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Thesis Abstract 

With aquatic environments changing in the Anthropocene at unprecedented rates, 

phytoplankton are under enormous abiotic pressure to cope with environmental conditions 

they did not encounter in the past. In this thesis, I investigated the growth and competitive 

response of algae to changes in temperature and nitrogen concentrations across high 

resolution temperature gradients. The first three data chapters of this thesis concentrated on 

the response of isolated algae species to changes in their thermal environment. Focus lay on 

whether thermal adaptations could occur when culturing algae for extended periods of time at 

elevated temperatures. My results showed that warming does not necessarily lead to thermal 

adaptation and that the responses will not be as simple as a mere shift in thermal performance 

curves towards warmer temperatures. For the last two data chapters I focused on mixed 

populations of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana and how 

they compete across stable and fluctuating temperatures under high and low nitrate 

concentrations. I could show that under stable thermal conditions, the outcome of competition 

could be well predicted; both in nutrient-replete and nitrogen-limited conditions, but those 

predictions became less reliable under fluctuating temperatures. This thesis provides further 

insight into adaptation and competition in phytoplankton communities faced with 

environmental change. The gained knowledge can provide a better understanding of some of 

the uncertainties and limitations surrounding the prediction of future phytoplankton 

community composition from single species responses and teaches us to be cautious when it 

comes to extrapolating experimental results from the laboratory to natural environments. 
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1. Chapter 1: General Introduction 

1.1 Phytoplankton communities 

Phytoplankton is the term used to refer to free-floating algae that can be found in almost all of 

the world’s water bodies (Lalli and Parsons, 2006). Phytoplankton is a taxonomically diverse 

group that consists of thousands of species, ranging from prokaryotic cyanobacteria to 

unicellular eukaryotes like diatoms and coccolithophores that form beautiful and complex cell 

walls out of silica or calcium carbonate, respectively (Suthers and Rissik, 2009). Even colonial 

organisms like Volvox, and free-floating marcoalgae like Sargassum form a part of 

phytoplankton (Beardall et al., 2009). Phytoplankton communities can be comprised of several 

dozens to thousands of species (Lalli and Parsons, 2006), and these communities form the basis 

of aquatic food webs and global biogeochemical cycles in oceans, rivers and lakes. 

Phytoplankton species are commonly microscopic and have a high level of inter and intra-

specific genetic variability (Schaum et al., 2018). They are often regarded as good model 

organisms to study ecological and evolutionary questions because they can display short 

generation times (e.g. several hours under optimum growth conditions), and because some 

species are relatively easy to culture under laboratory conditions, in flasks or on petri dishes. 

Furthermore algae are increasingly gaining relevance for biotechnological applications so that 

interest in their ecology and physiology is growing not only in the scientific community, but also 

in industry (Andersen, 2005).  

As photoautotrophic organisms, phytoplankton take up large quantities of atmospheric carbon 

dioxide (CO2) in the sun-lit surface layers of water bodies and roughly account for half of the 
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world’s oxygen production (Suthers and Rissik, 2009) by converting inorganic carbon with the 

energy from sunlight into organic compounds through photosynthesis [1]. 

             6 CO2  + 6H2O  ⟶    C6H12O6 + 6O2                   [1] 

Being such important organisms with a wide-ranging influence on the biotic and abiotic 

environments, alterations amongst phytoplankton communities have the potential to affect the 

Earth’s aquatic ecosystems (Crowder and Norse, 2008; Falkowski et al., 1998; Thomas et al., 

2012). For instance, changes in competitive dynamics between species would change 

community composition and would consequently lead to altered ecosystem functioning 

(Thomas et al., 2012). This is because different algal groups and assemblages sequester carbon 

differently, photosynthesize at varying rates, or take up nutrients with different efficiencies 

(Prézelin et al., 2004). Altered community composition would therefore have large-scale 

implications and affect global biogeochemical cycles and aquatic food webs (Han and Furuya, 

2000; Karl et al., 2001; Prézelin et al., 2004). 

In order to predict and prepare for such potentially influential changes, it is crucial to 

understand how temperature changes and alterations in nutrient concentrations will influence 

aquatic systems and impact phytoplankton, from single species to simple and complex 

communities. This thesis provides new information to help fill some of the knowledge gaps to 

further our understanding and predictive capability on the responses of phytoplankton 

communities to future environmental change. 

1.2 Changing aquatic environments 

Anthropogenically induced climate change is a reality beyond any scientific doubt. Currently, 

ecosystems on our planet are changing rapidly under the pressure of the Anthropocene in a 
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complex combination of man-made and natural drivers (Duarte, 2014), and these changes are 

exerting their influence on aquatic systems (IPCC, 2013). In natural environments, organisms 

are constantly under the influence of multiple environmental parameters changing at the same 

time, which can lead to non-linear and unpredictable responses (Folke et al., 2004; Lawson et 

al., 2015). Predictions of the conditions in a future ocean include an overall warming of sea 

surface temperatures, a more stratified water column and a reduction of sea ice coverage 

(Berdahl et al., 2014; Bopp et al., 2013; Yoshiyama et al., 2009). As a consequence of more 

stratified water columns decreased nutrient loadings of nitrogen and phosphorus are expected 

(Iglesias-Rodríguez et al., 2002). In contrast, coastal waters in some areas are predicted to 

increase in their nutrient load due to run-off from human activities (Lemley et al., 2019; Shuler 

et al., 2019). Surface water pCO2 is expected to decrease and pH to decrease, which will also 

lead to a reduced uptake of CO2 from the atmosphere (Bopp et al., 2013; Gruber, 2011). As 

hypoxic areas are expected to expand, O2 contents of surface waters are forecasted to fall on a 

global scale (Bopp et al., 2013).  

These changes will exert their influence on phytoplankton by impacting their physiology and 

consequently ecology. Changes in temperature for example can alter the rate at which a 

biological reaction increases or decreases for every 10 °C temperature change (this is known as 

the Q10, which is species specific) so that the abilities to take up and store nutrients are always 

determined by external conditions (Fujimoto et al., 1997). Warming in already warm habitats 

where species live close to their maximum temperature may for instance shift community 

composition in a direction where only species that can sustain warmer temperatures would 

survive, with other community members dying off if there is no potential for migration or 

adaptation. Even though fluctuations in abiotic parameters might allow for periodic relief of 
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environmental pressures, overall raised temperatures would likely lead to the disappearance of 

species that encounter their physiological limits. Whether a species is a thermal specialist with 

a narrow range of temperatures it can survive, or a generalist that can sustain a large range of 

temperatures at which it can grow will therefore play an important role (Listmann et al., 2016). 

A reduction in biodiversity as a consequence of warming or change in nutrient concentrations 

when species cannot cope with the changes would have the potential to severely reduce the 

functionality of primary producer communities, turning an area into a functional desert where 

ecosystem processes are not performed at former levels or disappear altogether (Ptacnik et al., 

2008). The extent to which the environment will change and how much phytoplankton will be 

impacted by it will depend on the region (Joshi et al., 2011), and ultimately, how changes will 

affect the various life forms on our planet will depend on an individual’s ability to adjust to their 

new environment, either through phenotypic plasticity and/or genetic adaptation. 

Environmental changes will not necessarily be gradual and unidirectional throughout the 

coming decades either. Natural environments are heterogeneous in space (Cloern and Dufford, 

2005; Tilman et al., 1982), and time (Litchman, 2000; Tilman et al., 1982), meaning that 

phytoplankton do not live in constant environments but within dynamic surroundings that 

change hourly, daily, and seasonally. Sea surface temperatures have seen a rise since the onset 

of the industrial revolution, but more and more studies point out that fluctuation intensities 

and frequencies are changing alongside an increase in the mean environment (Alexander et al., 

2018; Huntingford et al., 2013; Lawson et al., 2015). It is therefore apparent that there is also 

an increasing need to assess biological processes under fluctuating environments. For example, 

since 1980 the interannual temperature variability in the Northern hemisphere has increased 

by more than 25%, although the exact magnitude is region specific (Huntingford et al., 2013).  
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Besides environmental changes having an influence on the primary producer community 

directly, they also bring indirect consequences by affecting all trophic levels in marine 

ecosystems such as microzooplankton and fish (Walther et al., 2002). Changes in predator 

communities can change top-down controls through altered directed grazing pressure on 

phytoplankton communities (Rose et al., 2009). With changes in water stratification patterns 

throughout an annual cycle, temporal peak abundances not just in phytoplankton, but also in 

zooplankton and fish larvae will be altered so that bottom-up and top-down controls will not be 

the same as under past and current environmental conditions (Edwards and Richardson, 2004). 

Alterations in the timing of annual blooms of phytoplankton will impact the trophodynamics of 

the marine food web and lead to asynchrony of established species succession and predator-

prey dynamics (Asch et al., 2019; Edwards and Richardson, 2004). Due to these complexities, 

the scientific community is still struggling to accurately predict specific ecosystem responses to 

environmental changes as they will occur within complex communities and indirect and direct 

effects will exert their influence simultaneously, so that overall effects of environmental change 

are difficult to foresee.  

1.3 Phytoplankton response to changing environmental conditions  

When phytoplankton are faced with environmental changes, they have the potential to 

disperse to regions with more favourable conditions, to cope with the changes in situ through 

phenotypic plasticity or genetic adaptation, or face mortality (Gienapp et al., 2008). How 

species will ultimately respond is going to depend on the organism, the region they occur in, 

and community composition. As there is a plethora of environmental parameters that can 

change and influence phytoplankton, delving into all of them in detail could fill a book. 

Temperature and nutrient concentrations have been identified as two of the most important 
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drivers to phytoplankton growth (Elser et al., 2009; Follows et al., 2007; Toseland et al., 2013), 

and are the major aspects investigated in this thesis. Temperature rise has currently a global 

relevance in the light of climate change, and macronutrients such as nitrogen and phosphorus 

are often limiting to algal growth (Klausmeier et al., 2004), so that changes in their 

concentrations could lead to major restructuring of phytoplankton communities. Two other 

important aspects which were found to drive phytoplankton biomass change and functional 

diversity, that were however not covered in this thesis, are the direct and indirect effects of 

mixing of water masses (Perruche et al., 2010), as well as increasing CO2 levels and the 

connected acidification of surface waters (Dutkiewicz et al., 2015). 

1.3.1 Responses to individual drivers 

Species diversity amongst phytoplankton is high and the response to environmental changes 

will be diverse (Litchman et al., 2010), as different species have different resource requirements 

(e.g. Tilman, 1977) and reaction norms (Thomas et al., 2012). The response of any species to 

environmental change will depend on the magnitude, time scale and frequency of the change. 

As a general trend however, species from natural environments were found to grow best under 

the temperature conditions they were isolated from, and were found to develop a tolerance to 

the water masses that they live in (Interlandi and Kilham, 2001; Suzuki and Takahashi, 1995).  

Despite existing differences in responses to environmental changes between different species, 

reaction norms within a single species have been also found to vary substantially. In natural 

environments, individuals and populations of the same species can have “relevant physiological 

differences” although their genetic variation lies within the limits of being defined as one 

species (Rocap et al., 2003). These differences may be a result of inherent phenotypic variability 

within strains of the same phytoplankton species (Schaum, 2014), or due to variations amongst 
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different life cycle stages, for example the sexual and vegetative stages of diatoms (Chepurnov 

et al., 2004). Natural populations of the same species that display varying responses to the 

same environmental conditions can be classed as ecotypes. These specific ecotypes can give 

insights into the genetic variation of phytoplankton across varying habitats and can help to 

understand how phytoplankton may cope with different environmental conditions. The 

common marine cyanobacterium genus Synechococcus has been found to have about a dozen 

subclades with distinct physiological characteristics, displaying latitudinal differences in their 

distribution that are likely down to variations in thermal responses as well as nutrient 

concentration and light preferences (Pittera et al., 2014). 

Like ecotypes from natural environments, laboratory cultures that have been kept for long 

enough time or under specific selective conditions, can differentiate into strains that react 

differently to the same treatment (Lakeman et al., 2009). As “strains” we classify individuals 

and populations from the same species that come from distinct spatial origin or have been kept 

as a specific lineage and cultured over a period of time through serial transfers (Lakeman et al., 

2009). These laboratory lineages have the potential to change, as their genome can be altered 

over time in culture through random mutations causing physiological or morphological 

differences (Schaum et al., 2018), giving them properties that become unique to a specific 

laboratory and change environmental responses in comparison to the initially isolated 

individual. Exposing strains of one species to the same treatment can yield further insights 

about intra-specific genetic variation and the potential need for adaptations (Lakeman et al., 

2009; Schaum, 2014). 

Regardless of this inter and intra-species variability, research has attempted to draw 

generalised conclusions concerning ongoing climate change. Overall, phytoplankton community 



Chapter 1: General Introduction 
 

8 
 

biomass and composition are expected to change due to redistribution and differences in 

adaptive capabilities (Hallegraeff, 2010; Montes-Hugo et al., 2009; Winder and Sommer, 2012). 

Globally, the species composition within plankton communities is predicted to shift towards 

species adapted to higher average temperatures due to global warming (Dutkiewicz et al., 

2015). Whereas at high latitudes algal biomass is expected to increase, potentially due to 

warming and migration, it is expected to decrease at middle to low latitudes, leading on 

average to a global decline in phytoplankton biomass (Boyce & Worm, 2015). 

Changes in the nutrient contents of water masses are also expected to have significant 

influences on how future communities will be structured because of differing nutrient uptake 

rates amongst phytoplankton taxonomic groups (Davey et al., 2008; Heil et al., 2007; Tilman et 

al., 1982). A model that predicted the global distribution of diatoms, coccolithophores, and 

prasinophytes in the North Atlantic and North Pacific for instance found that depending on the 

system, increased N:P ratios in the water column will have direct and varying effects, but also 

interplay with other factors such as altered iron supply (Litchman et al., 2006). For the North 

Atlantic it was predicted that diatom biomass would be unaltered, whereas zooplankton and 

prasinophyte concentrations would increase significantly and coccolithophores would decrease. 

In contrast, in the North Pacific, no decreases relating to higher N:P ratios were found, but 

abundances of diatoms, prasinophytes and zooplankton were predicted to increase due to 

more nitrate and silicate in the upper ocean layers, while coccolithophore abundances in the 

North Pacific were not expected to decrease (Litchman et al., 2006). Modelling by Litchman et 

al. (2010) found that small cyanobacteria with high surface-to-volume (SA:V) ratios should 

outcompete larger phytoplankton species with lower SA:V ratios in oligotrophic nutrient 

conditions that are predicted in future oceans.  
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In contrast, under high nutrient conditions, larger cells such as those of green algae are 

expected to have the advantage in competition scenarios as they are not diffusion limited when 

nutrient concentrations are high and can achieve higher growth rates and biomass than smaller 

cells (Falkowski and Oliver, 2007; Shimoda et al., 2016). As an example, more stratified water 

columns with reduced nutrient concentrations will likely be disadvantageous to diatoms and 

their dominance in phytoplankton communities is predicted to decline, as nutrient-rich 

conditions are more beneficial to them (Bopp et al., 2005; Malviya et al., 2016). However, 

despite their reliance on high nutrient concentrations, diatoms were shown to prevail well in 

temporally heterogeneous environments and survive nutrient-depleted periods because they 

can store resources when nutrient concentrations are high (Tozzi et al., 2004). In addition to 

advantages or disadvantages emerging from differing SA:V between species under predicted 

lower surface layer nutrient contents and increased stratification of ocean layers due to 

warming, Iglesias-Rodriguez et al. (2002) concluded that diatoms would also be outcompeted 

by coccolithophorids in the future oceans because coccolithophores have a higher affinity for 

nitrogen.  

As a confirmation of these modelling studies, nutrient loading in natural environments has 

indeed been found to shift a phytoplankton community to be dominated by larger cells 

(McAndrew et al., 2007). Nutrient pulses lead to phytoplankton communities being dominated 

by diatoms, especially pennate ones (Shimoda et al., 2016), and the overall Chl a concentration 

to increase (Alexander et al., 2015). Diatoms often dominate plankton communities in areas of 

upwelling (Irwin and Oliver, 2009; Tilstone et al., 2000). Decreases in silicate inputs to aquatic 

systems, in combination with anthropogenic N and P inputs have shifted or will in the future 

change the N and P to Si molar ratios, causing diatoms to be less abundant, with freshwater 
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and coastal communities becoming more dominated by flagellates which enter the freed-up 

niche space left behind by diatoms (Geider et al., 2014). 

As the above-mentioned studies show, changes in body size play a crucial role under 

environmental change, and cell size alterations have ecological consequences that will be 

crucial in determining future community structure. A change in body size is directly linked to 

the SA:V ratio, and therefore a major determinant of how well phytoplankton can take up 

nutrients and compete (Morán et al., 2010). Body size also plays a role in determining grazing 

pressure. For instance, smaller phytoplankton species are grazed upon by microzooplankton, 

whereas larger cells are removed by mesozooplankton (Cermeño et al., 2008; Morán et al., 

2010), resulting in top-down control of populations (Peter and Sommer, 2012), and freeing up 

niche space for species to become more abundant.  

The temperature-size rule (TSR) links body size to temperature and states that the average size 

of individuals is inversely related to how warm it is (Peter and Sommer, 2012). This negative 

correlation has been shown to lead to higher cell densities as cells become smaller when 

temperatures rise (Li et al., 2006). Despite this general trend, the TSR was found to not be 

universal and different relationships between body size and temperature could be found in 

phytoplankton (Morán et al., 2010). Especially diatoms could have smaller cells when 

temperatures rise as warmer environments spur metabolic rates and therefore cell division, 

leading to a continuous reduction in cell size due to their unique silica cell walls (Peter and 

Sommer, 2012).  

One ocean-wide study came to the conclusion that cell size in phytoplankton is not controlled 

by temperature directly as the TSR states, but through its interaction that it has with nutrient 

availability, light, and increased grazing pressure, which gets more intense as predator 
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metabolic rates rise when it gets warmer (Marañón et al., 2012). Untangling these interactive 

effects and determination of what role the TSR plays, will have to be elucidated further in the 

future (Chen and Liu, 2010).  

Due to the complexity of abiotic and biotic parameters influencing phytoplankton ecology, not 

enough is known yet to make conclusive statements on the future abundance and distribution 

of species (Rost et al., 2008). Since aquatic environments are highly dynamic and varied, it is 

possible that there will always be sufficient niche space to sustain high biodiversity. It is 

therefore likely that species will still coexist in diverse communities, even if the abundance, 

distribution, and evenness within them will be different than under current conditions 

(Dutkiewicz et al., 2015). It has been predicted that due to all the expected shifts in 

phytoplankton competitive dynamics and maladaptation to novel climate conditions, the 

phytoplankton community composition in the North Atlantic will change by approximately 16% 

by the end of the 21st century (Barton et al., 2016). Communities will change in terms of their 

species composition and distribution, and species that have potentially never encountered each 

other before will meet and compete for resources (Barton et al., 2016). Hence understanding 

the response-variety of different phytoplankton groups and the individual characteristics of a 

system under observation is important for consolidating region-specific conditions and future 

responses.  

1.3.2 Responses to multiple drivers 

Response to changes in algal ecology and cell physiology along environmental gradients has 

often been investigated by growing cultures under controlled conditions and observing how 

they respond to alterations in isolated parameters (Baker et al., 2016; Boyd et al., 2013; Low-

Décarie et al., 2011). These experimental findings are then incorporated into ecosystem models 
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to simulate current and future ecosystem functioning, nutrient cycles, and species dynamics 

(e.g. Dutkiewicz et al., 2015). Investigations on the effects of isolated parameter changes and 

single gradients provide a mechanistic understanding of species response to single drivers, 

which form the basis of understanding phytoplankton physiology. In contrast, in natural 

environments organisms are exposed to a multitude of changing abiotic parameters 

simultaneously, so that predictions made from isolated investigations are not necessarily 

representative of reality (Kordas et al., 2011; Kratina et al., 2012), and findings of single 

parameter studies cannot be simply extrapolated to answer scenario-based questions. More 

complex and informative experimental designs have to be found in order to bring predictions 

closer to reality (Boyd and Hutchins, 2012; Boyd et al., 2019, 2016; Kratina et al., 2012).  

Responses to concurrent alterations in multiple parameters, such as temperature and nutrient 

levels jointly, may be different from when only one variable is altered, as the effects can be 

interactive (Dickman et al., 2006; Feng et al., 2010, 2009; Fu et al., 2007; Hare et al., 2007; 

Maddux and Jones, 1964). For instance, it was shown that the growth performance of the 

diatom Thalassiosira pseudonana along a temperature gradient depends on the amount of 

nitrogen present in the growth medium (Thomas et al., 2017). Shifts in community composition 

may become non-linear due to the interplay of antagonistic or synergistic effects which could 

not be predicted from the response to one variable in isolation (Christensen et al., 2006; Folke 

et al., 2004; Schlüter et al., 2014). The more parameters are altered, the more complex and 

diverse can the response become (Boyd, 2019; Strzepek et al., 2019). When conducting 

experimental studies of phytoplankton populations that assess the response to environmental 

changes, it is therefore important to attempt to replicate nature’s complexity to gain a better 

understanding of how phytoplankton communities will respond under future environmental 

conditions. As two major structuring forces of community composition, it is therefore 
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worthwhile to combine the investigations of responses to thermal changes with responses to 

alterations in nutrient concentrations to uncover interactive effects. 

1.3.3 Evolutionary adaptation to environmental change 

The majority of aforementioned studies that aim to predict phytoplankton responses to 

environmental change assume that performance across gradients will be static through time 

and might not adapt to long-lasting environmental changes. Recent publications however 

suggest the opposite, so that predictions of future community composition might be offset 

through adaptations (e.g. Beckmann et al., 2019; Schaum et al., 2017).  

Adapting to novel environmental conditions might bring a trade-off between competitive and 

adaptive ability in phytoplankton. Species that would be able to adapt to a new environment 

and thus ensure long-term survival under the new conditions, would potentially become less 

competitive at the conditions they were initially from (Litchman et al., 2012). For instance a 

study that investigated species dominance in a natural community showed that species 

persistence can change after a selection period. A community from a natural environment was 

cultured and species succession monitored over time. Single species from the community were 

isolated and adapted to higher temperatures for a year, after which the community was re-

assembled. Diatoms that were rare and only present in low abundance in initial communities 

seemed to completely lose their competitive ability after being grown at elevated 

temperatures, whereas warming boosted the ability of already dominant diatom species to 

outcompete all other species faster than before the selection period (Tatters et al., 2013b). 

A study that investigated the effects of disturbance frequency on the green algae 

Chlamydomonas found that the direction and manner of genotype adaptation was more 

predictable when disturbances were frequent than in environments where abiotic conditions 
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were disturbed less often (Collins and De Meaux, 2009). Other laboratory studies on 

experimental evolution have shown that adaptation to increased temperatures could be a 

common trait in phytoplankton species (Huertas et al., 2011; Padfield et al., 2015; Schaum et 

al., 2017; Schlüter et al., 2014). The full potential for rapid adaptation in phytoplankton to 

balance out adverse effects of oncoming climate change still remains to be elucidated and two 

of the chapters of this thesis are dedicated to the investigation of physiological adaptations as a 

consequence of increased temperature.   

1.4 Phytoplankton Competition and Nutrient Availability 

Understanding and predicting the response of isolated species to environmental changes is one 

aspect of phytoplankton ecology. However grasping how species react in mixed cultures is of 

crucial importance as well. Boyd and his colleagues (2013) for instance investigated the growth 

response to temperature of 25 algal strains in isolation from across the world, but 

acknowledged that in mixed communities growth of the strains might be altered when other 

algae are present.  

Species in phytoplankton communities are in constant competition for a limited amount of 

resources. The most common resources limiting growth are nitrogen, phosphorus, silica, iron, 

light and carbon dioxide (Tilman et al., 1982). Traditional competition theory predicts that the 

species able to live at the lowest concentration of a common resource and able to maintain the 

highest production rate will outcompete all other competitors. This so-called resource-ratio 

hypothesis (R* rule) predicts that the maximum species richness in an equilibrium community is 

set by the number of limiting resources (Interlandi and Kilham, 2001). It has been shown that 

the competitive outcome in direct species competition is defined by nutrient availability and 

the ability of a species to take up nutrients more efficiently (Sommer, 1989). The minimum 
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nutrient concentrations necessary for a species to survive can be visualised by plotting zero net 

growth isoclines (ZNGIs) across combinations of the minimum resource concentrations 

necessary to sustain growth without a decrease in population size (Fig. 1.1). Species competing 

for the same resources have ecological niche overlap (Letten et al., 2016), and the stronger the 

common requirement for an essential resource, the stronger will be the competition. Two 

species with the same or similar ecological niche cannot coexist if not separated geographically 

or through partitioning of resources (Begon et al., 2006; Ricklefs and Miller, 1999). However, if 

their ZNGIs overlap and both species in a two-species mixed population have the lower 

resource requirement for one of two limiting resources, stable co-existence can be achieved. 

For example, a phosphate-limited competitor and a silicate-limited competitor can co-exist in a 

stable equilibrium because each species has the lower R* for a different nutrient, resulting in 

neither species being driven to extinction (Tilman, 1977, 1981) (Fig. 1.1). In natural 

environments, species can co-exist in the water column if they display a trade-off in light and 

nutrient competitive abilities, as with decreasing depth light levels decrease and nutrient levels 

usually increase, so that along those gradients multiple species can live (Klausmeier et al., 

2007). 
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Figure 1.1: Schematic illustration of resource competition and competitive exclusion in relation 

to nutrient supply. Solid lines indicate zero net growth isoclines (ZNGIs) for species A (blue 

lines) and species B (orange lines), indicating the minimum concentrations of nutrients X 

(Vertical lines) and Y (horizontal lines) that they require to grow at a rate where population 

increases and decreases cancel each other out and equilibrium conditions exist. In equilibrium 

conditions cell death rate (cell loss) equals out the cell growth rate and the isocline does not 

move. Under non-equilibrium conditions, for instance if the cells are growing exponentially, the 

isocline can move up for nutrient X, and to the right for nutrient Y. If loss rate decreases (i.e. 

growth conditions are beneficial and growth rates are high), minimum nutrient requirements 

will become lower. Circled numbers indicate nutrient supply points. (A) Three different nutrient 

supply scenarios are presented. Species A has the lower nutrient requirements for both 

nutrients X and Y. At nutrient supply level 1, concentrations of X and Y are too low for neither 

species to grow. At nutrient level 2, nutrient levels are too low for species B, but A can survive. 

At concentration level 3, the nutrient supply concentration is also high enough for species B to 

survive. However species A would deplete the concentration below a level that is suitable for B, 

causing its extinction. (B) In this scenario, the ZNGIs of both species are altered and each of 

them has the lowest resource requirement for one of the two nutrients (X for species A, and Y 

for species B). At nutrient supply level 1, both species can once again not thrive because supply 

concentrations are too low. At nutrient supply levels 2, only species A, whereas at level 3 only 

species B would thrive. Nutrient levels 5 and 6 are high enough for both species to survive if 

they would be in isolation. As mixed cultures, species A would however outcompete species B 

over time at supply level 5, and vice versa at supply level 6. At nutrient supply level 4 enough 

nutrients would be present for both species to co-exist. Illustration adapted from Begon et al. 

(2006). 
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1.4.1 Physiological models explaining competitive success 

The physiological basis for competition is based on the ability of a species to grow, acquire and 

store nutrients. Two mathematical models are commonly used to describe these abilities in 

algae and other microorganisms to predict competitive success. These are the Monod equation 

and the Variable Internal Stores Model (Droop’s model), the former describing the ability to 

grow or take up nutrients in relation to their concentration in the surrounding of an algal cell, 

and the latter describing storage ability for nutrients once they have entered the cell (Tilman, 

1977). In combination, the Monod equation and the Variable Internal Stores model form the 

basis of phytoplankton competition theory. According to these models, species compete by 

being better at utilizing a certain resource than others (Tilman, 1981).  

The Monod equation has the same mathematical form as the Michaelis-Menten equation 

which had been initially developed for describing enzyme kinetics (Fig. 1.2). It can be used to 

describe a direct relationship between ambient resource concentration and the steady state 

growth rate at that concentration. The different abilities of phytoplankton to acquire nutrients 

are defined by a set of parameters, namely KS, the half-saturation constant for nutrient limited 

growth, and µmax, the maximum growth rate of a phytoplankton species, that together with the 

ambient substrate concentration S determine the growth rate of an algal cell (Fig. 1.2). Based 

on the Monod equation, Goldman and Carpenter (1974) derived a competition model, for small 

single-celled diatoms and chlorophytes, that predicted competitive outcome between two algal 

species as a function of temperature and their ability to take up nutrients. They came to the 

conclusion that both the ability to take up nutrients and temperature can influence the 

outcomes of competition between two species. The species with the lower KS values would win 

competitions at low nutrient concentrations, but KS values were found to change across 

temperatures leading to a shift in competitive advantage. Competitive strength along nutrient 
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gradients can therefore change if nutrient uptake rates and growth are influenced by nutrient 

concentrations as well as temperature. 

 

 

Figure 1.2: Graphical representation of the Monod equation. S = substrate concentration, µS = 

growth rate at substrate concentration S, µmax = maximum growth rate, KS = half saturation 

constant for growth. The equation describes the relationship between external substrate 

concentrations and growth rates of microorganisms. The higher the ambient concentration of a 

substrate S, the larger will be its steady state growth rate, until a horizontal asymptote for µmax 

is approached. 

Optimum temperatures for nutrient uptake and growth were found to differ, as optimum 

temperatures for enzyme reactions vary from those for growth (Raimbault, 1984). Nutrient 

uptake rates were furthermore found to vary within algae under the same external nutrient 

concentration depending on the physiological status of an algae cell (Morel, 1987). Morel 

(1987) could show that variations in the cell quota (the internal concentration of a limiting 

nutrient) would influence the nutrient uptake rates. He showed that the maximum nutrient 
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uptake rate Vmax increases as cells become nutrient limited, which leads to Ks, the half 

saturation constant for growth, being lower than the Km, the half saturation constant for 

nutrient uptake. If algae have been nutrient starved over a period of time, acclimation 

processes within the cell can take place so that starved algae display much higher maximum 

uptake rates once nutrients are supplied than algae that were not nutrient starved, making the 

maximum uptake rate a variable parameter in the Michaelis-Menten equation (Smith et al., 

2009). Nutrient starvation can heavily increase the demand for nutrients to sustain growth, 

ensuring that when nutrient-deficient cells come out of nutrient limitation or starvation, the 

algae are prepared to utilize fresh nutrients at a high rate as soon as they are supplied (Morel, 

1987; Raimbault, 1984). This so-called surge uptake is a crucial process to ensure competitive 

success at times of nutrient pulses, as higher uptake rates and lower KS values after a nutrient 

addition can be a sign of competitive strength (Fiksen et al., 2013). Increased surge uptake rates 

could ensure the survival of a species whilst simultaneously removing available nutrients for a 

direct competitor with potentially lower surge uptake rates.  

Unlike in the Monod equation, the Variable Internal Stores model describes the steady state 

(equilibrium) growth of phytoplankton as a function of the intracellular quota of the limiting 

nutrient (Benavides et al., 2015, Morel, 1987). Thus, it accounts for the ability of single algal 

species to store and handle a resource once it has entered the cell (Fiksen et al., 2013). It is the 

original model that described phytoplankton growth as a function of intracellular nutrient 

concentrations, but other more complex models have been developed since (Flynn, 2008). 

Monod and Variable Internal Stores models are in contrast to each other, and conclusions for 

growth response can differ depending on which one is utilized. Monod equations would only be 

suitable to use under steady state conditions when nutrient supply is fixed (Sommer, 1991). If 

nutrient supply is varied or occurs in pulses, algae could be quick at taking up a resource, which 
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might however not translate into growth, as luxury uptake might occur. Good storage abilities 

for instance can lead to a decoupling between growth rates and resource availability for certain 

amounts of time (Sommer, 1991), enabling species to continue growing and outcompete others 

even if a resource stock has been depleted in the surrounding environment (Flynn, 2008). 

Likewise, a species might not be able to store nutrients as well as another, or not utilize it as 

effectively, even if it has the advantage on the uptake rates.  

The theoretically weaker competitor for nutrient uptake and storage as described by simple 

mechanistic models does not always have to be the loser of a competition either. In 

interference competition, competition functions through interactions that inhibit or spur the 

growth or reproduction of competitors indirectly. For instance could an additional species prey 

on and suppress the abundance of a theoretically stronger direct competitor with lower values 

of R*. This could allow an inferior resource competitor to still survive in a habitat (Tilman, 1987; 

Tilman and Sterner, 1984). Furthermore, competitive advantages could be gained via the 

excretion of toxic or beneficial chemicals. The red tide dinoflagellate Karenia brevis for instance 

has been shown to release allelochemicals to suppress the growth of other species it co-occurs 

with in natural communities, potentially explaining why it can at times form dominant blooms 

in the Gulf of Mexico (Kubanek et al., 2005). In facilitation scenarios, species can gain 

competitive advantages by affecting each other positively. In a study of an experimental 

phytoplankton community, diatoms seemed to rely heavily on the appearance of sufficient 

cyanobacteria to make nitrogen available, after which the diatoms then managed to dominate 

and outcompete all other species (Eggers et al., 2014). All these above-mentioned interactions 

could have never been predicted from knowing species growth rates or their physiological 

nutrient uptake kinetics in isolation. It is therefore important to combine predictive studies 
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with investigations of mixed populations to identify mismatches and patterns emerging from 

species interactions. 

