M (1998) The influence of movement and 594 resting behavior on the range of three carabid beetles. *Ecology* **79**, 2113–2122. 595 Goodwin BJ and Fahrig L (2002) Effect of landscape structure on the movement behaviour 596 of a specialized goldenrod beetle, Trirhabda borealis. Canadian Journal of Zoology 597 80, 24-35 598 Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: 599 the MCMCglmm R package. Journal of Statistical Software 33, 1-22. 600 Holland JM, Hutchison MAS, Smith B and Aebischer NJ (2006) A review of invertebrates 601 and seed-bearing plants as food for farmland birds in Europe. Annals of Applied 602 Biology 148, 49-71. 603 Houslay TM and Wilson AJ (2017) Avoiding the misuse of BLUP in behavioural ecology. 604 Behavioral Ecology 28, 948-952. 605 Jopp F and Reuter H (2005) Dispersal of carabid beetles—emergence of distribution 606 patterns. Ecological Modelling, Emergent Properties in Individual-based Models 607 Case Studies from the Bornhöved Project (Northern Germany) 186, 389–405. 608 Kareiva PM and Shigesada N (1983) Analyzing insect movement as a correlated random 609 walk. Oecologia 56, 234-238. 610 Knell AS and Codling EA (2012) Classifying area-restricted search (ARS) using a partial sum 611 approach. Theoretical Ecology 5, 325–339. 612 Kramer E (1976) The orientation of walking honeybees in odour fields with small 613 concentration gradients. *Physiological Entomology* **1**, 27–37. 614 Kramer DL and McLaughlin RL (2001) The behavioral ecology of intermittent locomotion. 615 American Zoologist 41, 137-153. 616 Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control 617 efficacy, cultivation impacts and enhancement. Agriculture, Ecosystems & 618 *Environment* **74**, 187–228. 619 Lessells CM and Boag PT (1987) Unrepeatable repeatabilities: a common mistake. The Auk 620 104, 116-121. 621 Levins R (1966) The strategy of model building in population biology. American scientist 622 **54**, 421-431. 623 Lövei GL and Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: 624 Carabidae). Annual Review of Entomology 41, 231-256. 625 Lövei GL, Stringer IAN, Devine CD and Cartellieri M (1997) Harmonic radar - A method 626 using inexpensive tags to study invertebrate movement on land. New Zealand 627 *Journal of Ecology* **21**, 187–193. 628 Luff ML (2002) Carabid assemblage organization and species composition, in: Holland JM 629 (ed.), The Agroecology of Carabid Beetles. Intercept, Andover, UK, pp. 41-80. 630 Luff ML (1998) Provisional atlas of the ground beetles (Coleoptera: Carabidae) of Britain. 631 Biological Records Centre, Institute of Terrestrial Ecology, Monks Wood, Abbots 632 Rip-ton, UK

633 MacLeod A, Wratten SD, Sotherton NW and Thomas MB (2004) 'Beetle banks' as refuges 634 for beneficial arthropods in farmland: long-term changes in predator communities 635 and habitat. Agricultural and Forest Entomology 6, 147–154. 636 Mardia KV and Jupp PE (2009) Directional statistics (Vol. 494). John Wiley & Sons. 637 Marsh LM and Jones RE (1988) The form and consequences of random walk movement 638 models. Journal of Theoretical Biology 133, 113–131. 639 Mashanova A, Oliver TH and Jansen VA (2009) Evidence for intermittency and a truncated 640 power law from highly resolved aphid movement data. Journal of the Royal 641 Society Interface 7, 199-208 Morales JM and Ellner SP (2002) Scaling up animal movements in heterogeneous 642 643 landscapes: the importance of behavior. Ecology 83, 2240-2247 644 Mundy CA, Allen-Williams LJ, Underwood N and Warrington S (2000) Prey selection and foraging behaviour by Pterostichus cupreus L. (Coleoptera: Carabidae) under 645 646 laboratory conditions. Journal of Applied Entomology 124, 349-358. 647 Nakagawa S and Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a 648 practical guide for biologists. *Biological Reviews* 85, 935-956. 649 Pearce RF, Giuggioli L and Rands SA (2017) Bumblebees can discriminate between scent-650 marks deposited by conspecifics. *Scientific reports* **7**, 43872. 651 Petrovskii S, Petrovskaya N and Bearup D (2014) Multiscale approach to pest insect 652 monitoring: Random walks, pattern formation, synchronization, and networks. 653 Physics of Life Reviews 11, 467–525. Pocock MJO and Jennings N (2007) Testing biotic indicator taxa: the sensitivity of 654 655 insectivorous mammals and their prey to the intensification of lowland 656 agriculture. Journal of Applied Ecology 45, 151–160. 657 R Core Team (2018) R: A language and environment for statistical computing. R 658 Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-659 project.org/ 660 Rainio J and Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation 12, 487–506. 661 662 Reynolds AM, Leprêtre L and Bohan DA (2013) Movement patterns of Tenebrio beetles 663 demonstrate empirically that correlated-random-walks have similitude with a Lévy 664 walk. Scientific Reports 3, 3158. 665 Rijnsdorp AD (1980) Pattern of movement in and dispersal from a dutch forest of Carabus 666 problematicus Hbst. (Coleoptera, Carabidae). Oecologia 45, 274–281 667 Růžičková J and Veselý M (2016) Using radio telemetry to track ground beetles: movement of Carabus ullrichii. Biologia 71, 924-930. 668 669 Schindler DW (1998) Whole-ecosystem experiments: replication versus realism: the need 670 for ecosystem-scale experiments. Ecosystems 1, 323-334. 671 Schwind R (1991) Polarization vision in water insects and insects living on a moist 672 substrate. Journal of Comparative Physiology A 169, 531-540. 673 Sims DW, Righton D and Pitchford JW (2007) Minimizing errors in identifying Lévy flight 674 behaviour of organisms. Journal of Animal Ecology 76, 222-229. 675 Souman JL, Frissen I, Sreenivasa MN and Ernst MO (2009) Walking straight into circles. 676 Current Biology 19, 1538-1542. 677 Srivastava DS, Kolasa J, Bengtsson J, Gonzalez A, Lawler SP, Miller TE, Munguia P, 678 Romanuk T, Schneider DC and Trzcinski MK (2004) Are natural microcosms useful 679 model systems for ecology? Trends in Ecology & Evolution 19, 379-384 680 Stoffel MA, Nakagawa S and Schielzeth H (2017) rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods in 681 682 Ecology and Evolution 8, 1639-1644.

683 Syntech (2004) TrackSphere Locomotion Compensator model LC-300. User guide. Syntech 684 Hilversum, The Netherlands. Thomas CFG, Green F and Marshall EJP (1997) Distribution, dispersal and population size 685 686 of the ground beetles, Pterostichus melanarius (Illiger) and Harpalus rufipes 687 (Degeer) (Coleoptera, Carabidae), in field margin habitats. Biological Agriculture & 688 *Horticulture* **15**, 337–352. Thomas CFG, Parkinson L and Marshall EJP (1998) Isolating the components of activity-689 690 density for the carabid beetle Pterostichus melanarius in farmland. Oecologia 116, 691 103-112. Thomas MB, Wratten SD and Sotherton NW (1991) Creation of "island" habitats in 692 693 farmland to manipulate populations of beneficial arthropods: predator densities 694 and emigration. Journal of Applied Ecology 28, 906–917 695 Tuf IH, Dedek P and Veselý M (2012) Does the diurnal activity pattern of carabid beetles 696 depend on season, ground temperature and habitat? Archives of Biological 697 Sciences 64, 721-732. 698 Wehner R (2001) Polarization vision-a uniform sensory capacity? Journal of Experimental 699 Biology 204, 2589-2596. 700 Virkar Y and Clauset A (2014) Power-law distributions in binned empirical data. The 701 Annals of Applied Statistics 8, 89–119. 702 Wallin H and Ekbom B (1994) Influence of hunger level and prey densities on movement 703 patterns in three species of *Pterostichus* beetles (Coleoptera: Carabidae). 704 Environmental Entomology **23**, 1171–1181. 705

707 Figures

Figure 1 (A) Individual beetle movement paths for the first trial run of each beetle.

