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Abstract— Perception reaction time and mental workload have
proven to be crucial in manual driving. Moreover, in highly
automated cars, where most of the research is focusing on
Level 4 Autonomous driving, take-over performance is also a
key factor when taking road safety into account. This study
aims to investigate how the immersion in non-driving related
tasks affects the take-over performance of drivers in given
scenarios. The paper also highlights the use of virtual simulators
to gather efficient data that can be crucial in easing the transition
between manual and autonomous driving scenarios. The use of
Computer Aided Simulations is of absolute importance in this
day and age since the automotive industry is rapidly moving
towards Autonomous technology. An experiment comprising of
40 subjects was performed to examine the reaction times of driver
and the influence of other variables in the success of take-over
performance in highly automated driving under different cir-
cumstances within a highway virtual environment. The results
reflect the relationship between reaction times under different
scenarios that the drivers might face under the circumstances
stated above as well as the importance of variables such as
velocity in the success on regaining car control after automated
driving. The implications of the results acquired are important
for understanding the criteria needed for designing Human
Machine Interfaces specifically aimed towards automated driving
conditions. Understanding the need to keep drivers in the loop
during automation, whilst allowing drivers to safely engage in
other non-driving related tasks is an important research area
which can be aided by the proposed study.

Index Terms— Mental work capacity, human–computer inter-
action, vehicle ergonomics, perception, virtual environment.

I. INTRODUCTION

THE automotive industry is moving at a rapid phase
towards autonomous vehicles. This involves the cars to

make complex judgments depending upon the road scenarios
in hand. Several big-name companies such as Waymo, Tesla,
and Uber are pushing immense resources into achieving the
most efficient autonomous vehicle technology on the market.
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The development today reflects that there is still quite a
long way to go in achieving fully autonomous driving under
all road environments as well as weather conditions [1]. The
SAE International standard J3016 [2] defines six levels of
car automation, from totally manual (level 0) until totally
automated (level 5). Far from being at level 5, most current
research efforts focus on level 3 and level 4 (like autonomous
minibuses CabiBus [3]). These levels include situations in
which the car handles all the dynamic driving aspects except
the driver taking back control when required (conditionally
automated) or in some driving modes. This, in turn, frees
up the driver to indulge in other Non-Driving Related tasks
(NDR-tasks) while the car is autonomously driving, although
the driver must be able to regain the control as soon as
the system requires it. At this point, it is necessary to have
a comprehensive knowledge under which circumstances the
system should require the driver to regain control of the car,
taking into account the system boundary and the situational
awareness and capabilities of the driver.

Perception Reaction Time (PRT) and mental workload have
proven to be crucial in manual driving [4]–[6]. Meanwhile,
in highly automated cars, Take-Over Performance (TOP) is
an addition variable to take into account for road safety [7].
In these cases, the mental workload is closely related to
immersing the driver in NDR-tasks (s)he is performing
while the car is driving autonomously [8]. Previous studies
found impairments in take-over performance while engaged in
NDR-tasks, but little is known about the impact of specific task
characteristics [9], [10].

This study aims to explore how the immersion in NDR-tasks
affects the success of TOP of drivers in a highway critical
situation and evaluate the influence of several variables, such
as PRT, on this success. For that, 40 participants (mean
age, 31 years old) were selected to evaluate their feet and
hands reaction times under different circumstances in a sim-
ulation environment. In particular, they had to avoid a crash
after taking back the control of the car that previously was
autonomously driving when an alarm was triggered due to
the detection of an obstacle on the road in front of the
car.

The remaining article is structured as follows. Section II
summarizes the state-of-the-art related with the paper.
Section III is devoted the experiment, detailing the data set,
the simulation environment, the procedure and the measures
used for the study. Finally, section IV shows the results
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obtained and section V discuss the results and betrays the
further lines.

II. RELATED WORK

The state of the art is described for the following three
categories.

A. Perception Reaction Time
PRT of human drivers is an active research area within the

manual driving performance domain because it plays a central
role in different road incidents.

Several studies have been carried out to deepen the com-
prehension of PRT’s role in crash risks [4], [11]–[14].
The methodologies range from proposing accident situations
involving surprise factor to examine the reaction times of
drivers and also analyzing reaction times as a factor to take
into account within crash surrogate indicators.