To complicate matters even further, phytoplankton competitive dynamics seem to not just be 

determined by the competing species and environmental aspects investigated, but also through 

a path-dependency effect. Species succession was found to be determined by the community 

composition of the inoculum community and therefore no general competitive response to 

laboratory manipulations might be determined because the response of species was found to 

depend not only on physiology, but also on abundance, evenness and frequency of initial 

community members (Sommer, 1983). 

Because of this complexity, Trimborn et al. (2013) claimed that the outcome of multiple species 

competition cannot be well predicted from responses of monoculture due to the fact that 

allelochemical interactions and other unknown factors come into play when phytoplankton 

species interact. To account for more intricacy in species competition than just the ability to 

take up nutrients as a determinant of competitive outcomes, more complex models were 

developed to take into account initial population sizes, intraspecific factors such as death, 

cannibalism or other density-dependent effects (Schoener, 1976), as well as predation and 

interactions with other trophic levels. Contemporary niche theory for instance extended the 

traditional view of organisms competing for limiting resources, and added more complex 

interactions to explain species dynamics influenced by a multitude of factors (e.g. growth as a 

response to multiple stressors rather than just one), and how these are in turn influenced by 

that species (predator abundance, pathogens, or toxins) (Chase and Leibold, 2003).  

More research is necessary to identify whether simple mechanistic models are ultimately 

suitable to predict competitive outcomes, as processes decoupled from cell physiology, single-
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species growth, nutrient concentrations, and nutrient uptake and storage abilities, might play a 

role in determining species dominance within communities. Two chapters of this thesis are 

dedicated to better understand whether predictions about competitive outcomes can be made 

based on single species growth and physiology, as a successful determination would facilitate 

predictions on future phytoplankton community structures. 

1.5 Research Objectives and Thesis Outline 

Current physiological reaction norms, but also the capability of species to adapt to novel 

conditions will determine in what manner different phytoplankton groups will respond to 

changes in their abiotic environment. In order to better understand how phytoplankton 

populations and communities respond to environmental changes, I conducted experiments 

focussing on two aspects of performance across thermal gradients. Chapters 2 and 3, 

concentrate on the capacity for thermal adaptation within species. Chapters 4 and 5 studied 

direct competition between species across temperature gradients. Since the overarching aim of 

the thesis was to better understand responses of phytoplankton communities to future 

environmental change, the transition from single species to multi-species populations was 

aiming to improve our understanding of whether single species performance would be a 

suitable predictor of final community composition.   

Chapters 2 and 3 investigated whether monocultures of laboratory phytoplankton populations 

can adapt to moderate temperature changes similar to those predicted in many marine 

systems for the coming century. In particular, chapter 2 investigated the growth response of 

different lines of the same species cultured at two different temperatures across a thermal 

gradient, whereas data chapter 3 studied the potential adaptation in respiration and 
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photosynthesis rates after the same lines were cultured at different temperatures for several 

years. 

For Chapter 4, the focus shifted from investigating the response of isolated species to mixed 

cultures and direct species competition across a temperature gradient. To investigate whether 

the winner of direct competition in mixed cultures can be determined from knowing the 

performances of isolated cultures, I grew the laboratory model species Phaeodactylum 

tricornutum and Thalassiosira pseudonana as monocultures and mixed populations across 

temperature gradients to first of all observe whether predictions can be made, and second to 

see whether outcomes of competition would change across the gradient. In addition, I 

conducted competitions in nitrogen replete and deplete conditions as it has been shown 

previously that changes in multiple environmental parameters at a time can have interactive 

effects on monocultures of algae (Thomas et al., 2017). I wanted to investigate whether there 

would be an interactive effect on competition as well. I picked nitrogen concentration as the 

determining factor as it has often been found to be a limiting nutrient for growth in marine 

environments (Elser et al., 2007), so that it could be presumed that in natural environments, 

many competitive interactions would happen in N-deplete conditions rather than replete ones. 

Despite nitrogen often being limiting in natural environments, the role that its limitation would 

play in competition scenarios was however not previously investigated in depth until now.  

In Chapter 5 I continued focussing on competition between the two diatoms P. tricornutum and 

T. pseudonana. My investigation in the preceding chapter showed that competition between 

the two diatoms across a stable temperature gradient changed and that there existed a 

potential stable equilibrium between the two under a specific combination of abiotic 

conditions, both in N-replete and N-deplete conditions. Leading on from this finding I 
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investigated whether it would be possible to create stable mixed cultures of the two diatoms 

that could be manipulated to answer questions on system stability. Focus lay on whether 

uniform temperature fluctuations of different magnitude could enhance or de-stabilise mixed 

populations. 
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2. Chapter 2: The Search for Thermal Adaptation in Long-Term 

Phytoplankton Cultures 

2.1 Abstract 

Future climate change is predicted to impact aquatic ecosystems and phytoplankton. Currently, 

warming of oceanic surface waters is happening at rates faster than ever recorded, with 

temperatures increasing on average by 0.2 °C per decade. Thermal adaptation may help 

phytoplankton to deal with rising temperatures. Lines from 3 species from 2 taxonomic groups 

(Dunaliella tertiolecta, Pycnococcus provasolii, Chaetocerus mulleri) were cultured at 15 °C and 

20 °C for ~350 generations. Resulting selection lines were tested for thermal adaptation by 

measuring their growth across a high-resolution temperature gradient. None of the selection 

lines were found to differ significantly from the source line in accordance with the selection 

temperature, and it was concluded that none had adapted to their culture conditions in regards 

to their growth rates. Additionally, 3 strains of Thalassiosira pseudonana, previously found to 

have adapted to 9, 22 and 32°C, were re-examined for thermal adaptation. Significant 

differences in thermal performance among these lines were found and re-confirmed the 

previous conclusion. The results showed that phytoplankton cultured in the lab do not 

necessarily adapt to a new thermal environment if the selection pressure is not strong enough. 

Not all species seem to adapt at the same rates or possess the ability to keep up with ongoing 

environmental change, which will be a crucial aspect in determining future phytoplankton 

community composition. 
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2.2 Introduction 

Temperature influences many biological processes. It drives metabolism on the level of single 

cells and the ecology of organisms. Thermal conditions directly impact and regulate parameters 

such as the speed of enzyme reactions, viscosity of fluids, or chronobiology in organisms 

(Krenek et al., 2012). It consequently determines growth ability, and as such influences the 

success of species to compete against one another, which ultimately determines community 

composition and ecosystem functioning (Sharp et al., 1979).  

The rates at which biological processes occur across temperatures can be visualised through 

thermal performance curves (TPCs) (see Fig. 2.1), whereby growth or some other measure of 

fitness is measured along a temperature gradient (Krenek et al., 2012). A TPC can be used to 

predict cardinal points such as the optimum growth temperature (Topt) or thermal limits at 

which cellular processes cease to function properly (CTmin and CTmax) (Mitz et al., 2017; Pörtner, 

2002). At the optimal temperature of an organism or population, the sum of all catalytic 

reactions in a cell leads to the highest net growth. At temperatures where a TPC reaches 0, the 

particular organism’s temperature limits are reached (Fig. 2.1). Although a “text book” TPC is 

predicted to have the same progression as depicted in Figure 2.1, with rates rising almost 

linearly with warming at sub-optimal temperatures, dropping off sharply at supra-optimal 

temperatures, the shape can differ significantly depending on the organism or trait under 

observation (Baker et al., 2016). 
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Figure 2.1: Typical thermal performance curve along a 

temperature gradient. Topt = Optimum Temperature, 

CTmin = Critical minimum temperature, CTmax = Critical 

maximum temperature. Adapted from 

Krenek et al. (2012) 

Shifts in thermal performance curves can occur due to alterations of cell physiology or changes 

in the abiotic environment. Temporary and reversible changes in performance caused by the 

organism encountering a novel condition are considered phenotypic plasticity or acclimation 

processes. These processes can be short-lived and be the result of biochemical alterations 

within a cell (such as changing the number of pigments or components of the photosynthetic 

apparatus) as a response to altered conditions (Moore et al., 2006; Reusch and Boyd, 2013). On 

the other hand, long-lasting modifications of performance that are the result of changes in the 

underlying genome are called adaptations (Schulte et al., 2011). TPCs can change by either 

shifting across the temperature gradient horizontally, expanding the growth range, by moving 

as a whole towards colder or warmer temperatures; or by changing vertically, becoming flatter 

or steeper (Fig. 2.2) (Schulte et al., 2011). 
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Figure 2.2: Conceptual figure of potential changes in 

thermal performance curves. Original curve (blue) 

could extend its growth range (red), shift as a whole 

towards other temperatures (orange), or change its 

slope around cardinal temperatures (green). 

In the Anthropocene, scientific evidence predicts sea surface temperatures (SSTs) to rise at an 

average rate of up to 0.3 °C per decade (Collins et al., 2013; IPCC, 2013). Novel stratification 

patterns as a result of altered SSTs will lead to alterations of ocean currents and nutrient 

loadings of surface waters.  

As single-celled microorganisms, phytoplankton are ectothermic and especially susceptible to 

such changes since they cannot regulate their organismal temperature and have no means of 

actively withstanding alterations in their environment. Their physiological performance is 

therefore directly linked to temperature (e.g. Geider, 1987). Like any other organism in aquatic 

environments phytoplankton are therefore faced with the challenge to either deal with the 

changing conditions by acclimating or adapting to them in situ, or shift in their distribution 

towards more favourable conditions. Factors that generally maximize the adaptive potential are 

high mutation rates, and a high selection pressure (Huertas et al., 2011), whereas limits to 
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acclimation or adaptation can be set via physiological or ecological processes. Physiological 

limits usually occur through mechanisms operating at the organismal level, like denaturing 

temperatures of proteins. Ecological limits on the other hand operate on populations levels 

through biotic factors such as a constant and strong high intra- and interspecific competitive 

pressure (Reusch and Boyd, 2013).  

Phytoplankton populations have evolved to thrive in their local environments, growing best in 

water conditions in which they naturally occur in terms of water chemistry and temperature 

(Suzuki and Takahashi, 1995; Thomas et al., 2012). Optimum growth temperatures of different 

species have shown a co-variation with latitude, and co-vary with the mean annual 

temperature in the regions where they were initially isolated (Thomas et al., 2012). The ability 

to adapt to environmental changes is crucial for structuring future oceans (Chown et al., 2010), 

and unequal adaptive ability in combination with changes in spatial distribution is predicted to 

lead to major changes in composition of species assemblages, their interactions and ultimately 

the functioning of ecosystems (Barton et al., 2016). Whilst some species might be able to adapt 

to current rates of climate change, others may not. Some species might migrate to more 

favourable conditions when their current environment is altered, but especially for organisms 

living at or near conditions at the edge of their TPC’s upper temperature limit, with little ability 

to migrate, lack of thermal adaptation might lead to extinction (Barton et al., 2016; Chown et 

al., 2010). 

In the past decade, experimental evidence highlighting the potential for rapid thermal 

adaptation in phytoplankton has started to emerge, albeit still scarcely (e.g. Huertas et al., 

2011; Schlüter et al., 2014). It has been shown to be a common occurrence across a diverse 

range of phytoplankton taxa, but different species were found to have varying adaptive 



Chapter 2: Adaptation in Long-Term Cultures 
 

30 
 

potential to the imposed stresses in the laboratory. Phytoplankton were shown to have the 

potential to adapt to changes in temperature even within the time span of around 450 asexual 

generations (Schlüter et al., 2014), or to a combination of temperature and altered CO2 

contents within 2700 generations (Listmann et al., 2016). One publication suggested that 

thermal adaptation can even occur within 100 generations (Padfield et al., 2015). What these 

publications all have in common is the suggestion that rapidly occurring thermal adaptation 

within relatively short time periods of a few months or years could enable species to keep up 

with the current rate of SST warming reported by many scientific studies (IPCC, 2013).  

In a decade-long study of natural environments, phytoplankton shifted its mean niche optimum 

temperature by +0.45 °C, tracking a water temperature change of +0.73 °C (Irwin et al., 2015). 

Another study on decade-long warming in mesocosms discovered that increased temperatures 

lead to adaptive changes in physiological traits and shifts of TPCs in a common chlorophyte 

Chlamydomonas reinhardtii (Schaum et al., 2017). An analysis of niche plasticity in 12 diatom 

taxa over a 59-year-period in North Atlantic waters demonstrated that diatom species have the 

potential to adapt in situ and withstand SST changes over long periods of times. Thalassiosira 

species for instance were found to track colder waters and shift their distribution northwards 

away from warming waters, and displayed a significant negative correlation with northward 

moving isotherms (Chivers et al., 2017). 

Many of the above-named experimental studies did however not assess the adaptive potential 

under an ecologically realistic change in the environmental parameter under observation. 

Adaptive responses were evoked through greater changes in temperature than predicted or 

with changes that would not occur on such order of magnitude in nature within such a short 

period of time, or by keeping cultures growing exponentially for hundreds of generations. To 
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test whether more moderate environmental alterations would also lead to thermal adaptation 

in phytoplankton cultures, lines of Dunaliella tertiolecta, Chaetocerus mulleri, and Pycnococcus 

provasolli, cultured at 15 and 20 °C, were tested for changes in growth along a temperature 

gradient. As a positive control of ability to detect adaptation, thermal performance was tested 

in 3 lines of Thalassiosira pseudonana in which thermal adaptation to temperature has been 

reported previously (lines were adapted at 9 °C and 32 °C from a 22 °C parent line) (Schmidt, 

2017). It was hypothesized that culturing different lines of the above-mentioned algae over 

6 years would lead to thermal adaptation detectable through a shift in their thermal growth 

performance and that this thermal adaptation would lead to a shift of the optimum 

temperatures towards the temperature of selection.  

2.3 Materials & Methods 

2.3.1 Culturing of algae 

Lines of the algal species Dunaliella tertiolecta (CCAP1320), Chaetocerus mulleri (CCAP 1010/3), 

and Pycnococcus provasolii (CCMP 1203) were maintained at 15 °C and 20 °C and transferred 

once a month in f/2 medium (Guillard and Ryther, 1962; Guillard, 1975) for 6 years 

(~350 generations, depending on the species). Numbers of generations were calculated with 

equation [1].  𝑔 =  (log(𝑁2)−log(𝑁1)) log (2) ∗ 𝑁𝑇      [1] 

where N1 is the number of cells ml-1 after 1:36 dilution and at the onset of a new growth cycle, 

and N2 is the number of cells before dilution of the cultures in stationary phase. NT is the 

number of transfers, which was 72 for six years (6 years * 12 months). 
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Cryopreserved lines of T. pseudonana were gifted from Katrin Schmidt (University of East 

Anglia), which had been adapted to “cold” (9 °C), “ambient” (22 °C; parent culture), and 

“warm” (32 °C) conditions by maintaining cultures in exponential growth phase and diluting 

them every third day to a concentration of 1×105 cells ml-1 for 2.5 years (300 generations) at 

their respective temperatures (Schmidt, 2017). Afterwards the cultures were defrosted at Essex 

University and cultured for 5 months in f/2 medium, to acclimate to f/2 medium and to dilute 

out the cryopreservant. Due to facility constraints, the cold and warm lines were maintained at 

15 and 26 °C respectively (instead of 9 and 32 °C). Due to this circumstance, no stable 

temperature history could be guaranteed for the lines and it is unclear whether the new 

selection pressure of a shifted temperature led to a shift in thermal performance curves within 

the 5 months culturing period after bringing the cultures back from cryopreservation. The 

strains were tested for their thermal adaptation at Essex University to investigate whether 

results could be replicated and whether thermal adaptation remained through 

cryopreservation.  

2.3.2 Measurement of Algal Growth 

After the culturing period, species were tested for thermal adaptation by being grown along a 

temperature gradient. Two different thermal gradient blocks were used, depending on what 

facilities were available at the time.   

For T. pseudonana, a temperature gradient was established with a 17 assay temperatures 

aluminium thermal gradient block, drilled to accommodate glass test tubes. Circulation 

immersion heater chillers (Grant Instruments, Cambridge, U.K.) at opposite ends maintained 

the temperature differential (±0.2 °C per gradient position), monitored using a thermometer 

over the course of the experiment. Assay temperature ranged from 10 to 34 °C, and light levels 
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were set to 150 ± µmol m-2 s-1. For all other species one microtiter thermoblock (18 assay 

temperatures for P. provasolii and C. mulleri) or two microtiter thermoblocks (36 assay 

temperatures for D. tertioleacta) were set-up, on which 24-well-plates were placed in 

succession (8 to 30 °C at 450 ± 25 µmol m-2 s-1).  

Changes in algae biomass over time were assessed via fast repetition rate fluorometry (FRRf) 

with an FRRf II Fastact Fluorometer (Chelsea Instruments, UK) at an excitation wavelength of 

435 nm for samples grown in tubes, and from optical density (OD) measured at 450 nm with a 

FLUOstar Omega plate reader (BMG LABTECH, Germany) for samples grown in the microtiter 

plates. Chlorophyll a fluorescence and absorption were used as proxies for biomass. 

Exponential growth rates were calculated using linear models fitted onto the lnF0 (F0 = 

minimum fluorescence yield) or lnOD (OD = optical density) measurements over time.  

2.3.3 Thermal Performance Curves 

The number of biological growth replicates per culture line that was collected for the statistical 

analysis differed between species. D. tertiolecta was the species with the highest amount of 

replicates with n = 12 per culturing line (meaning 12 replicates for the 15 °C line and 12 

replicates for the 20 °C). In contrast and unfortunately, for P. provasolii and C. mulleri the 

amount of replication was very low with n = 2 per culture line. For the positive control species 

T. pseudonana, n = 3 per line and it was the only species that had three culture lines (the cold, 

the source temperature, and the warm selected lines), in comparison to only two for the other 

species (the source temperature, and the warm selected lines).  

After growth data had been collected, the R package “temperatureresponse” was used to fit 

models of TPCs onto the obtained growth data across the temperature gradients (Low-Décarie 

et al., 2017). Twelve equations commonly used to model growth response to temperature were 
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fitted to the obtained growth data. The best fitting model for each species was picked based on 

the lowest Akaike Information Criterion (AIC) value where the equation could be fit to all 

replicates of the 15 °C and 20 °C lines. The AIC is an estimator of error and indicates the relative 

quality of statistical models. In general, the lower the AIC, the better does the data fit to a 

model. Sometimes a model had a lower AIC value but would not fit on all the growth replicates 

collected. The model chosen was then used to describe the growth response across the 

temperature gradient and to extract cardinal temperatures (see Suppl. Fig. 2.1 – 2.4 with AIC 

values for the four species, the table with all the single model equations as well as 

corresponding references can be found in the Supplementary Material to Chapter 4, where it 

was included as part of a peer-reviewed journal publication). Different equations were used for 

different species as species have evolved inherently different performances across temperature 

gradients. The equations all differ in their shapes, so that some might suit the thermal 

performance progression of a specific species better than others. For instance can a species 

have a more uniformly bell-shaped thermal performance, whereas another could be more 

skewed to the right or left. Therefore, not every model is equally suited for every species.   

For D. tertiolecta, 12 replicates of two lines were grown in microtiter plates between 8 °C and 

30 °C. Equation [2] taken from Heitzer et al. (1991) was found to best describe the performance 

along assay temperatures.  

𝑅𝑎𝑡𝑒 =  𝑎 ∙ ( 𝑇298.15) ∙ 𝑒𝑥𝑝 (𝑏𝑅 ∙ ( 1298.15 − 1𝑇))1 + 𝑒𝑥𝑝 [𝑐𝑅 ∙ (1𝑑 − 1𝑇)] + 𝑒𝑥𝑝 [𝑒𝑅 (1𝑓 − 1𝑇)]                                                [2] 

whereby a, b, c, d, e, and f are model constants, T is the assay temperature, R the universal gas 

constant (Boltzmann constant). 
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Two replicates of two lines of P. provasolii were grown in microtiter plates between 12 °C and 

30 °C, and the most suitable model was equation [3] from Ratkowsky et al. (1983). 

𝑅𝑎𝑡𝑒 = [𝑎 ∙ (𝑇 − 𝑇𝑚𝑖𝑛)]2 ∙ [1 − 𝑒𝑥𝑝(𝑏 ∙ (𝑇 − 𝑇𝑚𝑎𝑥))]2                                      [3] 

where a and b are model constants, T the assay temperature at which a rate was measured, 

and Tmin and Tmax where the estimated minimum and maximum temperatures (as estimated by 

the fitted model). 

Also for C. mulleri, 2 replicates of two lines of were grown in microtiter plates between 8 °C and 

30 °C, and equation [4] taken from Johnson et al. (1942) best described their thermal 

performance.  

𝑅𝑎𝑡𝑒 = 𝑎 ∙ 𝑇 ∙ 𝑒𝑥𝑝 ( −𝑏𝑅 ∙ 𝑇)1 + 𝑒𝑥𝑝 (−𝑐𝑅 ) ∙ 𝑒𝑥𝑝 ( −𝑑𝑅 ∙ 𝑇)                                                             [4] 

where the model parameters are the same as for equation [2]. 

Three lines with 3 replicates each of T. pseudonana were grown across an assay gradient of 8.6 

°C to 33.6 °C to describe the TPCs. Equation [4], was also the most suitable model for them. 

In order to test for significant differences in optimum growth temperatres (Topt) between lines  

within each species, one-way ANOVAs with an alpha level of 0.05 were conducted. Significant 

differences would signify a signal of thermal adaptation. Topt was the response variable, while 

source temperature was the independent variable. Because the TPCs of the two P. provasolii 

lines appeared to differ widely in their magnitude, the difference between their maximum 

growth rates (µmax) was also tested for this species, with µmax being the response, and source 

temperature the independent variable. 
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Only for T. pseudonana did the ANOVA compare the optimum temperature between 3 different 

groups. For all the other species the ANOVA compared only two groups, making it effectively a 

t-test, a special case of the ANOVA. Before the ANOVA could be performed, ANOVA assumption 

criteria for normal distribution of residuals and homegeneity of variance had to be tested. For 

groups that failed the ANOVA assumption tests on normality of residuals, a Kruskal-Wallis rank 

sum test was performed instead, to identify significant difference between culture lines. This 

was the case for the comparions of Topt between the D. tertiolecta lines, and for the comparison 

of maximum growth rates (µmax) in P. provasolii. The tests for differences in the Topt of the 

P. provasolii, C. mulleri, and T. pseudonana culture lines confirmed normality of residuals and 

equal variance. It has to be noted that these tests tend to pass when sample size is low, which 

was the case in this study. It would have been desirable to collect more growth replicates for 

the species that had only n = 2 per line. Since the ANOVA tested differences between 3 lines for 

the species T. pseudonana, post-hoc testing via Tukey’s honest significance test was conducted 

to analyse the pairwise comparisons and identify where significant differences could be found. 

After TPCs had been modelled, it was also possible to calculate the amount of imposed 

selection pressure in terms of percentage of daily growth rate change that was imposed when 

the lines were transferred from their source environment to their selection environment. Once 

the ANOVA assumptions had been passed, it was tested via a two-way ANOVA, whether this 

percent change in daily growth rate (standardised to the µmax at Topt of each species), 

constituted a significant change. The independent variable was the percentage of daily growth 

rate relative to the µmax, and the dependent variables were “species” and “culturing 

temperature”. 

All statistical analysis was conducted with R (version 3.3.1). 
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2.4 Results 

2.4.1 Test of thermal adaptation in long-term culture lines from the Essex culture 

collection  

Temperature response curve fits of all species revealed that culturing the lines at 15 or 20 °C 

meant that they had been cultured at sup-optimal temperatures (Fig. 2.3 A,C,E).  

2.4.1.1 Dunaliella tertiolecta 

Growing two lines of D. tertiolecta along the temperature gradient showed that TPCs were very 

similar (Fig. 2.3 A), and using the Kruskal-Wallis test, no significant differences in their optimum 

temperatures were found (p = 0.97) (Fig. 2.3 B). Optimum temperatures were estimated based 

on model fits at 28.8 ± 1.2 °C for the 15°C line and at 28.1 ± 2.4 °C for the 20°C line.  

2.4.1.2 Pycnococcus provasolii 

The 2 replicates of two lines of P. provasolii grown across the assay temperature gradient 

(Fig. 2.3 C) showed significant differences in their optimum temperatures existed (F1,2 = 169.2, 

p < 0.01) (Fig. 2.3 D). The signals obtained did however not align with their source environment 

(Fig. 2.3 C) and the 20 °C line had a colder optimum temperature with greater maximum growth 

rates (0.49 ± 0.01 day-1 at 25.5 ± 0.1 °C) than the 15 °C line (0.34 ± 0.02 day-1 at 28.0 ± 0.2 °C). 

This striking difference in the µmax between the two lines was tested statistically as well. 

However, the statistical analysis with the Kruskal-Wallis test yielded that the observed 

difference was not statistically significant (p = 0.12). A higher amount of replication and 

potential ANOVA testing, if the ANOVA assumptions would be consequently met, could 

potentially have resulted in finding a significant difference. 
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2.4.1.3 Chaetocerus mulleri 

Growing lines of C. mulleri along the assay temperature gradient (Fig. 2.3 E) showed that there 

were once again no significant differences in their optimum temperatures (F1,2 = 2.54, p = 0.25) 

(Fig. 2.3 F). Optimum temperatures were estimated based on model fits at 29.6 ± 0.6 °C for the 

15°C line and at 28.9 ± 0.2 °C for the 20°C line.  
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Figure 2.3: Mean thermal performance of 3 phytoplankton species with experimental lines 

grown at 15°C (blue) and 20°C (orange) source temperatures. Model fits and the corresponding 

optimum temperatures predicted from those model fits are depicted for D. tertiolecta lines (A 

& B), for P. provasolii lines (C & D), and for C. mulleri lines (E & F). Single points underlying the 

TPC plots are single growth rates measured along the investigated assay temperature gradient. 

Grey-shaded area around the mean TPC of each line denotes one standard deviation, calculated 

from single replicate model fits. For the optimum growth temperatures of the P. provasolii 

lines, a significant difference was found that did not follow the expectation of lines having their 

Topt closer to their source environment. For the other two species, no siginificant differences 

were found. 

2.4.2 Previously evolved lines of T. pseudonana (positive control) 

Previously adapted lines of T. pseudonana were used as a positive control to test whether the 

used methods were adequate for finding thermal adaptation. Growth performance of these 

three T. pseudonana lines across the temperature gradient showed that the thermal 

performance curves differed for each individual strain (Fig. 2.4 A) and that significant changes in 

optimum growth temperatures existed and had persisted through cryopreservation (Fig. 2.4 B) 

(F2,7 = 8.23, p < 0.05). Tukey’s post-hoc testing revealed a significant difference between the 

15 °C and the 26 °C line, i.e. the coldest and warmest T. pseudonana lines (p < 0.05). Between 

the other pairs the difference in optimum temperatures was however not significant 

(comparison between 15 °C and 22 °C line had a p-value of 0.31, and comparison between 22 °C 

and 26 °C line had p = 0.07). Optimum growth temperatures had shifted in accordance with 

expectations and corresponded to the source temperatures that the lines were cultured at. For 

the 15°C line, the average optimum temperature was 22.5 ± 0.8°C, for the 22°C it was 23.8 ± 

1.5°C, and for the 26 °C it was found to be 26.0 ± 0.4 °C.  
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Figure 2.4: Mean thermal performance of T. pseudonana lines evolved under cold assay 

temperatures at 15°C (blue), normal initial culture temperatures 22°C (green), and warm assay 

temperature 26°C (orange). (A) Mean TPCs of lines grown in a tube thermoblock. Single points 

are measured growth rates at the assay temperatures onto which the growth models were fit. 

Colour-shaded areas indicate one standard deviation calculated from single replicate model fits 

around the mean TPC. (B) Optimum temperatures estimated from model fits. 

2.4.3 Comparison of imposed selection on species 

Comparing the TPCs of the ancestral lines (the 15 °C lines for the species from the Essex 

collection, and the 22 °C line for T. pseudonana from UEA) of the investigated species showed 

that their growth ranges were overlapping, however absolute growth rates and CTmin and CTmax 

temperatures differed (Fig. 2.5 A). For instance did D. tertiolecta display the highest overall 

growth rates and the widest thermal niche, whereas C. mulleri had the lowest growth rates and 

narrowest niche. 

The selection pressure, quantified as the imposed change in daily growth rate that was exerted 

on the selection lines at the selection temperature (which was 20 °C for the Essex lines, and 9 

or 32 °C for T. pseudonana) was compared between all species. For the lines from Essex, a 5 °C 
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change for the initial source temperature meant less selection pressure than the 10 °C or 13 °C 

change that was imposed upon the T. pseudonana lines. A change of 5 °C for D. tertiolecta 

meant that the imposed selection was a change of 15.1 ± 4.3 % of its daily growth rate. A 

similar value was reached for C. mulleri with 19.6 ± 1.8 %. For P. provasolii the selection 

pressure was higher with 38.2 ± 4.9 %, and for the positive control T. pseudonana the selection 

pressure was estimated at 53.2 ± 11.7 % (Fig. 2.5 B). For all species, the changes in terms of 

their percentage of daily growth rate constituted a significant difference (F1,26=133.75, 

p < 0.001). The values for D. tertiolecta and C. mulleri were lower because the slopes of their 

TPCs at the imposed selection temperatures were flatter than for P. provasolii, so that a 

temperature change would have had less of an impact in terms of change in growth rates. For 

T. pseudonana, the exerted pressure was the highest, with the selection temperature of 32 °C 

being several degrees warmer beyond the estimated optimum temperature of 23.8 ± 1.5 °C.  

 

 

Figure 2.5: (A) Comparison of TPCs of the parent lines of D. tertiolecta, C. mulleri, P. provasolii, 
and T. pseudonana. (B) Imposed selection pressure on the species in % of their daily growth 
rates. 
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2.5 Discussion 

2.5.1 Thermal niche of studied species 

The aim of this study was to identify whether thermal adaptation had occurred in experimental 

lines of phytoplankton. The investigation of the selection lines did not result in findings of 

thermal adaptation and the results showed that the applied environmental change of 5 °C did 

not impose a significant enough pressure to lead to thermal adaptation 

within ~350 generations.  

The circumstance that thermal adaptation could be detected with the used experimental set-up 

was demonstrated by growing T. pseudonana lines which had previously been adapted in 

another laboratory and confirming these findings. Although these donated algae were adapted 

at a higher selection pressure than the investigated algae from the Essex collection (see Fig. 

2.5), the findings confirm the suggestion that the ubiquitous T. pseudonana might be able to 

track changes in surface water temperatures in situ, as it seems to be able to adapt to 

temperature changes within several hundred generations. Whether this diatom species will 

keep up with the predicted changes (IPCC, 2013) at sufficient rates, remains unclear as the 

selection pressure that evoked a shift in thermal performance was substantially higher than the 

predicted changes (10 °C selection pressure vs 3 °C predicted change). 

For the cultures from the Essex collection, the question remains whether these species have 

the capability to adapt to warming conditions or not. Potentially through a longer culturing 

period or a further increase in culturing temperature, as is the case in other studies (Listmann 

et al., 2016; Schlüter et al., 2014; Schmidt, 2017), optimum temperatures or slopes in TPCs 

around Topt or towards the critical maximum temperature (CTmax) might change as a 

consequence of phytoplankton adapting to altered abiotic conditions (Baker et al., 2018). The 
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fact that no improvement in growth rates as a response to culturing conditions occurred in the 

currently investigated species does not necessarily mean that no adaptation to the changed 

environment occurred. It is possible that adaptation occurred in other traits that were not 

measured in this study. Growth performance is by far not the only trait that can adapt and 

adaptive changes might occur in traits other than growth capabilities that could lead to 

competitive advantages under warming conditions. For instance could the production of toxins, 

the chemical composition of the cells, or cell size be altered, which would affect susceptibility 

to predation or direct competition within phytoplankton community members (Reusch and 

Boyd, 2013).  

In order to make conclusive statements whether any genetic adaptation has occurred as a 

response to altered source temperatures, genetic analysis would be necessary. Due to 

budgetary restraints, this was however not performed. If such an investigation would be 

performed, modifications in genes that are usually associated with processes that result in 

better growth ability (carbon sequestration and respiration, improved photosynthetic 

efficiency, etc.) could then be positively identified and presumed to be a response to the 

culturing environment. The type of potential genetic modifications can be diverse (exchange of 

single nucleotides, duplication or loss of chromosomes, insertions, deletions), and consequently 

the genetic basis for altered growth ability might differ depending on the species even, if the 

resulting TPC shift might be comparable (Rengefors et al., 2017). Based on the current findings 

in this study however, it needs to be assumed that no adaptation occurred and that if 

temperatures were to rise in waters where these species occur and grow closely to their CTmax, 

they would die off or be outcompeted and replaced by species which can grow beyond that 

temperature. 
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2.5.2 Effect of culturing methods on thermal adaptation 

This study contrasted species and lines that have been continuously kept in exponential growth 

phase to evoke a thermal adaptive response (T. pseudonana) and some that have been cultured 

mainly in stationary growth phase (all other investigated species). In most of the studies that 

investigated the adaptive potential for shifted thermal tolerances, phytoplankton cultures were 

kept in exponential growth phase throughout the adaptation period (e.g. Schlüter et al., 2014). 