709 Starting points are the origin (0,0). (B) Displacement over time for each individual

beetle from their first trial run. (C) Cosine of the turning angle (the angle between

successive steps) against the instantaneous speed at that step. The vertical lines

represent possible values for the speed threshold value (5 mm/s, 10 mm/s and 15

713 mm/s) which were used to distinguish between purposeful movement and non-

movement. Data is taken for all beetles across all three trials. (D) Global

orientation of movement at each step (and the cosine of the corresponding turning

angle (the angle between successive global orientations). Data is taken for all

beetles across all three trials. In all plots the same hue is used to indicate individual

⁷¹⁸ beetles. For all figures the sampling size used was 1 Hz.

Figure 2 (A-D) (A) Total displacement, (B) mean cosine of turning angle, (C) mean
speed when moving, and (D) number of bout transitions of each beetle for each trial
(figures displaying variability across the other parameters are found in Additional
File 2, Figure S1). In all plots, circle points correspond to Trial 1, square to Trial 2
and triangle to Trial 3.

Figure 3 (A) Histogram of the turning angles. The solid dark grey line shows the

best fit wrapped Cauchy (WC) distribution with $\mu = 0.005$, $\rho = 0.859$ and the

dashed light grey line shows the best fit von Mises (vM) distribution with $\mu =$

727 0.001 and $\kappa = 6.43$. (B) Histogram for distribution of the instantaneous speeds.

728 The grey dashed line shows the best fitting log-normal distribution (C) & (D)

Histograms showing the distribution of the length of bouts of movement and non-

730 movement. The grey dashed line shows the best fitting log-normal distribution. In

all cases, the sampling rate was 1 Hz and speed cut-off threshold was 5 mm/s

Figure 4 Net displacement of beetles over time. The solid black line shows the

- mean net displacement of the beetle population with sampling rate 1 Hz and no
- speed threshold; the light grey dashed line is the expected result for a CRW with
- turning angles taken from a zero centred wrapped Cauchy distribution with
- concentration parameter $\rho = 0.819$, and step length drawn from the exponential
- distribution with mean, $1/\lambda = 8.33$ (Additional File 3, Supplementary Table S2 &
- 738 S5); the dark grey dotted line is ballistic movement.

739 Tables

	Repeatability						
	<i>r</i> -stat	CI (95%)	p-value				
Number of Bouts	0.227*	[0, 0.478]	0.052*				
Displacement	0.151	[0, 0.382]	0.146				
Straightness	0.127	[0, 0.399]	0.192				
Mean Cosine	0.200	[0, 0.444]	0.077				
Average Bout Duration	0.211	[0, 0.466]	0.067				
Time Spent Moving (%)	0.234*	[0, 0.486]	0.047*				
Average Speed	0.362*	[0.013, 0.526]	0.021*				

740

741 **Table 1**. Values of the repeatability value, r, for the calculated parameters, along

with the 95% confidence intervals (CIs). Values marked with the asterisk (*)

indicate significant results (p < 0.05)

1	Additional file 1
2	Bout classification
3	The method to determine the transition between movement and non-movement bouts is an adjusted
4	version of the algorithm described in [1]:
5	
6	Smoothing Algorithm
7	1. Cumulative sum.
8	Determine the cumulative sum
9	$C_{\tau} = \sum_{t=2}^{\tau} S_t$, with $C_1 = S_1$
10	for $\tau = 2,, T$.
11	Where C_{τ} denotes the cumulative sum of S_{τ} at time step τ and is calculated as:
13	$S_t = \begin{cases} S_{t-1} + v_t, & \text{ if } v_t > \text{speed threshold value} \\ S_{t-1} - v_t, & \text{ if } v_t \leq \text{speed threshold value} \end{cases}$
12	where v_t is the instantaneous speed calculated at time t .
14	2. <i>Time Series</i> . Construct the time series C_{τ} vs. τ .
15	3. <i>Termination criterion</i> . Does a turning point exist within the generated time series?
16	- Yes: proceed to 4.
17	- No: one cannot effectively analyse this movement path; terminate procedure.
18	4. Max-min algorithm. Determine turning points of the time series using the max-min algorithm
19	(see Appendix 2 in [1]) for full algorithm). Essentially, here the algorithm aims to find
20	turning points (local maxima or minima) in the time series C_{τ} vs. τ . To do this a moving
21	window of size ε is applied to the time series and for the case when $C_{\tau+\varepsilon} < C_{\tau}$ a change is
22	determined to have occurred if for the current maximum value of the cumulative sum at time
23	τ , $C_{\tau_{max}}$, we have max{ $C_{\tau+1}, C_{\tau+2}, \dots, C_{\tau+\varepsilon}$ } < $C_{\tau_{max}}$ otherwise $C_{\tau_{max}}$ is set at this max value
24	and the method continues starting now at $\tau + 1$ (and similar for $C_{\tau+\varepsilon} > C_{\tau}$ finding a local
25	minimum). Therefore, in essence the value ε represents the minimum size of a possible bout

26	and is calculated by the algorithm to give the optimal value for identifying true transition
27	behaviour.
28	5. Conclusion. Classify turning points as either transitions from movement to stationary
29	behaviour or vice-versa.
30	An example of the results of using this algorithm is demonstrated in Additional File 1, Figure S1.
31	This algorithm requires calculating a value for the minimum possible length of a bout, ε , per beetle
32	per experimental trial, which was found to range from 3 to 17. As this value was not fixed for all
33	experimental trials, results were also calculated when using a fixed ε across all trials (calculated as the
34	median value of all ε , which in the case for the sampling rate being 1Hz and the speed threshold
35	taking value 5mm/s gave, $\varepsilon = 7$). However, this was not seen to significantly affect the outcome of
36	the analysis (Additional File 1, Table S1-S2).

Figure S1 Variation in instantaneous speed over time for a single trial of an example beetle. The red
horizontal line represents the speed threshold value of 5 mm/s, which was used throughout the main
analysis (other values were considered but did not qualitatively change the results; see Additional File
2). The lower plot demonstrates how the smoothing algorithm designated bouts of movement (state
1) and non-movement (state 0). The sampling rate used was 1 Hz.

	Rest	ricted Power- law	Exponential	Wei	bull	Log-n	ormal
Type of bout	x _{min} A		λ (rate)	γ (shape)	α (scale)	μ (mean)	σ^2 (s.d.)
All	1	1.33	0.028	0.97	35.41	3.07	0.94
Moving	1	1.28	0.016	0.96	47.55	3.39	1.06
Stationary	1	1.31	0.020	0.97	32.97	3.10	0.99

45 **Table S1** Parameter values for the best fit distributions when the median ε value was used in the

46 smoothing algorithm. Results shown are for same sampling rate of 1 Hz and threshold value of 5

47 mm/s as was used throughout the analysis in the main text

	Restricted Power law Exponential				Weibull				Log-normal											
	G ² -T	est	K-S T	est	AIC	G²-1	`est	K-S T	ſest	AIC	G ² -7	Test	K-S	Test		G ² -7	est	K-S	Test	AIC
Bout type	stat	р	stat	р	AIC	stat	р	stat	р	AIC	stat	р	stat	р	AIC	stat	р	stat	р	AIC
All	119.70	0	0.419	0	3444	33.016	0.005	0.207	0	2991	31.000	0.009	0.177	0	2988	27.314	0.026	0.117	0	2932
Moving	73.15	0	0.366	0	1828	17.358	0.298	0.148	0	1568	18.054	0.260	0.158	0	1571	10.334	0.798	0.092	0.112	1553
Stationary	138.04	0	0.467	0	1599	51.802	0	0.284	0	1419	43.382	0	0.200	0	1409	37.514	0.001	0.142	0.002	1401

49 **Table S2** Results of the statistical tests for each best fitting distribution when the median ε value was used in the smoothing algorithm. Results shown are for

50 the same sampling rate of 1Hz and threshold value of 5 mm/s as was used throughout the analysis in the main text. These results show that the favoured

51 distribution was the log-normal for the distribution of movement bouts, stationary bouts and combined movement and stationary bouts. Comparing these with

52 the findings with a varying epsilon (see Main Text; Additional File 3) shows no qualitative difference.