The main results found in these studies are that the reaction
time of drivers seem to be approximately a linear function of
Time To Collision (TTC), and the mean reaction time and
inter-individual variability progressively increases with age
although some other factors such as driver gender, cognitive
load, and urgency might influence in human perception-brake
reaction time. However, the most influential factor is driver
expectation.

All of the above studies were conducted under manual
driving conditions, so they do not take into account the PRT
when the driver is carrying NDR-tasks.

B. Mental Workload

Other studies have been centred on the influence of mental
workload as a crash risk factor [15]–[19]. Mental workload
is not only related to being stressed, fatigued or drowsy
but performing a divided-attention task causes an increase of
mental workload and task demands can exceed the driver’s
attention resources. These studies explore several indicators
from many external sensors, such as pulse rate, skin electric
potential activity or surface temperature, to better determine
the physical and psychological state under different provoked
circumstances. Although the general workload is not well
defined psychometrically [20], all of them coincide that exces-
sive (related to stress) or too low (related to vigilance) mental
workload could derail the quality of driving [21].

Besides, human performance can either deteriorate or
improve depending on the degree of automation which is
introduced in that particular environment [22], so that men-
tal workload should also be taken into account in highly
automated cars. Indeed, PRT and mental workload can be
closely related [23], [24], since increasing workload of the
driver reduces the driver’s ability to process information at
different distances and thus deteriorates driving performances
and increases reaction times. The first study shows that mental
calculations increase the average reaction time for each age
group, while the second one suggests that reaction times can
increase by 40%-87% due to increased fatigue levels, giving
valuable insight into how reaction times are taken into account
via visual perception.

The above studies do appear to be invaluable in assess-
ing the relationship between PRT and mental workload but

assessing these variables under a controlled simulated
autonomous car environment is quite crucial in exploring their
effects further.

C. Control Switching

Last but not least, in highly automated cars, the process
of getting the driver back into the loop is very important.
In this fashion, some authors [25]–[27] explore different ways
to get the driver back to the driving task in a safe manner,
either focusing on signal modalities [25] or designing complete
human-machine interfaces [26], [27]. But still, the automated
system needs to know how far in advance and under which
circumstances it has to warn the driver, depending on the
NDR-tasks the driver is doing or can do, so that the analy-
sis of drivers’ take-over performance is crucial. Concerning
the lead time to safely allow the driver to regain control.
Eriksson et al. [28] review several papers exploring driver
control transitions, although they not take into account sec-
ondary tasks, and carry on an experiment involving secondary
tasks. On one hand, they claim that the reviewed results
differ depending on the emergency the driver perceives (s)he
has to cover on, and, on the other one, they find significant
differences when drivers are engaged in secondary tasks.

Besides, [29] suggests that a take-over request with lead
time at 10–60 s led to lower crash rate, greater mini-
mum TTC, and lower lateral acceleration. However, both stud-
ies do not account for critical control transitions. Some other
experiments [9], [30] exposed drivers to critical take-over
situations and showed evidence that cognitive load on its own
might not influence takeover time but have effects on the
takeover quality. As well, reaction times might be in line with
the driver’s perception of emergency.

In case of being behind the wheel of an autonomous car
such as Tesla S [31], although the drivers were also told that
they were responsible for the safe operations of the vehicle
regardless of it’s driving mode, the recorded data demonstrated
behaviour indicative of complacency and over-trust.

Still, prospectively evaluate the expected limitations caused
by NDR tasks on the driver’s ability to take control of an
autonomous vehicle [32], more research is needed so that
different aspects of NDR tasks can be translated into a
modelling of a framework to predict takeover time or quality.
This makes our present article more relevant as we explore in
detail the different effects that the NDR tasks have on reaction
times of drivers in an autonomous scenario.

III. EXPERIMENTS

A. Participants

Forty participants (10 female, 30 male) between 19 and
45 years old (mean = 30.73, std = 7.086) were recruited.
All of them held a valid driver’s license at the time of the
experiment with a seniority of at least 1 year and at most
26 years (mean = 9.725, std = 7.66). Informed consent was
obtained from each participant before the trials.

B. Simulated Environment and Scenarios

All the experiments studying conditions of the drivers and
involving crash accidents are dangerous to approach on real
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Fig. 1. Driver simulator setup.

Fig. 2. Simulator recorded data.

roads. Simulators are an effective tool in recognizing and
assessing problematic driving scenarios, and hence can provide
vital data that can be used to design more efficient Advanced
Driver Assistance Systems (ADAS), from predicting driver
steering behaviours [33] to evaluating the mental workload
of the driver [19], [34].