This is supposedly done to increase the amount of generations within a shorter amount of 

times and to sustain the algae under ideal conditions and in good health. 

However, in natural environments phytoplankton rarely grow exponentially for prolonged 

periods of time, even less so for years without interruption, spending their life cycle in 

stationary as well as exponential growth phases (Padfield et al., 2015). Whether similar rates of 

thermal adaptation would occur in nature as under laboratory conditions should be tested in 

further mesocosm or field experiments. Natural mechanisms operate on different scales of 

time and complexity than experimental ones. Environmental variations such as temperature 

changes might appear over years and even natural nutrient pulses do rarely occur within a few 

hours or days but on longer time scales. Adaptations in natural populations could be diluted 

due to an influx of new population members that did not acquire the thermal adaptation or 

adapted individuals might be carried away. In addition, grazing pressure, changes in nutrient-

availability as well as other fluctuations in the abiotic environment might change the rate at 

which natural populations can adapt to a changing environment (Irwin et al., 2015; Sommer, 

2002). All of these multiple biotic and abiotic stressors interact and exert an influence on 

phytoplankton simultaneously whereas in the lab, environmental changes are investigated in 

isolation. Observed adaptive rates in laboratory set-ups might therefore occur to be higher than 

they are in nature where less resources and energy can be solely allocated for the adaptation to 
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the thermal environment when the organism has to deal with a plethora of external pressures. 

In addition, as the investigated cultures were not clonal at the beginning of the experiment, it is 

also likely that the inherent genetic variability within the investigated long-term algae cultures 

provided a larger amount of genotypes capable of dealing with altered external conditions, so 

that adaptive rates might have been further reduced overall if enough genotypes were present 

in the population to cope with the 5 °C temperature increase without adapting and shifting Topt 

towards warmer temperatures (Reusch & Boyd, 2012). 

Most species that were investigated in experimental studies on thermal adaptation would be 

considered laboratory cultures that were purchased from professional culture collections (such 

as the investigated cultures in this study), or were in culture for many years after they had been 

isolated from natural environments. Such cultures are usually not kept in exponential phase but 

rather transferred on a monthly basis to keep them alive, until the decision is made to use them 

for experimentation, upon which they are suddenly cultured in exponential growth and get 

exposed to a whole new set of abiotic conditions and culturing schedules. Laboratory 

environmental manipulations where cultures are continuously grown exponentially and in 

nutrient replete conditions at optimum light levels can therefore exert an adaptive pressure 

that is very different to a natural environment (Sommer, 2002). It could be possible that in 

comparison to investigations that kept their cultures growing exponentially for extended 

periods of time, the investigated algal cultures from this study could be slightly more 

representative of natural plankton populations due to their schedule of exponential growth 

when cultures were freshly transferred each month (simulating dilution and nutrient pulses 

from natural environments), and extended periods of stationary growth when nutrients were 

used up (simulating oligotrophic natural conditions). It would have been ideal to have also kept 
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the lines in continuous exponential growth for the same amount of time to compare potential 

changes in thermal performance. Before conclusive statements about the adaptive potential of 

marine communities subject to environmental change can be made, a general discussion about 

the methods of how experimental evolution is investigated and detected and which approach 

to studying evolutionary responses is most appropriate might help the research community to 

a) standardize the methods of investigation and b) identify which experimental laboratory set-

ups best represent and closest mimic natural dynamics. 

2.5.3 Limitations of the Study 

Although overall model fits onto the growth rate data across temperatures for species grown in 

microtiter plates yielded good results, the variation in growth rates captured due to biological 

variation or physical variations of the experimental set-up might have obscured evidence of 

thermal adaptations in the investigated species. Possibly the set-up used was not adequate to 

uncover small but important differences between the lines. There were for example re-occuring 

inconsistencies with the temperature gradient for the microtiter plate-based thermoblocks. 

Water was used to flood the thermoblocks to improve thermal conductivity. As this water 

evaporated continuously, it was impossible to keep a precise stable temperature gradient. The 

measured growth rates were therefore mean rates of assay temperatures that occurred at a 

specific well position throughout the experimental run. Although not huge, these fine 

differences are however important and need to be detected, as slight variations in TPCs could 

lead to crucial ecological differences in natural environments (Low-Décarie et al., 2017). This 

also begs the question as to what is the best modelling approach for thermal performance and 

whether using specific models may reinforce the expectation bias to find a positive result. 

Depending on what equation was used (not necessarily the one with lowest AIC) and whether 
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models were fit on single dilution phases (pseudo-replication), single replicates or averages, 

significant differences could be found if the data would have been analysed differently. It is 

therefore of utmost importance for studies investigating thermal adaptation to openly identify 

how data were pooled or bootstrapped and how equations were fit (Low-Décarie et al., 2017). 

 

2.6 Conclusion 

Like all marine species, the species in this study will most likely be affected by warming water 

temperatures as a result of climate change in the coming decades. Testing multiple species 

from varying taxonomic groups indicated that adaptation to temperature under laboratory 

conditions in a relative short amount of time is not necessarily the norm, as previously 

suggested by some of the studies mentioned in the introductory section of this chapter. This 

investigation however showed that the amount of temperature change, as well as culturing 

method seem to play a major role in evoking an adaptation response. As natural conditions are 

much more complex than controlled laboratory set-ups, the question remains whether thermal 

adaptation in marine phytoplankton will occur in coming decades, and if so, whether 

adaptations will ensure the same temporal variations in community structures, and ecosystem 

functionalities as under current conditions. Adaptive rates might change when multiple abiotic 

factors are altered simultaneously or adaptation might be hampered altogether. Future 

investigations of thermal adaptation should therefore focus on replicating realistic scenarios 

instead of trying to find thermal adaptation by exposing phytoplankton to unrealistic 

conditions. Furthermore it is essential to investigate whether thermal adaptations can have an 

effect on species interactions and competition and how varying rates of adaptation in different 

strains or species might affect community structure, as adaptations that would be overall 

neutral in a complex ecosystem would be less relevant to study. 
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2.8 Supplementary Material 

2.8.1 AIC scores for TPC model fits to growth rate data of different species 
 

 

Supplementary Figure 2.1: AIC scores of model fits to growth rate data of D. tertiolecta. 

 

 

Supplementary Figure 2.2: AIC scores of model fits to growth data of P. provasolii. 
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Supplementary Figure 2.3: AIC scores of model fits to growth data of C. mulleri. 

 

 

Supplementary Figure 2.4: AIC scores of model fits to growth data of T. pseudonana. 

 



Chapter 3: Rate Measurements of Respiration and Photosynthesis 
 

51 
 

3. Chapter 3: Rate Measurements of Algal Respiration and 

Photosynthesis as Indicators of Thermal Adaptation 

3.1 Abstract 

Respiration and photosynthesis are essential processes in phototrophic organisms that ensure 

correct cell functioning and growth. In the face of environmental change, these processes need 

to be able to acclimate and adapt to ensure continued cell health in phytoplankton. This 

chapter examined the respiration and net photosynthesis rates of 4 species from 3 different 

taxa of phytoplankton (Dunaliella tertiolecta, Pycnococcus provasolii, Isochrysis galbana, and 

Phaeodactylum tricornutum) cultured in 2 different thermal environments. Lines of these 

species were cultured at 15 and 20 °C for 6 years and tested for thermal adaptation afterwards. 

The results indicated no thermal adaptation in the rates of any of the investigated species. This 

finding suggests that were a 5 °C temperature increase to occur in natural environments over 

several years, rates of respiration and photosynthesis would not track the change. The 

consequences of these traits being seemingly conserved, and the role for ecosystem dynamics 

under environmental change, remain to be elucidated. 
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3.2 Introduction 

Photosynthesis and respiration are temperature-dependent processes in photosynthetic 

organisms (Robarts and Zohary, 1987). Photosynthesis is the process that uses energy form 

sunlight to produce intracellular organic carbon sources from atmospheric CO2, which can be 

used for cell growth or other C-requiring processes and results in the evolution of O2 (Garcia-

Carreras et al., 2018). Respiration on the other hand consumes organic carbon and oxygen, 

allowing the energy stored within carbon molecules to be used to drive cellular processes 

(Williams, 1998). The two processes are therefore are an indicator of growth, and crucial in 

controlling marine carbon cycling and the surface water response to eutrophication (Falkowski 

and Owens, 1980; Giorgio, 1992). Hence, it is necessary to understand how these processes will 

be altered by climatic changes such as increased temperatures or increased atmospheric CO2 

(McKinnon et al., 2017). The rates of respiration and photosynthesis can be assessed by 

measuring oxygen evolution in the light and oxygen consumption in the dark. Whereas 

photosynthesis occurs only in the light, respiration is happening at all times so that measured 

rates of O2 production in the light are net rates of gross photosynthesis minus respiration 

(McKinnon et al., 2017). 

When abiotic conditions change, so does phytoplankton performance of most physiological 

traits, including respiration or photosynthesis, which can have subsequent impacts on aquatic 

ecosystems in general (Staehr and Sand-Jensen, 2006). Although photosynthesis and 

respiration are processes tightly correlated with cell functioning (Davison, 1991), their 

performance across a temperature gradient does not necessarily follow the same thermal 

performance curve (TPC) as for growth (Baker et al., 2016). It has been additionally 

demonstrated that TPCs of these two processes can be highly dynamic and change within short 

periods of time; acclimation of photosynthesis and respiration to novel temperature conditions 
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can occur quickly within the time span of a few generations (Coles and Jones, 2000), or even 

minutes to a few hours (Geider et al., 1996). Whether long-term adaptations occur and prevail 

to alter the performance of phytoplankton is however still unclear. Adaptations could be an 

important process to buffer responses to environmental change and ensure continued 

ecosystem productivity (Padfield et al., 2015).  

A study on the diatom P. tricornutum focussed on identifying thermal adaptation in rates of 

RUBPCase enzyme activities, carbon assimilation, and bulk protein synthesis rates, which are 

tightly connected to photosynthesis and respiration (Li and Morris, 1982), without measuring 

these two processes directly. Another study on the macroalgae Laminaria saccharina tested 

changes in photosynthetic rates and carbon fixation, but conditioned the cultured at different 

temperatures for only a month (Davison, 1987). To our knowledge, respirometry has never 

been used on long-term cultures of microalgae to test for thermal adaptation through 

measuring changes in oxygen content of the surrounding medium directly as a proxy for net 

rates of photosynthesis and respiration. To investigate whether rates of photosynthesis and 

respiration in algal cultures could adapt to a temperature increase of 5 °C, lines of 4 species of 

phytoplankton spanning 3 taxonomic groups (2 chlorophytes, 1 diatom, 1 haptophyte) were 

maintained at 15 °C and 20 °C for over 6 years and investigated via a reciprocal transplant 

experiment. Each line’s rates of respiration and net photosynthesis were measured at both 

15 and 20 °C to test the hypothesis that thermal adaptation to source conditions would 

optimise net photosynthesis or respiration rates in its source environment relative to that of 

the line adapted to a different temperature. 
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3.3 Materials & Methods 

3.3.1 Long-term algal cultures 

Lines of the algal species Dunaliella tertiolecta (CCAP1320), Pycnococcus provasolii 

(CCMP 1203), Phaeodactylum tricornutum (CCMP 2561), and Isochrysis galbana (CCMP 1323) 

were maintained at 15 and 20 °C in f/2 medium (Guillard and Ryther, 1962; Guillard, 1975) for 

approximately 6 years at ~ 100 µmol photons m-2 s-1 (~350 generations, depending on the 

species, see Chapter 2 for calculation of generations). The stock culture conditions and 

maintenance was the same as for the cultures used in Chapter 2. Experimental cultures were 

inoculated 1 week prior to the onset of rate measurements by transferring 1 ml of dense stock 

culture into 35 ml of fresh f/2 medium so that cultures would be in exponential growth at the 

time of measurement. Each species had four biological replicates from each source 

temperature. 

3.3.2 Rate measurements of Photosynthesis and Respiration 

Oxygen production and consumption rates were measured with Clark-type electrodes (Digital 

Oxygen System Model 10, Rank Brothers Ltd., UK) at two assay temperatures (15 °C and 20 °C). 

To increase signal strength at time of measurement, 10 ml of culture were concentrated by 

centrifugation at 5000 RPM for 5 minutes and re-suspended in 2 ml f/2 medium. A two-point 

calibration was carried out at 15 and 20 °C with air-saturated distilled water (100% O2) and O2-

depleted water with sodium hydrosulfite (0% O2). Using distilled water rather than artificial sea 

water for the calibration, is a shortcoming of this investigation, as oxygen solubility will be 

altered depending on the amount of ions present in the water. As all calibrations across species 

and replicates were done with the same water, the results are nonetheless comparable to each 

other. The analog data output (change in voltage) from the electrodes was digitized using a 

PicoScope 3424 PC Oscilloscope (pico Technology Ltd., UK) prior to being recorded with the 
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Software Picoscope 6 (pico Technology Ltd., UK). Polarising voltage was set to 700 ± 2 mV for 

both electrodes. Samples were acclimated to the assay temperature for 15 minutes in complete 

darkness to measure the response to acute temperature variation (based on Padfield et al., 

2015). After acclimatisation, oxygen consumption in the dark was recorded for 10 minutes, 

after which light emitting diodes (LEDs) were switched on to illuminate the samples with 1000 ± 

100 µmol photons m-2 sec-1. Oxygen evolution was then recorded for another 12 minutes of 

which the first 2 minutes were discarded to allow for rate acclimation due to the abrupt switch 

from total darkness to high light levels. From each species, 4 replicate cultures of the 15 °C line 

and 4 replicates of the 20 °C line were measured. Because two electrodes were utilised to 

register changes in oxygen content, for each culture line, half of the replicates were measured 

at one electrode (n = 2) and half of the replicates at the other (n = 2 as well), to even out 

potentially confounding effects of the equipment (resulting in a total of n = 4 per culture line). 

Respiration and photosynthetic rates were calculated by converting measured changes in 

voltage per minute into changes of O2 per minute, and normalized by dividing by the total 

amount of chlorophyll a (Chl a) to calculate the rate of change of O2 per unit chlorophyll per 

hour.  

Samples for measuring chlorophyll concentrations were obtained by pipetting 1 ml of sample 

into 9 ml of 100% methanol (final concentration 90% (v/v)) after each dark-light cycle. After 

extraction in methanol-water for at least 14 hours at 4 °C in the dark, absorbance spectra were 

obtained from 360 nm to 800 nm with a methanol:water baseline in a UV-Vis 

Spectrophotometer (Genesys 10S, Thermo Scientifc, USA). Total Chl a concentrations were 

calculated with formula [1] for methanol Chl a extractions according to Ritchie et al. (2008).  
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Chl 𝑎 =  −2.078 ∗ 𝐴630 − 6.5079 ∗ 𝐴652 + 16.2127 ∗ 𝐴665 − 2.1372 ∗ 𝐴696 (±0.007)     [1] 

Where Annn is the absorbance of the extract solution at the wavelength nnn. 

 

3.3.3 Statistical Testing 

To test whether thermal adaptation had occurred in net photosynthetic and respiration rates 

within each species, three-way ANOVAs with an alpha level of 0.05 were used to identify 

significant differences between the average maximum rates (response variable) of the tested 

lines. The three independent variables were “source temperature” with two levels to 

differentiate the two lines from 15 and 20 °C, “assay temperature” which also had two levels to 

test whether significant rate differences would occur depending on the experimental 

temperature, and “rate type” to clarify the two rate measurement levels “respiration” and “net 

photosynthesis”. However, before ANOVA testing could be performed, normality of residuals 

and equal variance testing had to be performed.  

For the normality of residuals, these tests failed for D. tertiolecta, P. tricornutum, and 

P. provasolii. Equal variance of the distributions was not given in I. galbana. Effectively, none of 

the species could be analysed with the envisaged test. As an alternative to the three-way 

ANOVA, a Kruskal-Wallis rank test was performed when normality of residuals was not given. 

For tests in which the assumption of equal variances was not met, an ANOVA was performed 

that allowed to drop this assumption, the so-called Welch one-way test. The downside of both, 

the Kruskal-Wallis test and the ANOVA test without the assumption of equal variances, is that 

the effects of the single independent variables cannot be separately reported but only the 

hypothesis tested and the p-value returned. Therefore, a rank-based post-hoc test had to be 

performed when a significant difference was found. In this case it was the Dunn-test, which 
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does pairwise comparisons on rank-based data and adjusts the p-value for multiple testing to 

avoid Type 1 errors. Another curiosity with these rank-based tests is that degrees of freedom 

can appear as decimal numbers. 

All the above-mentioned statistical analysis was conducted with R (version 3.3.1). 

 

3.4 Results 

Rates of respiration and net photosynthesis did not show the hypothesized pattern of a line 

having higher rates at its source temperature than the corresponding line (Fig. 3.1). As expected 

across all species, rates of respiration were registered as a decline in oxygen over time, whereas 

rates of net photosynthesis were recorded as an increase in oxygen content over time. Across 

all species and their separate culture lines, the differences between rates of respiration and 

rates of photosynthesis were significantly different (at least a p-value of < 0.05). Within each 

respirometry type (either respiration or net-photosynthesis), the expected pattern that a 

culture line would display higher rates at its source environment than the reciprocal one, was 

not confirmed (Fig. 3.1). Instead, it could be seen visually that one of the two lines within each 

species had higher pronounced rates than the other line at both assay temperatures. Although 

these differences in the rates of respiration and photosynthesis could be seen, the Dunn post-

hoc test did not identify significant differences between lines of one species among either rates 

of photosynthesis or respiration (p > 0.05 for all comparisons). Thus the conclusions that had to 

be drawn were that i) a line did not perform better in its source environment than the a line 

from the other environment, and ii) not only did they not perform better, but there was no 

statistical difference among lines so that it has to be concluded that thermal adaptation did not 

occur in any of the species. 
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Figure 3.1: Measurements of respiration and net photosynthesis in 4 phytoplankton species 
with two culture lines each (15 °C and 20 °C) (n = 4 for each line). Blue boxplots denote results 
of the lines coming from a 15 °C source environment, red boxplots those coming from a 
20 °C source environment. All lines were tested for their oxygen consumption (respiration) and 
net oxygen production (net photosynthesis), measured both at 15 °C (blue-shaded areas) and 
20 °C (red-shaded areas) to investigate whether lines would have higher rates at their source 
temperature. In all species, significant differences were found between the rates measured in 
the dark (respiration) and in the light (net photosynthesis). However, within one light regime no 
significant differences were found for any of the lines or species. Note the difference in scale on 
the y-axis, as species had varying overall rates. 
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3.5 Discussion 

Measurements of respiration and net photosynthesis in all cases did not indicate adaptation to 

the source environment. Apart from the significant differences in rates of respiration and 

photosynthesis, rates between lines within a species and at the two assay temperatures did not 

differ from each other. It could be that this lack of differences could be down to the statistical 

tests employed and the relatively low number of replication, as it could be observed visually 

that, within each species, one of the lines always had higher rates at both source temperatures 

in comparison to the other. It is possible that being cultured at 15 °C or 20 °C for a long period 

of time might down or up-regulate the metabolism of a specific line in general, and that 15 

minutes of acclimation to temperatures may not have been sufficient to reverse this response.  

Previous studies found that exposure to a colder temperature over extended periods of time 

would lead to overall higher maximum rates of carbon fixation in comparison to a line that was 

grown at a warmer temperature (Davison, 1987; Li and Morris, 1982). These current findings 

hint towards the idea that being cultured at a specific temperature can down or up-regulate 

metabolism in general, causing overcompensation through more activated rates of respiration 

and photosynthesis (Li and Morris, 1982). Apart from P. tricornutum, 15 °C lines were tending 

to display higher rates than their 20 °C counterparts across all species, whereas in the diatom it 

was the 20 °C line that had overall higher rates. The finding for P. tricornutum is surprising as 

past research has shown that a population of this diatom grown at colder temperatures should 

exhibit compensatory dynamics and more activity than a population from a warmer source 

environment to counterbalance the reduction in performance that is expected at colder 

temperatures because of slower metabolism (Li & Morris, 1982). This difference in activated 

metabolism, rather than higher pronounced rates at the specific source temperature can be a 
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sign of thermal adaptation in phytoplankton (Li & Morris, 1982). I point out clearly once more, 

that these visually seen differences were however not statistically significant. It could be that a 

longer period of adaptation, as well as a stronger selection pressure and different experimental 

culturing regime, as discussed in Chapter 2, could evoke variations that would pass the test for 

statistical significance. In addition and in order to confirm this presumption, work to identify 

whether the genes responsible for the regulation of the metabolic pathways for respiration and 

photosynthesis would be expressed differently between the lines would also be necessary. It 

could be that even though the observed differences were not statistically significant, trends in 

altered gene expression would already emerge. Similar to the previous chapter, this genomic 

analysis was however not performed, so that the identified trends can only be regarded as a 

start into the investigation of respirometry as an indicator of thermal adaptation. Identification 

of genes that are responsible for patterns of thermal adaptation is still in its infancy and the 

scientific community is lacking knowledge about the genes that play a role in thermal 

adaptation of phytoplankton (Rengefors et al., 2017).  

Measuring rates at two assay temperatures in the pursuit to discover thermal adaptation might 

be insufficient to detect thermal adaptation. It is possible that the optimum temperatures for 

measured rates of photosynthesis and respiration might have shifted during the culturing 

period, which would potentially not be detected in the rate measurement if one was done at a 

sub-optimum temperature for one line, and at supra-optimum temperature for another. Rates 

might appear the same, although overall the response across the whole temperature gradient 

might have adapted (Fig. 3.2). Comparing these results to the investigation in Chapter 2, it is 

however unlikely that such a pronounced adaptive shift in thermal response happened, as 5 °C 

was shown to not be a strong enough selective pressure to evoke thermal adaptation in a 
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culture regime that was based on monthly transfers. Other studies investigating potential 

adaptations might however want to pay attention to this detail in their experimental design and 

analysis, as adaptations might be overlooked if the resolution of measured assay parameters is 

not high enough.  

 

Figure 3.2: Conceptual figure to illustrate the idea that attempting to detect thermal adaptation 
at specific assay temperatures might be flawed. In this example a rate Y was measured at an 
assay temperature X. The measured rate at supra-optimal temperatures in a non-adapted TPC 
(pink) might be the same as the rate in an adapted TPC (green) where X would constitute a sub-
optimal temperature. The fact that thermal adaptation had occurred by a shift of the TPC 
towards warmer temperatures would not be detected, as rate measurements would remain 
the same. 

In addition to thermal history, light history has also been found to affect the response of 

photosynthetic rate parameters (Jassby and Platt, 1976). As both the 15 °C and 20 °C lines were 

grown in different incubators, a lack of adaptation could also be down to different 

environmental pressure combinations of light and temperature that potentially did not evoke a 

detectable response. Although this is unlikely and it is virtually impossible to guarantee exact 

equal culture conditions when different models of incubators are used and cultures are being 

shifted around so that all scientists sharing an incubator are accommodated for space. 
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Light, temperature, respiration, and photosynthesis are not always directly coupled (Baker et 

al., 2016; Rhee, 1982). Under specific light and temperature combinations, dissolved organic 

carbon can be released and not be utilised for growth (up to 40%) (Collins and Boylen, 1982). 

Additionally, the measurements were done at light levels far higher than the source incubator 

conditions (~1,000 in comparison to ~ 100 µmol photons m-2 s-1) in order to register enough of a 

response that could be picked up by the utilised method. Consequently, the observed 

responses should also be potentially considered as the acute response of a 15 °C or 20 °C line to 

changed light levels rather than changed assay temperatures.  

Dynamic responses of rates to changed temperature regimes are important to consider for 

estimating ocean primary production and respiration (Anning et al., 2001; Geider et al., 1997). 

It is therefore crucial to further understand how species acclimate and adapt to temperature as 

responses do not seem to follow the simple idea that a species does best in its source 

environment, but the responses seem to be more nuanced, species specific, and do not appear 

to be a straightforward vertical shift of TPCs across the temperature axis. Short-term responses 

of photosynthesis do not necessarily correlate with long-term responses or optimum 

temperatures for growth, which can be several °C removed from optimum temperatures for 

net photosynthesis (Davison, 1991). Photosynthesis is not the sole factor responsible for 

growth, as growth is the resulting response of all cellular processes combined (enzyme 

reactions, transport of molecules and nutrients, etc.), so that a disconnection between the two 

should not be surprising (Kuebler et al., 1991). In past research, positive rates of photosynthesis 

were even observed at temperatures beyond the maximum limits for growth so that 

measurements of respiration and net photosynthesis are potentially not a good indicator of 

thermal adaptation if measurements are taken in the short-term as a response to changed 

assay conditions or only over the course of several minutes or hours (Davison, 1991).  
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3.6 Conclusion 

The investigated lines of four species of phytoplankton did not show thermal adaptations of 

respiration and net photosynthesis to their source temperature that could be found in 

reciprocal transplant measurements. However, generally up-regulated or down-regulated 

metabolisms in lines from differing source environments could be a sign of thermal adaptation. 

Respiration and net photosynthesis are complex mechanisms and their long-term responses to 

changes in the thermal environment are not fully understood. More knowledge on the 

physiology of these two processes is therefore necessary if their rate measurements are to be 

used as indicators of thermal adaptation. 
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4. Chapter 4: High Predictability of Direct Competition Between 

Marine Diatoms Under Different Temperatures and Nutrient 

States  

Accepted and published in the journal “Ecology and Evolution” as: Siegel P, Baker K, Low-

Décarie E, Geider R. 2020. „High predictability of direct competition between marine diatoms 

under different temperatures and nutrient states.” Ecology and Evolution, 10(14), 7276 - 7290. 

doi.org/10.1002/ece3.6453. 

 

4.1 Abstract 

The distribution of marine phytoplankton will shift alongside changes in marine environments, 

leading to altered species frequencies and community composition. An understanding of the 

response of mixed populations to abiotic changes is required to adequately predict how 

environmental change may affect the future composition of phytoplankton communities. This 

study investigated the growth and competitive ability of two marine diatoms, 

Phaeodactylum tricornutum and Thalassiosira pseudonana, along a temperature-gradient (9 °C 

to 35 °C) spanning the thermal niches of both species under both high-nitrogen nutrient-replete 

and low-nitrogen nutrient-limited conditions. Across this temperature gradient, the competitive 

outcome under both nutrient conditions at any assay temperature, and the critical temperature 

at which competitive advantage shifted from one species to the other, was well predicted by 

the temperature dependencies of the growth rates of the two species measured in 

monocultures. The temperature at which the competitive advantage switched from 

P. tricornutum to T. pseudonana increased from 18.8 °C under replete conditions to 25.3 °C 

under nutrient-limited conditions. Thus P. tricornutum was a better competitor over a wider 

temperature range in a low N environment. Being able to determine the competitive outcomes 

from physiological responses of single species to environmental changes has the potential to 

https://doi.org/10.1002/ece3.6453
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significantly improve the predictive power of phytoplankton spatial distribution and community 

composition models. 

 

 

 

4.2 Introduction 

Competition plays an important role in shaping biological communities in terrestrial and aquatic 

ecosystems (Tilman, 1987). Interspecific competition within communities occurs when two or 

more species possess the same or similar resource requirements (Clements and Shelford, 

1939). For phytoplankton, the most important resources are macronutrients (N, P, Si), 

micronutrients (trace elements), organic nutrients (vitamins), CO2, and light (Riebesell, 2004; 

Tilman et al., 1982). If demand for a depletable resource by the organisms within an ecosystem 

is high, the abundance or concentration of the resource will decline. When the concentration of 

a resource becomes too low, it can fall below the minimum requirement of a species to support 

its temperature and light-dependent maximum growth rate (µmax), and therefore become 

limiting (Andersen, 2005). 

In equilibrium communities, the minimum resource concentration that supports net population 

growth, and for which uptake rates by the population and supply rates by the environment are 

in balance, is called R* (Tilman, 1981). Assuming that all species compete for the same limiting 

resource and ignoring the effects of interference or apparent competition, the species with the 

lowest R* should outcompete all other species and dominate a community (resource ratio 

theory or R*-theory; Tilman et al., 1982). Theoretically, the number of species that can stably 

coexist in a system is therefore equal to the number of limiting resources, if different species 

are limited by different resources. The fact that most communities of primary producers usually 
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display higher species diversity than the number of limiting resources (Cloern and Dufford, 

2005; Sommer, 1984) indicates that natural communities are often not in equilibrium or that 

the ability of a species to exploit resources is not the only factor that regulates a community’s 

diversity and the outcome of competition. Apart from limiting nutrients, species diversity is 

governed by other major regulating forces which can be biotic (e.g. differential grazing pressure 

or various forms of symbiosis such as mutualism or parasitism) or abiotic (e.g. temperature, pH, 

salinity) (Begon et al., 2006; Cloern and Dufford, 2005).  

Whether the effect of environmental change on the outcome of competition can be predicted 

from the performance of isolated species and whether these predictions align with classical 

competition models or single species performance is unclear because experiments that 

examine direct species interactions along environmental gradients are scarce (Kordas et al., 

2011). Only a few studies have previously found evidence to suggest that this is possible. For 

example Huisman et al. (1999) showed that the ability of isolated algae species to survive at the 

lowest light level determined their competitive success in mixed communities. Bestion et 

al. (2018a) showed that phosphorus uptake rates of monocultures at different temperatures 

correctly predicted the competitive outcome between pairs of 6 phytoplankton species in the 

majority (71%) of the cases. 

Simultaneous changes in multiple abiotic factors such as those predicted to occur under climate 

change (e.g. rising sea surface temperatures in conjunction with changes in nutrient inputs), 

may also complicate predictions, as abiotic factors may interact (e.g. antagonistic or 

multiplicative), and organisms may respond in a way that is not accounted for from the 

responses to gradients of individual factors operating in isolation (Harley et al., 2017; Thomas 

et al., 2017). For instance nutrient concentration was shown to interact with temperature to 
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influence phytoplankton growth rates (Rhee and Gotham, 1981), and the cardinal temperatures 

(e.g. thermal optimum) of thermal performance curves (TPCs) (Bestion et al., 2018b; Thomas et 

al., 2017; van Donk and Kilham, 1990). In particular, N-limitation can significantly lower the 

thermal optimum of the diatom Thalassiosira pseudonana towards colder temperatures 

(Thomas et al., 2017). Given this shift in thermal performance due to nutrient limitation, 

T. pseudonana may become less competitive in warm N-limited waters. In contrast, 

Phaeodactylum tricornutum, is known to be a good competitor for inorganic nitrogen when this 

nutrient is scarce because it can take up nitrate when abundant, and store it for times of 

depletion (Cresswell and Syrett, 1982). Thus, the outcome of interspecific competition for 

inorganic nutrients might be expected to depend on temperature if the interaction of nutrient 

limitation with temperature is species specific. For example, P. tricornutum has been found to 

outcompete T. pseudonana and other species in maricultural ponds (Nelson et al., 1979) 

despite not being a dominating species in marine phytoplankton communities (Guillard and 

Kilham, 1977), which may be a reflection of nutrient availability or temperature characteristics 

in different systems. An early study on the competition between P. tricornutum and 

T. pseudonana showed that competition is indeed temperature-dependent and that the 

thermal environment influences the competitive outcome in stationary phase cultures 

(Goldman and Ryther, 1976). Specifically, P. tricornutum was found to be a good invader and 

dominant species under cold to intermediate temperatures (< 20 °C), whereas it could not 

establish itself as an invasive species in warmer temperatures.  

Here, the interaction of temperature and nitrate availability on direct competition between 

P. tricornutum and T. pseudonana was investigated along a temperature gradient. To test 

whether temperature and nutrient status have an interactive effect on the outcome of 

competition, experiments were conducted in both nutrient-replete high N conditions and low N 
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conditions (whereby nitrate limited yield). Specifically, it was hypothesised that (i) the species 

with the higher growth rate or carrying capacity at a given temperature and nutrient level as a 

monoculture would have the competitive advantage in mixed cultures, and that (ii) greater 

absolute differences in growth rate between species at a specific assay temperature would 

determine how quickly the poorer competitor would be displaced.  

 

4.3 Material & Methods 

Stock cultures of P. tricornutum (CCMP 2561) and T. pseudonana (CCMP 1335) were maintained 

in the University of Essex algal culture collection at 15.5 ± 1.0 °C, in f/2 medium (Guillard and 

Ryther, 1962) prepared in artificial sea water (Berges et al., 2001; Harrison et al., 1980) and 

grown on a 12:12 hour light and dark cycle at a photosynthetic photon flux density (PPFD) of 

approximately 60 µmol photons m-2 s- 1, which is close to optimum light levels for P. tricornutum 

(Geider et al., 1986), and approximately 30% of the optimum light level for T. pseudonana 

(Geider et al., 1998; Geider et al., 1997). Stock cultures were transferred monthly as 1:36 

dilutions.  