54 References

- 1. Knell AS, Codling EA. Classifying area-restricted search (ARS) using a partial sum approach. Theor Ecol. 2012;5:325–39. 55 56

1 Additional file 2

2 Summary Statistics Comparison

3 The summary statistics discussed in section 2.3 (and not included in Figure 3) of the main text are

4 displayed here highlighting the variation across individuals as well as between individuals. The three

5 tables (Additional File 2, Table S1-S3) show the full results of the repeatability analysis, the correlation

6 between individuals and the correlation within individuals. All tests are for a sampling rate of 1 Hz and

7 speed threshold value of 5 mm/s.

8

- 9 Figure S1 (A-C) variability in the statistical parameters described in the main text section 2.3.2 for each
- 10 individual trial run per beetle; (A) Time spent moving, (B) Variance in Bout Duration and (C) average
- 11 length of bouts. (D E) lengths of bouts of movement and stationary resepctively.
- 12 In all plots, circle points correspond to trial 1, squares to trial 2 and triangles to trial 3.

Figure S1

		V···	Va			
	r stat	CI (95%)	p-value	• ina	• E	
Number of Bouts	0.227	[0, 0.478]	0.052	0.224	0.763	
Displacement	0.151	[0, 0.382]	0.146	0.164	0.817	
Straightness	0.127	[0, 0.399]	0.192	0.130	0.870	
Mean Cosine	0.200	[0, 0.444]	0.077	0.204	0.797	
Av. Bout Duration	0.211	[0, 0.466]	0.0665	0.208	0.805	
Time Spent Moving (%)	0.234*	[0, 0.486]	0.0467*	0.237	0.768	
Av. Speed	0.362*	[0.013, 0.526]	0.0206*	0.331	0.583	

17 **Table S1** Values of the repeatability given as $r = V_{ind}/(V_{ind} + V_{\varepsilon})$ for the calculated parameters, along 18 with the 95% CIs. Values marked with an asterisk (*) indicate significant results (p < 0.05), however, 19 only the Av. Speed Cis did not include 0 therefore, the significant of the results is inconclusive. V_{ind} 20 gives the variance between individuals and V_{ε} the residual (error) variance, equivalent to the 21 variation within individuals.

Correlations	Number of Bouts	Displacement	Straightness	Mean Cosine	Av. Bout Duration T	Time Spent Moving (%)	Av. Speed
Number of Bouts	\\\\\	-0.006	0.301	0.332	-0.129	0.141	-0.291
Displacement	(-0.848, 0.812)	/////	0.229	0.102	0.08	0.287	0.487
Straightness	(-0.555, 0.991)	(-0.673, 0.977)	\\\\\	0.095	-0.089	0.164	0.171
Mean Cosine	(-0.446, 0.987)	(-0.780, 0.837)	(-0.791, 0.848)	/////	-0.072	0.206	-0.03
Av. Bout Duration T	(-0.851, 0.755)	(-0.723, 0.908)	(-0.876, 0.761)	(-0.857, 0.767)	\\\\\	0.101	-0.139
Time Spent Moving (%)	(-0.676, 0.900)	(-0.646, 0.967)	(-0.729, 0.924)	(-0.697, 0.958)	(-0.698, 0.892)	\\\\\	0.258
Av. Speed	(-0.940, 0.449)	(-0.450, 0.993)	(-0.659, 0.910)	(-0.879, 0.711)	(-0.893, 0.587)	(-0.534, 0.943)	\\\\\

Table S2 Correlations between parameters calculated at between individual level using the mixed effects model described in section 2.3.3 in the Main Text.

 Values in the upper triangle are the correlation coefficients and lower triangle values are the corresponding 95% CIs. Values marked with an asterisk (*)

 denote those which are significant as the CIs do not straddle 0.

Correlations	Number of Bouts	Displacement	Straightness	Mean Cosine	Av. Bout Duration T	Time Spent Moving (%)	Av. Speed
Number of Bouts	/////	-0.195	0.195	-0.031	-0.657*	0.004	-0.116
Displacement	(-0.445, 0.074)	\\\\\	0.564*	0.535*	0.189	0.747*	0.722*
Straightness	(-0.065, 0.463)	(0.384, 0.745)*	\\\\\	0.644*	-0.24	0.579*	0.241
Mean Cosine	(-0.318, 0.258)	(0.340, 0.743)*	(0.468, 0.801)*	\\\\\	-0.006	0.666*	0.228
Av. Bout Duration T	(-0.819, -0.496)*	(-0.093, 0.461)	(-0.487, 0.033)	(-0.290, 0.271)	\\\\\	0.011	0.176
Time Spent Moving (%)	(-0.272, 0.289)	(0.614, 0.860)*	(0.388, 0.753)*	(0.508, 0.823)*	(-0.274, 0.290)	\\\\\	0.425*
Av. Speed	(-0.418, 0.170)	(0.582, 0.856)*	(-0.022, 0.508)	(-0.061, 0.501)	(-0.102, 0.466)	(0.186, 0.670)*	\\\\\

Table S3 Correlations between parameters calculated at the within individual level using the mixed effects model described in section 2.3.3 in the Main Text.

 Values in the upper triangle are the correlation coefficients and lower triangle values are the corresponding 95% CIs. Values marked with an asterisk (*)

 denote those which are significant as the CIs do not straddle 0.

1 Additional file 3

2 Complete data analysis for all sampling rates and speed thresholds

3 Results detailed here include fitting distributions to the turning angles (Additional File 3, Tables S1-4 S2), instantaneous speeds (Additional File 3, Tables S3-8) and bout durations (Additional File 3, Tables S9-5 S10) for all combinations of the sampling rates (2 Hz, 1 Hz, 0.5 Hz and 0.2 Hz) and speed threshold (15 6 mm/s, 10 mm/s 5 mm/s and no threshold value). In the case of the turning angles (Additional File 3, Tables 7 S1-S2), neither the Kuiper nor the Watson tests accepted either the wrapped Cauchy or the wrapped normal 8 distributions. However, when comparing between the two, the AIC preferred the wrapped Cauchy 9 distribution in all cases, and visual comparison confirmed that the wrapped Cauchy was a closer fit to the 10 data.