Our simulated environment is an efficient and inexpensive
real looking driving environment that immerses the driver
into driving on the highway [35]. The assets required are
fairly standard and upgrade-able, which makes the setup quite
extendable. The setup consists of one camera facing the driver
straight on for capturing the important aspects of driver’s facial
features, a second camera looking towards the steering and
a third one recording precisely the driver’s feet placement.
Consequently, the three cameras can generate a detailed picture
of exactly what the driver is doing at any given instance in
time during a trial. Figure 1 shows the general simulator setup.

The system records several variables (reaction times of
hands and feet, distance to the front car at the alarm triggering
and after a successful stop, and cruise distance of the car in
automated mode) that are visualized on a primary screen as
shown in Figure 2.

The software side consists of Unity3d, which is used for all
the programming of the driver simulator, and other third-party
softwares, like Autodesk 3dsmax and Adobe Photoshop, are
used to generate the required 3d and 2d assets. This includes
virtual cars and road surface assets.

The road surface was modelled to reflect as close as possible
the London Orbital Motorway. To target a modular approach
towards the road environments only two road sections were
produced, the first one being a straight section and the second
one being a 25-degree curved road section. Figure 3 shows

Fig. 3. Road surface model.

Fig. 4. Traffic cars.

Fig. 5. Simulator interior model.

the curved road section. These two sections were then used
in such a pattern that would result in a continuous looping
road environment. By doing a looping road environment we
achieved a never-ending motorway section that could be used
for as long as an experiment is required. The road section
environment is roughly 4 miles long and proves to be a base
for experimenting in the virtual world. Besides the road, basic
tree models were then placed to simulate nature.

The traffic cars as shown in Figure 4 are populated via a
third-party plug-in called ITS (Intelligent Traffic System). This
enables the cars to spawn at a random location every time a
new trial is executed. The cars can overtake other cars and
their speeds can be controlled depending on their placement
on the road i.e. the cars on the fast lane can have a top speed
ranging from 70-80 mph, cars in the middle lane can range
from 60-70 mph and cars in the third lane can range from
50-60 mph. Moreover, the traffic cars can keep a safe distance
from the cars ahead, and when the front car stops due to an
incident the other traffic cars respond accordingly.

Figure 5 shows the virtual interior of the driver car. All the
useful elements of the main virtual car were rigged, ranging



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 6. Simulator proximity model.

from the RPM needle in the dashboard to the brake and
accelerator pedals underneath. The setup consists of both a
hardware steering wheel as well as a virtual steering wheel.
The visibility of the virtual steering wheel behaves like a
bridge between the virtual and the real-world counterpart.
Apart from providing visual feedback, the virtual steering
also acts as a somewhat intrusive figure further simulating the
real-world steering position. The input hardware was rigged
accordingly to respond to the slightest movement from the
driver. The rear-view mirrors were also rigged up to properly
simulate the mirror functionality. Besides, a fully functional
adaptive cruise control was rigged, which allowed the driver
car to keep its lane on the motorway and also allows the
car to maintain a specific distance from the car ahead. The
Adaptive cruise control is split up into two proximity zones,
namely Primary Proximity zone and Secondary Proximity
Zone as shown in the figure 6. The Primary Proximity Zone
forces the autonomous car to maintain an average speed
cruise control resulting in approx 70MPH speed whereas the
Secondary Proximity Zone forces the autonomous car to brake
and increase the distance to the car in front.

The autonomous driving model uses a basic path follow
algorithm with an obstacle avoidance system simulating the
Lidar component. As the study was based mostly on the
driver’s perception there was little to no need for a complex
autonomous model for this experiment.

C. Simulated Situation

The simulated situation consisted of an infinite three-lane
motorway of 4 miles loop, as explained in the subsection
above. The car was driving in autonomous mode and, sud-
denly, the vehicle detected an invisible obstacle, an alarm
was triggered and all the cars in front of it stopped. The
detection time for obstacles randomly varies from trial to trial
but usually, it happens between 2-5 minutes during a trial.
At that moment, all the cars in front stopped and the driver
had to take over the control of the car in order to avoid a
collision. The average distance and the standard deviation of
the main car to the car in front at the time the alarm was
triggered was 40.64 ± 13.34 meters and the velocity of the
car was 45.2 ± 10.97 mph. The traffic can be turned ON on
both sides of the road, but this was not a requirement for
the current experimental setup. Moreover, the drivers had the
instruction of only braking or dodging if needed, depending
on the situation.