4.3.1 Competition Experiments 

4.3.1.1 High N competition experiment 

Prior to experimentation, P. tricornutum and T. pseudonana were maintained in exponential 

growth for two weeks (approximately 10 to 14 generations) under stock culture conditions at 

15.5 ± 1.0 °C by transferring cultures into fresh f/2 medium once cell densities reached 500,000 

cells ml-1 for P. tricornutum and 250,000 cells ml-1 for T. pseudonana (equivalent to about 5 % of 

each species’ carrying capacity).  
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Experiments using an aluminium temperature-gradient block were conducted to assess (i) 

thermal performance curves (TPCs) for growth rate of monocultures of the two diatoms and (ii) 

temperature dependence of competition between these species. The aluminium block was 

heated at one end and cooled at the other to generate a temperature gradient from 8.8 °C at 

the cold end to 35 °C at the hot end. The block provided 4 rows with 17 columns (assay 

temperatures) in each row. Temperature within each column was controlled to within 0.2 °C, 

providing approximately 1.5 °C increments along the temperature gradient. Illumination was 

provided from below by light emitting diodes (LEDs). PPFD was set to 

150 ± 15 µmol photons m -2 s- 1 and illumination was provided on a 12:12 hour light and dark 

cycle. 

Aliquots from stock cultures of each of the diatoms were used to inoculate 17 autoclaved 

borosilicate test tubes (5 ml assay volumes), which were distributed along the same 17-assay-

temperature gradient described above. To assess the growth rate TPCs, in vivo chlorophyll a 

minimum fluorescence yield (F0) was used as a proxy for biomass (see section 4.3.2 below). 

Initial cell densities were approximately 160,000 cells ml-1 for P. tricornutum, and 80,000 for 

T. pseudonana, corresponding to similar F0 values for both species. The monocultures were 

kept in exponential phase by diluting whenever an assay culture reached F0 values equivalent to 

cell densities corresponding to about 5 % of each species’ carrying capacity, approximately 

500,000 cells ml-1 for P. tricornutum and 250,000 cells ml-1 for T. pseudonana (Fig. 4.1A & 

Suppl. Fig. 4.1). 
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Figure 4.1: Simulation of semi-continuous cultures for obtaining and maintaining (A) nutrient 

replete (high N scenario) and (B) nutrient-limited (low N scenario) cultures. Simulation assumes 

cultures are already acclimated to the nutrient replete growth under defined temperature, 

irradiance, etc. Assumes logistic growth with the nutrient replete growth rate = 1.4 d-1, and 

carrying capacity = 1. Dilution is approximately a 10-fold in the high N scenario and 1.25-fold in 

the low N scenario. Solid lines are the culture density. In (A), the solid lines are interrupted to 

signify that for each dilution step, an aliquot of the assay culture was taken and pipetted into a 

fresh tube, whereas in (B) the assay culture remained in the same tube for the duration of the 

whole experiment, whereby 20% of culture was removed from an assay tube on a daily basis 

and topped up with fresh low N f/2 medium. Dashed line is the culture density that would be 

obtained in a batch culture undergoing logistic growth. Note that (A) is on a log-scale to 

represent that high N exponential cultures were kept at low densities far from reaching 

stationary phase, whereas (B) is on a linear scale. 

At the same time, to assess competition between these species, aliquots from the stock 

monocultures were combined to create a mixed culture with equal cell densities of 

100,000 cells ml-1 in a 1:1 species ratio (50,000 cells of each species). The starting ratio could 

only be approximated, as cell densities were estimated from the relationship between cell 

density and F0 determined at 15.5 °C, but fluorescence per cell is not constant as it varies 

between species and with assay temperature. This mixed culture was then used to inoculate 34 

autoclaved borosilicate test tubes (5 ml assay volumes), which were distributed in duplicates 

along the same 17-assay-temperature gradient to assess the acute effect of temperature on 

competition. After mixed cultures had been established and distributed across the temperature 
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gradient, 200 µL were removed daily from each mixed culture tube and preserved with Lugol’s 

solution for cell frequency counts, i.e. relative species abundances of the mixed cultures over 

time. 200 µL of fresh f/2 medium was added to keep the culture volume constant. As with the 

monocultures, F0 measured daily was used as an index of community biomass. The mixed 

cultures were kept in exponential growth by diluting when F0 reached values corresponding to 

about 5% of the carrying capacity. 

After a further two weeks, the monocultures from each assay temperature that had been used 

to assess the growth rate TPCs of the two species were mixed together in an equal cell density 

ratio to investigate the effect of thermal acclimation on competition. Here, 2 mixed cultures to 

monitor competition were created at each assay temperature and aliquots were sampled daily 

to monitor changes in relative species frequencies.  

Following completion of the competition experiment, triplicate monocultures of each species 

were grown across the gradient to increase the total replication for determining the TPC for 

growth rate of each monoculture to n = 4. However, in the final analysis, one of the 

T. pseudonana growth replicates was omitted as an outlier because the TPC was significantly 

different to the remaining three replicates (Suppl. Fig. 4.2A).  

The above experimental design enabled the examination of (i) the TPCs for growth of 

P. tricornutum (n = 4) and T. pseudonana (n = 3), and (ii) the acute interspecific competition 

along the temperature gradient in the two weeks following the transfer from their 15.5 ± 1.0 °C 

source environment (n = 2), and of cultures acclimated for two weeks to temperatures of 8.8 °C 

to 35 °C (n = 2). A more visual representation of the experimental chronology can be found in 

Supplementary Figure 4.3. 
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4.3.1.2 Low N competition experiment 

Cultures were acclimated as a batch culture for two weeks in low N f/2 medium (starting 

concentration 55 µM in comparison to 882 µM in full f/2). As shown in Supplementary Figure 

4.4, this NO3 concentration reduced carrying capacity, and ensured that cultures would reach 

the stationary growth phase at cell densities that did not saturate the fast repetition rate 

fluorometry (FRRf) signal, allowing to track the culture growth from the onset of the 

exponential growth phase all the way through to stationary phase. The starting 

NO3 concentration of 55 µM was picked after pre-tests were conducted during which the two 

diatoms had been grown in f/2 medium with 4 different NO3-starting-concentrations (882, 

220.5, 110.25, and 55.13 µM) (Suppl. Fig. 4.4). After acclimation, two monoculture replicates of 

each species were inoculated from early stationary phase stock cultures and grown in 5-ml-

volumes across the 17 assay temperatures in the temperature-gradient-thermoblock (9.1 to 

33.8°C) in the low N (55µM) f/2 medium. The light regime was kept consistent with that used 

for the high N competition experiment and once again set to a PPFD in the range of 

150 ± 15 µmol photons m-2 s- 1 on a 12:12 hour light and dark cycle.  

The cultures were maintained in semi-continuous growth by removing 20% of the culture 

volume (1 mL) daily (used for determining cell abundance and nitrate concentration) and 

replacing this volume with fresh medium to maintain a total volume of 5 ml. This way cultures 

could be grown until cell abundance (yield) was limited by the concentration of nitrate provided 

in the growth medium and daily population growth rate was set by the dilution rate (Fig. 4.1B). 

Although the daily sampling regime was different from the high N scenario to account for the 

necessities of culturing microorganisms in nutrient-limited conditions, the results of the two 

nutrient scenarios can be compared as the same species were used and cultures were treated 

otherwise equally during the competition experiment.  
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The removed 1 ml samples were centrifuged at 5000 g for 7 minutes at 4 ˚C. A subsample of the 

supernatant (300 µL) was transferred to a flat-bottom 96-well plate (Thermo Scientific Nunclon, 

USA) and stored at -20°C to measure the sum of nitrate plus nitrite (NOX) at a later time (see 

section 4.3.4 below). The cell pellet was re-suspended in the remaining volume (700 µL), fixed 

with formaldehyde (final concentration 1%) and stored at -20°C until cell abundances were 

estimated with flow cytometry (see section 4.3.5 below).  

After growing in monocultures for two weeks, inorganic nitrogen concentrations in all 

treatments were depleted below the detection limited of the NOx-assay (i.e. <0.5 µM; see 

Suppl. Fig. 4.5). At this point the fluorescence signals had stabilized or were declining, indicating 

that the yield was N-limited (see Suppl. Fig. 4.6). Following this determination, one of the two 

monocultures of each species at each assay temperature was used to inoculate two mixed 

cultures for the competition phase of the experiment. Each mixed culture tube received 2 ml 

assay volumes from each monoculture, for a total volume of 4 ml, which was then topped up 

with 1 ml of low N f/2 medium to maintain a constant assay volume of 5 ml (competition 

replicates across assay temperatures at this point in time n = 2). The need to use 2 ml assay 

volume of each monoculture to not break with the 20% daily dilution had the consequence that 

the desired 1:1 species ratio at the start of mixed cultures could not always be reached. As in 

the high N experiments, 200 µL of the sampled volume were preserved with Lugol’s solution for 

cell frequency counts. The remaining 800 µL volume was treated the same way as low N 

monocultures, with samples being centrifuged, and 300-µL-aliquots stored for NOx analysis.   

 

One week later, the second N-limited semi-batch monoculture replicate of each species was 

used to inoculate another set of two mixed cultures tubes at each assay temperature for a 

second duplicate competition experiment (increasing the amount of competition replicates to 
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n = 4). Mixed cultures were kept in the same semi-continuous regime as monocultures with 

20% of sample volume being harvested and replaced with fresh medium on a daily basis.  

The above experimental design enabled the examination of (i) the thermal niche of 

P. tricornutum (n = 2) and T. pseudonana (n = 2) under low N conditions, and (ii) the acute 

interspecific competition along the temperature gradient at the onset of N-limitation (n = 2), 

and of cultures that were cultured in isolation for an additional 7 days at 9.1 to 33.8 °C (n = 2). 

As for the high N competition, the Supplementary Figure 4.3 provides a more visual 

representation of the experimental set-up and explains when the different monoculture and 

mixed culture replicates were collected. 

4.3.2 Chlorophyll Fluorescence 

In vivo chlorophyll a minimum fluorescence F0 (minimum fluorescence yield), used as a proxy 

for biomass, as well as photosynthetic efficiency Fv/Fm, were measured daily via FRRf with a 

FastTracka II fluorometer and Fast Act laboratory system (both CTG Ltd, West Molesey, UK). 

Photosynthetic efficiency was calculated via the formula (Fm-F0)/Fm (Fm = maximum 

fluorescence yield) by the FastPro software (version 1.0.55) used to attain and record FRRf 

measurements. Peak excitation was at 435 nm and fluorescence emission measured at 680 nm 

(with a 25 nm bandwidth). The measuring protocol was set to 24 sequences per acquisition 

with a 100 ms sequence interval and a 20 s acquisition pitch.  

Measurements were taken on cells that were dark acclimated for 30 minutes at their assay 

temperature and profiles of fluorescence emission were fitted within the Fast Pro 8 software 

(version 1.0.55) (Chelsea Technologies, UK).  
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4.3.3 Mixed Population Species Frequency Counts 

Frequency counts for the high N and low N experiment were carried out to monitor the relative 

abundance of each species in the mixed populations over time. Flow cytometry could not be 

used to discriminate between the two species as their forward scatter (FSC) and chlorophyll-a 

fluorescence overlapped. As such, Lugol’s preserved cells were allowed to settle to the bottom 

of the well-plate wells (approximately 3 hours) before frequency counts were performed using 

an Olympus inverted microscope at 200X magnification. In each fixed sample, a minimum of 

400 cells was counted in order to calculate a P. tricornutum-to-T. pseudonana cell abundance 

ratio.  

4.3.4 NOx-Assay (Total nitrite/nitrate analysis) 

NOx, the sum of nitrite and nitrate, concentration was measured using the method of Schnetger 

and Lehners (2014) to track the monocultures to nitrogen depletion before mixing them 

together for the low N competition experiment. The 300 µL frozen aliquots were defrosted on 

ice, and a 150 µL volume was transferred to a fresh 96 well-plate and 75 µL of the NOx reagent 

was added. The reagent was mixed with the assay volume by pipetting up and down several 

times and incubated at 45 ± 5 °C for 60 minutes before measuring absorbance at 540 nm in a 

FLUOstar Omega plate reader (BMG Labtech, Germany). 

4.3.5 Flow Cytometry 

For the low N experiment only, flow cytometry data were used to confirm that cell densities 

had stabilized, despite F0 fluorescence declining, as cell physiology continued to adjust to N-

limitation. Cellular chlorophyll content is known to decline under N-limitation (Parkhill et al., 

2001) and as a consequence the ratio of F0 to cell density also declines (Suppl. Fig. 4.7). Because 
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cellular physiology was stable in exponentially growing cultures of the high N experiment, flow 

cytometry was not required.  

Previously collected samples (as described above in section 4.3.1.2) were defrosted on ice and 

quantified with an Accuri C6 flow cytometer (BD Biosciences, USA) equipped with a blue laser 

(488 nm). Diatom populations were discriminated based on chlorophyll-a fluorescence (>670 

nm) and forward scatter (FSC). FSC was used as a proxy for cell size to observe potential 

changes across assay temperatures after 15 days of monoculture growth in the low N medium. 

After counting cells within 45 µL of sample volume per sample, population statistics were 

calculated using particle counts within gates with the supplied BD Accuri C6 Analysis Software 

(Version 1.0.264.21). Gates were kept stable for the same experimental day, but had to be 

slightly adjusted over time to account for the fact that cell size within the populations 

decreased the longer the cells were N-limited. Gates were therefore extended or moved along 

the FSC-axis towards smaller values the further the experiment progressed. To see example 

gates and example flow cytometry results, and to get an idea of how cell size changed over time 

for the two species under N-limitation, see Supplementary Figure 4.8. 

4.3.6 Data Analysis 

4.3.6.1 Growth rates and carrying capacities 

Growth rates (µ) in high N medium (starting nitrate concentration of 882 µM) were calculated 

for each monoculture replicate and dilution phase as the slope of the linear regression of the 

natural log of F0 over time (Suppl. Fig. 4.1). The growth rate calculated for the 1st dilution phase 

was not used as the cultures had not yet acclimated to assay conditions. Growth rates from all 

subsequent dilution phases were used to fit the TPCs (see section 4.3.6.2 below). 
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The initial exponential growth rates during the nutrient replete phase in low N semi-continuous 

cultures (with a starting nitrate concentration of 55 µM) were calculated using FRRf data from 

the first four days of culturing before the exponential increase in F0 slowed (see Suppl. Fig. 4.6 

& 4.9). Growth rates were calculated with equation [1] as 

µ = 𝑘 + ln ( 10.8) [1] 

where k is the slope of ln(F0) over time, and ln ( 10.8) (natural logarithm of 100% medium 

(i.e. 1.0) over 80% medium (i.e. 0.8)) was added to k to account for the dilution by the daily 

volume removed (1 ml) from the 5 ml culture. 

Cell densities increased to a maximum by day 5 that was sustained thereafter (see Suppl. 

Fig.  4.10). The carrying capacity, K, under the imposed dilution rate of 0.22 d-1 was calculated 

for each replicate and at each assay temperature from the average cell densities measured 

after experimental day 4.  

4.3.6.2 Thermal performance curves 

 

All twelve equations available in the R package “temperatureresponse” (Low-Décarie, 2017) 

were fitted to the temperature-dependent data of growth and carrying capacities obtained 

from monocultures of P. tricornutum and T. pseudonana (Suppl. Table 4.1). For the growth 

model fitting in high N cultures, data from all dilution phases, except dilution phase 1, which 

was regarded as the growth phase in which the cultures acclimated to assay conditions, was 

used. The average growth rate across dilution phases was calculated for each species and 

replicate at each assay temperature, and the temperature dependence was modelled based on 

these average growth rates. For the low N scenario, thermal performances were modelled on 
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the acute growth rates obtained from the first 4 days of low N growth (Suppl. Fig. 4.9), and on 

the thermal response of carrying capacities across assay temperatures (Suppl. Fig. 4.10).  

 

The most appropriate equation for each species was selected based on a visual inspection of 

the data in combination with Akaike Information Criterion (AIC) values (see Suppl. Fig. 4.11). 

Visual inspection was necessary as AIC values alone did not always predict the equation that 

best described the temperature-dependent data, especially at sub-optimal temperatures. For 

P. tricornutum, equation [2] from Ratkowsky et al. (1983) was found to be the best model 

across all replicates. 

𝑅𝑎𝑡𝑒 = [𝑎 ∙ (𝑇 − 𝑇𝑚𝑖𝑛)]2 ∙ [1 − 𝑒𝑥𝑝(𝑏 ∙ (𝑇 − 𝑇𝑚𝑎𝑥))]2                [2] 
 

where a and b are model parameters, T is the assay temperature at which growth rate or 

carrying capacity was measured, and Tmin and Tmax are the maximum and minimum 

temperatures that P. tricornutum would be predicted to grow at.   

 

For T. pseudonana equation [3] from Montagnes et al. (2008) was found to best describe the 

thermal performance.                             𝑅𝑎𝑡𝑒 = 𝑎 + 𝑏 ∙ 𝑇 + 𝑐 ∙ 𝑇2                                     [3] 

 

Wwhere a, b, and c are model paramters and T is once again the assay temperature at which 

growth rate and carrying capacity were measured.  

The fitted TPCs were used to obtain the optimum temperature for growth (Topt), the maximum 

growth rate (µmax) at this temperature, and the low and high temperatures at which  = 0.5 max 



Chapter 4: Direct Competition Between Diatoms 
 

79 
 

(CT50min and CT50max). Single parameters of non-linear model fits can be found in Supplementary 

Tables 4.2 – 4.4. 

To investigate whether the thermal niche differed significantly between (i) the two species, and 

(ii) two nutrient scenarios, a two-way MANOVA was used to examine the 4 dependent variables 

(Topt, CT50min, CT50max, and µmax). The two independent variables were “species” (levels: 

P. tricornutum and T. pseudonana) and “nutrient scenario” (levels: high N and low N). Sample 

size was n = 11 (4 P. tricornutum replicates in high N, and 2 in low N, as well as 3 T. pseudonana 

replicates in high N and 2 in low N), and significance levels were set to a p-value of 0.05. By 

conducting a MANOVA we could assess all pairwise comparisons to determine which cardinal 

temperatures (i) changed significantly in the overall thermal niche, and (ii) were affected by a 

“species” and “nutrient scenario” interaction. 

To test whether the thermal dependency of carrying capacities under low N conditions differed 

between the two species, individual one-way ANOVAs were conducted with “species” as the 

independent variable on the four dependent parameters Topt, CT50min, CT50max, and maximum 

carrying capacity (Kmax). MANOVA testing was not possible due to the replication number of 

n = 2 for the monocultures grown in low N conditions. p-values of the single ANOVAs were 

adjusted for multiple testing with a Bonferroni correction and reported as q-values. 

4.3.6.3 Predicted competition coefficients 

Competition coefficients across assay temperatures in high N and low N conditions were 

predicted from the mean growth rates (equation [4a]) or mean carrying capacities (equation 

[4b]) of each species calculated from the fitted TPCs. 
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑇) = (𝜇1)𝑇  −  (𝜇2)𝑇       [4a] 

 

where (µ1)T and (µ 2)T are the growth rates of species 1 and species 2 at temperature T. 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑇) =  (𝐾1)𝑇  −  (𝐾2)𝑇       [4b] 

where (K1)T and (K2)T are the carrying capacities of species 1 and 2 at temperature T.  

Since competition coefficients are traditionally calculated from growth rates (e.g. Low-Decarie 

et al., 2011; Segura et al., 2011), coefficients calculated from carrying capacities must be 

treated with caution, as the relationship between K and competitive outcome is not established 

for steady-state nutrient limited conditions. Higher K does not necessarily signify better 

competition ability. Under steady-state nutrient limitation, it is R* that determines competitive 

outcome (Tilman, 1981), but because the NOX concentrations were below the detection limit of 

our assay, we could not measure R* in our experiment. 

The predicted temperature dependence of competition coefficients was modelled with a local 

estimated scatter plot smoothing (LOESS) from the R core package “stats” (R Core Team, 2016). 

LOESS fits a smoothing curve into data that is distributed on a scatter plot to graphically 

represent the relationship between an independent and a dependent variable. It is a suitable 

method for visualising complex non-linear relationships. The final smoother curve is the result 

of many local regression curves fit together (Isnanto, 2011; Jacoby, 2000). As such, it is a tool 

for predicting specific points on a regression, such as the inflexion point of competition, and to 

explore data. To display the strength of how closely our LOESS smoother followed the 

calculated competition coefficients, we reported R2-values and residual standard errors (RSE) in 

the results. 
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4.3.6.4 Observed competition coefficients 

Changes in the ratio of the abundances of the two species through time (Suppl. Fig. 4.12 & 

4.13) were used to calculate observed competition coefficients. The competition coefficient 

was calculated as the slope of the change in the natural logarithm of species frequency over 

time. Competition coefficients were calculated with equation [5] for mixed high N cultures and 

mixed low N cultures. 

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = ln (𝑁𝑃.  𝑡𝑟𝑖𝑐𝑜𝑟𝑛𝑢𝑡𝑢𝑚:𝑁𝑇.  𝑝𝑠𝑒𝑢𝑑𝑜𝑛𝑎𝑛𝑎(𝑡)𝑁𝑃.  𝑡𝑟𝑖𝑐𝑜𝑟𝑛𝑢𝑡𝑢𝑚:𝑁𝑇.  𝑝𝑠𝑒𝑢𝑑𝑜𝑛𝑎𝑛𝑎(0))𝑡                   [5] 

where N = species abundance, and t = time. At the temperature at which competition 

coefficients are 0, stable co-existence of the two species is expected. 

As described above (Section 4.3.1), each nutrient scenario had 4 competition replicates across 

the temperature gradient. In the final analysis of competition under high N conditions the acute 

and acclimated competition replicates were pooled because we did not find an effect of 

temperature acclimation and could not observe a significant difference in the temperatures at 

which the competitive advantage switched from P. tricornutum to T. pseudonana (F1,2 = 4.337, 

p = 0.173) (Suppl. Fig. 4.14, and Suppl. Table 4.5). Due to a lack of an effect of temperature 

acclimation on the progression of competition across temperatures, we did not structure the 

competition replicates into acclimated and non-acclimated in the low N scenario and focussed 

on culturing the monocultures to N limitation, pooling the four competition replicates as well. 

In order to determine whether nutrient regime significantly changed the temperature at which 

P. tricornutum and T. pseudonana co-existed (i.e. the inflexion point temperature at which the 

competition coefficient equalled 0), we conducted a one-way ANOVA with the temperature of 
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competition inflexion as the response variable, and “nutrient regime” as the independent 

variable. Significance levels were set to a p-value of 0.05 

All data analysis and calculations mentioned above were carried out with the statistical 

software R (version 3.3.1) (R Core Team, 2016). 

 

 

 

4.4 Results 

4.4.1 Differences in temperature and nutrient response between species in 

monoculture 

When P. tricornutum and T. pseudonana were grown as monocultures, the thermal niches of 

the two species differed significantly from one another irrespective of nitrogen conditions (2-

way-MANOVA, F1,7 = 134.97, p<0.001) (Fig. 4.2, Suppl. Table 4.6). The contrasting thermal 

niches between the two species were evident in differing cardinal temperatures (CT50min, Topt, 

CT50max) (Fig. 4.3A), and µmax (Fig. 4.3B). P. tricornutum occupied a cooler thermal niche than 

T. pseudonana, characterised by lower cardinal temperatures (Fig. 4.3A), and could not sustain 

growth when temperature was in excess of 30 °C (Fig. 4.2). In contrast, T. pseudonana occupied 

a warmer thermal niche and was able to grow across the whole range of tested assay 

temperatures. However, towards the lowest assay temperatures (10 °C and below), the growth 

rate of T. pseudonana approached 0 d-1, indicating that the thermal tolerance minimum of this 

T. pseudonana strain was almost reached (Fig. 4.2).  
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Figure 4.2: Average temperature response curves depicting acclimated growth rates of 

P. tricornutum (red circles and solid line) and T. pseudonana (black squares and dashed line) 

under (A) high nitrate conditions (n = 4 and 3 respectively) and (B) of the initial acute growth 

rate (days 0 – 4) under low N conditions (n = 2 for both species). Shaded area denotes standard 

deviation of the average model calculated from replicate model fits. Symbols in (A) represent 

the growth rates from distinct biological replicates and were calculated from the average 

growth rates across dilution steps after the diatoms had acclimated to growth under assay 

conditions. Dotted line in (B) indicates ln(1/0.8), the dilution rate in these semi-continuous 

cultures; cell abundance would have declined in cultures with growth rates below this value 

which equates to a growth rate of 0.22 d-1 due to the daily dilution that was imposed by the 

sampling regime. Raw data used to calculate growth rates in the high nitrate (882 M NO3
-) 

medium (A) can be seen in Suppl. Fig. 4.1, data used to calculate growth rates in the low N 

(55 M NO3
-) medium (B) can be seen in Suppl. Fig. 7. Nonlinear model outputs of the single 

replicate models used to calculate the average model can found in Suppl. Tables 4.2 and 4.3, 

and single model fits on the individual growth replicates can be found in Suppl. Fig. 4.2 A and B. 
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Figure 4.3: Comparison of (A) cardinal temperatures, and (B) maximum growth rates from 
thermal performance curve model fits for growth rates between P. tricornutum and 
T. pseudonana under high N and low N growth conditions. For P. tricornutum n = 4 in high N 
and n = 2 in low N. For T. pseudonana n = 3 in high N and n = 2 in low N.  

N-limitation altered the thermal niche of both species (Fig. 4.2 & 4.3). The 2-way-MANOVA 

confirmed that nitrate levels had a significant effect on the cardinal temperatures of the TPCs 

of the two monocultures (F1,7 = 9.38, p<0.05). However, the two diatoms responded differently 

to a reduction in N and consequently there was a significant interaction between “N regime” 

and “species” (F1,7 = 33.87, p<0.01). Specifically, the thermal niche for P. tricornutum became 

slightly more narrow (increase in CT50min by 0.31 °C), and µmax at Topt increased by 14%. In 

contrast, thermal niche of T. pseudonana widened (CT50min dropping by 2.42 °C), and the µmax of 

T. pseudonana decreased by 18% (isolated ANOVA results within the MANOVA test for each 

cardinal temperature can be found in Suppl. Tables 4.7 – 4.10). 

Similar to the growth rate results, carrying capacities (K) also displayed a unimodal non-linear 

response along the assay temperature gradient and monocultures reached higher carrying 

capacities the closer the assay temperatures were to the species’ Topt (Fig. 4.4A). All of the 

cardinal temperatures for carrying capacity differed significantly from one another between 

species (Topt: F1,2 = 545.9, q<0.01; CT50min: F1,2 = 78.28, q=0.05; CT50max: F1,2 = 743.1, q<0.01) 

(Fig. 4.5A). Similar to the growth trends in the high N scenario, these significant differences 
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arose because the thermal niche of T. pseudonana was shifted more towards warm 

temperatures than P. tricornutum. Despite differences in the thermal niches, the maximum 

carrying capacity at Topt did not differ significantly between species (F1,2=6.96, q=0.48) 

(Fig. 4.4B). Individual test statistics for the single one-way ANOVAs can be found in the 

Supplementary Material (Suppl. Tables 4.11 – 4.14).  

 

Figure 4.4: (A) Temperature response curves of carrying capacity of P. tricornutum (red circles 

and solid line) and T. pseudonana (black squares and dashed line) under nitrogen-depleted 

conditions in the N-limited phase of semi-continuous culturing in the low N medium (n = 2 for 

both species). Shaded area denotes standard deviation of the average model calculated from 

replicate model fits. Symbols show the carrying capacities from distinct biological replicates 

across the assay temperature range. Raw data used to calculate carrying capacities can be seen 

in Suppl. Fig. 4.8. (B) Forward scatter (FSC) from flow cytometry data of the low N experiment 

across assay temperatures. FSC measurements depicted here were taken on the last day of 

replicate monocultures before they were mixed together for the competition experiment. The 

solid and dashed lines are LOESS lines to visualise the U-shaped trend of the data across assay 

temperatures (R2 = 0.85, and RSE = 4.503 for P. tricornutum; R2 = 0.97, and RSE = 3.378 for T. 

pseudonana). LOESS was not used as a model to predict the relationship between temperature 

and cell size. Dotted line at 30 °C indicates the critical maximum temperature for P. tricornutum 

beyond which it could not sustain growth. (C) Correlation between carrying capacity K and 

log(FSC) for both species. Solid and dashed lines are linear models of the regression. Nonlinear 

model outputs of the single replicate models used to calculate the average model can be found 

in Suppl. Table 4.4 and single model fits on the individual growth replicates can be found in 

Suppl. Fig. 4.2C. 
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Figure 4.5: Comparison of (A) cardinal temperatures, and (B) maximum carrying capacities from 

thermal performance curve model fits for carrying capacities between P. tricornutum and 

T. pseudonana in low N conditions (n = 2 for both species).  

After 15 days of growing the monocultures in the low N medium, cell size showed a U-shaped 

trend across assay temperatures with cell size increasing towards the coldest and warmest 

tested assay temperatures (Fig. 4.4B). There was a strong negative linear correlation between 

the logarithm of cell size and K (Fig. 4.4C), with the smallest cell sizes being observed at assay 

temperatures closest to each diatom’s Topt, meaning that cell size increased towards the 

diatoms’ physiological limits. 
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4.4.2 Competition across assay temperatures 

Monoculture TPCs were used to predict competition across assay temperatures. Under high N 

conditions, LOESS (represented by the solid black line in Fig. 4.6A, R2 = 0.998, and RSE = 0.021) 

predicted an inflexion point at 18.7 °C (i.e. a competition coefficient equal to 0), indicating that 

P. tricornutum was predicted to outcompete T. pseudonana from the coldest assay 

temperature up to 18.7 °C. N limitation was predicted to alter the competition across assay 

temperatures whereby the inflexion point would shift horizontally across the temperature axis 

to 24.6 °C (5.9 °C warmer than under high N conditions; solid black line in Fig. 4.6B, R2 = 0.996, 

and RSE = 0.026). Because K also showed a response across the assay temperature gradient, it 

was possible to make a second prediction of competition in the low N scenario based on K. 

Competition coefficients calculated from K predicted the switch at 22.9 °C (4.2 °C warmer than 

under high N conditions; dotted black line in Fig. 4.6B, R2 = 0.992, and RSE = 0.039). 

Competition was predicted to be strongest at assay temperatures where the growth rates or 

carrying capacities in monocultures exhibited greatest divergence between species. Naturally, a 

species would lose the competition at an assay temperature where it could not sustain growth 

as an isolated species, having reached its physiological limits. Between the upper and lower 

temperature thresholds where both species could grow, the competitive outcomes were 

determined by the thermal growth performances of the species in isolation. 

 

 

 

 



Chapter 4: Direct Competition Between Diatoms 
 

88 
 

 

 

Figure 4.6: Predicted (lines) and observed (symbols) competition coefficients between 
P. tricornutum and T. pseudonana across assay temperatures in (A) high N conditions, and (B) 
low N conditions. A coefficient of 0 indicates no competitive advantage for either species, and 
predicts stable co-existence under the assay conditions. At coefficients greater than 0, 
P. tricornutum has the competitive advantage, at coefficients below 0 T. pseudonana has the 
advantage. The further the competition coefficient deviates from 0, the stronger is the 
competition between the two species. In (A) the solid black line indicates predictions for 
competition coefficients made from monoculture growth rates. The solid blue line is the LOESS 
smooth to visualise the progression of all observed high N competition coefficients across 
temperatures (R2 = 0.97, RSE = 0.047). Observed coefficients were calculated from changes in 
species frequencies over time in mixed cultures (data from Suppl. Fig. 4.10), calculated with 
equation [5]. Closed symbols represent the competition coefficients that were started when 
stock cultures were transferred to the temperature-gradient-block, open symbols those that 
were started two weeks later to investigate the potential effects of temperature acclimation. In 
(B) solid black line indicates predictions made from the initial exponential growth rate in low N 
medium for monocultures, whereas the dashed line indicates predictions made from 
monoculture carrying capacities across the temperature gradient. The solid blue line is the 
LOESS smooth to visualise the progression of all observed low N competition coefficients across 
temperatures (R2 = 0.86, RSE = 0.051). Observed coefficients were calculated from changes in 
species frequencies over time in mixed cultures (data from Suppl. Fig. 4.11), calculated with 
equation [5]. Closed symbols represent competition replicates that were started at the onset of 
N-limitation, open symbols those that were started from monocultures that were cultured 
under N-limitation for an additional seven days. 
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When the two diatoms were mixed together and competed against one another, the observed 

competition coefficients displayed a similar progression across assay temperatures as the 

predictions. In high N conditions, inflexion points occurred at 18.8 ± 1.2 °C (predicted at 18.7 °C) 

(Fig. 4.6A). As predicted, P. tricornutum won competitions across temperatures colder than the 

inflexion point, whereas T. pseudonana won competitions at temperatures warmer than the 

inflexion point. When the nitrate concentration was reduced, the competitive switch occurred 

at a warmer temperature, as predicted from the temperature dependencies of low N growth 

rates and carrying capacities (Fig. 4.6B). The average temperature for the inflexion point in low 

N medium was 6.5 °C greater than in high N medium and differed significantly (F1,6 = 89.17, 

p<0.001) (Suppl. Table 4.15). The inflexion point was located at 25.3 ± 0.6 °C (predicted at 

24.6 °C when growth rate was used to calculate the competition coefficients, or 22.9 °C when 

carrying capacity was used for the prediction). Pooling of mixed culture replicates for the final 

analysis due to a lack of a temperature acclimation signal in the high N scenario did not affect 

our interpretation of the conclusion that the competitive shift occurred at higher temperatures 

in the low N scenario. 
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4.4.3 Predictability of change in competitive ability 

In both nutrient scenarios, the predicted and observed competition coefficients were strongly 

correlated (R2-values of 0.80 to 0.96), indicating that competition coefficients were very 

predictable from growth in monocultures (Table 4.1).  