11 Comparing the instantaneous speeds at differing sampling rates and speed thresholds, the results 12 reveal that there was no clear likely best-fit distribution, as the preference for a particular distribution varied based on the speed threshold value regardless of the sampling rate; with a propensity for exponential and 13 14 Weibull distributions when the speed threshold is high and a log-normal distribution for lower values of the 15 threshold. Additional File 3, Tables S3-S5. present the results of fitting distributions to the tail of the data, 16 that is the data which was greater than the optimal x_{min} value of the best-fit power law distribution, which 17 was used to infer the presence of a heavy-tailed distribution. As was mentioned in the main text (Section 18 3.2), the findings indicate that at any sampling rate and threshold value the power-law was not favoured over the other distributions. 19

20 In comparing the bout durations, distributions were considered for the length of moving bouts only, 21 stationary bouts only and both moving and stationary combined. Additional File 3, Tables S9-S10 Indicate that both the log-normal or Weibull distributions were accepted for certain combinations of the sampling rate 22 and speed threshold, although, the AIC generally favoured the log-normal distribution over the Weibull. 23 24 Data was not considered for no threshold value as this resulted in no stationary bouts (section 2.3.1 of the main text). Similarly, when the threshold value was too high (15 mm/s) or the sampling rate too low (0.2 Hz) 25 26 the number of bouts measured was too small to give meaningful or accurate results and so have been 27 omitted. Although, discerning an appropriate distribution for the frequency of the bouts was not clear, an

- 28 inverse relationship between the lengths of consecutive bouts was observed (Additional File 3, Figure S1A).
- 29 That is, longer bouts were followed by shorter ones and vice versa, and medium length bouts were followed
- 30 by bouts of similar length. Although (Additional File 3, Figure S1B-C), demonstrates that this is an expected
- 31 result given the distribution found which best describes the bout lengths.

33

Figure S1 Comparing the lengths of following bouts. (A) displays the length of a completed bout compared to the length of the following completed bout, taken from the beetle data. The curve plotted in black shows the line of form k^2/x , where k is a constant shown in top right hand corner of the plot, which accounts for 90% of the plot points being located between the curve and the axes. Comparing this inverse relationship with the expected results from simulated models where the lengths of bouts were drawn from the best fitting log-normal distribution (**B**) and a uniform distribution (**C**) shows the similarity between the actual results and predicted log-normal results. This demonstrates that this inverse relationship between bout lengths is most

- 41 likely due to the lognormal distribution of the lengths of bouts. Data was calculated with a sampling size of
- 42 1 Hz and speed threshold of 5 mm/s,

				Wrapp	ped Cauchy	7				von Mises		
			Wa	itson test	Kuip	er test		Watso	n test	Kuipe	er test	
Sampling	Speed cut-	Number	statistic		statistic		AIC	statistic		statistic		AIC
rate (Hz)	off (mm/s)	of points	(U^2)	p-value	(V)	p-value		(U^2)	p-value	(V)	p-value	
	none	39534	37.045	< 0.01	29.148	< 0.01	71744.16	342.2524	< 0.01	54.7352	< 0.01	95325.86
2	5	20155	2.8369	< 0.01	7.0981	< 0.01	20356.18	125.6914	< 0.01	32.6401	< 0.01	29315.92
4	10	12223	3.2087	< 0.01	7.4731	< 0.01	7318.787	71.0998	< 0.01	24.7016	< 0.01	12412.84
	15	7028	2.1223	< 0.01	6.0109	< 0.01	3007.066	37.4251	< 0.01	18.1023	< 0.01	5641.406
	none	19734	8.8988	< 0.01	14.7254	< 0.01	32661.86	164.3228	< 0.01	38.0826	< 0.01	44129.71
1	5	10011	2.4193	< 0.01	6.7936	< 0.01	7031.784	51.9381	< 0.01	21.0598	< 0.01	10668.31
1	10	5900	1.9623	< 0.01	6.1516	< 0.01	2181.849	29.1009	< 0.01	15.7044	< 0.01	4249.526
	15	3356	1.1261	< 0.01	4.7802	< 0.01	966.559	16.2974	< 0.01	11.9061	< 0.01	2129.47
	none	9834	1.9588	< 0.01	7.6059	< 0.01	16403.39	61.9318	< 0.01	23.4196	< 0.01	20787.61
0.5	5	5040	1.2417	< 0.01	4.7511	< 0.01	4275.96	18.824	< 0.01	12.9362	< 0.01	5454.31
0.5	10	2900	0.9912	< 0.01	4.4125	< 0.01	1580.272	9.9763	< 0.01	9.4965	< 0.01	2181.111
	15	1580	0.6161	< 0.01	3.5536	< 0.01	724.7004	5.1869	< 0.01	6.8364	< 0.01	1036.83
	none	3894	0.3281	< 0.01	2.8823	< 0.01	7747.179	14.2082	< 0.01	11.559	< 0.01	8803.505
0.2	5	2024	0.4467	< 0.01	3.068	< 0.01	2501.256	5.3992	< 0.01	7.018	< 0.01	2772.177
0.4	10	1131	0.2489	0.01	2.6106	< 0.01	1114.658	3.0138	< 0.01	5.3566	< 0.01	1252.11
	15	604	0.1187	> 0.10	2.0013	< 0.01	535.0097	1.5012	< 0.01	3.9792	< 0.01	584.0033

Table S1. Statistical test results for the turning angle distributions at all considered sampling rates and speed threshold values.

		Wrapped	Cauchy	von N	lises
Sampling rate (Hz)	Speed cut-off (mm/s)	μ	ρ	μ	к
	none	-0.001	0.814	-0.0108	2.1842
2	5	0.0026	0.8413	0.0041	4.5583
2	10	0.0049	0.8653	0.0055	6.7311
	15	0.0028	0.8745	0.0037	8.192
	none	0	0.8192	-0.0108	2.1842
1	5	0.0045	0.8586	0.0011	6.4313
1	10	0.0053	0.8768	0.0085	8.8482
	15	0.0026	0.8814	0.0024	9.5947
	none	-0.0001	0.8049	0.0019	2.7213
0.5	5	0.0066	0.8466	0.0094	6.3378
0.5	10	0.0105	0.8649	0.0135	8.5942
	15	-0.0034	0.8694	0.0031	9.4126
	none	0.0061	0.7553	0.0175	2.4435
0.2	5	0.0004	0.8154	0.0189	4.9129
0.2	10	0.0042	0.8365	0.0207	6.2121
	15	-0.0085	0.8454	0.0006	7.0781

Table S2 MLE for the parameters of the Wrapped Cauchy and von Mises distributions when considering the turning angle distribution for all considered sampling

49 rates and speed threshold values.

				Power-la	w (MLE)		E	xponentia	1		Weibull		L	og-norma	I
Sampling rate (Hz)	Speed cut- off (mm/s)	Number of points	Xmin	K-S Statistic	p-value	AIC	K-S Statistic	p-value	AIC	K-S Statistic	p-value	AIC	K-S Statistic	p-value	AIC
	none	1473	34.4	0.0517	0	9565	0.0326	0.087	9481	0.0334	0.075	9481	0.0762	0	9835
2	5	1506	33.2	0.056	0	9788	0.0321	0.09	9690	0.0327	0.08	9691	0.0767	0	10059
Z	10	1422	33.8	0.0691	0	9250	0.0344	0.07	9139	0.0348	0.064	9141	0.0783	0	9467
	15	1537	33	0.0718	0	10073	0.0306	0.112	9909	0.0318	0.089	9909	0.0724	0	10297
	none	6047	10.7	0.0715	0	40149	0.0406	0	39710	0.0275	0	39698	0.0594	0	40699
1	5	5499	10.7	0.1027	0	37477	0.0416	0	36196	0.0245	0.003	36178	0.0694	0	37319
1	10	620	33.7	0.0576	0.032	3827	0.0332	0.503	3784	0.0344	0.454	3785	0.0713	0.004	3898
	15	608	33.9	0.0647	0.012	3758	0.0343	0.473	3707	0.0351	0.443	3708	0.0731	0.003	3829
	none	2884	10.1	0.0698	0	19110	0.0464	0	18630	0.0339	0.003	18626	0.0601	0	19161
0.5	5	2711	10.6	0.099	0	18176	0.0472	0	17546	0.0359	0.002	17543	0.0633	0	18039
0.5	10	265	33.7	0.0547	0.402	1550	0.0445	0.672	1532	0.0444	0.674	1534	0.0834	0.05	1588
	15	286	33.1	0.0608	0.237	1688	0.0394	0.766	1663	0.0399	0.752	1665	0.0773	0.066	1739
	none	1201	10.6	0.0744	0	7591	0.039	0.052	7558	0.0346	0.114	7560	0.0633	0	7761
0.2	5	596	15.3	0.1058	0	3940	0.0525	0.075	3813	0.0438	0.202	3811	0.0833	0.001	4009
0.2	10	232	24.9	0.1269	0.001	1445	0.0868	0.061	1401	0.0635	0.307	1394	0.1132	0.005	1458
	15	225	25.2	0.1414	0	1408	0.0885	0.059	1353	0.066	0.282	1347	0.1182	0.004	1412

53 Table S3 Statistical test results for the instantaneous speed distribution at every considered sampling rate and speed threshold value, for the tail of the data only (calculated

54 from the x_{min} value given by the power-law distribution).