To carry out the experiment, a series of plausible scenarios
were needed that a driver would find behind the wheel of an

autonomous car. Following a previous experiment performed
by Eriksson et al. [36], in which he used a newspaper reading
scenario while the car was in autonomous mode, the challenge
was to enable the driver to lose focus on the road ahead
while engaging in secondary tasks inside the car. Secondary
tasks were selected in such a way that they resembled real-life
situations as closely as possible. Hence keeping that in mind,
three different scenarios for the driver were posed while the
car was in autonomous driving mode. The first scenario,
henceforth Default, is termed as the base scenario in which
the driver was aware to the road with the hands and feet ready
to react (hands on the wheel but without touching them and
feet on a marked place very close to the pedals). The second
scenario, henceforth Social, deals with the fact that the driver
was not paying attention down the road, but was freely
immersed in social media activities on her/his smartphone.
Since immersion to social media could be total and the system
is automatically driving, to suppress the variable off-road
glance time, the driver was not allowed to look at the road.
In the third scenario, namely Immersive Question and Answers
(IMQA), the driver was answering a list of questions via a
smartphone. These were relatively basic questions consisting
of the driver’s name, age, hobbies, etc and more cognitive
loaded ones such as some basic mathematical addition and
subtraction questions. Strict guidelines were provided to the
drivers so that they won’t even peek at the road ahead while
the car was driving automatically and the driver is indulging
in secondary tasks (second and third scenarios), the penalty
for which was to start the trial again if the driver looked at
the road during specific scenarios.

Each driver performed the experiment four times in each
scenario under different circumstances, that is a combina-
tion of enabling to dodge or not and a threshold on the
initial distance to the car in front during the autonomous
driving (the approximate distance that the car would keep
from the car in front in autonomous mode). Thus, there are
a total of 12 trials that were carried out on each subject,
although we group the four trials per driver and scenario
as 4 different samples. There are a number of variables
that are being recorded: Hands/feet PRT, cruise distance
threshold to the front car, distance to the front car at which
the alarm is triggered, final distance to the front car after the
car comes to a stop, the speed at which the alarm is triggered,
any traffic cars to the left and right side of the driver’s car,
crashed or not, and if the driver tried to dodge and save
himself. The experiment also includes other basic variables
like the age and gender of the driver and the seniority of his/her
license.

D. Experimental Design

After a brief introduction to the driver simulator, the par-
ticipants were given a trial run with the autonomous mode
disabled just so that they could get the feel and sensitivity
of the steering wheel as well as the pedals. Afterwards,
the autonomous mode was turned on and the participants were
told to take back control as soon as the audio/visual alarm
was triggered by the simulator. Moreover, the participants
were also instructed to place their hands and feet in a neutral
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position during this time. This gave them the initial confidence
in tackling the simulated event and the baseline scenario
(Default). For the next scenario, Social Media, the participants
were briefed to indulge themselves in social media activities
on their smartphones while behind the wheel of the virtual
autonomous car. For the Immersive Question and Answers
scenario, the participants were only given a short briefing
regarding the type of questions that would be asked for this
part of the experiment. All the data recorded during the trials
was used in an anonymous form.

E. Objective Measures

During the experiment, we recorded several objective vari-
ables to be explored under different scenarios.

1) PRT: We understand the PRT as the time that elapses
from the instant that the driver recognizes the existence
of a hazard on the road to the instant that the driver takes
appropriate action. The hazard can result from traffic
cars in front of the driver’s car suddenly stopping and
queuing up, which would alert the driver of a possible
hazard. In this case, the hazard recognition is perceived
thanks to an acoustic alarm. Since we do not have a tool
to measure the time from when the alarm is triggered
until the driver perceives it and the time elapsed from
when the driver perceives it until (s)he acts, we can only
measure the elapsed time from the moment the alarm is
triggered until the moment when the driver reacts.

a) PRT of hands (PRTH): The appropriate action
for hands is steering the wheel. The system only
records the reaction times of the steering once
it receives at least 1 degree of input in either
direction from the driver. Notice that the alarm
is only triggered during straight road sections, so
that normal steering inputs on a curve are absent.

b) PRT of feet (PRTF): The appropriate action for feet
is braking, so that, the system records the reaction
time as soon as it detects pressure on the brake
pedal.