Progression of predicted and observed competition coefficients across temperatures was very 

similar, yet deviations existed between predictions and observations. For example in high N 

conditions, observed coefficients tended to be lower than predictions across the five lowest 

assay temperatures, and therefore observed competition was not as strong as predicted across 

the assay temperatures where P. tricornutum outcompeted T. pseudonana (competition 

coefficient > 0). Likewise, across the temperatures at which T. pseudonana was predicted to 

win (competition coefficient < 0), the strength of the competition coefficients was slightly 

overestimated and predicted to be more negative than observed values (Fig. 4.6A).  

 

In low N conditions the predicted and observed coefficients aligned less strongly than in high N 

conditions, but correlation was still high (see R2 in Table 4.1). Predictions were more accurate 

when they were made from low N growth rates than from carrying capacities (Fig. 4.6B). As 

with the high N experiment, the predicted coefficients were typically stronger than the 

observed. In addition, both low N predictions underestimated the temperature of the inflexion 

point and predicted the competitive advantage to switch at a lower assay temperature than it 

did in the experiment, therefore underestimating the temperature range at which 

P. tricornutum was the better competitor. 

 

 

 



Chapter 4: Direct Competition Between Diatoms 
 

91 
 

Table 4.1: Parameters for linear models (y = ax + b) correlating predicted (x) and observed 
competition coefficients (y) across assay temperatures. Significant correlations (alpha level 
of 0.05) that conclude a relationship between predictions and observations are marked in 
bold and with an asterisk. 

Correlation  Linear Model parameters 

 R
2
 of 

Correlation  

Slope ± 

95%-

confidence 

interval  

y-Intercept ± 

95%-

confidence 

interval  

df t-value p-value of 

correlation 

High N 

growth rates 

with 

competition 

coefficients 

(n=13) 

0.96 0.67 ± 0.09 -0.06 ± 0.04 12 16.626 <0.001* 

Low N 

growth rates 

with 

competition 

coefficients 

(n=13) 

0.92 0.56 ± 0.11 0 ± 0.03  12 11.567 <0.001* 

Low N 

carrying 

capacity with 

competition 

coefficients 

(n=13) 

0.80 0.43 ± 0.14 0.03 ± 0.05 12 6.983 <0.001* 
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4.5 Discussion 

In this study, competition between P. tricornutum and T. pseudonana was determined primarily 

by the growth performance of these species under specified thermal and nutrient regimes in 

isolation and indicated that they did not interact strongly in mixed populations. The results 

provide support for our hypotheses as we show that in relatively simple systems, prediction of 

competitive outcomes from isolated species performance across a thermal gradient is possible. 

The amount of N present in the mixed cultures influenced the competition across the 

temperature gradient and showed that alterations in nutrient concentrations have the 

potential to change the outcomes of competition with all else being constant. Further aligning 

with our hypothesis, the better growing species in isolation had the competitive advantage in 

mixed cultures, with the switch in competitive advantage occurring at or close to the 

temperature where the TPCs of the two species intercepted. The poorer competitor also lost 

the competition quicker when the absolute differences between monoculture thermal 

performances were the largest.  

 

4.5.1 Reduced nitrogen impacts competition across temperatures 

Under low N conditions, we observed P. tricornutum to be the better competitor across most of 

the tested assay temperatures. Although N-uptake rates were not measured in this experiment, 

the increased competitive success of P. tricornutum in low N conditions, and a warmer inflexion 

point of competitive advantage as a result thereof, could be attributed to its previously 

reported high affinity and high uptake rates for nitrogen (Goldman and Ryther, 1976; Grover, 

1991; Sharp et al., 1979). This may have facilitated P. tricornutum to win competitions across 

most of the N-limited temperature gradient, including at assay temperatures up to 3.2 °C 

warmer than predicted (22.9 °C prediction from K across temperatures compared to warmest 
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observed inflexion point in low N conditions at 26.1 °C). To confirm that the increased 

competitive success can be explained through better nitrogen uptake rates and storage 

abilities, future experiments should quantify N-uptake rates of the two species under the assay 

conditions described in this study. Its good nitrogen uptake ability could help P. tricornutum to 

win competitions under N-limiting conditions at temperatures where other species can 

normally reach higher carrying capacities or grow faster when N is not limiting. However, the 

high N-affinity of P. tricornutum may be nullified in conditions where N-content of surface 

waters is high. For T. pseudonana, the reduction in µmax and shift of Topt towards colder 

temperatures in low N conditions was in accordance with Grimaud et al. (2017) and confirmed 

the effect of nitrogen concentration on T. pseudonana growth rates. This change in thermal 

performance indicates that T. pseudonana may become less competitive in warm N-limited 

waters, but its competitive ability should be reinstated following the introduction of N into a 

system, e.g. in coastal up-welling zones. 

Despite presumed better nitrogen uptake abilities, P. tricornutum did not win all competitions 

across the whole assay temperature gradient in low N conditions. This may be due to the fact 

that good N uptake ability was offset towards the warm assay temperatures by physiological 

limits for growth of this diatom. Past research has identified R* across temperatures as a U-

shaped function (Lewington‐Pearce et al., 2019; Tilman, 1981) and warmer temperatures were 

found to increase nitrogen demand in phytoplankton (Toseland et al., 2013). Towards the 

growth limits, the minimum nutrient requirements for a species rise rapidly within a small 

temperature range as cells become stressed and need a larger internal nutrient content (cell 

quota) to survive while other physiological limits become more important (Rhee and Gotham, 

1981; Thomas et al., 2017; Tilman, 1981). The circumstance that cell size was also found to 
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display a U-shaped trend with assay temperatures could have reinforced the observed patterns 

of competition across the assay temperature gradient. Cell size is known to play a role in 

competitive success and species dominance because larger, slower growing cells tend to have 

lower nutrient uptake rates relative to smaller cells with more beneficial surface-area-to-

volume ratios (Gallego et al., 2019; Litchman and Klausmeier, 2008; Smith and Kalff, 1982). This 

study provides further support of this relationship, whereby cells growing towards their 

physiological limits (thermal extremes) were larger and grew slower, thus potentially amplifying 

the rate at which a species was losing competitions close to its physiological limits. As surface 

temperatures are expected to increase in aquatic systems worldwide, this temperature 

dependence of R* and cell size might play a crucial role for population dynamics under warming 

scenarios in future marine systems (Bernhardt et al., 2018; Lewington‐Pearce et al., 2019). 

Approaching physiological limits through warming might shift abiotic conditions in a direction in 

which a competitor might be at a loss although it is generally better at taking up nutrients in 

more moderate environments. Such an environmental change towards more critical conditions 

might offset the ability of a species to reduce nutrients to a concentration that is lower than the 

R* of a direct competitor (McPeek, 2019). 

The observed changes in species frequencies over time in the low N scenario may have been 

due to interspecific differences of the capacity for surge uptake, following the daily additions of 

fresh medium followed by extensive phases of nutrient starvation when this added nitrate was 

fully taken up. Greater capacity for surge uptake is commonly defined as higher values of the 

maximum velocity of nutrient uptake (Vmax in the Michaelis-Menten equation), induced in 

phytoplankton as a physiological adjustment to nutrient limitation (Morel, 1987). The species 

with the greater capacity to increase Vmax will sequester nutrients quicker, effectively depriving 

them from the competitor with a lower capacity to increase Vmax. Because we did not measure 
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nitrate uptake kinetics, we cannot conclude from our experiments whether the outcome of 

competition depended on the ability to sequester nitrate during surge uptake or the ability to 

use the low nitrate concentrations (interspecific differences in the half saturation constant for 

uptake, Km of the Michaelis-Menten curve). The growth rates calculated from the increase in 

fluorescence during the first few days of the low N monocultures might be indicative of surge 

uptake playing a role in the competitive success under low N conditions. The predictions of 

competitive outcomes from the exponential growth phase in low N medium did align closer 

with the observed competitions than the predictions from carrying capacities (see Fig. 4.6B). 

However, using fluorescence based growth rates or maximum K under low N conditions as 

predictors of competition can be regarded as proxies at best. Confirmation of a role for surge 

uptake in competition between these two species requires further experiments. The 

determination of N uptake rates and residual nitrate concentrations using more sensitive 

methods (e.g. stable isotopes) may help improve predictions of competitive success.  

 

4.5.2 Predictability of competition under environmental change 

In this study, monoculture responses of phytoplankton were found to be good predictors of 

competitive outcomes. Previously they also have been identified as good predictors of 

phytoplankton biogeography (Barton et al., 2016; Thomas et al., 2012). Whether such culture-

based measurements are ultimately suitable for forecasting shifts in phytoplankton 

communities in response to environmental change and whether the findings can be generalised 

for other species pairs or taxa remains to be tested. Predictability of competitive outcomes in 

complex communities still presents a major challenge (Pennekamp et al., 2019). 
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As the species in this study did not appear to influence one another in mixed cultures, it is likely 

that allelopathic interactions did not play a role in this competition scenario. Indeed, 

monoculture performance would cease to be a good predictor of competitive ability if one 

species had a toxic effect on the other in a two species competition. For example, 

dinoflagellates can inhibit growth of competitors by releasing toxins (e.g Kubanek et al., 2005), 

and some diatoms excrete chemicals that inhibit growth of other diatoms (Pichierri et al., 

2017). A slower-growing species might be able to gain a competitive advantage through the 

excretion of allelopathic substances upon sensing another species in its surrounding. Such 

species-specific interactions may explain some of the uncertainty in modelling natural 

phytoplankton communities. Furthermore, TPCs for growth of the same species were found to 

vary slightly from lab to lab even when similar protocols were employed (Boyd et al., 2013). 

These differences could be driven in part by data quality and model fitting (Low-Décarie et al., 

2017), but they still raise concerns that predictability of competition response, which is 

dependent on thermal niche parameters and µmax, only remain valid within a specific setting. In 

addition, adaptive changes in nutrient requirements or physiological parameters could change 

competitive abilities and reduce predictability. Elucidating the role of evolutionary change and 

whether long-term interactions are affected by genotypic variability will therefore play a crucial 

role in understanding future phytoplankton community structure (Bernhardt et al., 2020). 

 

Our observations in monocultures were suitable for predicting the inflexion points of 

competition, however the predictions commonly overestimated the magnitude of competition 

coefficients, and this increased the further the coefficients were from 0 (see Fig. 4.6). The 

mismatch between predicted and observed coefficients at the extreme temperatures may be 

due to the fact that light microscopy counts could not distinguish between viable and non-
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viable cells. The outcome being that cell frequency counts overestimated the number of 

reproducing cells of the losing competitor and incorrectly tipping the competition coefficient in 

its favour. Future studies could employ the use of a cell viable stains to discriminate between 

live and dead cells (e.g. Baker et al., 2018) when conducting cell frequency counts. 

 

4.5.3 Wider implications of the study 

The nitrogen loads to many coastal waters are predicted to increase in the future due to 

agricultural run-off or other human activities (Beman et al., 2005; Nixon, 1995), and surface 

waters are expected to become more stratified as warming increases (Bestion et al., 2018b). 

The findings that competitive outcomes change across temperatures and are dependent on the 

amount of N present in the experimental system imply that environmental changes and 

alterations of marine environments will affect how phytoplankton communities will be 

structured in the future. Changes in species interactions could then have subsequent effects on 

ecosystem functioning since distinctively structured communities cycle nutrients and carbon 

differently or have varying nutritional value for higher trophic levels (Falkowski et al., 1998; 

Litchman et al., 2006; Schaum et al., 2012).  

 

Regardless of the importance for natural ecosystems, the finding that competitive outcomes 

could be well predicted in a simplified system could be of relevance for large-scale pond 

maricultures or other algae biotechnological settings where simple model communities or 

monocultures are established for harvest or extraction of secondary metabolites. The ability to 

predict the population composition under a defined set of abiotic parameters could help to 

control growth dynamics or purity of a culture (Regan and Ivancic, 1984). By being able to 
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predict composition, parameters can be altered to potentially stabilize mixed cultures or purify 

them through changing temperature or nutrient loading.  

 

4.6 Conclusion 

The current study demonstrated that competition between two diatoms could be well 

predicted in a controlled laboratory system. The aquatic environments where these algae 

naturally occur are however exposed to fluctuations in light, nutrients, temperature, as well as 

changes in species compositions due to migrations and water currents. In order to achieve 

higher comparability with natural environments, further investigations should focus on the 

effects of temperature variations and other abiotic fluctuations and their effects on 

competition between these two diatoms. Other species combinations and more complex 

communities could also be investigated to verify the generality of the current findings. The 

ability to predict where inflexion points of species interactions lie across gradients and when 

multiple environmental stressors interact will bring the scientific community closer to 

understanding non-linear ecosystem responses and help to potentially find strategies to 

mitigate changes that are predicted to occur under future environmental scenarios.  
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4.7 Supplementary Material 

4.7.1 Supplementary Tables 
 

Supplementary Table 4.1: Equations that can be used to describe thermal performance across 
temperatures from Low-Décarie et al. (2017). The experimental growth rate and carrying 
capacity were fitted to Equations 4 – 15 (shaded in green) with the R package 
“temperatureresponse” in this study. Equations 1 – 3 (shaded in blue) can only be used to cover 
a sub- or supra-optimal range of temperatures, but not the whole gradient, and were therefore 
not utilised in this study. In all model equations, small letters a to f are model parameters, R is 
the universal gas constant, T is the assay temperature at which a growth rate µ was measured, 
µ0 the starting growth rate, EA the activation energy of metabolism, Tmin and Tmax are the 
minimum and maximum temperatures beyond which no growth occurs for the organism under 
observation, and Tref is the reference temperature at which a reference µ was measured in the 
cited study. 

Formula Equ. Number of 

Parameters 

Reference 

𝑘(𝑇) = 𝑎 ∙ 𝑒𝑥𝑝 (−𝐸𝐴𝑅 ∙ 𝑇) 
1 2 

Raven and Geider, 1988 

𝑘(𝑇) = 𝑘(𝑇𝑟𝑒𝑓) ∙ 𝑒𝑥𝑝 ⌈− 𝐸𝐴𝑅 (1𝑇 − 1𝑇𝑟𝑒𝑓)⌉ 
2 2 

e.g. Geider et al., 1997; 
Li et al., 1984   𝜇(𝑇) =  𝜇0 ∙ 𝑒𝑥𝑝(𝑘 ∙ 𝑇) 3 2 Eppley, 1972 𝑅𝑎𝑡𝑒 = 𝑎 ∙ 𝑒𝑥𝑝 ( −𝑏𝑅 ∙ 𝑇) − 𝑐 ∙ 𝑒𝑥𝑝 ( −𝑑𝑅 ∙ 𝑇) 

4 4 Li and Dickie, 1987 citing 
Hinshelwood, 1947 

𝑅𝑎𝑡𝑒 = 𝑎 ∙ 𝑇 ∙ 𝑒𝑥𝑝 ( −𝑏𝑅 ∙ 𝑇)1 + 𝑒𝑥𝑝 (−𝑐𝑅 ) ∙ 𝑒𝑥𝑝 ( −𝑑𝑅 ∙ 𝑇) 

5 4 
Li and Dickie, 1987 citing  
Johnson et al., 1942 

𝑅𝑎𝑡𝑒
=  𝑎 ∙ ( 𝑇298.15) ∙ 𝑒𝑥𝑝 (𝑏𝑅 ∙ ( 1298.15 − 1𝑇))1 + 𝑒𝑥𝑝 [𝑐𝑅 ∙ (1𝑑 − 1𝑇)] + 𝑒𝑥𝑝 [𝑒𝑅 (1𝑓 − 1𝑇)] 

6 6 

Heitzer et al., 1991 

𝑅𝑎𝑡𝑒
=  𝑎 ∙ ( 𝑇293.15) ∙ 𝑒𝑥𝑝 (𝑏𝑅 ∙ ( 1293.15 − 1𝑇))1 + 𝑒𝑥𝑝 [𝑐𝑅 ∙ (1𝑑 − 1𝑇)]  

7 4 

Montagnes et al., 2008 
citing Schoolfield et al., 
1981 
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𝑅𝑎𝑡𝑒 = 𝑎 ∙ 𝑒𝑥𝑝 [−0.5 ∙ ([𝑇 − 𝑇𝑟𝑒𝑓]𝑏 )2] 

8 3 Li and Dickie, 1987 citing 
Stoermer and Ladewski 
(1976) 

𝑅𝑎𝑡𝑒 =  𝑎 ∙ 𝑒𝑥𝑝 [−0.5
∙ (𝑎𝑏𝑠⌈𝑇 − 𝑇𝑟𝑒𝑓⌉𝑏 )𝑐] 

9 4 

Montagnes et al., 2008 

𝑅𝑎𝑡𝑒 =  𝑎 ∙ exp (𝑐 ∙ 𝑇) [1 − (𝑇 − 𝑇𝑟𝑒𝑓𝑏 )2] 

10 4 
Thomas et al., 2012 

𝑅𝑎𝑡𝑒 = 𝑎 + 𝑏 ∙ 𝑇 + 𝑐 ∙ 𝑇2 11 3 Montagnes et al., 2008 𝑅𝑎𝑡𝑒 =  11 + (𝑎 + 𝑏 ∙ 𝑇 + 𝑐 ∙ 𝑇2) 
12 3 Montagnes et al., 2008 

citing Flinn, 1991 𝑅𝑎𝑡𝑒 = [𝑎 ∙ (𝑇 − 𝑇𝑚𝑖𝑛)]2∙ [1− 𝑒𝑥𝑝(𝑏 ∙ (𝑇 − 𝑇𝑚𝑎𝑥))]2
 

13 4 

Ratkowsky et al., 1983 

𝑅𝑎𝑡𝑒 =  𝑎 ∙ {1 − 𝑒𝑥𝑝[−𝑏 ∙ (𝑇 − 𝑇𝑚𝑖𝑛)]}∙ {1− 𝑒𝑥𝑝[−𝑐 ∙ (𝑇𝑚𝑎𝑥 − 𝑇)]} 

14 5 

Kamykowski, 1986 

𝑅𝑎𝑡𝑒 =  µ𝑚𝑎𝑥 ∙ {𝑠𝑖𝑛 [𝜋
∙ ( 𝑇 − 𝑇𝑚𝑖𝑛𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)𝑎]}𝑏

 

15 5 

Boatman et al., 2017 
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Supplementary Table 4.2: Non-linear model outputs of single replicate TPC growth models for 
P. tricornutum (n = 4) and T. pseudonana (n = 3) in the high N scenario. 

Species Equ. replicate term estimate std.err. statistic p.value 

P. tricornutum 13 1 a 0.0230 0.005 4.463617 0.0021 

  1 b 0.3550 0.154 2.309595 0.0497 

  1 Topt 22.27    

  1 µmax 0.81    

  1 AIC -32.23    

  1 BIC -29.80    

  1 pseudoR2 0.893    

  1 T50min 8.15    

  1 T50max 27.56    

P. tricornutum 13 2 a 0.0233 0.002 10.49028 2.4E-06 

  2 b 0.360 0.048 7.499019 3.7E-05 

  2 Topt 22.64    

  2 µmax 0.82    

  2 AIC -51.44    

  2 BIC -48.62    

  2 pseudoR2 0.980    

  2 T50min 8.66    

  2 T50max 27.86    

P. tricornutum 13 3 a 0.0212 0.001 17.19604 3.43E-08 

  3 b 0.4520 0.038 12.00063 7.7E-07 

  3 Topt 23.18    

  3 µmax 0.85    

  3 AIC -60.78    

  3 BIC -57.95    

  3 pseudoR2 0.99    

  3 T50min 8.35    

  3 T50max 27.89    

P. tricornutum 13 4 a 0.0222 0.002 11.59617 1.03E-06 

  4 b 0.4069 0.051 7.933699 2.37E-05 

  4 Topt 23.03    

  4 µmax 0.84    

  4 AIC -51.84    

  4 BIC -49.01    

  4 pseudoR2 0.98    

  4 T50min 8.65    

  4 T50max 27.97    

        

T. pseudonana 11 1 a -1.5631 0.4345 -3.59749 0.0042 

  1 b 0.1775 0.0372 4.770507 0.0006 

  1 c -0.0030 0.0008 -3.94688 0.0023 

  1 Topt 29.74    

  1 µmax 1.08    

  1 AIC -18.53    



Chapter 4: Direct Competition Between Diatoms 
 

102 
 

  1 BIC -15.97    

  1 pseudoR2 0.85    

  1 T50min 16.31    

  1 T50max 43.16    

T. pseudonana 11 2 a -0.5190 0.3768 -1.3774 0.1984 

  2 b 0.0915 0.0309 2.955411 0.0144 

  2 c -0.0013 0.0006 -2.15604 0.0565 

  2 Topt 34.82    

  2 µmax 1.07    

  2 AIC -27.43    

  2 BIC -25.17    

  2 pseudoR2 0.85    

  2 T50min 14.61    

  2 T50max 55.03    

T. pseudonana 11 3 a -1.7923 0.3958 -4.52877 0.0009 

  3 b 0.2116 0.0339 6.245958 6.3E-05 

  3 c -0.0040 0.0007 -5.7643 0.0001 

  3 Topt 26.66    

  3 µmax 1.03    

  3 AIC -21.14    

  3 BIC -18.58    

  3 pseudoR2 0.81    

  3 T50min 15.28    

  3 T50max 38.04    

T. pseudonana 11 4 a -1.5748 0.1220 -12.9132 8.63E-09 

  4 b 0.1843 0.0114 16.10451 5.73E-10 

  4 c -0.003 0.0002 -12.7258 1.03E-08 

  4 Topt 29.09    

  4 µmax 1.11    

  4 AIC -47.50    

  4 BIC -44.41    

  4 pseudoR2 0.98    

  4 T50min 15.88    

  4 T50max 42.31    
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Supplementary Table 4.3: Non-linear model outputs of single replicate TPC growth models for 
P. tricornutum (n = 2) and T. pseudonana (n = 2) in the low N scenario. 

Species Equ. replicate term estimate std.err statistic p.value 

P. tricornutum 13 1 a 0.0320 0.0020 16.17818 2.14E-07 

  1 b 0.2454 0.0299 8.200413 3.65E-05 

  1 Topt 22.04    

  1 µmax 0.96    

  1 AIC -65.32    

  1 BIC -62.89    

  1 pseudoR2 1.00    

  1 T50min 9.54    

  1 T50max 28.03    

P. tricornutum 13 2 a 0.0256 0.0072 3.557295 0.0074 

  2 b 0.3012 0.1663 1.811701 0.1076 

  2 Topt 22.10    

  2 µmax 0.94    

  2 AIC -28.35    

  2 BIC -25.92    

  2 pseudoR2 0.87    

  2 T50min 7.97    

  2 T50max 27.87    

        

T. pseudonana 11 1 a -0.8615 0.1434 -6.00656 4.4E-05 

  1 b 0.12812 0.0135 9.487492 3.3E-07 

  1 c -0.0024 0.0003 -7.9881 2.27E-06 

  1 Topt 27.01    

  1 µmax 0.87    

  1 AIC -45.36    

  1 BIC -42.27    

  1 pseudoR2 0.93    

  1 T50min 13.48    

  1 T50max 40.55    

T. pseudonana 11 2 a -0.8858 0.1614 -5.48943 0.0001 

  2 b 0.1329 0.0145 9.158956 9.17E-07 

  2 c -0.0025 0.0003 -8.10409 3.29E-06 

  2 Topt 26.60    

  2 µmax 0.88    

  2 AIC -46.76    

  2 BIC -43.92    

  2 pseudoR2 0.92    

  2 T50min 13.32    

  2 T50max 39.89    
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Supplementary Table 4.4: Non-linear model outputs of single replicate TPC carrying capacity 
models for P. tricornutum (n = 2) and T. pseudonana (n = 2) in the low N scenario. 

Species Equ. replicate term estimate std.err. statistic p.value 

P. tricornutum 13 1 a 0.0398 0.0145 2.750692 0.0225 

  1 b 0.1966 0.0855 2.298777 0.0471 

  1 Topt 19.96    

  1 µmax 0.73    

  1 AIC -26.93    

  1 BIC -24.11    

  1 pseudoR2 0.91    

  1 T50min 9.78    

  1 T50max 25.77    

P. tricornutum 13 2 a 0.0474 0.0118 4.022561 0.0030 

  2 b 0.1925 0.0606 3.173647 0.0113 

  2 Topt 19.97    

  2 µmax 0.77    

  2 AIC -33.83    

  2 BIC -31.00    

  2 AICc -25.26    

  2 T50min 10.75    

  2 T50max 25.47    

        

T. pseudonana 11 1 a -1.1851 0.1654 -7.1666 4.81E-06 

  1 b 0.1438 0.0164 8.765961 4.65E-07 

  1 c -0.0028 0.0004 -7.50346 2.86E-06 

  1 Topt 25.57    

  1 µmax 0.65    

  1 AIC -34.05    

  1 BIC -30.72    

  1 pseudoR2 0.90    

  1 T50min 14.79    

  1 T50max 36.35    

T. pseudonana 11 2 a -1.26407 0.1382 -9.14787 2.78E-07 

  2 b 0.1556 0.0137 11.34796 1.91E-08 

  2 c -0.0031 0.0003 -9.89238 1.07E-07 

  2 Topt 25.11    

  2 µmax 0.69    

  2 AIC -40.15    

  2 BIC -36.82    

  2 pseudoR2 0.93    

  2 T50min 14.56    

  2 T50max 35.65    
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Supplementary Table 4.5: One-way ANOVA output of comparison of competition inflexion 

point temperature between unacclimated and acclimated competition replicates in the high N 

scenario. 

 

 

 

High N and low N growth rate MANOVA fits 

Supplementary Table 4.6: Two-way MANOVA output table for comparison between growth 
rate Thermal Performance Curve (TPC) fits of P. tricornutum and T. pseudonana. Dependent 
variables that were compared were µmax, CT50min, CT50max, and Topt. Individual ANOVA test 
statistics wrapped within this MANOVA are found in Supplementary Tables 5.7 – 5. 10. 

 

Supplementary Table 4.7: Two-way Individual ANOVA output table from MANOVA for CT50min. 

 

Supplementary Table 4.8: Two-way Individual ANOVA output table from MANOVA for Topt. 
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Supplementary Table 4.9: Two-way Individual ANOVA output table from MANOVA for CT50max. 

 

 

Supplementary Table 4.10: Two-way Individual ANOVA output table from MANOVA for µmax. 

 

 

 

Low N carrying capacity ANOVA fits 

 

Supplementary Table 4.11: One-way ANOVA output table of CT50min from K model fits. 

 

 

Supplementary Table 4.12: One-way ANOVA output table of Topt from K model fits. 
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Supplementary Table 4.13: One-way ANOVA output table of CT50max from K model fits. 

 

  

Supplementary Table 4.14: One-way ANOVA output table of Kmax from K model fits. 

 

 

 

Observed inflexion point comparison 

Supplementary Table 4.15: One-way ANOVA output table for differences between high N and 

low N inflexion points. 
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4.7.2 Supplementary Figures 

 

Supplementary Figure 4.1: Average ln(F0) of exponentially growing P. tricornutum (n = 4) (red) and T. pseudonana (n = 3) (black) in 
the high N medium measured at the indicated assay temperatures across the temperature gradient. Individual slopes represent 
single dilution phases. Grey error bars denote 1 standard deviation. 
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Supplementary Figure 4.2: (A) Single TPC model fits for the two diatom species P. tricornutum in red (n = 4) and T. pseudonana in black (n = 4) 

from which average growth models for Figure 4.2A were calculated. The one T. pseudonana replicate that was omitted in the final analysis is 

plotted in blue. (B) Single TPC model fits for the two diatom species P. tricornutum in red (n = 2) and T. pseudonana in black (n = 2) from which 

average growth models for Figure 4.2B were calculated. (C) Single TPC model fits for the two diatom species P. tricornutum in red (n = 2) and 

T. pseudonana in black (n = 2) from which average carrying capacity models across temperatures for 4.4A, were calculated. Single non-linear 

model parameters for these model fits can be found in Supplementary Tables 4.2 – 4.4.
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Supplementary Figure 4.3: Visual representation of the competition experiments to better 
understand when the various growth and competition replicates were collected.
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Supplementary Figure 4.4: (A) Growth progression over time for P. tricornutum and T. pseudonana grown in f/2 medium with different nitrate 
concentrations (882µM (red), 220.5 µM (green), 110.25 µM (blue), 55.13 µM (purple)). (B) Dependence of carrying capacity (K) on nitrogen 
concentration in the growth medium. (C) Dependence of exponential growth rate r on nitrogen level in the growth medium. 
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Supplementary Figure 4.5: Average (n = 2) nitrate plus nitrite concentrations in monocultures across all assay temperatures in the low N medium 
over time for P. tricornutum and T. pseudonana. Grey error bars denote standard deviation from two replicates. At the cold and warm ends of the 
temperature gradient, it can be seen that values for the NOx concentration do not drop as quickly as towards the optimum temperatures. This is 
because especially for P. tricornutum at the warm end and T. pseudonana at the cold end, the cells did not grow as rapidly and it took them more 
time to deplete the available nitrogen stocks. 
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Supplementary Figure 4.6: Average (n = 2) F0 fluorescence in low N monocultures across all assay temperatures over time for P. tricornutum and 
T. pseudonana. Grey error bars denote standard deviation from two replicates. 
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Supplementary Figure 4.7: Average (n = 2) F0 measured by FRRf per cell across all assay temperatures for P. tricornutum and T. pseudonana in low N 

medium. Flow cytometry counts were taken for monocultures in the first 14 days of the experiment before mixing cultures together to start 

competition experiments. Grey error bars denote standard deviation from two replicates. 
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Supplementary Figure 4.8: Example flow cytometry (FC) data that was collected for 
P. tricornutum and T. pseudonana monocultures at the end of the first experimental day of 
the low N experiment, and after the diatoms had been cultured in low N medium for 15 
days. After 15 days, N levels were depleted below the detection limit of the utilised NOx 
assay. The dotted red and turquoise lines were roughly drawn through the mean forward 
scatter (FSC) values (used as proxies for cell size) of the starting day cultures. It could be 
observed that cell size declined after being cultured under N-limitation for two weeks, which 
can be derived from the fact that the dotted lines do not intersect the middle of the FC 
clouds at day 15. The average cell size has shifted to the left on the FSC-axis, i.e. cells 
became smaller.  
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Supplementary Figure 4.9: Mean slopes of ln(F0) across temperatures for P. tricornutum (n = 2) and T. pseudonana (n = 2) during the first four 
days of the low N scenario. Single replicate slopes were used to calculate the acute exponential growth response across temperatures, to which a 
daily growth rate of 0.22 d-1 was added to account for the daily dilution rates. Single growth replicate rates can be seen in Fig. 5.2 B. Grey error 
bars denote 1 standard deviation. 
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Supplementary Figure 4.10: Average (n = 2) cells per ml across all assay temperatures for P. tricornutum and T. pseudonana in low N medium. 
Flow cytometry counts were taken for monocultures in the first 14 days of the experiment before mixing cultures together to start competition 
experiments. Grey error bars denote standard deviation from two replicates. Dashed line in each facet panel is the average carrying capacity for 
each monoculture growth duplicate from day 5 onwards across assay temperatures. 
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Supplementary Figure 4.11: All AIC values across models from the models fits of high N 
growth rates (blue symbols), low N growth rates (green symbols), and low N carrying 
capacities (red symbols) across temperatures for (A) P. tricornutum and (B) T. pseudonana. AIC 
scores for T. pseudonana replicate 2 are excluded as it was not taken into consideration for 
the final data analysis. 