Somuling	Speed out	Number of	Power-la	w (MLE)	Expo	nential	Weil	oull	Log-	normal
sampling rate (Hz)	off (mm/s)	points	G ² -Stat	p-value	G ² -Stat	p-value	G ² -Stat	p-value	G ² -Stat	p-value
	none	1473	97.566	0	54.64	0	53.615	0	190.7	0
2	5	1506	112.64	0	58.968	0	58.061	0	201.06	0
2	10	1422	117.29	0	53.266	0	52.863	0	181.8	0
	15	1537	152.07	0	60.955	0	59.907	0	199.73	0
	none	6047	474.71	0	127.95	0	105.87	0	467.07	0
1	5	5499	788.32	0	139.6	0	115.05	0	505.81	0
1	10	620	43.795	0	35.258	0.013	36.2	0.009973	71.707	0
	15	608	51.591	0	40.38	0.002916	40.75	0.002605	76.507	0
	none	2884	217.46	0	80.254	0	68.17	0	216.77	0
0.5	5	2711	348.12	0	69.982	0	59.646	0	205.26	0
0.5	10	265	12.721	0.5486	18.402	0.4958	18.35	0.4992	30.416	0.04674
	15	286	14.722	0.3974	13.115	0.8326	13.27	0.8244	27.999	0.08345
	none	1201	73.223	0	38.13	0.005713	35.757	0.0113	66.537	0
0.2	5	596	79.829	0	26.142	0.1263	26.044	0.129	70.962	0
0.2	10	232	37.324	0	24.979	0.1612	22.017	0.2834	39.791	0.003486
	15	225	40.923	0	23.062	0.2346	19.279	0.4391	37.747	0.006391

Table S4 Similar to Additional File 3, Table S3, results of the G-Test for the distribution of instantaneous speed. Results are for the tail of the data only.

			Power-la	w (MLE)	Exponential	We	ibull	Log-norm	al
Sampling rate (Hz)	Speed cut- off (mm/s)	Number of points	α	X _{min}	λ (rate)	γ (shape)	α (scale)	μ (mean)	σ ² (s.d.)
	None	1473	5.56	34.39	0.109	1.02	9.27	1.65	1.31
2	5	1506	4.86	33.2	0.109	1.02	9.24	1.64	1.32
2	10	1422	4.37	33.76	0.109	1.02	9.21	1.64	1.31
	15	1537	3.68	32.95	0.108	1.03	9.35	1.66	1.3
	None	6047	2.69	10.73	0.102	0.96	9.65	1.66	1.33
1	5	5499	2.19	10.68	0.101	0.95	9.68	1.65	1.38
1	10	620	4.84	33.68	0.129	1.03	7.85	1.49	1.26
	15	608	4.21	33.86	0.129	1.02	7.8	1.48	1.29
	None	2884	2.79	10.11	0.108	0.96	9.15	1.61	1.34
0.5	5	2711	2.22	10.63	0.107	0.97	9.23	1.62	1.34
0.5	10	265	5.42	33.73	0.151	1	6.6	1.29	1.32
	15	286	4.49	33.11	0.149	1.01	6.74	1.32	1.34
	None	1201	2.82	10.55	0.117	0.99	8.5	1.55	1.3
0.2	5	596	2.81	15.33	0.111	1.06	9.2	1.65	1.34
0.2	10	232	3.67	24.91	0.133	1.19	7.94	1.56	1.16
	15	225	3.04	25.24	0.135	1.17	7.8	1.53	1.19

Table S5 Parameter values calculated for the instantaneous speed distribution for the tail of the data only.

			Power (x _{min}	-law (restr =speed cut	icted) :-off)	E	Exponentia	l		Weibull		L	og-normal	I
Sampling	Speed cut-	Number of	K-S Statistic	n-value	AIC	K-S Statistic	n-vəlue	AIC	K-S Statistic	n-vəlue	AIC	K-S Statistic	n-vəlue	AIC
		30600	0 1705		255824	0 1471		220424	0.1350		228170	0.2205		225508
		39000	0.1795	0	233634	0.1471	0	229424	0.1339	0	220179	0.2203	0	1223390
2	5	20188	0.249	0	136383	0.0274	0	125141	0.0253	0	124411	0.0691	0	122780
_	10	12244	0.1349	0	81086	0.0417	0	75167	0.0209	0	74862	0.0579	0	74333
	15	7039	0.107	0	49828	0.0245	0	44916	0.0217	0.003	44465	0.078	0	44466
	none	19800	0.1811	0	128277	0.1202	0	116833	0.1158	0	116233	0.2046	0	114963
1	5	10045	0.2418	0	66472	0.0266	0	61302	0.0253	0	60915	0.0692	0	60228
1	10	5919	0.2188	0	38818	0.0405	0	35861	0.0281	0	35646	0.0605	0	35445
	15	3365	0.1137	0	23603	0.0328	0.001	21154	0.0276	0.012	20844	0.0857	0	20891
	none	9900	0.1865	0	64725	0.0998	0	59457	0.0938	0	59113	0.195	0	58505
0.5	5	5074	0.2341	0	32856	0.0283	0.001	30309	0.0281	0.001	30078	0.0652	0	29705
0.5	10	2918	0.2122	0	18727	0.046	0	17380	0.0343	0.002	17265	0.0586	0	17158
	15	1591	0.2552	0	11093	0.0492	0.001	9944	0.0316	0.083	9770	0.0979	0	9816
	none	3960	0.1928	0	26104	0.0759	0	24162	0.0806	0	23990	0.1737	0	23783
0.2	5	2058	0.2453	0	13063	0.0254	0.141	12053	0.0288	0.065	11933	0.0699	0	11765
0.2	10	1149	0.2035	0	7087	0.0426	0.031	6630	0.0327	0.17	6581	0.07	0	6543
	15	613	0.2444	0	4057	0.051	0.083	3675	0.0396	0.291	3610	0.0804	0.001	3618

Table S6 Statistical test results for the speed distribution at every sampling rate and speed threshold value, for the whole data set (the x_{min} value was fixed at the speed cut off

65 threshold value)

		Power-lav (x _{min} =sp	v (restricted) eed cut-off)	Expone	ential	W	eibull	Log-n	ormal
Speed cut- off (mm/s)	Number of points	G ² -Stat	p-value	G ² -Stat	p-value	G ² -Stat	p-value	G ² -Stat	p-value
none	39600	14849	0	327.23	0	296	0	1232.1	0
5	20188	6158.5	0	191.51	0	172.68	0	1258.7	0
10	12244	4145.9	0	213.83	0	160.31	0	1005.9	0
15	7039	250.82	0	111.24	0	97.322	0	803.59	0
none	19800	7586.6	0	208.37	0	271.91	0	570.9	0
5	10045	3545.2	0	122.2	0	117.36	0	594.79	0
10	5919	2148.3	0	129.82	0	106.78	0	437.15	0
15	3365	103.15	0	73.686	0	48.433	0	372.1	0
none	9900	3818	0	69.769	0	147.03	0	250.02	0
5	5074	1813.6	0	66.227	0	65.857	0	252.52	0
10	2918	981.76	0	75.85	0	64.231	0	212.87	0
15	1591	898.04	0	46.329	0	30.643	0.006218	180.75	0
none	3960	1587.8	0	36.44	0	81.035	0	125.79	0
5	2058	749.94	0	39.072	0	40.523	0	98.501	0
10	1149	384.16	0	28.243	0.01321	22.594	0.06721	60.804	0
15	613	315.25	0	24.079	0.04483	25.19	0.03274	56.18	0

Table S7 Similar to Additional File 3, Table S6, with additional results of the G-Test. Results are for the whole data set.