2) Velocity of the car at the time the alarm is triggered.
3) Distance of the car to the one in front at the time the

alarm is triggered.
4) Success of TOP: We consider a success when the car

does not crash.

To answer how the immersion in NDR-tasks affects the TOP
of drivers we analyze the PRTH and PRTF as soon as the alarm
is triggered across different scenarios. As well, we explore the
relationship between the velocity and distance at the moment
the alarm is triggered.

F. Statistical Analysis

According to the objective variables explained in the above
subsection notice that success of TOP can be considered as
a dependent variable, while the remaining ones are indepen-
dent, so that we analyze how such independent variables can
influence on the success of TOP. Also, since the scenario can
influence on the performance of the driver, PRTH and PRTF

can be analyzed across the scenarios to explore if they are
affected by the current scenario.

To decide if PRTH and PRT are affected by the scenario,
a one-way ANOVA should be computed for each variable. This
test is usually used to detect significant differences between the
distributions of more than two factors (in this case the different
scenarios). That is, its hypothesis test associated considers as
null hypothesis H0 meaning the factor has no effect, and as an
alternative that it does. In terms of parameters, the ANOVA
test can be written as follows:{

H0 : μ1 = μ2 = μ3

H1 : ∃ μi s.t. μi �= μ j for some j = 1, . . . , 3

where μi , i = 1, 2, 3 corresponds to the mean of the objective
variable for each scenario.

A requirement for applying an ANOVA is that data is
normally distributed, which can be contrasted by means of
a Kolmogorov–Smirnov test. In particular, the Lilliefors test
is a normality test based on the Kolmogorov–Smirnov one
that compares the empirical distribution of the data with a
normal distribution without any expected value and variance of
the distribution [37]. In case the data does not follow a normal
distribution we can use a non-parametric statistical test, instead
of a parametric one, which analyzes differences among group
medians instead of means. In particular, since each subject
repeats the test for all scenarios in our experimental design,
we can consider a repeated measure one way ANOVA, so that
we use a Friedman test [38].

To measure the strength of agreement between subjects
(effect size) we also compute Kendall’s W , defined as W =
χ2/N(k − 1), where χ2 is the test statistic, N the number of
samples (160) and k the number of scenarios (3). The results
can be categorized as small, medium and large, which in our
case will be [0, 0.10), [0.10, 0.30) and [0.30, 1], respectively.

To analyze the influence of an objective variable on the
TOP success in each scenario, we also need to compute a
non-parametric test in case the data does not follow a normal
distribution. In this case the Wilcoxon rank-sum test [39] is an
alternative to the Student’s t-test for independent (unpaired)
samples and the effect size is computed as r = �Z/N0.5�,
where Z is the Z -statistic, and N is the number of par-
ticipants. In this case, the results are categorized as small
effect = [0.10, 0.30), medium effect = [0.30, 0.50) and large
effect = [0.50, 1].

IV. RESULTS

For each variable recorded there is a total of 480 sam-
ples (40 participants x 4 trials x 3 scenarios). In all tests,
the significance level is 0.05. As well, none of the variables
follow a normal distribution because the null hypothesis of the
Lilliefors test is rejected with a p-value less than 0.05.

To have a visual idea of the distributions of PRT on each
scenario, figure 7 shows the boxplots of the 3 global scenarios
(Default, Social and IMQA) for PRT of hands and feet. The
first observation is that the hands reaction times are higher as
compared to their feet counterpart in all scenarios. Outliers,
in this case are reflecting the non-normality of the data. One
plausible explanation about this non-normality is that there
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Fig. 7. BoxPlots of PRTH and PRTF among the three scenarios.

TABLE I

MEAN ± STD, MEDIAN (IN SECONDS) AND
p-VALUES FOR PRTH AND PRTF

were some instances where the drivers failed to input any
motion within the steering or the feet resulting in a crash,
the reaction times were recorded only after the user performed
any input, this caused the system to record higher than normal
reaction times, hence the outliers.

The corresponding measures of central tendency are
reported in Table I. For each scenario we report the ranges
(mean ± std), medians and p-values of the Wilcoxon
Signed-rank test, which is the same as Wilcoxon rank-sum
test, but for paired data.

The results of the test verify the above visual observation
with a global p-value of 6.2954e-33, ensuring the significant
difference between PRT for hands and feet. This is due to the
fact that drivers, when suddenly encountering an obstacle, tend
to prioritize to use the brake pedal before putting any input
into the steering wheel hence resulting in the above higher
reaction times for hands.