  



Chapter 4: Direct Competition Between Diatoms 
 

119 
 

 

Supplementary Figure 4.12: Log2 over time P. tricornutum-to-T. pseudonana cell abundance ratio in high N mixed cultures. Blue lines are the 
first 2 competition replicates that were started directly at the beginning of the experiment. Red lines are the temperature acclimated 
competition replicates that were started after the first competition was completed. 
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Supplementary Figure 4.13: Log2 over time of the P. tricornutum-to-T. pseudonana cell abundance ratio in low N mixed cultures. Blue 
lines are the first 2 competition replicates that were started two weeks after growing monocultures in N-limited conditions. Red lines 
are competition replicates that were started after the first competition was completed and monocultures had been starved for nitrate 
even longer. 
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Supplementary Figure 4.14: (A) LOESS fits of single competition replicates across temperatures 
on competition coefficients from observed changes in species frequency ratios (Supplementary 
Figure 5.7). (B) Average temperatures (n = 2) of unacclimated and acclimated inflexion points of 
competitive advantage. The ANOVA output test for a significant difference between the two 
groups can be found in Supplementary Table 5.5.  
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Supplementary Figure 4.15: Average Fv/Fm values of exponentially growing P. tricornutum (n = 4) (red) and T. pseudonana (n = 3) (black) measured 
in the high N medium at the indicated assay temperatures across the temperature gradient. Grey error bars denote 1 standard deviation. 
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Supplementary Figure 4.16: Average (n = 2) Fv/Fm in low N monocultures across all assay temperatures over time for P. tricornutum and 
T. pseudonana. Grey error bars denote standard deviation from two replicates. 
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Supplementary Figure 4.17: Average (n = 2) daily growth rate in the low N medium calculated from daily changes of F0 (pre-dilution on day t 
divided by post-dilution on day t-1) in monocultures across all assay temperatures over time for P. tricornutum and T. pseudonana. Grey error bars 
denote standard deviation from two replicates. At temperatures above 30°C, P. tricornutum, did not grow, so that panels were left blank. The line 
parallel to the time axis at a growth rate of 0.22 d-1 is the dilution rate: growth rate equals dilution rate when cultures are in N-limited steady 
state.
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5. Chapter 5: Influence of Temperature Fluctuations on the 

Stable Coexistence of Two Common Phytoplankton Species 

5.1 Abstract 

Environmental variability is a common feature of all natural systems and continuously 

influences members of biotic communities. As many responses of species across environmental 

gradients are not linear, there is no reason to assume that their interactions with other 

community members would be. Outcomes of competition between species in a variable 

environment can therefore not be presumed to be the average of species interactions 

determined in stable conditions. Stable mixed cultures of the laboratory model organisms 

Phaeodactylum tricornutum and Thalassiosira pseudonana in high N and low N conditions were 

exposed to 17 uniform temperature fluctuations with amplitudes between 2.8 °C and 22.8 °C 

around the temperature of coexistence (18.6 °C in high N medium and 25.2 °C in low N 

medium), to investigate whether coexistence could persist in a variable environment. The 

results showed that although the mean temperature of all treatments was the same within a 

specified nutrient regime, continued stable coexistence was rarely observed. Nutrient 

conditions of the growth medium also changed how the two species competed under a 

fluctuating thermal environment. More knowledge on how environmental variations of 

different magnitudes influence community dynamics will help to improve predictions for 

ecosystems in general, but also allow to understand how future predicted climate variability 

will affect phytoplankton communities. 
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5.2 Introduction 

5.2.1 Jensen’s Inequality & Scale Transition Theory 

In ecological studies, rates are often calculated for an average response of an organism or 

system in the average environment where they occur. This assumption poses a problem 

however, as ecological performance across temperature gradients is rarely linear and the 

average of two rates does not equate to the rate that would be encountered in the average 

environment. The mathematical generalisation of this phenomenon has been coined Jensen’s 

inequality (Denny, 2017), named after Danish mathematician Johan Jensen who provided proof 

of this case in 1906 based on convex functions.  

The extension of Jensen’s inequality to ecology and ecophysiology has been termed scale 

transition theory (Chesson et al., 2005; Dowd et al., 2015), which predicts that the performance 

of a species in a fluctuating environment is not the average of the performances in constant 

environments (Fig. 6.1), necessitating that an additional correction term needs to be added or 

subtracted from the average performance to quantify the actual response in a variable 

environment (Koussoroplis et al., 2017).  
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Figure 5.1: Schematic illustration for Jensen’s inequality / scale transition theory on a 
hypothetical environmental performance curve. When performance across an environmental 
gradient is non-linear, performance P2 at the average environment E2, is not going to be the 
average value of performances P1 at environment E1 and P3 at environment E3. 

 

Although individuals of any natural population encounter abiotic fluctuations during their 

lifetime, the outcomes of species interactions and competition are often predicted based on 

measurements conducted under stable laboratory conditions (Dowd et al., 2015). These 

predictions do not take into account the potential effects that fluctuations in abiotic 

parameters could have on the shape of the TPC of an organism (Bernhardt et al., 2018). Such 

assumptions are currently necessary due to a lack of better knowledge on how thermal 

performance of single organisms change across a parameter’s range when the environment is 

not stable (Bernhardt et al., 2018). Changes in TPCs and the predictions that we make based on 

them would however determine conclusions on how species compete against each other. As 

climate variability is predicted to increase globally (Romero et al., 2018), it will therefore be 

crucial to further the understanding of variation, as environmental fluctuations have been 
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suggested as a major mechanism that affect the structure of natural communities and allow for 

high species diversity (Chattopadhyay, 2007; Descamps-Julien and Gonzalez, 2005; Sommer, 

1984).  

Environmental variability could provide temporal and spatial refuges for species to recover 

from adverse conditions and ensure that environmental stresses are distributed across all 

species within a system. This would provide enough room for more species to thrive side by 

side than predicted by traditional competition theory. Variability in fluctuating environments 

could enable populations of single species to temporally outgrow a competitor while favoured 

by a temperature fluctuation, creating enough population buffer to prevail once conditions 

become disadvantageous (Chesson, 2000). This proposed “storage effect” has been suggested 

as one of the reasons for high species diversity persisting in natural populations (Chesson, 

2000). 

5.2.2 Phytoplankton in Fluctuating Thermal Environments 

In aquatic systems, temperature changes can occur within the duration of a few minutes 

depending on irradiation and mixing of water column, between day and night, throughout 

seasons, but may also constitute extreme events (Dowd et al., 2015; Kling et al., 2020; Lawson 

et al., 2015). Especially in lakes, environmental fluctuations can have crucial impacts on the 

functioning of the ecosystem (Rasconi et al., 2017; Woolway et al., 2016). The smaller the lake, 

the more intense will the daily temperature range fluctuation be (up to 15 °C temperature 

range in a single day), demanding high physiological flexibility of the organisms contained 

within (Woolway et al., 2016). In marine systems it is the very upper layer of sea surface water 

that is affected by fluctuations the most, whereas the effects become more buffered as depth 

increases (Shenoi et al., 2009). Apart from fluctuations in natural systems, open pond mass 
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algal culturing systems like raceway ponds or cascading raceways can also be prone to very high 

variability, as the culturing depth is usually quiet shallow (< 30 cm deep) to allow light to 

penetrate all the way through the culture (James and Boriah, 2010; Ras et al., 2013). For 

phytoplankton, it has been empirically shown that growth rate at a given average temperature 

can vary substantially between populations grown under stable and those grown under 

fluctuating temperatures (Bernhardt et al., 2018; Wang et al., 2019), which is why the effects of 

thermal fluctuations need to be closer examined to be able to make more accurate predictions 

on their population dynamics. 

Natural algae communities commonly display high diversity with often more than 30 species 

coexisting (Sommer, 1984). This is in stark contrast to traditional competition theory based on 

the resource-ratio hypothesis, which explains diversity in terms of competition for resources, 

and predicts that the number of species in a system should be equal to the number of their 

limiting resources. This contradiction has been coined Hutchinson’s “Paradox of the plankton” 

(Hutchinson, 1961). Early theoretical and modelling approaches (Grenney et al., 1973), but also 

experiments with fluctuating nutrient levels (Sommer, 1984), concluded that continued 

coexistence of multiple species is not only possible through being limited by different nutrients, 

but through variability and temporal changes in nutrient supply. Even Hutchinson presumed 

that environmental variability could be the solution to his paradox (Hutchinson, 1961).  

Like the relationship between growth rate and temperature, which depends not only on the 

average temperature, but also on the temperature range and the frequency distribution of 

temperatures within that range (Bernhardt et al. 2018), the outcomes of competition between 

species can be expected to be influenced by temperature variability as well. Despite the 

potential importance of this issue for global nutrient cycles, food web structures, and overall 
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ecosystem dynamics, experimental evidence of phytoplankton interacting in a fluctuating 

environment is scarce. The effect of temperature fluctuations on species interactions and 

competition in phytoplankton has, to our knowledge, only been investigated once 

experimentally (Descamps-Julien and Gonzalez, 2005). The study showed that two diatoms 

limited by one resource (Si) led to competitive exclusion in a stable thermal environment, but 

that they could coexist when temperature fluctuated.  

In the previous chapter, the investigation of competition across a temperature gradient 

between P. tricornutum and T. pseudonana revealed that the two diatoms could coexist at 

18.8 ± 1.2 °C in nutrient replete high N conditions, and at 25.3 ± 0.6 °C in low N conditions. The 

present study investigated how thermal variability around the temperature of stable 

coexistence affected competition between P. tricornutum and T. pseudonana under both 

high N and low N growth conditions. As growth rates around these cardinal temperatures do 

not change linearly and differ amongst these two species, uniform fluctuations around these 

temperatures will not necessarily lead to a response that ensures stable coexistence at the 

same average temperature in a fluctuating environment. Here, we asked whether uniform 

fluctuations with varying amplitudes around the temperature of stable coexistence would 

disrupt the long-term coexistence of these two species, and if stability would re-occur after the 

temperature was re-stabilized. In this context, stable coexistence was considered to be 

achieved when the relative abundances of the two species showed no statistically significant 

trend with time (Descamps-Julien and Gonzalez, 2005). In addition, we also wanted to 

investigate whether the starting species abundance ratios (i) would have an influence on the 

stable coexistence of the two species at the two aforementioned equilibrium temperatures, 

and (ii) whether competition between the two species would pan out differently depending on 

the species starting ratios. As mentioned in the introduction chapter of this thesis, abundance 
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and frequency of initial community members were found to play a role in determining final 

community structure in communities taken from a natural environment (Sommer, 1983). We 

therefore wanted to investigate whether this would also be the case in a relatively simplified 

and controlled system as ours. In order to explore this, mixed cultures had starting species 

rations of 1:2, 1:1, and 2:1 (P. tricornutum : T. pseudonana), and changes in species frequencies 

over time were recorded.  

 

5.3 Material and Methods 

Stock cultures of P. tricornutum (CCMP 2561) and T. pseudonana (CCMP 1335) were maintained 

in the University of Essex algal culture collection at 15 to 16 °C, in f/2 medium (Guillard and 

Ryther, 1962) prepared in artificial sea water (Berges et al., 2001; Harrison et al., 1980), and 

grown on a 12:12 hour light and dark cycle at a photosynthetic photon flux density (PPFD) of 

about 60 µmol m-2 s- 1. Stock cultures were transferred once a month as 1:36 dilutions. Cultures 

were acclimated to exponential growth in full f/2 medium for two weeks prior to the 

experiments conducted at high N. Similarly, for the low N experiment, cultures were acclimated 

for two weeks in f/2 medium with reduced N (final concentration 55 µM in comparison to 

882 µM in full f/2). To assure exponential growth in the high N scenario, cultures were 

maintained at densities of <500,000 cells ml-1 for P. tricornutum and <250,000 cells ml-1 for 

T. pseudonana (equivalent to about 5 % of each species’ carrying capacity). 

In vivo chlorophyll a minimum fluorescence (F0), used as a proxy for biomass, and the ratio of 

variable to maximum fluorescence (Fv/Fm), used as a proxy for photosynthetic efficiency, were 

measured daily via fast repetition rate fluorometry (FRRf) with a FastTracka II fluorometer and 

Fast Act laboratory system (both CTG Ltd, West Molesey, UK) (Supplementary Figures 5.1 – 5.4). 
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Photosynthetic efficiency was calculated via the formula (Fm-F0)/Fm (Fm = maximum 

fluorescence yield) by the FastPro software (version 1.0.55) used to attain and record FRRf 

measurements. Peak excitation was at 435 nm and fluorescence emission measured at 680 nm 

(with a 25 nm bandwidth). The measuring protocol was set to 24 sequences per acquisition 

with a 100 ms sequence interval and a 20 s acquisition pitch. Measurements were taken on 

cells that were dark acclimated for 30 minutes at their assay temperature in order to record F0 

when all reaction centres of PSII were open, and profiles of fluorescence emission were fitted 

within the Fast Pro 8 software (version 1.0.55) (Chelsea Technologies, UK).  

5.3.1 Competition Experiments 

5.3.1.1 High N competition experiment 

For the high N scenario, 34 assay monocultures (each with a total volume of 5 mL) of each 

species were incubated in a tube-based temperature-gradient-thermoblock at 18.6 °C and 

150 ± 15 µmol m-2 s- 1 PPFD to acclimate the algae to the assay conditions. This temperature 

was determined in pre-experiments to facilitate coexistence in a stable equilibrium under high 

N conditions.  

After two days of acclimation in the temperature-gradient-thermoblock, the monocultures of 

P. tricornutum and T. pseudonana were mixed together. In order to investigate the influence of 

starting species ratios on the progression of competition, the species were mixed together at 

1:1 (n=24), 1:2 (n=24), or 2:1 (n=20) relative cell abundance ratios. All mixed cultures were kept 

in exponential growth by re-diluting when necessary. As defined above for monocultures, this 

was the case when a fluorescence signal equal to about 5% of the carrying capacity was 

reached, in this case for the mixed population. 
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These mixed cultures were sampled every day for 10 days for assessing cell abundance ratios at 

18.6 °C to ensure stable coexistence. Each day after FRRf measurements of F0 and Fv/Fm, 200 µL 

aliquots were extracted and stored in 96-well plates and fixed in 1%-Lugol’s solution for cell 

ratio counts. In order to maintain a constant culture volume, the 200 µL volume removed from 

each culture was replenished with the same volume of fresh f/2 medium. Ratio counts were 

carried out with an Olympus inverted microscope at 200x magnification. 400 cells were counted 

from each fixed sample to calculate a P. tricornutum : T. pseudonana cell abundance ratio. 

On the 11th day of the experiment, temperature fluctuations were started. Fluctuations to high 

temperature were imposed by heating one end of the temperature-gradient-thermoblock, 

whilst the other was unchanged creating a thermal gradient of 20.0 °C to 30.0 °C. After 

24 hours, the end of the thermoblock that had been heated the previous day was cooled, 

creating a gradient in the block of 17.2 °C to 7.2 °C. Half of the cultures were subjected to 

temperature fluctuations beginning on the first "hot" day, whilst the other half were subjected 

to temperature fluctuations starting one day later on the first "cold" day. The latter were 

transferred to a water bath that was also set to 18.6 °C and 150 ± 15 µmol m-2 sec- 1 PPFD for 

one day before being re-introduced to the temperature-gradient-thermoblock and exposed to 

the temperature fluctuations. 

After 10 up and 10 down fluctuations (20 days), temperature was re-stabilized at 18.6 °C for an 

additional 10 days to investigate how species abundance ratios progressed after a prolonged 

period of thermal variability. The mixed cultures that started on the warm fluctuation were 

transferred to the external water bath so that the cultures that started on the cold period, 

could be exposed to a last 10th warm period. The next day all cultures were put in the 

temperature-gradient-thermoblock at 18.6 °C. A schematic representation of the chronology of 
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the experiment can be seen in Figure 5.2, in which the three distinct experimental phases 

described above are represented. 

 

Figure 5.2: Schematic timeline of the fluctuation experiments. The chronological set-up was the 
same for the high N and low N experiment. The only aspect that differed between the two 
experiments was the temperature at which both species could coexist, which was found to be 
18.6 °C under high N conditions, and 25.2 °C under low N conditions. The experiments started 
off with a 10 day period during which P. tricornutum and T. pseudonana were cultured as mixed 
populations. This period was used to determine whether the two species could coexist and 
whether mixed populations could be considered as stable over time in regards to their species 
abundance ratios. After this initial period, temperature was fluctuated for 20 days (10 up and 
10 down fluctuations). Temperature was changed every 24 hours. After the fluctuation period, 
temperature was re-stabilised for another 10 days to investigate whether the species 
abundance ratio at the end of the fluctuation period would remain stable. 
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5.3.1.2 Low N competition experiment 

Under low N conditions, a temperature of 25.2 °C and 150 ± 15 µmol m-2 sec- 1 PPFD was 

determined by pre-experiments to be the temperature of stable-coexistence. 34 monocultures 

of P. tricornutum and 34 of T. pseudonana were transferred from their stock cultures to assay 

tubes and cultured at 25.2°C until the onset of N-depletion. 20% of the culture medium were 

removed daily for monitoring N-drawdown. The removed medium was replenished with fresh 

low N f/2 medium. In contrast to the high N sampling schedule, cultures were not diluted after 

reaching a certain F0 value to allow them to grow until reaching N-limited stationary growth 

phase. The onset of N-depletion was determined via FFRf as the point at which the fluorescence 

signal (F0) did not increase between two consecutive days. At that point, the sum of nitrate plus 

nitrite (NOx) was below the detection limit of 0.5 µM in samples from all monocultures, 

confirming N-depletion (Schnetger and Lehners, 2014). Once N-depletion was confirmed, which 

was the case after 4 culturing days, mixed cultures were established. Like in the high N mixed 

populations, the monocultures were mixed together so that starting species ratios were either 

1:1 (n=24), 2:1 (n=24) or 1:2 (n=20) P. tricornutum : T. pseudonana for a total assay volume of 

4.0 ml, which was then topped up with 1.0 ml of low N f/2 medium to a volume of 5.0 ml to not 

break with the daily sampling routine.  

To not break with the low N culturing regime, mixed cultures were then grown semi-

continuously by removing 1.0 ml daily after FRRf measurements were made, and replenishing 

with 1.0 ml of low N medium to maintain an assay volume of 5.0 ml. This imposed a daily 

growth rate of ln(5/4) = 0.22 d-1. From the removed 1 ml sample volume, 200 µL subsamples 

were then fixed in 1%-Lugol’s solution for cell counts.  
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Like in the high N competition, cultures were kept at the temperature of stable coexistence for 

10 days. After 10 days, temperature fluctuations were imposed for 20 days, with the mean 

being set at 25.2 °C, but the amplitudes of the fluctuations being equal to the ones from the 

high N conditions (17 fluctuation amplitudes ranging between 2.8 °C and 22.8 °C). After 10 up 

and down fluctuations, temperature was once again stabilised at 25.2 °C for 10 days. In terms 

of experimental progression over time, the low N experiment had the exact same set-up as the 

high N experiment (Figure 5.2), so that the two nutrient scenarios could be compared. 

5.3.2 Competition Coefficients 

5.3.2.1 Predictions of competition 

The growth rates (r) measured in stable thermal environments across a temperature gradient 

from 8.8 to 35 °C (see Chapter 4) were used to calculate predicted competition coefficients for 

the high N experiment in the fluctuating thermal regimes. The predicted competition 

coefficient of a “fluctuation temperature pair”, for instance 17.2 °C and 20.0 °C (1.4 °C down 

and 1.4°C up from the temperature of stable coexistence which was 18.6 °C in high N 

conditions), was calculated with equation [1a]. This calculation assumes that the predicted 

growth rate is the average of the growth rates at the two temperature extremes, and that the 

step changes in temperature between these two limits was instantaneous; as such, it follows 

Jensen’s inequality (see Figure 5.1) and conforms to the non-linear averaging used by Bernhardt 

et al. (2018). 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐴) = (𝑟1(𝑇1)+𝑟1(𝑇2)2 ) − (𝑟2(𝑇1)+𝑟2(𝑇2)2 )                    [1a] 

where A is the fluctuation amplitude, r1 and r2 are the growth rates of species 1 and 2, at the 

coldest (T1) and the warmest (T2) assay temperatures of the fluctuation amplitude between 
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which temperature was fluctuated. If species 1 would have a higher average growth rate than 

species 2, species 1 would be predicted to be the winner of the competition scenario. As a 

consequence, the predicted competition coefficient would turn out to be a positive value. If 

however species 2 would have a higher average growth rate, it would be predicted to win the 

competition. In that case the greater average growth rate of species 2 would be subtracted 

from the smaller average growth rate of species 1, rendering the predicted competition 

coefficient negative. Therefore, both positive and negative values of competition coefficients 

can occur. The algebraic sign in front of the competition coefficient indicates the winning 

species. In this study, P. tricornutum was determined to be species 1, whereas T. pseudonana 

was species 2, meaning that every time the predicted competition turned out to be positive, 

P. tricornutum was predicted to win, and if it would turn out negative, it was predicted to lose.  

For the low N experiment, predicted competition coefficients were calculated from both the 

initial exponential growth rates (r) and N-limited carry capacities (K) measured in stable thermal 

environments across a temperature gradient (Chapter 4), using equations [1a] and [1b] 

respectively. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐴) = (𝐾1(𝑇1)+𝐾1(𝑇2)2 ) − (𝐾2(𝑇1)+𝐾2(𝑇2)2 )             [1b] 

Where A is once again the fluctuation amplitude, K1 and K2 are the carrying capacities of 

species 1 and 2, and T1 and T2 are the coldest and warmest assay temperatures of the 

fluctuation amplitude.  

Predictions of competition coefficients under high N and low N conditions could only be made 

in a fluctuation amplitude range for which the fluctuations did not exceed the lethal 

temperature for P. tricornutum or T. pseudonana, as we did not calculate death rates. Growth 
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rates reaching the lethal range of a species would all be set to r = 0 regardless of investigated 

assay temperature and predictions could not be calculated as averages between a lethal and a 

non-lethal temperature. 

5.3.2.2 Observed Competition 

Observed competition coefficients in the high N and low N scenarios were determined with 

equation [2] by calculating the slope of the change in species frequency ratios of 

P. tricornutum : T. pseudonana over time.  

𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = ln (𝑁𝑃.  𝑡𝑟𝑖𝑐𝑜𝑟𝑛𝑢𝑡𝑢𝑚:𝑁𝑇.  𝑝𝑠𝑒𝑢𝑑𝑜𝑛𝑎𝑛𝑎(𝑡)𝑁𝑃.  𝑡𝑟𝑖𝑐𝑜𝑟𝑛𝑢𝑡𝑢𝑚:𝑁𝑇.  𝑝𝑠𝑒𝑢𝑑𝑜𝑛𝑎𝑛𝑎(0))𝑡              [2] 

Where N = species abundance, and t = time.  

As was the case for the predicted competition coefficients, negative and positive values of 

competition coefficients were indicating the winning species. If the relative abundance of 

P. tricornutum was increasing over time in mixed cultures, the resulting slope in equation [2] 

would be positive, indicating that it would win. If its relative abundance in comparison to 

T. pseudonana would decline, the slope would turn out to be negative and so would the 

resulting competition coefficient. In that case P. tricornutum would lose the competition. 

All calculations of linear models to determine stability of mixed cultures, predicted and 

observed competition coefficients, as well as the visualisation of species progressions in mixed 

populations, were carried out with the statistical software R (R Core Team, 2016). 
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5.4 Results  

5.4.1 Pre-fluctuation period 

According to our definition of stability, all mixed cultures, except one in the low N set up, were 

found to be stable in their abundance ratios over time in both nutrient scenarios during the 10 

day pre-fluctuation period. Starting species abundance ratios did not have an effect on stability, 

mixed populations remained stable throughout the pre-fluctuation period regardless of 

whether the initial species ratios were 1:2, 1:1, or 2:1 (P. tricornutum : T. pseudonana) 

(Supplementary Figures 5.5 & 5.6). 

5.4.2 Fluctuation period 

When temperature fluctuations were imposed on the high N mixed cultures, most cultures at 

fluctuation amplitudes below 6.2 °C were considered stable according to our definition (i.e. 

mixed cultures with no significant change in their species frequency ratio). Overall, stable 

coexistence was observed at fluctuation amplitudes up to 14.4 °C (Fig. 5.3A). However, most 

cultures at amplitudes of 6.2 °C or higher displayed a significant trend in change of species 

frequency ratios and cultures that did not change significantly were not the norm once 

fluctuation amplitudes reached 6.2 °C or more, as most (9 out 12 mixed populations between 

fluctuation amplitudes of 6.2 °C and 14.4 °C) were showing significant trends in the change in 

species abundance ratios over time. Above 14.4 °C all mixed cultures displayed a significant 

trend (Supplementary Figure 5.7). In general, the larger the fluctuation amplitude, the more did 

the competitive ability of P. tricornutum decline (Fig. 5.3A).  
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Figure 5.3: Predicted (lines) and observed (symbols) competition coefficients across fluctuation 
amplitudes in high N conditions (A) and low N conditions (B). Depending on which species 
would be predicted to win or would actually win, based on equations [1] and [2], competition 
coefficients could take on positive or negative values. Positive values would indicate 
P. tricornutum as the winning species, negative values would indicate T. pseudonana as the 
winning species. In (A), solid line is a locally estimated scatter plot smoothing (LOESS) line, and 
indicates predictions for competition coefficients calculated from monoculture growth rates 
with equation [1a]. Symbols are the observed competition coefficients calculated with equation 
[2]. Vertical dotted line distinguishes fluctuation amplitudes for which temperatures did not 
drop below a lethal cold temperature for T. pseudonana on the cold cycles from those that did 
(determined based on monoculture TPCs). In (B), solid LOESS line indicates predictions made 
from exponential phase of growth in low N medium, dashed LOESS line indicates predictions 
made from carrying capacities. Predictions were made with equations [1a] and [1b] 
respectively. Symbols indicate the observed competition coefficients in a fluctuating 
environment in low N medium calculated with equation [2]. Vertical dotted line in (B) separates 
fluctuation amplitudes that stayed below the critical lethal temperature determined from 
monoculture growth rates TPCs of P. tricornutum on the warm fluctuation days from those that 
did not, and dashed line indicates the same based on monoculture TPCs for carrying capacity, 
which indicated a lower CTmax. Grey shaded area indicates the region in which all P. tricornutum 
cells died after one 24-hour-cycle, based on Fv/Fm measurements of monocultures. In this 
fluctuation amplitude range only T. pseudonana was alive in mixed cultures after one day of 
fluctuations for the remainder of the competition experiment. Variations in competition 
coefficients in the grey-shaded area are therefore caused by manual counting error (see section 
5.5.1 “Limitations of the study”). Note that although both scenarios (A) and (B) had the same 
assay fluctuation amplitudes, the mean temperatures from which fluctuations started were 
different, to account for the fact that the temperature at which the two diatoms could co-exist 
stably over time depended on the amount of N in the growth medium. In high N conditions, the 
midpoint of the fluctuations lay at 18.6 °C, in the low N scenario it was at 25.2 °C. Also note the 
difference in y-axis scale between (A) and (B). 
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Predictions of competition for the high N fluctuation temperatures from monoculture data did 

not align closely with the observed pattern. The predictions based on differences in the average 

growth rates of the two diatoms did predict competitive advantages for P. tricornutum, 

whereas such an advantage was never observed in the mixed cultures. This mismatch between 

prediction and observation results from the fact that the competition coefficients across a 

stable temperature gradient (see Fig. 4.6A in Chapter 4) had a steeper slope at temperatures 

below the coexistence temperature of 18.6 °C in the favour of P. tricornutum, than at higher 

temperatures in the favour of T. pseudonana. In the actual competition experiment however, 

the predicted competitive advantage was offset because presumably overall metabolic rates 

were reduced in cold conditions in comparison to warm conditions. Predictions of competition 

could only be made until fluctuation amplitudes of 15.6 °C, because temperature dropped 

below the cold end lethal temperature for T. pseudonana at higher fluctuation amplitudes.  

In the low N scenario, a fluctuation amplitude of 8.4 °C evoked stable coexistence over time as 

3 of the 4 competition replicates exposed to that fluctuation amplitude showed no significant 

trend in the species ratio (Fig. 5.3B, Supplementary Figure 5.8). At fluctuation amplitudes below 

8.4 °C a general competitive advantage for P. tricornutum was observed, whereas at amplitudes 

larger than 8.4 °C the competition advantage increased strongly in T. pseudonana’s favour 

(symbols in Fig. 5.3B). Our predictions based on the initial exponential growth rate and carrying 

capacities in low N monocultures did not forecast a competitive advantage for P. tricornutum at 

any fluctuation amplitude (LOESS lines in Fig. 5.3B). As in the high N scenario, predictions of 

competition could only be made where both the cold and warm temperatures that fluctuations 

reached were in the non-lethal temperature range for both species, based on monoculture 

TPCs for growth and carrying capacities in low N medium. In the temperature range where 
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predictions could be made, the observed and predicted coefficients did not correlate well 

(Fig. 5.3B).  

5.4.3 Post-fluctuation period 

When the stable coexistence temperature was re-established after the fluctuation period in the 

high N scenario, 90% of all mixed cultures in which P. tricornutum had not been fully 

outcompeted (54 out of 60 remaining cultures) were found to be stable again in their species 

abundance ratios. Only six cultures showed a significant positive trend after fluctuations had 

ended (p-values ranging from p=0.038 to p<0.001), with competition coefficients in the range 

of 0.03 to 0.10 d-1 (Supplementary Figure 5.9). 

After fluctuations in the low N scenario, 43 mixed cultures remained that still contained both 

species. Of these, 26 showed a significant trend in their frequency ratios over time and 17 were 

considered stable. Significant trends that were observed were largely in favour of 

P. tricornutum taking up a relative greater abundance in the species mix over time 

(Supplementary Figure 5.10). 

 

5.5 Discussion 

This study showed that the imposed thermal variability did not necessarily disrupt the stability 

of the coexistence between the two diatoms P. tricornutum and T. pseudonana and that the 

effect of temperature fluctuations was dependent on the concentration of inorganic N in the 

growth medium.  

The stability of the species abundance ratios during the pre-fluctuation periods confirmed the 

findings of Chapter 4, and indicated that the science is replicable and reliable. The two diatoms 
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were indeed able to coexist stably at the determined coexistence temperatures in high N and 

low N conditions. The starting species abundance ratio did not appear to influence this 

observation at all. This should not come as a surprise under high N conditions, as the species 

grow at the same daily rate at 18.6 °C. Therefore regardless of the starting abundance, the ratio 

is expected to remain the same over time. Under low N conditions, this observation becomes a 

bit harder to explain. In the mixed cultures that did not have a 1:1 starting ratio, one would 

assume that the species with the lower starting abundance would increase in its abundance 

over time until the ratio reaches 1:1. This would be in accordance with Tilman’s classical R* 

theory, which states that the superior competitor for a resource would outcompete the other 

species. In our case, the assay conditions were able to sustain both species stably in equal cell 

abundances, as was demonstrated through the stable low N mixed populations that started at 

1:1. Therefore, one could expect the abundance of the species with greater starting numbers to 

decline, while the abundance of the species with smaller starting numbers would increase until 

the mixed population equilibrates at a 1:1 species ratio. The circumstance that this was not the 

case and stability was observed right from day 1 for mixed populations that did not start at a 

1:1 species ratio, suggests that the N uptake rates of the species are of the same magnitude at 

the temperature of stable coexistence. Cells of both species supposedly take up the limiting 

nutrient at the same rate at 25.2 °C under our experimental conditions. To make this idea 

clearer, imagine two cells (one cell of each species) that are supplied with fresh nutrients after 

an addition of fresh medium. When both of the cells take up nutrients at the same rate, the 

resource is shared equally. Now imagine a starting population of three cells, with two cells of 

P. tricornutum, and one cell of T. pseudonana. Each individual cell of the three cells would still 

have the same uptake rate. The resource would be once again shared equally regardless of 

species identity. Neither species abundance would decline or increase. This presumed 
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explanation would also suggest that it is indeed N surge uptake rate, as suggested in Chapter 4, 

that determines competitive success under low N conditions. When temperatures are altered 

from the temperature of stable coexistence, N uptake rates between the two species would not 

be balanced anymore and one of two species would take up nitrogen quicker than the other. As 

a result thereof, we would see a change in species abundance ratios over time, based on R* 

theory. The on average better nutrient competitor would be predicted to win. The results show 

the limitations of our predictions for nutrient-limited conditions. Under R* theory, it is the 

concentration of the limiting nutrient relative to the half-saturation constant for growth that 

determines the outcome of competition under equilibrium conditions (Bestion et al., 2018a). 

However, we did not measure nutrient concentrations or half-saturation constants for growth, 

and as such could not make these predictions. 

During the temperature fluctuation period in the high N scenario, continued coexistence over 

time was observed across temperature fluctuations up to 14.4 °C, but mainly up to fluctuations 

of 6.2 °C. The observed coexistence could possibly be attributed to the storage effect 

(Chesson, 2000). In Chapter 4 it was shown that P. tricornutum was a poor competitor against 

T. pseudonana at warm temperatures towards its physiological growth limit. However, 

P. tricornutum was able to persist longer in mixed cultures when adverse conditions alternated 

with more favourable low temperature conditions than when temperature was kept stable at 

unfavourably warm conditions. Fluctuations therefore created a “thermal refuge” during which 

abundances of the species favoured by the prevailing temperature could recover. In natural 

environments, fluctuations away from unfavourable conditions could provide a means to 

increase the length of time it takes to be outcompeted, potentially allowing a species’ 

population to be replenished via migration or mixing of the water column. Such fluctuations 

could also increase the time during which a superior competitor could potentially be preyed 
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upon or washed away. If the exclusion rate of one species is low and the immigration rate from 

an outer “source” environment is high, disadvantageous environmental conditions can be 

counterbalanced, as immigration increases spatial and temporal resilience (Gonzalez and Holt, 

2002). This way it becomes possible that the ecological resilience of a diverse community of 

competitors can be fostered and high species diversity explained.  

In low N conditions, such a potential storage effect was only observed at an intermediate 

fluctuation amplitude of 8.4 °C, whereas all other fluctuation amplitudes benefitted one of the 

two species. P. tricornutum having a competitive advantage over T. pseudonana in the low N 

experiment across the lowest fluctuation amplitudes could potentially be explained by its good 

nitrogen uptake abilities that rendered the N-concentration too low for T. pseudonana to grow 

well, regardless of the thermal environment. The fluctuation amplitude at which competitive 

advantage switched to T. pseudonana could indicate the point at which the effects of nutrient 

limitation and quicker nitrogen surge uptake rates which favoured P. tricornutum were offset 

by its physiological stresses imposed on this species during the warm periods of the fluctuation 

regime. We suggest that at high fluctuation amplitudes, P. tricornutum could not recover 

sufficiently from the thermal stress on cold fluctuation days due to lower overall growth rates.  