			Power-law	(restricted)	Exponential	We	eibull	Log-norma	1
Sampling rate (Hz)	Speed cut- off (mm/s)	Number of points	α	Xmin	λ (rate)	γ (shape)	α (scale)	μ (mean)	σ^2 (s.d.)
	None	39600	1.502	0	0.118	0.526	5.817	0.445	3.256
2	5	20188	1.497	5	0.098	0.988	10.12	1.736	1.277
Z	10	12244	1.499	10	0.098	0.943	9.979	1.686	1.350
	15	7039	1.470	15	0.089	1.029	11.31	1.851	1.291
	None	19800	1.509	0	0.121	0.579	6.10	0.620	2.99
1	5	10045	1.508	5	0.103	0.992	9.668	1.690	1.28
1	10	5919	1.503	10	0.102	0.965	9.687	1.667	1.329
	15	3365	1.475	15	0.094	1.066	10.87	1.826	1.268
	None	9900	1.516	0	0.123	0.638	6.424	0.794	2.732
0.5	5	5074	1.512	5	0.109	0.999	9.200	1.644	1.270
0.5	10	2918	1.517	10	0.108	0.966	9.158	1.609	1.340
	15	1591	1.484	15	0.098	1.100	10.516	1.804	1.267
	None	3960	1.524	0	0.126	0.714	6.731	0.973	2.418
0.2	5	2058	1.530	5	0.116	1.022	8.665	1.597	1.251
0.2	10	1149	1.538	10	0.118	0.973	8.406	1.529	1.320
	15	613	1.509	15	0.110	1.091	9.369	1.689	1.233

Table S8 Parameter values calculated for the speed distribution for the whole data set.

All Bouts			Po	Power-law (restricted)						ponentia	al			Ţ	Weibull				Log	g-normal		
Sampling	Speed cut-	Xmin	G²-T	est	K-S	Гest	AIC	G ² -7	ſest	K-S	Test	AIC	G ² -1	lest	K-S	Test	AIC	G ² -7	ſest	K-S	Test	AIC
rate (Hz)	off (mm/s)		Stat	р	stat	р		stat	р	stat	р		stat	р	stat	р		stat	р	stat	р	
2	5	0.5	147.17	0	0.393	0	5593	42.001	0.002	0.163	0	4997	30.068	0.051	0.12	0	4986	33.128	0.006	0.095	0	4852
_	10	0.5	79.225	0	0.435	0	5515	38.11	0.006	0.159	0	4892	26.862	0.108	0.154	0	4883	13.855	0.792	0.099	0	4701
1	5	1	117.38	0	0.390	0	3364	29.517	0.058	0.107	0.002	2976	26.562	0.115	0.11	0.001	2977	21.854	0.292	0.072	0.078	2902
-	10	1	92.14	0	0.438	0	3542	37.948	0.006	0.163	0	3111	38.141	0.006	0.162	0	3113	32.479	0.028	0.114	0	2986
0.5	5	2	96.196	0	0.398	0	1865	23.963	0.198	0.143	0.001	1612	25.352	0.149	0.108	0.025	1609	20.298	0.377	0.078	0.195	1566
	10	2	78.96	0	0.377	0	1696	31.515	0.035	0.14	0.002	1477	31.099	0.039	0.112	0.022	1474	20.441	0.369	0.06	0.536	1436

Moving Bouts			Po	wer-lav	v (restrict	ed)			Ex	ponentia	al			v	Veibull				Log	-normal	1	
Sampling rate (Hz)	Speed cut- off (mm/s)	X _{min}	G ² -T Stat	'est p	K-S stat	Гest р	AIC	G ² -7 stat	Гest Р	K-S stat	Test p	AIC	G ² -T stat	est P	K-S stat	Гest p	AIC	G ² -T stat	est P	K-S stat	Test p	AIC
2	5	0.5	141.56	0	0.385	0	2928	37.486	0.007	0.102	0.011	2582	30.537	0.045	0.086	0.05	2582	24.226	0.188	0.08	0.078	2541
	10	0.5	79.666	0	0.432	0	2738	27.555	0.092	0.139	0	2363	32.858	0.025	0.126	0.001	2365	15.397	0.697	0.085	0.054	2292
1	5	1	113.15	0	0.368	0	1760	26.489	0.117	0.083	0.216	1550	24.436	0.18	0.091	0.14	1552	16.895	0.597	0.049	0.837	1525
_	10	1	93.094	0	0.453	0	1726	32.261	0.029	0.196	0	1490	41.208	0.002	0.159	0	1488	33.806	0.019	0.094	0.09	1432
0.5	5	2	94.111	0	0.408	0	974	22.783	0.247	0.142	0.041	840	24.251	0.187	0.122	0.117	839	18.24	0.561	0.076	0.642	822
0.0	10	2	80.961	0	0.380	0	804	28.548	0.073	0.156	0.027	695	27.964	0.084	0.102	0.314	693	18.412	0.48	0.068	0.811	673

Non- moving Bouts			Po	wer-law	v (restricte	ed)			Ex	ponentia	ıl			,	Weibull		I		Loş	g-norma]	l	
Sampling rate (Hz)	Speed cut- off (mm/s)	Xmin	G ² -To Stat	est p	K-S T stat	est p	AIC	G²-7 stat	Fest p	K-S stat	Test p	AIC	G ² -T stat	fest p	K-S stat	Test p	AIC	G ² -7 stat	ſest p	K-S stat	Test p	AIC
2	5	0.5	27.703	0.01	0.414	0	2668	100.72	0	0.147	0	2407	60.513	0	0.157	0	2396	44.569	0	0.103	0.011	2300
	10	0.5	55.006	0	0.439	0	2782	107.35	0	0.211	0	2519	58.785	0	0.171	0	2501	43.453	0.001	0.117	0.002	2406
1	5	1	58.884	0	0.417	0	1607	38.405	0.005	0.132	0.009	1420	34.773	0.015	0.141	0.004	1422	29.876	0.053	0.11	0.045	1373
	10	1	83.4	0	0.424	0	1820	73.289	0	0.177	0	1618	64.136	0	0.156	0	1618	55.506	0	0.131	0.004	1553
0.5	5	2	96.775	0	0.408	0	895	29.755	0.055	0.162	0.015	772	31.026	0.04	0.121	0.132	771	19.605	0.419	0.106	0.252	745
0.0	10	2	77.426	0	0.385	0	895	26.728	0.111	0.131	0.09	779	28.235	0.079	0.126	0.11	779	20.212	0.382	0.09	0.457	761

- 76 **Table S9** Statistical test results for the bout distributions. 4 distributions were considered. Sampling size of 0.2 Hz was not included as there were too few bouts to give
- reliable results, and similar for speed threshold value of 15 mm/s. The case for no speed threshold was also not considered as the data returned few non-moving bouts.
- 78 Results are for the data as a whole with the fixed x_{min} value at the minimum non-zero value of the data.