Still, the global average reaction time was 3.51 seconds
for hands and 2.47 seconds for feet which coincides with the
minimum amount of time described in [40] in which drivers
can take over the control of vehicle safely and comfortably in
this situation.

The results of Friedman test for PRTH show that there
are no significant effects among the 3 scenarios, χ2(2, N =
160) = 3.6904, p = 0.1580, W = 0.0115, although the
strength of agreement among drivers is very small. That means
that drivers take more or less the same time to steer the
wheel in both scenarios. However, in the case of feet there are
significant differences between at least one of the scenarios,
with a medium strength of agreement: χ2(2, N = 160) =
44.3974, p = 2.2868e − 10, W = 0.1387. To know what
scenario is different from the rest, a multiple comparison test
has been computed using the output of the Friedman test and
shown in Figure 8. Two means are significantly different if
their intervals are disjoint, and are not significantly different
if their intervals overlap, so that the significant difference in
PRTF is on the default scenario against the other two.

These results make sense from the point of view that drivers
have to avoid a sudden hazard on the road, so probably the
first instinctive action would be braking, taking into account

Fig. 8. Multiple comparison test of PRTF among the three scenarios.

TABLE II

PERCENTAGE OF SUCCESSES OF TOP AMONG THE 3 GLOBAL SCENARIOS

TABLE III

PERCENTAGE OF SUCCESSES OF TOP BY GENDER
AMONG THE 3 GLOBAL SCENARIOS

that the alarm is triggered at the same time the cars in the front
stop. In this way, as we pointed out before, the reaction time of
hands is not relevant in any scenario, but drivers’ reaction time
of feet might be slower in NDR-tasks scenarios due to their
cognitive processing [41], and the driver’s lack of attention to
the road.

Still, another interesting point is the success of the TOP
action by itself, which is reflected in table II. We can appreci-
ate a slight peak of failures in the Social scenario, although it is
not significant (Pearson’s chi-squared test [42]: χ2 = 3.2881,
p − value = 0.193 at significant level of 0.05). There are
no significant differences in PRT among Social and IMQA
scenarios either, but probably social activities provokes a
deepen immersion than questions and answers, so that there
are more crashes. If we separate by gender, we can observe
that the peak in social scenario remains, as table III suggest.
As well, we can notice that females have less crashes than
male, although these data could be biased since the number
of females is 1

3 than males.
As well, we can assess the relationship between variables

such as velocity, distance or PRTH and PRTF and the success
of TOP in each scenario. Global descriptive statistics from
figure 9 show that the clearest variable that has significant
differences between crashing or not is the velocity. Other
variables like Occlusion and aggressive traffic cars had little
part to play because the experiment was targeted towards a
controlled study of driver’s perceptions in a given scenario.
That is, the bihistogram of velocity is the most asymmetric
one, having most of the no-crash samples lower velocity than
most of the crash ones.

This fact is proved by means of the Wilcoxon rank-sum test,
summarized in table IV. In all the scenarios we can reject the
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Fig. 9. Bihistograms of the distributions of the different variables about their
success of TOP.

null hypothesis so that we have evidence that the medians of
the velocity when crashing or not differ.

Table V for the variable of the initial distance of the car
to the one in front at the time the alarm is triggered shows
that, depending on the scenario, their medians when crashing
or not significantly differ, although p-value is very close to the
significant level. If we do not take into account the scenario,
the p-value obtained rejects the null hypothesis, but we can
appreciate that the effect size is small, unlike in the case of
velocity.