The mismatch between predictions and observations of competition in both nutrient scenarios 

can potentially be explained by two factors. Firstly, a difference in physiological acclimation 

rates between the two species. Predictions were made on growth rates of acclimated cultures 

in a stable temperature environment and extrapolated to a variable environment. This 

approach did not account for acclimation to a new temperature on a daily basis, which could 

result in thermal performance of monocultures in a fluctuating environment differing from 

those in a stable environment, adding an error that was not accounted for in equations [1a] and 
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[1b]. Secondly, although the calculation of the average competition coefficient assumes an 

immediate temperature change between the high and the low point of the fluctuation 

amplitude, the temperature in the thermoblock did not change instantaneously when the 

temperature in the water baths changed. Instead it was a more gradual change as it took about 

one hour for the temperature block to warm or cool to the correct new temperature. Thus, for 

a short period of time the two species competed at intermediate temperatures between the 

two ends of the fluctuation amplitudes, which was also not accounted for in the predictions of 

competition using equations [1a] and [1b]. 

5.5.1 Limitations of the study 

As the species could not be separated from each other during the time they were cultured 

together, it was impossible to assess the health of single species and how well each species 

coped with abiotic stress in mixed populations. Similar to Chapter 4, flow cytometry could 

unfortunately not be employed to distinguish between the two species in mixed populationsm 

as their gates would overlap due to similar size and fluorescence. It would however be 

interesting for future investigations to see if changes in the ratios between the two species 

could still be tracked reliably through the counts registered in the areas that did not overlap. 

Furthermore, it would be interesting to explore the use of a cell-viable stain to identify whether 

cells that were microscopically counted were viable or not, in order to assess single-species 

health. This would likely improve the precision of counts and align the observations of 

competition closer to the predictions. 

Regardless of this shortcoming, it is however possible to make certain deductions based on 

knowing their physiological performance as monocultures, which were investigated in 

Chapter 4. Temperatures above 30 °C where lethal for P. tricornutum, consistent with the 
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observation that Fv/Fm declined to 0 over time in monocultures exposed to a range of 30 °C to 

33 °C. Fluctuations to 33 °C or beyond would have killed P. tricornutum within one 24-hour-

cycle, as Fv/Fm in monocultures dropped to 0 within one day in P. tricornutum monocultures at 

these temperatures. It can therefore be said with certainty that the manually counted cells of 

P. tricornutum in assay cultures reaching more than 33 °C were dead after one warm 

fluctuation cycle. The large scatter in the observations of competition that were made for 

fluctuation amplitudes that reached the lethal temperature range for P. tricornutum on warm 

days (grey-shaded are in Fig. 5.3B) is therefore concluded to be an artefact of counting error. 

Live and dead cells were not distinguishable in the manual Lugol’s counts and small numbers of 

P. tricornutum cells could have influenced the calculated species ratios strongly.  

Likewise, cold temperatures below 10 °C were stressful to T. pseudonana, and it must have 

been struggling to survive at this and lower temperatures. Further evidence of this can be seen 

in Supplementary Figure 5.2, where Fv/Fm in high N cultures dropped severely on every cold 

fluctuation cycle at fluctuation amplitudes of 17 °C or higher. At first this decrease in Fv/Fm 

values can be attributed to both species, as P. tricornutum reached critical temperatures on the 

warm fluctuations, and T. pseudonana on the cold ones. After P. tricornutum was fully displaced 

in those cultures, the decrease in Fv/Fm is only observed on the cold cycles, as the signal was 

fully influenced by T. pseudonana.  

Towards the end of the low N experiment, particularly during the period after temperature 

fluctuations, empty frustules were sometimes observed and T. pseudonana cells began to 

aggregate in clumps the closer the experiment came to its end. This could be attributed to a 

general decline in cell health due to being cultured under nutrient limitation for 40 days (almost 

6 weeks). The significant trends in species frequencies during the post-fluctuation period in 



Chapter 5: Temperature Fluctuations and Stable Coexistence of Diatoms 
 

148 
 

favour of P. tricornutum could be partially attributed to clumping of T. pseudonana cells (Suppl. 

Fig. 5.10). Single cells of T. pseudonana became less distinguishable and cell counts less 

accurate, underestimating the number of T. pseudonana cells present in the cultures. 

Therefore, it is possible that more cultures could have been considered stable again after 

fluctuations stopped, as in the case of the high N scenario, if cultures had not been struggling 

under the pressure of continuous N-depletion.  

5.5.2 Implications of Findings 

Assessing the dynamics of simple mixed communities can be important in biotechnological 

settings, for example in outdoor ponds or in greenhouses that are subject to diurnal, seasonal, 

and annual thermal fluctuations. Knowing how monocultures or mixed cultures react and 

perform in such systems will help to ensure more successful culturing of diatoms and aid to 

better assess whether culture crashes are imminent or how they can be prevented. Identifying 

fluctuation regimes that can stabilise the community could be beneficial for long-term projects. 

Now that the effects of uniform temperature fluctuations on competition are known, 

fluctuation regimes that would allow stable coexistence could potentially be identified by 

adjusting the time span that the cultures remain in the warm or cold cycle to account for 

different metabolic rates across temperatures. In this way mixed cultures could be kept stable 

in their species abundance ratios over longer time spans even if in the short term the prevailing 

temperature is disadvantageous for one of the two diatoms. 

For natural environments, the implications of this study are relevant for the persistence of 

biodiversity in coming decades, during which overall lake and sea surface temperatures are 

predicted to rise, and temperature fluctuations are predicted to become more extreme and 

frequent (Boyd et al., 2016). This investigation showed that high amplitude fluctuations can 
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lead to changes in competition and extinction of competitors even though the average 

temperature of the environment is stable and still far away from critical maximum and 

minimum temperatures of the species that make up the community. The current study 

highlights the need to further our understanding not only of the implications of average 

changes in the abiotic environment, but also changes in the variability around the averages. 

Variance and skewness of environmental fluctuations are predicted to increase due to climate 

change, resulting in higher frequencies of extreme events (Vasseur et al., 2014). Theoretical 

studies on Jensen’s inequality and fluctuating environment have made the call for more in-

depth analyses of variability (Denny, 2017), but experimental evidence for the sensitivity to 

warming and extreme fluctuations is still scarce and has to be expanded upon. Because 

performance of species can be co-limited through multiple parameters changing at the same 

time (Koussoroplis et al., 2017) it will be necessary for future studies to focus on a range of 

parameters varying at the same time, such as light levels, pH, or other nutrient concentrations. 

This will improve certainty and predictive powers of models investigating the effects of abiotic 

changes when they occur in combination (Kratina et al., 2012). It will also be crucial to take into 

account potential species adaptations to changing means. Now that this stable model system 

was established, further questions on system stability can be addressed. 
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5.6 Conclusion  

The experiments presented in this chapter showed that coexistence of two diatoms in a mixed 

population can persist or be destabilised depending on the amplitude of thermal variation 

around the temperature of stable coexistence. We also showed that the same thermal 

fluctuations can have different effects depending on the concentration of nitrogen present in 

the system. This laboratory model system provided experimental evidence that is relevant to 

the resolution of the “paradox of the plankton” and to the storage effect, both of which allow 

biodiversity to remain higher in a variable environment than is predicted for equilibrium 

conditions. More parameters and different species combinations have to be studied in order to 

be able to make conclusive statements about the co-existence of species under the influence of 

variability of environmental change that is predicted for the coming decades and centuries. As 

natural environments are continuously under the influence of environmental variations, this 

will help to improve our predictions of future community composition and ecosystem 

processes. 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Temperature Fluctuations and Stable Coexistence of Diatoms 
 

151 
 

5.7 Supplementary Material 

5.7.1 Power analysis to determine experimental design 

Power analysis indicated that 10 days under each treatment was a long enough time period to 

determine statistically whether cultures can be considered stable or not. High N mixed 

populations were cultured for at least 10 generations to ensure that they were stable over 

time. Power analysis of linear model fits to the natural logarithm of species frequency over time 

of P. tricornutum in mixed cultures was carried out with an f2-test to identify stability. The 

obtained v value of the power test would indicate how many samples would need to be 

analysed to confirm a statistically significant trend in the change in species frequencies over 

time if the frequency count would happen every second day. The R package “pwr” was used to 

carry out the test with the following parameters: 

u = 1, f2 = 2.703704, significance level = 0.05, power = 0.8 

f2 was calculated as R2/(1-R2), where R2 was the average correlation coefficient of linear models 

across all competition replicates in the high N scenario from Chapter 5 (R2 = 0.72). The resulting 

v value (v = 3.628836) yielded the number of data points necessary to identify a significant 

change in species frequency in mixed cultures of P. tricornutum and T. pseudonana in high N 

conditions with a power of 0.8 given the planned sampling routine. If after at least 5 frequency 

counts across 10 days (10 days yielded 10 generations or more for the high N algae cultures) 

linear models were still found to be insignificant, stability of mixed cultures over time was 

assumed. 

For the power analysis in low N cultures, the parameters were set to  

u = 1, f2 = 2.225806, significance level = 0.05, power = 0.8 
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f2 was once more calculated as R2/(1-R2), where R2 was the average correlation coefficient of 

linear models across all competition replicates in the low N scenario from Chapter 5 (R2 = 0.69). 

The power analysis yielded a v-value of 4.17, indicating that 5 samples were needed for enough 

statistical power to determine a trend of stability in mixed culture.
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5.7.2 Supplementary Figures 

 

Supplementary Figure 5.1: Average (n = 4) ln(F0) of exponentially growing mixed cultures of P. tricornutum and T. pseudonana across temperature 
fluctuation amplitudes. Blue data indicate the period prior to the start of the fluctuations, red data indicate the fluctuation period, and black data 
indicate the period after fluctuations. Each panel represents an assay fluctuation amplitude around the mean temperature of 18.6 °C. 
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Supplementary Figure 5.2: Average (n = 4) Fv/Fm of exponentially growing mixed cultures of P. tricornutum and T. pseudonana across temperature 
fluctuation amplitudes. Blue data indicate the period prior to the start of the fluctuations, red data indicate the fluctuation period, and black data 
indicate the period after fluctuations. Each panel represents an assay fluctuation amplitude around the mean temperature of 18.6 °C. Note how at 
the highest fluctuation temperatures (17 °C and above), a general drop in values in comparison to the pre-fluctuation period (blue) can be 
observed in the first three to five days of the fluctuation period (red). During this time, P. tricornutum encountered conditions close to its 
physiological limits on the warm cycles, and T. pseudonana on the cold cycles. As the fluctuation period progressed and P. tricornutum was fully or 
almost fully displaced from the mixed cultures at high fluctuation amplitudes, this drop in values could only be observed every second day of the 
experiment. This is because T. pseudonana encountered unfavourable conditions on cold days, but not on warm days, and P. tricornutum did not 
influence the Fv/Fm signal anymore.  
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Supplementary Figure 5.3: Average (n = 4) ln(F0) of N limited mixed cultures of P. tricornutum and T. pseudonana across temperature fluctuation 
amplitudes. Blue data indicate the period prior to the start of the fluctuations, red data indicate the fluctuation period, and black data indicate the 
period after fluctuations. Each panel represents an assay fluctuation amplitude around the mean temperature of 25.2 °C. 
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Supplementary Figure 5.4: Average (n = 4) Fv/Fm of N limited mixed cultures of P. tricornutum and T. pseudonana across temperature fluctuation 
amplitudes. Blue data indicate the period prior to the start of the fluctuations, red data indicate the fluctuation period, and black data indicate the 
period after fluctuations. Each panel represents an assay fluctuation amplitude around the mean temperature of 25.2 °C. 
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Supplementary Figure 5.5: Progression of log2(frequency P.tricornutum : frequency of T. pseudonana) species ratio over time in high N mixed 
cultures at 18.6 °C before temperature fluctuations were started. Each panel displays 4 replicate cultures and the fluctuation amplitude they were 
exposed to after this 10 day pre-fluctuation period. Log2 was utilised in this figure, and in the following 5 Supplementary Figures, as a biologically 
relevant depiction of species frequency change over time, whereby a doubling or halving in the abundance ratio translates to one unit on the log2 
scale.  
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Supplementary Figure 5.6: Progression of log2(frequency P.tricornutum : frequency of T. pseudonana) species ratio over time in low N mixed 
cultures at 25.2 °C before temperature fluctuations were started. Each panel displays 4 replicate cultures and the fluctuation amplitude they were 
exposed to after this 10 day pre-fluctuation period. 
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Supplementary Figure 5.7: Progression of log2(frequency P.tricornutum : frequency of T. pseudonana) species ratio over time in mixed cultures at 
different fluctuation amplitudes during the fluctuation period of the high N experiment. Each panel represents an assay fluctuation amplitude 
around the mean temperature of 18.6 °C. 

 

 

 



Chapter 5: Temperature Fluctuations and Stable Coexistence of Diatoms 
 

160 
 

 

 

 

 

Supplementary Figure 5.8: Progression of log2(frequency P.tricornutum : frequency of T. pseudonana) species ratio over time in mixed cultures at 
different fluctuation amplitudes during the fluctuation period of the low N experiment. Each panel represents an assay fluctuation amplitude around the 
mean temperature of 25.2 °C. 
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Supplementary Figure 5.9: Progression of log2(frequency P.tricornutum : frequency of T. pseudonana) species ratio over time in mixed cultures at 
different fluctuation amplitudes after the fluctuation period of the high N experiment. Each panel represents an assay fluctuation amplitude around the 
mean temperature of 18.6 °C that the mixed cultures were exposed to during the temperature fluctuation period. 
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Supplementary Figure 5.10: Progression of log2(frequency P.tricornutum : frequency of T. pseudonana) species ratio over time in mixed cultures 
at different fluctuation amplitudes after the fluctuation period of the low N experiment. Each panel represents an assay fluctuation amplitude 
around the mean temperature of 25.2 °C that the mixed cultures were exposed to during the temperature fluctuation period. 
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6. Chapter 6: General Discussion 

Changes in the abiotic environment of phytoplankton are going to play an increasingly 

important role in continued functioning of aquatic ecosystems as yearly, seasonal and short-

term means of abiotic parameters are shifting and frequencies and magnitudes of 

environmental variability are altered with climate change. We are still far away from gaining a 

holistic understanding of the responses of phytoplankton communities to these environmental 

changes. Precise predictions are still complicated because of the large variability in the 

responses among species, as well as the complexities and nonlinearities that come into play 

when species interact. There is a plethora of abiotic parameters that can influence communities 

and that need to be taken into consideration. Time to thoroughly assess the effects of a 

changing environment is however in short supply as ocean environments are changing ever 

quicker than previously assumed (Pörtner et al., 2019). If policy makers and aquatic 

stakeholders would like to mitigate or at least influence aquatic ecosystems in a direction that 

is beneficial to humans, more of the still existing knowledge gaps need to be closed, preferably 

within the coming decade. This thesis partially contributes to filling these gaps by further 

elucidating the role that temperature, as a stand-alone parameter, but also in interaction with 

nutrient concentrations, will play in determining the growth, adaptation, and competition in 

phytoplankton. All results of the conducted experiments in this thesis showed that temperature 

is a major factor in determining growth and competitive dynamics in phytoplankton, but that 

more needs to be investigated to fully understand its role in aquatic environments affected by 

climate change.  
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6.1 Future Responses and the Role of Adaptations 

At the moment, the phytoplankton scientific community is working on fully understanding the 

responses of current phytoplankton performance to changes in the environment. Acclimation 

potential and environmental history will, without a doubt, play a crucial role for algae to 

respond to a changing environment. There are however limits to how flexible an alga can be 

and how much it can adjust its physiology and intracellular processes without new mutations 

and genomic changes. Adaptations to permanently changed conditions might become the key 

to surviving climate change. Novel genotypes might emerge within populations that have 

differing physiological performance across gradients and might show improved persistence in 

altered environments than current phenotypes. The extent to which adaptations will occur and 

at what rates are however still unresolved questions. 

In Chapters 2 and 3, I focused on questions of potential thermal adaptation and what the 

consequences of such adaptations could be in the future. I was able to show that previous work 

on the potential for thermal adaptation in phytoplankton is likely overly optimistic when it 

comes to assuming thermal adaptation under future climate scenarios. Potential changes might 

not occur as easily as desired, especially since it is still largely unknown how optimum 

temperatures and thermal performance result from molecular cellular processes (Liang et 

al., 2019). I could show that a temperature change of 5 °C might not be sufficient to evoke 

thermal adaptation if algal cultures are not kept continuously in exponential phase and under 

optimal growth conditions while being exposed to a thermal change that would not occur in a 

natural environment. In Table 6.1 I have collated some research studies that were referred to 

throughout this thesis and compared the imposed thermal change and findings of thermal 

adaptation in their research to the temperature change in my Chapters 2 and 3. All of the 
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studies in Table 6.1, except my own work, found thermal adaptations in at least some of the 

investigated species. With a temperature change of +5 °C, my research lay at the lower end of 

selection pressure used to evoke thermal adaptation. More than half of the investigations 

chose a selection pressure much higher than what is realistically to occur in natural 

environments in coming decades, when compared to predictions made by the International 

Panel on Climate Change (IPCC, 2013). Even though these studies all focussed on thermal 

adaptation, their approaches and research methods differed. Some used freshly isolated 

species from natural communities (e.g. Tatters et al., 2013), others used laboratory cultures 

that had been kept in controlled environments for decades (e.g. Padfield et al., 2015), and one 

study conducted the selection experiment in outdoor mesocosms before isolating the species 

and testing their thermal performance (Schaum et al., 2017). As mentioned in my chapter 

discussions, there has to be a level of caution with statements generalising adaptive potentials 

of specific phytoplankton species and it should be once again stressed that it is important to 

elucidate them in the light of realistic environmental change conditions. Adaptations to 

temperature and nutrient concentrations will certainly play a crucial role in structuring future 

communities, however the direction and rate of these alterations is still unclear. Potentially 

uniform guidelines on investigations into thermal adaptation would help to reach more 

generalisable conclusions on phytoplankton responses of the future.  
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Table 6.1: Table summarising the findings on thermal adaptation in selected studies on 
eukaryotic microorganisms, mainly phytoplankton.  

Study Organism 

Source 

Temperature 

[°C] 

Selection 

Temperature 

[°C] 

Temperature 

difference 

[°C] 

Adaptation 

Schaum et 

al., 2017 
C. reinhardtii 18 22 + 4 yes 

This thesis 

different 

phytoplankton 

species 

15 20 +5 

no, but maybe in 

rates of 

photosynthesis and 

respiration 

Baker et 

al., 2018 
A. massartii 25 30 +5 yes 

Tatters et 

al., 2013 

isolates from 

natural diatom 

community 

14.8 14 and 19 + 5 

maybe, called 

newly found 

differences 

“conditioned” 

Schmidt, 

2017 

(thesis) 

T. pseudonana 22 9 and 32 - 13 and + 10 yes 

Schlüter et 

al., 2014 
E. huxleyi 15 26.3 + 11.3 yes 

Listmann 

et al., 2016 
E. huxleyi 15 26.3 + 11.3 

yes, however 

adaptation evoked 

through combined 

increase of 

temperature and 

pCO2 

Padfield et 

al., 2015 
C. vulgaris 20 

23, 27, 30, and 

33 
+ 3 to + 13 yes 

Krenek et 

al., 2012 

several clones 

of P. caudatum 
22 7 – 35.5 -15 to + 13.5 

yes, in some of the 

clones 

Huertas et 

al., 2011 

different 

phytoplankton 

strains isolated 

from various 

natural 

environments 

22 30, 35, and 40 + 8 to + 18 

yes, but not all 

investigated 

species 
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Furthermore, even though adaptive rates of species might be unknown or differ, and even if a 

species is not directly threatened by extinction through a changed environment, different 

shapes of thermal performance curves and Q10 values (the rate of change of a biological or 

chemical reaction with a 10 °C temperature rise) at sub-optimum conditions could however 

mean that community dynamics and rates at which ecosystem processes are performed could 

change as temperatures rise. If a species would grow better under warmed conditions than 

under colder ones in comparison to a community member whose rates do not rise as quickly 

with warming, a new set of species could dominate the community that were previously 

present only in low abundances. The potential effects of environmental change on algae were 

reviewed in the introduction chapter of this thesis. In general, changes in abundances and 

distributions of algae are predicted world-wide, but will depend on region. Areas in which 

primary productivity occurs could shrink or move. However, these predictions do not take into 

account potential adaptations.  

When predicting phytoplankton performance under future climate scenarios, two major 

assumptions concerning TPCs are often being made. The first one being that TPCs will remain 

static in terms of their width and overall shape and will be the same in the coming decades as 

they are under current conditions (Sinclair et al., 2016). The second one is that responses of 

biological communities to changes in abiotic parameters will be fixed (Baltar et al., 2019). On 

geological timescales it is well established that species do adapt to their environment, shown 

by distinct geographic distributions and community structures in different regions of the world. 

In comparison to static models and predictions, novel models are emerging that are trying to 

incorporate potential adaptive changes. More information about the various reaction norms 

and physiological responses from different taxonomic groups and species is however necessary 
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to bolster predictive powers (Beckmann et al., 2019). Modelling of whether phytoplankton 

thermal niches will be conservative and track the environment for favourable conditions or 

whether physiology will be plastic and resilient enough to cope with predicted climate change, 

showed that the response will depend on taxonomic group and species (Chivers et al., 2017). 

Even if species have shown the potential for adaptation under laboratory conditions, local 

extinction can still become a reality for them in natural environments. Rates of adaptation 

could be too slow because genetic variability might be low, populations small, abiotic 

conditions unfavourable and the selective pressure not high enough to cause an adaptation, 

leading to adaptation lag, and consequently decreases in fitness (Baltar et al., 2019). Mutations 

that would occur in a laboratory set-up could still become unique to this specific and over-

simplified environment, with higher rates of adaptation occurring under ideal nutrient replete 

conditions than would be observed in natural environments. In comparison, when competing in 

nature against other algae, while being grazed upon by a predator under sub- or supra 

optimum abiotic conditions, adaptive rates and pressure might be very different leading to 

different outcomes. Furthermore, adaptations have a spontaneous and undirected nature to 

them, as different adaptations could occur in response to the same environmental change 

(Collins et al., 2020), further reducing predictability for natural environments. Future 

phytoplankton community composition therefore remains a complicated black box to predict. 

Within-species variation of phytoplankton is creating further uncertainty around the 

performance of an algal species, as genetic diversity in populations of the same species allows 

for a variety of phenotypes to be expressed. The more genetic diversity a population possesses, 

the higher the likelihood that specific members within a community will be able to cope with in 

situ environmental conditions, but also the higher the potential for adaptation. Intra-species 

variability is a crucial aspect of phytoplankton diversity (Schaum, 2014) and has to be 
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considered when discussing the response to changing environments (Wood and Leatham, 

1992). Godhe and Rynearson (2017) reviewed that clonal physiological variability in natural 

populations seems to be high enough to allow for a species to persist and dominate an 

ecosystem even when environmental conditions change, igniting questions on a species’ ability 

to acclimate to an array of environmental conditions, but also questioning the necessity for 

adaptations in a rapidly changing environment and the extend of  threat posed by, for instance, 

rising temperatures.  

6.2 Phytoplankton Competition Under Future Climate Change 

As species do not occur in isolation, competitive dynamics play a crucial role in determining 

future communities and ecosystem functioning. The role of temperature changes and nitrogen 

concentrations on competition could be partially elucidated with the work conducted in this 

thesis. Whether it is truly possible to predict competitive outcomes in nature from physiological 

performance of isolated species and whether predicted dynamics scale up to whole 

communities remains unclear, as not just growth would be the determinant factor to 

outcompete other community members (Ward et al., 2019). In Chapters 4 and 5, I investigated 

direct diatom competition between two common diatom species. I could expand on our 

knowledge of phytoplankton competition and showed that competition in stable environments 

could be well predicted from knowing the performance of monocultures. This work adds to a 

pool of just a few studies (e.g. Bestion et al., 2018), that show that traditional competition 

theory seems to be suitable to predict competitive outcomes in simple systems with pairs of 

species. In more diverse species assemblies predictions might also hold true (Pardew et al., 

2018), but more knowledge is needed to make conclusive statements. As expected, 

temperature was found to play an important role in determining the outcomes, but nutrient 
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concentrations can interact with temperature to alter TPCs of algae and therefore how 

competition pans out. I could show that changes in abiotic parameters can interact with 

temperature to change the TPCs of species (nitrogen concentration in Chapter 4), and 

consequently the predictions we make about competitive outcomes from monoculture growth 

performance. In fluctuating environments the predictability of competitive outcomes already 

decreased although the experimental set-up was still relatively simple, indicating that the 

introduction of complexity increases non-linearity and quickly complicates understanding of 

competitive dynamics.  

The conducted competition experiments did not yet attempt to assess what would happen to 

competitive outcomes if adaptation to assay conditions would occur during the experiment. 

Just as adaptations to the thermal environment or nutrient regimes are expected to influence 

and change the performance of isolated species, they will likely also play a role in competition 

scenarios and influence how future phytoplankton communities will be structured. If species in 

future aquatic systems adapt or change their physiology, their ecological fitness across 

environmental gradients will presumably change as well. Physiological traits that have been 

found to adapt or are used as tracers of evolution do however not necessarily correlate with 

fitness (Kremer and Klausmeier, 2017), and what makes a species successful when competing 

against other species remains unclear in many cases. One common trait that has been found to 

determine competitive success in equilibrium conditions is R* and the correlating ability to live 

off a lower nutrient supply than a direct competitor (Bernhardt et al., 2020; Lewington‐Pearce 

et al., 2019). Others still need to be elucidated, and as an example for the lack of insight, one 

can look at the mismatch between predictions and observations in Chapter 4 and especially 

Cchapter 5 of this thesis to see that the understanding is far from complete.  
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If the competition experiments of this thesis would have lasted longer, adaptations to the local 

environment through spontaneous mutations could have potentially changed the observed 

patterns (Collins and Bell, 2004; Schaum et al., 2018, 2017). Gradual or spontaneous 

adaptations to assay conditions are more likely to accumulate as time passes. It has been 

shown that in fluctuating environments, a rescue event in T. pseudonana can lead to a 

population adapting to higher temperatures within 3 – 4 generations (Schaum et al., 2018). If 

such an event were to occur in one of the species while species co-exist in a stable equilibrium, 

the co-existence dynamics might be altered without changes in the abiotic environment. 

Similarly, it could also happen that a mutation would allow one of the species to cope better 

with temperature fluctuations, altering the competition coefficient that would be observed 

from unevolved monocultures. The algal cultures used in Chapters 4 and 5 for the experiments 

investigating the direct competition between P. tricornutum and T. pseudonana were not clonal 

but came from a semi-batch laboratory population that had been cultured over years. High 

genetic variability due to random mutations in the populations that occurred over years and 

went unnoticed were likely because laboratory cultures maintained at high densities can be 

expected to have at least one mitotic genetic mutation in each generation (Andersen, 2005). 

Genotypic variability can propagate in a laboratory culture that has been kept for many years 

(Lakeman et al., 2009). Although these mutations could be neutral and potentially be deleted in 

the future again, they could also lead to less or more competitiveness than the original 

genotype. As P. tricornutum and T. pseudonana are both species that can enter a sexual life 

stage, genetic variation can furthermore accumulate over time (Chepurnov et al., 2004). In 

addition, physiological differences despite morphological coherence were already observed 

since the early days of phytoplankton research into P. tricornutum and T. pseudonana strains 

(Guillard and Ryther, 1962; Wood and Leatham, 1992). Although for the current thesis inherent 
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genetic or phenotypic diversity within the investigated populations was not assessed and no 

sequencing of various isolates from the same culture was undertaken, the potential for within- 

species variability does add uncertainty about the ability to generalise the conducted work. It 

might be that standing stock culture genetic variation was high, and potentially two isolates 

from the same culture would display varying reaction norms to the same treatment (Lakeman 

et al., 2009; Schaum et al., 2012). Studies investigating the response of phytoplankton to 

environmental changes and competition might also gain different results from populations 

coming from different environments (Boyd et al., 2013). For instance two other P. tricornutum 

isolates from marine environments were found to possess optimum temperatures about 3 to 

5 °C lower than the Topt of the line used in this thesis (supplementary material from Thomas et 

al. (2012)). This would likely cause them to grow and compete differently across the 

investigated temperature gradients, if the growth response in isolation is used as a predictor for 

competition. It would therefore be interesting to investigate how dynamics between species 

can evolve over hundreds of generations and whether competition between a specific species 

pair, or a group of algae, is static under a specific set of abiotic parameters, or whether 

adaptations can lead an algae to display contrasting competitive abilities in comparison to its 

predecessor. Systems with the potential for adaptation might decrease our power to predict 

dynamics if we cannot assess whether competition based on current performance will persist 

under change (Petchey et al., 2015). Current observations of competitive performance across 

gradients should be considered as null models because they do not incorporate the time in 

which a species could potentially acclimate or even adapt, thus changing the currently 

measured competition in a stable and fluctuating environment (Dowd et al., 2015; Kordas et al., 

2011).  
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6.3 Consequences for Ecosystem Functioning  

If phytoplankton communities would fail to cope with current climate change and not be able 

to adapt adequately, dire consequences for ecosystems can be expected. In the introduction 

chapter, as well as the data chapters, it was highlighted that environmental changes will impact 

phytoplankton, changing physiology and consequently community composition. A lack of 

adaptation over time might slowly erode the ecological resilience of a system as members 

formerly performing certain functions or services are displaced and the buffer and redundancy 

within a community is decreased, making it more susceptible to extreme events and further 

changes in environmental conditions (Folke et al., 2004). Apart from influencing physiology and 

ecology directly, environmental changes will perpetuate and translate into changes in 

geochemical processes occurring on a local and global scale, as well as potentially change the 

provision of ecosystem services that could alter how other organisms and humans interact with 

phytoplankton and aquatic environments in general. Therefore, predictions looking into 

changes of phytoplankton due to environmental changes should consider not only how they 

will affect abundance, distribution and evenness of species, but also how they will affect 

functionality (Barton and Yvon‐Durocher, 2019). Changes in community composition will likely 

result in shifted patterns of species succession and phytoplankton blooms (Mosser et al., 1972). 

Predicted changes in phytoplankton community structure, elemental composition, 

photophysiology, and growth rates will have consequences for functional traits dominant in 

surface waters and restructure aquatic communities, leading to changes in food quality for 

higher trophic levels, aquatic nutrient cycles, as well as the amount of carbon that can be 

sequestered and exported to the deep sea.  
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Possibly the most important aspect of changed phytoplankton ecology on a global scale will be 

the shift in biogeochemical fluxes of nutrients. If geochemical cycles are altered, the whole 

abiotic backbone of the planet’s ecosystems is under threat to seize functioning in the way we 

know it, so that microscopic changes on the level of phytoplankton could have a knock-on 

effect for major nutrient dynamics that will affect sea, land and atmospheric processes. As 

mentioned in the thesis introduction, a shift towards warmer temperatures will likely cause a 

global shift towards smaller phytoplankton groups, affecting C, N, and Chl a contents of surface 

waters, and lowering them overall (Barton and Yvon‐Durocher, 2019). Higher temperatures 

were found to correlate with increased intracellular C:P and N:P ratios, shifting phytoplankton 

phosphorus stoichiometry and consequently cycling and transport to higher trophic levels 

(Yvon-Durocher et al., 2015).    

Phytoplankton’s quality as a food source for zooplankton is predicted to decrease as higher 

carbon to nitrogen and carbon to phosphorus ratios will decrease the nutrient values of 

phytoplankton for higher trophic levels (Schaum et al., 2012). Changes in the C:N ratio in 

phytoplankton reflect changes in lipid and carbohydrate amounts relative to proteins and 

nucleic acids (Anderson and Hessen, 1995; Urabe et al., 2003). This is of importance for 

phytoplankton as a quality food source because more proteins indicate a desirable food source. 

While Yvon-Durocher et al. (2015) could show that C:N ratios were largely independent of 

temperature, other nutrient ratios are not. In the model diatom T. pseudonana, increased 

temperatures led to a decoupling of cell volume and frustule silification, indicating a reduction 

of C and Si incorporation, reducing the amounts of C and Si transferred to higher trophic levels 

and exports into deeper ocean layers (Baker et al., 2016). The shift away from diatom 

dominated communities towards dinoflagellates, due to decreased silicate inputs to aquatic 
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systems is also expected to reduce the nutritional value for grazers (Geider et al., 2014). Shifts 

in species elemental composition caused by changes in environmental parameters would 

therefore likely lead to altered aquatic food chains (Dickman et al., 2008).  

Effects of altered phytoplankton community structure will most likely also perpetuate all the 

way to the highest trophic level as many zooplankters graze their prey selectively based on size 

or shape (Lee et al., 1966; Richman and Rogers, 1969). Alterations in the species composition of 

a phytoplankton community could therefore influence the health, distribution, and abundance 

of many animal populations higher up in the food chain (Mosser et al., 1972), with potential 

negative impacts for fisheries and food supply to humans (Ward et al., 2019). Just as 

phytoplankton, grazer populations are also expected to be influenced by climate change, 

altering the top-down pressure on phytoplankton (Boyce & Worm, 2015). This could lead to 

specific groups of phytoplankton becoming more or less abundant, with consequences feeding 

back into altered geochemical cycles. Decreases in phytoplankton biomass can have the 

consequence of reduced carrying capacities of ecosystems, which however could be 

counterbalanced if metabolic rates increased due to warming (Boyce and Worm, 2015).  