All Bouts

		Power-law (restricted)		Exponential	Weibull		Log-normal		
Sampling rate (Hz)	Speed cut- off (mm/s)	α	X _{min}	λ (rate)	γ (shape)	α (scale)	μ (mean)	σ^2 (s.d.)	
2	5	0.5	1.30	0.019	0.89	50.23	3.36	1.06	
	10	0.5	1.30	0.020	0.91	46.00	3.31	0.97	
1	5	1	1.32	0.025	0.96	39.30	3.15	1.00	
1	10	1	1.34	0.034	1.00	29.77	2.92	0.88	
0.5	5	2	1.35	0.038	1.13	27.46	2.87	0.86	
	10	2	1.37	0.044	1.13	23.79	2.72	0.87	

Moving Bouts

		Power-law (restricted)		Exponential	Weibull		Log-normal		
Sampling rate (Hz)	Speed cut- off (mm/s)	α	X _{min}	λ (rate)	γ (shape)	α (scale)	μ (mean)	σ^2 (s.d.)	
2	5	0.5	1.28	0.016	0.94	59.52	3.54	1.08	
	10	0.5	1.30	0.024	1.04	42.15	3.28	0.89	
1	5	1	1.30	0.022	0.97	45.73	3.30	1.04	
1	10	1	1.35	0.039	1.12	27.07	2.87	0.82	
0.5	5	2	1.34	0.035	1.14	30.48	2.97	0.88	
	10	2	1.39	0.053	1.20	20.27	2.59	0.81	

Non-moving Bouts

		Power-law (restricted)		Exponential	Wei	bull	Log-normal		
Sampling rate (Hz)	Speed cut- off (mm/s)	α	X _{min}	λ (rate)	γ (shape)	α (scale)	μ (mean)	σ ² (s.d.)	
2	5	0.5	1.31	0.022	0.86	41.65	3.19	1.00	
	10	0.5	1.30	0.018	0.84	49.76	3.35	1.04	
1	5	1	1.33	0.030	0.97	33.13	3.00	0.94	
1	10	1	1.34	0.030	0.94	32.46	2.98	0.93	
0.5	5	2	1.36	0.043	1.14	24.46	2.77	0.81	
0.5	10	2	1.35	0.038	1.11	27.39	2.85	0.90	

Table S10 MLE for the parameters of the four distributions considered for the distribution of the bout lengths.

1 Additional file 4

2 Analysis of data when including truncated bouts

As discussed in the main text (Section 2.3.1), bouts which had not ended by the end of the experiment 3 4 were not included in the final analysis as their true length was indeterminable. Additional File 4, Tables 5 S1-S2 show the results of the statistical analysis used in the main text when these bouts were included 6 (that is the final bout was deemed to have finished when the experiment had ended) at a sampling rate 7 of 1HZ and speed threshold value of 5mm/s. In general, the inclusion of these truncated bouts resulted in the statistical tests rejecting the fitted distributions, , with the G-test rejecting all distributions for all 8 9 types of bouts and the K-S test rejecting the distributions for all bout types except for the exponential 10 in the case of stationary bouts, the Weibull in the case of moving bouts and the log-normal for both 11 moving and stationary bouts (p > 0.1). However, the log-normal distribution was favoured by the AIC 12 likelihood for all bout types, which is the same for the findings when the truncated bouts were excluded 13 (see Additional File 3; Supplementary Tables S9-S10).

		Rest	ricted Pov	ver law	,		Exponential				Weibull					Log-normal				
	G ² -Te	st	K-S 7	ſest	AIC	G ² -Te	st	K-S	Test	AIC	G ² -Te	st	K-S	Test	AIC	G ² -7	ſest	K-S	Test	AIC
Bout type	stat	р	stat	р		stat	р	stat	р		stat	р	stat	р		stat	р	stat	р	
All	87.764	0	0.419	0	1726	54.884	0	0.130	0	1574	45.813	0	0.117	0	1537	40.48	0.004	0.065	0.075	1506
Moving	96.500	0	0.568	0	1609	56.667	0	0.104	0.031	1037	50.194	0	0.088	0.174	1017	39.878	0.005	0.042	0.879	993
Non-																				
moving	135.39	0	0.764	0	1809	91.156	0	0.085	0.121	1543	74.918	0	0.093	0.072	1545	54.538	0	0.094	0.164	1500

16 **Table S1** Test results for the bout distributions when truncated bouts were included. 4 distributions were considered. Results are for the data as a whole with the

17 fixed x_{min} value at the minimum non-zero value of the data. Results displayed are for sampling size 1 Hz and speed threshold 5 mm/s, which were the values used

18 throughout the analysis in the main text. The results indicate that the log-normal distribution was the favoured distribution for all types of bouts in similitude with

19 the analysis when the truncated bouts were not included (see Main Text; Additional File 2, Supplementary Tables S9-S10).

	Restricted Power-law		Exponential	Wei	bull	Log-normal		
Type of bout	X _{min}	α	λ (rate)	γ (shape)	α (scale)	μ (mean)	σ ² (s.d.)	
All	1	1.30	0.019	0.90	48.69	3.32	1.08	
Moving	1	1.29	0.018	0.94	54.10	3.44	1.09	
Non- moving	1	1.31	0.021	0.87	43.41	3.21	1.07	

Table S2 - MLE for the parameters of the four distributions considered for the bout distributions
 when including truncated bouts. Results are for the data as a whole with the fixed x_{min} value at the
 minimum non-zero value of the data. Results displayed are for sampling size 1 Hz and speed
 threshold 5mm/s, which were the values used throughout the analysis in the main text.

1 Additional File 5

2 Categorisation of movement paths as a BRW or a CRW

Here we discuss the methods used to categorise the movement of the beetles as either a
CRW or a BRW at both the individual and population level.

5 It was noted in the main text that at the population level a slight preference in global 6 direction was found (section 3.3). However, when looking at the individual level this apparent 7 preferential angle can be explained by comparing the initial orientation of the beetles along with 8 their final positions. Additional File 5, Figure S1A shows the direction of each individual trial run at 9 the beginning of the experiment, represented as a unit vector in the given direction (the direction was 10 calculated by calculating the mean orientation across the first 10 moving steps of the trial). 11 Additional File 5, Figure S1B shows the final location of the beetle for each trial run represented as a unit vector in the direction of the final position. These figures demonstrate that whilst the initial 12 13 distribution of orientation angles appears to be concentrated towards the top-right quadrant and away 14 from the bottom-left, the final positions of the beetles have become more uniform in distribution. Hence, we conclude that at the population level, there is no consistent long-term global preferred 15 16 direction of movement, and the slight preference in global orientation found when analysing all steps 17 of the movement paths is due to the initial distribution of movement directions.

A direct method of determining if a movement path is better described by either a CRW or
BRW is to calculate the Marsh-Jones Δ-statistic [1] (section 2.3.3); given by:

20
$$\Delta = \frac{1}{n^2} \left[\left(\sum \cos \theta_i \right)^2 + \left(\sum \sin \theta_i \right)^2 \right] - \frac{1}{(n-1)^2} \left[\left(\sum \cos \omega_i \right)^2 + \left(\sum \sin \omega_i \right)^2 \right]$$

21 where, θ_i is the global orientation and ω_i is the turning angle, at time *i*.