TABLE IV

WILCOXON RANK-SUM TEST FOR THE RELATIONSHIP
BETWEEN VELOCITY AND CRASHING

TABLE V

WILCOXON RANK-SUM TEST FOR THE RELATIONSHIP

BETWEEN INITIAL DISTANCE AND CRASHING

TABLE VI

WILCOXON RANK-SUM TEST FOR THE RELATIONSHIP
BETWEEN PRTH AND CRASHING

TABLE VII

WILCOXON RANK-SUM TEST FOR THE RELATIONSHIP

BETWEEN PRTF AND CRASHING

If we focus on the relationship between PRT and success
of TOP we can observe that PRTH maintain the little rele-
vance they already had across the scenarios. Table VI shows
that p-values are much greater than the significance level.
It makes sense in the light of the foregoing. On the contrary,
PRTF seems to impact on the success of TOP, since there
are significant differences between crashing or not in most
of the scenarios, with a medium effect size. In the case of
Social scenario, the null hypothesis can not be rejected. but
the p-value is very close to the significance level.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we explore the influence of several variables
related to driver-vehicle interactions in an automated driving
mode under different scenarios in a simulated environment.
In particular, we assess the reaction times of drivers after
an unforeseen hazard appears in front while the car is in
autonomous driving mode during which the driver is engaged
in NDR-tasks. This hazard is alerted by an acoustic alarm
and the driver has to regain car control to avoid a crash with
the cars stopped in front. This experiment has proven to be
a step up from the last version of the driver simulator [35].
Significant modifications were made to get the most amount
of usable data from the 40 subjects. As well, the recorded
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data can then serve in designing complex Advanced Driver
Assistance Systems for future Autonomous Vehicles.

One interesting aspect of the recorded results indicate that
PRTF of subjects that were involved in NDR-tasks has sig-
nificantly longer reaction times as compared to subjects who
were paying attention to the road. The experiment also seems
to show that not all secondary tasks result in higher PRTH.
In accordance to that, the results reflect the fact that the reac-
tion times of Social Media usage is higher than the reaction
times for IMQA, although these results are not significant.
The results also show that the reaction times for subjects are
within the 5-second mark, which was noted in other previous
research papers [34].

Experiments also shed a light on the fact that the increase
in reaction times due to secondary tasks can affect the quality
of driving of subjects in any given scenario [43], as well as
other variables that can play an important role. In this way,
our results sustain the hypothesis that the velocity is one of
the most influential variables in the success of TOP as we
previously claimed [35].

From the point of view of safety for passengers, we can
observe that the most influential variable for safe driving
is speed, whether the car drives automatically or the driver
does. Besides, drivers have a shorter reaction time with
their feet than with their hands when trying to regain control
after performing NDR-tasks, so PRTF could be the second
most influential variable for safe driving under that conditions.
At this point, gender should be another factor to consider,
having balanced data to infer.

Since another important variable, which is out of the scope
of this article, is the lead time [29], further lines will be
focused on the relationship between lead time, velocity and
NDR-tasks. Indeed, the implications of these results are impor-
tant for understanding the criteria needed for the appropriate
design of Human Machine Interfaces in automated driving
conditions, to ensure that messages regarding the transfer of
control are given in a timely and appropriate manner, which
is another important area in need of further research [10].
Understanding how to keep drivers in the loop during such
automation will allow drivers to safely engage in other
NDR-tasks.

Finally, the experiment also forwards the notion that using
simulators is a vital part of pushing forward the development
of new systems that can provide the drivers of future with
necessary assistance in keeping themselves and other road
users safe [19]. The resulting data is quite beneficial and it
will serve as a dataset for future research like convolutional
neural networks development and analysis to test new ADAS
algorithms. As well, we have recorded data from 3 webcams
monitoring the head, hands and the feet, that can be used
to further analyze driver performance with regards to driver
psychology and mental workload under autonomous driving
conditions. This is particularly important as described by Gaku
Iizuka [19], who claims that changes in driver behaviour
are observed in all parameters such as blood oxygen levels
and gaze perception. Monitoring the cognitive state of the
driver could replace several parameters from other convoluted
sensors.

This study provides significant insight into how driver’s
would react when they are behind the wheel of an increas-
ingly autonomous car in a real life scenario. It also reflects
the implications of poor driving behaviors which can result
in fatalities for the future drivers. Better acoustic alarms,
cognitive screening of driver’s interactions and better lead
time calculations can all result in a more effective and safe
autonomous driving systems.

VI. KEY POINTS

• Experiment shows that not all secondary tasks result in
higher Perception Reaction Times.

• Experiment shows that the Perception Reaction Times
have a global average of 3.51 seconds for hands and
2.47 seconds for feet.

• The study shows that any secondary tasks while driving
result in deterioration of quality of driving.

• The implications of the results are important in under-
standing the criteria needed for designing Human
Machine Interfaces for autonomous driving vehicles.
This can include entities such as Driver’s awareness to
his/her surroundings which can be monitored by ADAS
resulting in a more enhanced driving experience.

• The study also highlights the fact that the true self-driving
cars can be hazardous if they lack the proper systems that
can observe the driver’s behavior in a timely manner.
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