Turning angles are calculated as the angle between the direction of successive steps and the global orientation of a given time step is calculated as the angle between the direction at that time step and the positive y-axis. The expected values of the Δ statistic are calculated by extensive simulations using the equivalent number of data points as found in the observed data, therefore, the
value of the statistic depends upon both the number of individuals and the number of time steps.
The global orientation and turning angles for these simulations are drawn from distributions with
resultant vectors calculated directly from the global orientations and turning angles of the observed
data.

The analysis of the results of calculating the Δ-statistic is given in the main text, section 3.3.
Additional File 5, Table S1 shows how the Δ statistic classified each individual trial, with 5 trials
corresponding to a CRW and only one as a BRW. The remaining trials could not be determined as
being either type of random walk.

Figure S1 (A) orientation of all the individual trials (shown as a unit vector in the direction of the
angle of orientation) at the start of the experiment (orientation was taken as the mean of the first 10
steps of movement). In contrast (B) shows the final location of the beetle at the end of the
experiment (shown as a unit vector in the direction of the final location). Each individual colour
represents an individual beetle, as in Figures in the main text.

Beetle	Trial	Δ observed	Predicted (BRW)	Predicted ∆ (CRW)			
1	1	-0.0151	(-0.0079, 0.0626)	(-1.0111, -0.4215)			
2	1	-0.0145	(0.1441, 0.2113)	(-0.7498, -0.6336)			
3	1	-0.0779	(0.2214, 0.2385)	(-0.6161, -0.5434)			
4	1	-0.1473	(0.1567, 0.2196)	(-0.87, -0.6652)			
5	1	0.0433	(0.1669, 0.225)	(-0.644, -0.5636)			
6	1	0.0753	(0.1048, 0.1836)	(-0.719, -0.619)			
7	1	-0.0954	(0.0751, 0.1594)	(-0.9646, -0.5823)			
8	1	-0.2887	(0.0875, 0.1624)	(-0.4506, -0.4046)			
9*	1*	-0.4143*	(-0.0077, 0.0266)*	(-0.4263, -0.3827)*			
10	1	-0.111	(0.1157, 0.193)	(-0.9065, -0.6538)			
11	1	-0.0984	(0.1011, 0.1816)	(-0.9191, -0.6444)			
12	1	-0.5412	(0.0486, 0.123)	(-0.6497, -0.5705)			
13	1	-0.1998	(0.2153, 0.2386)	(-0.6238, -0.5488)			
14*	1*	-0.2871*	(-0.0073, 0.024)*	(-0.2995, -0.2678)*			
15	1	-0.3388	(0.205, 0.2378)	(-0.7348, -0.6249)			
16	1	0.0768	(0.0845, 0.1659)	(-0.7536, -0.6344)			
17	1	-0.3343	(0.1587, 0.2194)	(-0.6182, -0.544)			
18	1	-0.0491	(0.2226, 0.2374)	(-0.5038, -0.4521)			
19	1	-0.1062	(0.2252, 0.2376)	(-0.5697, -0.5057)			
20	1	-0.1286	(0.166, 0.2251)	(-0.8259, -0.664)			
21	1	-0.1229	(0.2069, 0.2389)	(-0.7173, -0.6145)			
22	1	-0.0939	(0.2208, 0.2378)	(-0.5412, -0.4822)			
1	2	-0.1798	(0.1929, 0.2347)	(-0.5347, -0.4768)			
2	2	0.0821	(0.2045, 0.2381)	(-0.5134, -0.4588)			
3	2	-0.135	(0.2067, 0.2394)	(-0.7297, -0.623)			
4†	2†	0.0217†	(0.0147, 0.0929)†	(-0.9175, -0.6462)†			
5*	2*	-0.4462*	(-0.0029, 0.0405)*	(-0.4584, -0.4112)*			
6	2	0.0636	(0.2094, 0.2395)	(-0.5196, -0.4638)			
7	2	-0.1473	(0.2065, 0.2389)	(-0.5373, -0.4801)			
8	2	-0.0093	(0.1448, 0.2095)	(-0.2616, -0.2335)			
9	2	-0.0559	(0.0417, 0.1143)	(-0.1471, -0.1266)			
10	2	0.044	(0.1911, 0.2355)	(-0.5892, -0.5214)			
11	2	-0.1272	(0.2225, 0.2392)	(-0.664, -0.5824)			
12	2	0.0366	(0.145, 0.2131)	(-0.6917, -0.599)			
13	2	-0.2612	(0.0413, 0.1136)	(-0.3539, -0.3173)			
14	2	-0.2799	(0.1629, 0.2209)	(-0.5701, -0.5053)			
15*	2*	-0.6147*	(0.1713, 0.225)*	(-0.9516, -0.6057)*			
16	2	-0.2787	(0.223, 0.2394)	(-0.733, -0.6218)			
17	2	0.0369	(0.2183, 0.2394)	(-0.514, -0.4595)			
18	2	-0.0736	(0.2257, 0.2379)	(-0.5378, -0.4809)			
19	2	-0.0409	(0.1654, 0.2226)	(-0.3359, -0.3026)			
20	2	0.1448	(0.155, 0.2182)	(-0.5614, -0.4984)			
21	2	-0.06	(0.052, 0.1266)	(-0.1694, -0.1479)			
22	2	-0.2325	(0.1278, 0.1987)	(-0.4582, -0.4124)			

1	3	0.0031	(0.0236, 0.1048)	(-0.9285, -0.6358)
2	3	-0.19	(0.0999, 0.1751)	(-0.3687, -0.332)
3	3	-0.0977	(0.1002, 0.1805)	(-0.9257, -0.638)
4	3	-0.4701	(0.1812, 0.2301)	(-0.7996, -0.6538)
5	3	-0.0781	(0.1881, 0.2342)	(-0.7211, -0.6184)
6	3	-0.2405	(0.1994, 0.2364)	(-0.8602, -0.6691)
7	3	-0.3289	(0.0534, 0.1279)	(-0.44, -0.3964)
8	3	-0.2201	(0.0247, 0.0903)	(-0.2874, -0.2571)
9	3	-0.1472	(0.2258, 0.2381)	(-0.6678, -0.5791)
10	3	-0.2246	(0.2163, 0.2396)	(-0.6483, -0.5675)
11	3	0.0318	(0.2214, 0.2394)	(-0.4081, -0.3677)
12	3	-0.0704	(0.1298, 0.2031)	(-0.8328, -0.6674)
13	3	-0.1881	(0.149, 0.2128)	(-0.4508, -0.4059)
14	3	-0.0104	(0.2004, 0.2375)	(-0.6207, -0.5484)
15*	3*	-0.7675*	(0.0905, 0.1657)*	(-0.9685, -0.5703)*
16	3	-0.2012	(0.2077, 0.2386)	(-0.5973, -0.5288)
17	3	-0.2774	(0.1496, 0.2133)	(-0.5446, -0.486)
18	3	-0.035	(0.1863, 0.2336)	(-0.6828, -0.5931)
19	3	-0.0879	(0.2185, 0.2394)	(-0.641, -0.5612)
20	3	-0.2363	(0.0296, 0.0989)	(-0.3149, -0.283)
21	3	-0.3461	(0.0783, 0.1555)	(-0.4961, -0.4437)
22	3	-0.1682	(0.2258, 0.2385)	(-0.6897, -0.5979)

Table S1 shows the Δ statistic calculated from the observed movement paths. The intervals for the expected values of the BRW and CRW were calculated via extensive simulation of random walks generated using the same number of steps as observed in the experiment, and represent the 95% significance level for each respective RW type. Therefore, any observed Δ falling outside these intervals can be rejected a the 5% significance level. Those marked with (*) have observed Δ corresponding to a CRW and those with a (†) correspond to a BRW.

49

- References
- 1. Marsh LM, Jones RE. The form and consequences of random walk movement models. Journal of Theoretical Biology. 1988;133:113–31.