Another potential consequence of climate change is the currently observed surge in harmful 

algal blooms (HABs) in coastal areas and freshwater systems worldwide. Increasing mean 

temperature and increased nutrient loadings in coastal areas have been linked to cause more 

toxic algae to thrive (Geider et al., 2014), affecting drinking water supplies and human health, 

killing fish, shellfish, seabirds, marine mammals, but also pet dogs that go for a swim in a lake. 

Although this thesis did not investigate how changes in atmospheric CO2 concentrations would 

impact phytoplankton, it is an important aspect to consider when discussing climate change 

impacts. Alterations in community structure due to changed physiology and competition across 
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temperature and nutrient gradients might influence the amount of carbon taken up and affect 

the ocean’s carbon pump, as well as feed back into atmospheric carbon cycling. If the 

prediction that future oceans will be dominated more widely by small-sized phytoplankton 

species due to more common oligotrophic conditions would become a reality, then the oceans’ 

ability as a carbon pump could be reduced and less carbon would be exported to deeper ocean 

depths (Falkowski et al., 1998). Litchman et al. (2006) presumed that decreases in diatom 

populations may lead to more CO2 in the atmosphere and create a positive feedback loop of 

increasing carbon dioxide levels in the atmosphere, while less CO2 would be taken up into the 

water column. Iglesias-Rodriguez et al. (2002) added that a future increase in CO2 will be a 

disadvantage to carbon concentrating mechanisms in algae and that a decrease in the 

calcification potential in surface waters will decrease and influence the oceanic carbon pump. It 

has been suggested that in future oceans a lower total primary productivity can be expected 

(from 44 Pg C/yr at current CO2 levels to 38.5 Pg C/yr at 4 times higher CO2 levels (which are 

predicted to occur in 140 years in the classical CMIP II scenario of the IPCC)) due to a decline in 

diatom abundances (Bopp et al., 2005; IPCC, 2013). On the other hand it has been assumed that 

primary productivity will increase towards higher latitudes, which will however presumably be 

balanced out by a larger decrease of primary productivity at lower latitudes, resulting in no net 

change globally (Litchman et al., 2006). Higher ratios of respiration to photosynthesis predicted 

through the greater availability of phosphate would lead to shifted exchange rates of CO2 

between the oceans and the atmosphere and would therefore ultimately not only affect carbon 

cycles in the oceans, but also in the atmosphere, which would have a consequential effect on 

terrestrial ecosystems (Martinez-Garcia et al., 2010).  
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In addition to changes in the biotic and abiotic environment through anthropogenically caused 

climate change, it is furthermore important to notice that while many investigations focus on 

these changes, direct alterations by humans at the land-sea interface will further exert their 

influence on phytoplankton alongside all other discussed parameters. Agricultural practices and 

runoff, toxins from industry, habitat loss and coastal development, alteration of grazer 

communities through harvest, as well as introduction and replacement of species through 

ballast water will all interact with each other to influence phytoplankton (Cloern, 1996). There 

is for example evidence that phytoplankton biomass increases due to nutrient inputs from 

human activities in near-shore waters, shifting communities out of nutrient-limitation, which in 

turn can increase productivity of coastal fisheries on one side, but can in the worst case cause 

anoxic regions and dead zones (Boyce and Worm, 2015). 

For a continuation of ecosystem functioning at desired levels, functional redundancy in source 

populations and communities will play a role in determining the response to changed 

environmental conditions. The diversity within and among species and the rare biosphere of 

species that can fulfil functionally similar roles will impact whether functionalities will persist or 

determine rates of adaptation. With sufficient redundancy, adaptations to changed 

environmental conditions might not be necessary in order to continue providing the same 

ecosystem services and performing processes at the usual rates (Baltar et al., 2019). Species 

that will not be able to adapt to new conditions might potentially disappear without a net 

effect on the ecosystem. 

The sheer complexity of factors that will impact phytoplankton in future aquatic systems is 

daunting to tackle. Therefore it remains to be seen whether findings on phytoplankton’s 

responses to changes in temperature or nutrient concentrations will hold true in natural 
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environments, and it is a question of future research to elucidate to what extend findings from 

laboratory experiments can be extrapolated to natural environments. Laboratory studies such 

as the ones in this thesis can only give an indication of how thermal performance and 

competition between species may pan out in uncontrolled natural environments that are 

heterogeneous in time and space. It was found in the past that the responses of controlled 

laboratory populations do not have to align with species dynamics observed in natural 

populations (e.g. Goldman and Ryther, 1976), and the ability to predict shifts in community 

composition and species succession in complex natural systems is still an unresolved question. 

Phytoplankton will however not be the only organismal group influenced by climatic changes, 

and interactions within all ecosystems worldwide are complex and diverse. Synergistic and 

antagonistic effects could theoretically counterbalance each other, leading to no net change in 

response of phytoplankton communities, although this is unlikely (Boyce & Worm, 2015). Small 

physiological changes can have large impacts in natural communities as differences become 

larger over time (Geider et al., 2014; Low-Décarie et al., 2017). Complex systems have a 

tendency to behave non-linearly or almost counterintuitive when not all relevant parameters 

are considered (Begon et al., 2006; Bennett et al., 2003). From bacteria, to the highest trophic 

predators, from soil consistency to weather patterns, every aspect of the globe is influenced by 

a changing climate in the mid to long-term, but also by environmental changes in the short 

term. Knowing exactly what will happen in an ecosystem when the temperature rises by a 

certain amount will still be a complicated prediction for many years to come. However, 

phytoplankton is a crucial group in aquatic ecosystems without which our world would be in 

dire trouble. They are arguably worth the struggle to know more about and much more 

knowledge on how competitions and inter-species dynamics will be influenced by the oncoming 



Chapter 6: General Discussion 
 

179 
 

changes is necessary in a rapidly changing marine environment, as it will enable to improve 

prediction of dynamics in future marine systems (IPCC, 2013; Kordas et al., 2011). Studying 

algae and their response to changes in temperature and nutrient loadings holds great potential 

for biotechnological applications and the understanding of ecosystem dynamics, but how the 

knowledge from conducted research will ultimately be utilised is a matter for policy makers and 

entrepreneurs.     

If phytoplankton will manage to adapt to ongoing and predicted environmental changes, it 

could however be that ecosystem processes will continue to occur at least partially under 

current rates. What can be stated with certainty is that in regards to phytoplankton and 

ecosystems, a change of some sort will occur. Alterations to phytoplankton ecology and 

physiology might ultimately translate into altered predator abundances, fish stocks, 

geochemical cycles, and the way humans can interact and live off the ocean (Stock et al., 2011), 

and all changes combined are likely to result in complex responses from marine socio-ecological 

systems. Earth and aquatic ecosystems will continue to persist in one form or another. 

Ecosystems and organisms will continue to thrive. However, in an anthropocentric world 

humankind would like ecosystems to continue to provide and perform services in a beneficial 

manner. At the moment they are under threat to continue persisting in a way that they support 

current species assemblies and ecosystem provisions that humans have learned to value, 

cherish, and live off. Changes to ecosystems and the values they hold are therefore defined 

according to the advantages they bring to humans, from production of oxygen to provision of 

food. Whether the changes in ecosystem processes that will result from novel community 

compositions will be beneficial to humans or accelerate the current decline in the ecosystems 

that we value remains to be seen.  
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6.4 Conclusion & Future Directions  

Despite all the process that has been made on understanding phytoplankton physiological 

responses and competitive dynamics across environmental gradients, the scientific community 

still has a long way to go until community composition, outcomes of direct competition, and 

the resulting consequences for ecosystem processes can be comfortably and precisely 

predicted when the environment changes. During my PhD, I intermitted my studies to conduct 

an internship with a biotech company that was growing diatoms and turning them into 

aquaculture hatchery feed. It was during that internship that I realised that even without a full 

understanding of the complexities of phytoplankton, the research I was conducting had useful 

applications which can be expanded upon in the future. It all comes down to knowing your 

species well. If we know how isolated algae respond across environmental gradients with an 

adequate resolution of detail, we can utilise them to the advantage of ecosystems and humans. 

Being able to control species in isolation and as simple mixed populations will allow to advance 

their biotechnological applications.  

With the successful establishment of stable mixed communities, many more questions on co-

existence of species could now be addressed. Simple but controllable biological systems like the 

two species mixed populations containing P. tricornutum and T. pseudonana could be utilised 

to answer questions of system stability and resilience. Conditions which foster stability can be 

explored, as well as those that can break it. How much stress can a system endure until it is not 

functional anymore? Do alternate stable states exist within microalgae communities and can 

stability be achieved under differing combinations of abiotic parameters, or only under one 

specific condition at a time? When are potential tipping points reached and can a system in 

decline be recovered again? Hypotheses that could formerly only be tested in models based on 
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single species investigations or that could only be tested in prokaryotic communities could now 

be answered with a phytoplankton system. 

A potential next step for the research that was conducted in this thesis is of course to combine 

direct competition experiments with experimentation on thermal adaptation. If species were to 

adapt to environmental changes as monocultures, would their new physiological performance 

be as good of a predictor for competitive outcomes as the old one and would it be possible to 

adapt and gain a competitive advantage at temperatures or nutrient concentrations that were 

formerly disadvantageous? How would competition change if adaptation were to occur while 

the species are already competing? What would happen if species competed or would be kept 

in stable mixed cultures for years? Could species adapt during an ongoing competition, 

potentially changing the competitive advantage or changing the point of stable co-existence 

because of a spontaneous mutation? Would the competitive success of a species against 

another remain always the same regardless of ecotypes under investigation having differing 

physiological responses or adaptations? Future research could investigate the outcomes when 

competing adapted and non-adapted strains against a common competitor to elucidate trade-

offs of adaptation and investigate whether adaptive rates are similar between isolated species 

that are being adapted to new environments in isolation under ideal conditions in comparison 

to having to adapt while continuously competing. Are there adaptations that could be 

beneficial when a species is in isolation, but might lead to a competitive disadvantage when 

species are mixed together? What would happen if the complexity of the system would be 

increased to three species? Could a stable equilibrium be achieved in a non-fluctuating 

environment if each species is the winner to one and the loser to another species? Do adapted 

populations or communities perform ecosystem processes at differing rates and would rates of 

nutrient cycling, oxygen production or respiration, change? 
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There are many questions that remain to be answered when it comes to predicting 

phytoplankton community compositions of the future. The possible research directions that 

arose from this PhD are manifold and it will be interesting to see if it forms the basis for coming 

investigations. Concerning its relevance for natural species dynamics and predictive powers in 

models, the research conducted here is another small step in the ever increasing knowledge 

about our planet. Hopefully the science can be integrated into future models and studies in 

order to manage current ecosystem dynamics, and to also predict and alleviate potential 

changes that would be detrimental to functioning aquatic ecosystems.
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1  | INTRODUC TION

Competition plays an important role in shaping biological com-

munities in terrestrial and aquatic ecosystems (Tilman, 1987). 

Interspecific competition within communities occurs when two or 

more species possess the same or similar resource requirements 

(Clements & Shelford, 1939). For phytoplankton, the most im-

portant resources are macronutrients (N, P, Si), micronutrients 

(trace elements), organic nutrients (vitamins), CO2, and light 

(Riebesell, 2004; Tilman, Kilham, & Kilham, 1982). If demand for 

a resource by the organisms within an ecosystem is high, the 

abundance or concentration of the resource will decline. When 

the concentration of a resource becomes too low, it can fall below 
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Abstract
The distribution of marine phytoplankton will shift alongside changes in marine en-

vironments, leading to altered species frequencies and community composition. An 
understanding of the response of mixed populations to abiotic changes is required 
to adequately predict how environmental change may affect the future composition 

of phytoplankton communities. This study investigated the growth and competitive 

ability of two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudo-

nana, along a temperature gradient (9–35°C) spanning the thermal niches of both 

species under both high-nitrogen nutrient-replete and low-nitrogen nutrient-limited 

conditions. Across this temperature gradient, the competitive outcome under both 
nutrient conditions at any assay temperature, and the critical temperature at which 

competitive advantage shifted from one species to the other, was well predicted by 

the temperature dependencies of the growth rates of the two species measured in 

monocultures. The temperature at which the competitive advantage switched from 

P. tricornutum to T. pseudonana increased from 18.8°C under replete conditions to 

25.3°C under nutrient-limited conditions. Thus, P. tricornutum was a better competi-

tor over a wider temperature range in a low N environment. Being able to determine 

the competitive outcomes from physiological responses of single species to environ-

mental changes has the potential to significantly improve the predictive power of 

phytoplankton spatial distribution and community composition models.
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the minimum requirement of a species to support its temperature 

and light-dependent maximum growth rate (µmax) and, therefore, 

become limiting (Andersen, 2005).
In equilibrium communities, the minimum resource concentra-

tion that supports net population growth, and for which uptake 

rates by the population and supply rates by the environment are 

in balance, is called R* (Tilman, 1981). Assuming that all species 
compete for the same limiting resource and ignoring the effects 

of interference or apparent competition, the species with the low-

est R* should outcompete all other species and dominate a com-

munity (resource ratio theory or R*-theory; Tilman et al., 1982). 

Theoretically, the number of species that can stably coexist in a 
system is therefore equal to the number of limiting resources, if 

different species are limited by different resources. The fact that 

most communities of primary producers usually display higher 

species diversity than the number of limiting resources (Cloern 

& Dufford, 2005; Sommer, 1984) has been termed the “Paradox 
of the plankton” (Hutchinson, 1961). The resolution to the para-

dox likely lies in the fact that natural communities are often not 
in equilibrium or that the ability of a species to exploit resources 
is not the only factor that regulates a community's diversity and 

the outcome of competition. Apart from limiting nutrients, spe-

cies diversity is governed by other major regulating forces which 

can be biotic (e.g., differential grazing pressure or various forms 

of symbiosis such as mutualism or parasitism) or abiotic (e.g., tem-

perature, pH, salinity) (Begon, Townsend, & Harper, 2006; Cloern 
& Dufford, 2005).

Whether the effect of environmental change on the outcome 

of competition can be predicted from the performance of isolated 

species and whether these predictions align with classical competi-

tion models or single species performance is unclear because exper-
iments that examine direct species interactions along environmental 
gradients are scarce (Kordas, Harley, & O'Connor, 2011). Only a few 
studies have previously found evidence to suggest that this is possi-

ble. For example, Huisman, Jonker, Zonneveld, and Weissing (1999) 
showed that the ability of isolated algae species to survive on the 

lowest light level determined their competitive success in mixed 
communities. Bestion, García-Carreras, Schaum, Pawar, and Yvon-

Durocher (2018) showed that phosphorus uptake rates of monocul-

tures at different temperatures correctly predicted the competitive 

outcome between pairs of 6 phytoplankton species in the majority 

(71%) of the cases.

Simultaneous changes in multiple abiotic factors, such as 

those predicted to occur under climate change (e.g., rising sea 

surface temperatures in conjunction with changes in nutrient 

inputs), may also complicate predictions, as abiotic factors may 

interact (e.g., antagonistic or multiplicative), and organisms may 

respond in a way that is not accounted for from the responses 

to gradients of individual factors operating in isolation (Harley 
et al., 2017; Thomas et al., 2017). For instance, nutrient concen-

tration was shown to interact with temperature to influence phy-

toplankton growth rates (Rhee & Gotham, 1981) and the cardinal 

temperatures (e.g., thermal optimum) of thermal performance 

curves (TPCs) (Bestion, Schaum, & Yvon-Durocher, 2018; van 

Donk & Kilham, 1990; Thomas et al., 2017). In particular, N lim-

itation can significantly lower the thermal optimum of the diatom 

Thalassiosira pseudonana toward colder temperatures (Thomas 

et al., 2017). Given this shift in thermal performance due to nutri-

ent limitation, T. pseudonana may become less competitive in warm 

N-limited waters. In contrast, Phaeodactylum tricornutum is known 

to be a good competitor for inorganic nitrogen when this nutrient 

is scarce because it can take up nitrate when abundant and store 

it for times of depletion (Cresswell & Syrett, 1982). Thus, the out-

come of interspecific competition for inorganic nutrients might be 

expected to depend on temperature if the interaction of nutrient 
limitation with temperature is species-specific. For example, P. tri-

cornutum has been found to outcompete T. pseudonana and other 

species in maricultural ponds (Nelson, D’Elia, & Guillard, 1979), 
despite not being a dominating species in marine phytoplankton 

communities (Guillard & Kilham, 1977), which may be a reflection 

of nutrient availability or temperature characteristics in different 

systems. An early study on the competition between P. tricornu-

tum and T. pseudonana showed that competition is indeed tem-

perature-dependent and that the thermal environment influences 

the competitive outcome in stationary phase cultures (Goldman & 

Ryther, 1976). Specifically, P. tricornutum was found to be a good 

invader and dominant species under cold to intermediate tempera-

tures (<20°C), whereas it could not establish itself as an invasive 

species in warmer temperatures.

Here, the interaction of temperature and nitrate availability 
on direct competition between P. tricornutum and T. pseudonana 

was investigated along a temperature gradient. To test whether 

temperature and nutrient status have an interactive effect on the 

outcome of competition, experiments were conducted in both nu-

trient-replete high N conditions and low N conditions (whereby 

nitrate limited yield). Specifically, it was hypothesized that (a) the 

species with the higher growth rate or carrying capacity at a given 

temperature and nutrient level as a monoculture would have the 

competitive advantage in mixed cultures and that (b) greater abso-

lute differences in growth rate between species at a specific assay 

temperature would determine how quickly the poorer competitor 

would be displaced.

2  | MATERIAL AND METHODS

Stock cultures of P. tricornutum (CCMP 2561) and T. pseudonana 

(CCMP 1335) were maintained in the University of Essex algal 
culture collection at 15.5 ± 1.0°C, in F/2 medium (Guillard & 

Ryther, 1962), prepared in artificial sea water (Berges, Franklin, 

& Harrison, 2001; Harrison, Waters, & Taylor, 1980), and grown 
on a 12:12-hr light and dark cycle at a photosynthetic photon 

flux density (PPFD) of approximately 60 µmol photons m−2 s−1, 

which is close to optimum light levels for P. tricornutum (Geider, 

Osbonie, & Raven, 1986), and approximately 30% of the optimum 
light level for T. pseudonana (Geider, MacIntyre, & Kana, 1997; 
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Geider, Maclntyre, & Kana, 1998). Stock cultures were transferred 
monthly as 1:36 dilutions.

2.1 | Competition experiments

2.1.1 | High N competition experiment

Prior to experimentation, P. tricornutum and T. pseudonana were 

maintained in exponential growth for 2 weeks (approximately 10–14 
generations) under stock culture conditions at 15.5 ± 1.0°C by trans-

ferring cultures into fresh F/2 medium once cell densities reached 

500,000 cells/ml for P. tricornutum and 250,000 cells/ml for T. pseu-

donana (equivalent to about 5% of each species' carrying capacity).

Experiments using an aluminum temperature-gradient block 
were conducted to assess (a) thermal performance curves (TPCs) for 

growth rate of monocultures of the two diatoms and (b) temperature 

dependence of competition between these species. The aluminum 

block was heated at one end and cooled at the other to generate a 

temperature gradient from 8.8°C at the cold end to 35°C at the hot 

end. The block provided 4 rows with 17 columns (assay tempera-

tures) in each row. Temperature within each column was controlled 

to within 0.2°C, providing approximately 1.5°C increments along 
the temperature gradient. Illumination was provided from below by 

light emitting diodes (LEDs). PPFD was set to 150 ± 15 µmol pho-

tons m−2 s−1, and illumination was provided on a 12:12-hr light and 

dark cycle.

Aliquots from stock cultures of each of the diatoms were used 
to inoculate 17 autoclaved borosilicate test tubes (5 ml assay vol-

umes), which were distributed along the same 17-assay-temperature 

gradient described above. To assess the growth rate TPCs, in vivo 

chlorophyll a minimum fluorescence yield (F0) was used as a proxy 
for biomass (see section 2.2 below). Initial cell densities were ap-

proximately 160,000 cells/ml for P. tricornutum and 80,000 for 

T. pseudonana, corresponding to similar F0 values for both species. 

The monocultures were kept in exponential phase by diluting when-

ever an assay culture reached F0 values equivalent to cell densities 

corresponding to about 5% of each species' carrying capacity, ap-

proximately 500,000 cells/ml for P. tricornutum and 250,000 cells/

ml for T. pseudonana (Figure 1a and Figure S1).

At the same time, to assess competition between these species, 
aliquots from the stock monocultures were combined to create a 

mixed culture with equal cell densities of 100,000 cells/ml in a 1:1 
species ratio (50,000 cells of each species). The starting ratio could 

only be approximated, as cell densities were estimated from the re-

lationship between cell density and F0 determined at 15.5°C, but 

fluorescence per cell is not constant as it varies between species 

and with assay temperature. This mixed culture was then used to 
inoculate 34 autoclaved borosilicate test tubes (5 ml assay volumes), 

which were distributed in duplicates along the same 17-assay-tem-

perature gradient to assess the acute effect of temperature on com-

petition. After mixed cultures had been established and distributed 
across the temperature gradient, 200 µl was removed daily from 
each mixed culture tube and preserved with Lugol's solution for cell 
frequency counts, that is, relative species abundances of the mixed 
cultures over time. 200 µl of fresh F/2 medium was added to keep 
the culture volume constant. As with the monocultures, F0 measured 

daily was used as an index of community biomass. The mixed cul-
tures were kept in exponential growth by diluting when F0 reached 

values corresponding to about 5% of the carrying capacity.

After a further 2 weeks, the monocultures from each assay tem-

perature that had been used to assess the growth rate TPCs of the 

two species were mixed together in an equal cell density ratio to 
investigate the effect of thermal acclimation on competition. Here, 
2 mixed cultures to monitor competition were created at each assay 
temperature and aliquots were sampled daily to monitor changes in 

relative species frequencies.

Following completion of the competition experiment, triplicate 
monocultures of each species were grown across the gradient to 

increase the total replication for determining the TPC for growth 

rate of each monoculture to n = 4. However, in the final analysis, 
one of the T. pseudonana growth replicates was omitted as an outlier 

because the TPC was significantly different to the remaining three 

replicates (Figure S2a).

F I G U R E  1   Simulation of semicontinuous cultures for obtaining and maintaining (a) nutrient-replete (high N scenario) and (b) nutrient-

limited (low N scenario) cultures. Simulation assumes cultures are already acclimated to the nutrient-replete growth under defined 

temperature, irradiance, etc. Assumes logistic growth with the nutrient-replete growth rate = 1.4 d−1, and carrying capacity = 1. Dilution 

is approximately 10-fold in the high N scenario and 1.25-fold in the low N scenario. Solid lines are the culture density. Dashed line is the 
culture density that would be obtained in a batch culture undergoing logistic growth. Note that (a) is on a log scale to represent that high N 

exponential cultures were kept at low densities far from reaching stationary phase, whereas (b) is on a linear scale
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The above experimental design enabled the examination of 
(a) the TPCs for growth of P. tricornutum (n = 4) and T. pseudonana 

(n = 3) and (b) the acute interspecific competition along the tem-

perature gradient in the 2 weeks following the transfer from their 

15.5 ± 1.0°C source environment (n = 2) and of cultures acclimated 

for 2 weeks to temperatures of 8.8–35°C (n = 2).

2.1.2 | Low N competition experiment

Cultures were acclimated as a batch culture for 2 weeks in low N F/2 

medium (starting concentration 55 µM in comparison to 882 µM in 
full F/2). As shown in Figure S3, this NO3 concentration reduced car-

rying capacity and ensured that cultures would reach the stationary 

growth phase at cell densities that did not saturate the fast repeti-

tion rate fluorometry (FRRf) signal. After acclimation, two monocul-
ture replicates of each species were inoculated from early stationary 

phase stock cultures and grown in 5-ml volumes across the 17 assay 

temperatures in the temperature-gradient thermoblock (9.1–33.8°C) 

in the low N (55 µM) F/2 medium. The light regime was kept consist-
ent with that used for the high N competition experiment and once 
again set to a PPFD in the range of 150 ± 15 µmol photons m−2 s−1 on 

a 12:12-hr light and dark cycle.

The cultures were maintained in semicontinuous growth by re-

moving 20% of the culture volume (1 ml) daily (used for determin-

ing cell abundance and nitrate concentration) and replacing this 

volume with fresh medium to maintain a total volume of 5 ml. This 

way cultures could be grown until cell abundance (yield) was limited 

by the concentration of nitrate provided in the growth medium and 

daily population growth rate was set by the dilution rate (Figure 1b). 

Although the daily sampling regime was different from the high N 
scenario to account for the necessities of culturing microorganisms 

in nutrient-limited conditions, the results of the two nutrient sce-

narios can be compared as the same species were used and cultures 

were treated otherwise equally during the competition experiment.
The removed 1 ml samples were centrifuged at 5,000 g for 7 min 

at 4°C. A subsample of the supernatant (300 µl) was transferred to 
a flat-bottom 96-well plate (Thermo Scientific Nunclon, USA) and 
stored at −20°C to measure the sum of nitrate plus nitrite (NOX) at a 

later time (see section 2.4 below). The cell pellet was resuspended in 

the remaining volume (700 µl), fixed with formaldehyde (final con-

centration 1%), and stored at −20°C until cell abundances were esti-
mated with flow cytometry (see section 2.5 below).

After growing in monocultures for 2 weeks, inorganic nitrogen 
concentrations in all treatments were depleted below the detection 

limit of the NOx assay (i.e., <0.5 µM; see Figure S4). At this point, 
the fluorescence signals had stabilized or were declining, indicating 

that the yield was N-limited (see Figure S5). Following this determi-

nation, one of the two monocultures of each species at each assay 

temperature was used to inoculate two mixed cultures for the com-

petition phase of the experiment. Each mixed culture tube received 
2 ml assay volumes from each monoculture, for a total volume of 

4 ml, which was then topped up with 1 ml of low N F/2 medium 

to maintain a constant assay volume of 5 ml (competition replicates 

across assay temperatures at this point in time n = 2). The need to 

use 2 ml assay volume of each monoculture to not break with the 

20% daily dilution had the consequence that the desired 1:1 spe-

cies ratio at the start of mixed cultures could not always be reached. 
As in the high N experiments, 200 µl of the sampled volume was 
preserved daily with Lugol's solution for cell frequency counts. The 
remaining 800 µl volume was treated the same way as low N mono-

cultures, with samples being centrifuged, and 300-µl aliquots stored 
for NOx analysis.

One week later, the second N-limited semibatch monoculture 

replicate of each species was used to inoculate another set of two 

mixed cultures tubes at each assay temperature for a second dupli-
cate competition experiment (increasing the amount of competition 
replicates to n = 4). Mixed cultures were kept in the same semicon-

tinuous regime as monocultures with 20% of sample volume being 

harvested and replaced with fresh medium on a daily basis.

The above experimental design enabled the examination of (a) 
the thermal niche of P. tricornutum (n = 2) and T. pseudonana (n = 2) 

under low N conditions and (b) the acute interspecific competition 

along the temperature gradient at the onset of N limitation (n = 2) 

and of cultures that were cultured in isolation for an additional 

7 days at 9.1–33.8°C (n = 2).

2.2 | Chlorophyll fluorescence

In vivo chlorophyll a minimum fluorescence F0 (minimum fluores-

cence yield), used as a proxy for biomass, and photosynthetic ef-
ficiency Fv/Fm were measured daily via FRRf with a FastTracka 

II fluorometer and Fast Act laboratory system (both CTG Ltd). 
Photosynthetic efficiency was calculated via the formula (Fm − F0)/Fm 

(Fm = maximum fluorescence yield) by the FastPro software (version 
1.0.55) used to attain and record FRRf measurements. Peak excita-

tion was at 435 nm and fluorescence emission measured at 680 nm 

(with a 25 nm bandwidth). The measuring protocol was set to 24 

sequences per acquisition with a 100 ms sequence interval and a 

20 s acquisition pitch.

Measurements were taken on cells that were dark acclimated 
for 30 min at their assay temperature, and profiles of fluorescence 

emission were fitted within the Fast Pro 8 software (version 1.0.55) 

(Chelsea Technologies).

2.3 | Mixed population species frequency counts

Frequency counts for the high N and low N experiment were carried 
out to monitor the relative abundance of each species in the mixed 
populations over time. Flow cytometry could not be used to discrim-

inate between the two species as their forward scatter (FSC) and 

chlorophyll a fluorescence overlapped. As such, Lugol's preserved 
cells were allowed to settle to the bottom of the well-plate wells (ap-

proximately 3 hr) before frequency counts were performed using an 
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Olympus inverted microscope at 200× magnification. In each fixed 
sample, a minimum of 400 cells was counted in order to calculate a 

P. tricornutum-to-T. pseudonana cell abundance ratio.

2.4 | NOx assay (total nitrite/nitrate analysis)

NOx, the sum of nitrite and nitrate, concentration was measured 

using the method of Schnetger and Lehners (2014) to track the 
monocultures to nitrogen depletion before mixing them together for 
the low N competition experiment. The 300 µl frozen aliquots were 
defrosted on ice, and a 150 µl volume was transferred to a fresh 96 
well-plate, and 75 µl of the NOx reagent was added. The reagent was 

mixed with the assay volume by pipetting up and down several times 
and incubated at 45 ± 5°C for 60 min before measuring absorbance 

at 540 nm in a FLUOstar Omega plate reader (BMG Labtech).

2.5 | Flow cytometry

For the low N experiment only, flow cytometry data were used to 
confirm that cell densities had stabilized, despite F0 fluorescence de-

clining, as cell physiology continued to adjust to N limitation. Cellular 

chlorophyll content is known to decline under N limitation (Parkhill, 

Maillet, & Cullen, 2001), and as a consequence, the ratio of F0 to cell 

density will also decline (Figure S6). Because cellular physiology was 

stable in exponentially growing cultures of the high N experiment, 
flow cytometry was not required.

Previously collected samples (as described above in section 2.1.2) 

were defrosted on ice and quantified with an Accuri C6 flow cytom-

eter (BD Biosciences) equipped with a blue laser (488 nm). Diatom 

populations were discriminated based on chlorophyll a fluorescence 

(>670 nm) and forward scatter (FSC). FSC was used as a proxy for cell 
size to observe potential changes across assay temperatures after 

15 days of monoculture growth in the low N medium. After counting 
cells within 45 µl of sample volume per sample, population statistics 
were calculated using particle counts within gates with the supplied 

BD Accuri C6 Analysis Software (Version 1.0.264.21).

2.6 | Data analysis

2.6.1 | Growth rates and carrying capacities

Growth rates (µ) in high N medium (starting nitrate concentration of 

882 µM) were calculated for each monoculture replicate and dilution 
phase as the slope of the linear regression of the natural log of F0 

over time (Figure S1). The growth rate calculated for the 1st dilution 

phase was not used for further analysis as the cultures had not yet 

acclimated to assay conditions. Growth rates from all subsequent 

dilution phases were used to fit the TPC models (see section 2.6.2 

below).

The initial exponential growth rates during the nutrient-replete 
phase in low N semicontinuous cultures (with a starting nitrate con-

centration of 55 µM) were calculated using FRRf data from the first 
4 days of culturing before the exponential increase in F0 slowed (see 

Figures S5 and S7). Growth rates were calculated with Equation (1) 
as.

where k is the slope of ln(F0) over time, and ln
(

1

0.8

)

 (natural logarithm 

of 100% medium (i.e., 1.0) over 80% medium (i.e., 0.8)) was added to k 

to account for the dilution by the daily volume removed (1 ml) from the 

5 ml culture.

Cell densities increased to a maximum by day 5 that was sus-

tained thereafter (see Figure S8). The carrying capacity, K, under the 

imposed dilution rate of 0.22 d−1, was calculated for each replicate 

and at each assay temperature from the average cell densities mea-

sured after experimental day 4.

2.6.2 | Thermal performance curves

All twelve equations available in the R package “temperaturere-

sponse” (Low-Décarie et al., 2017) were fitted to the temperature-
dependent data of growth and carrying capacities obtained from 

monocultures of P. tricornutum and T. pseudonana (Table S1). For the 

growth model fitting in high N cultures, data from all dilution phases, 

except dilution phase 1, which was regarded as the growth phase in 
which the cultures acclimated to assay conditions, were used. The 

average growth rate across dilution phases was calculated for each 

species and replicate at each assay temperature, and the tempera-

ture dependence was modeled based on these average growth rates. 

For the low N scenario, thermal performances were modeled on the 

acute growth rates obtained from the first 4 days of low N growth 

(Figure S7) and on the thermal response of carrying capacities across 

assay temperatures (Figure S8).

The most appropriate equation for each species was selected 

based on a visual inspection of the data in combination with Akaike's 
information criterion (AIC) values (see Figure S9). Visual inspection 
was necessary as AIC values alone did not always predict the equa-

tion that best described the temperature-dependent data, especially 

at suboptimal temperatures. For P. tricornutum, Equation (2) from 
Ratkowsky, Lowry, McMeekin, Stokes, and Chandler (1983) was 
found to be the best model across all replicates.

For T. pseudonana, Equation (3) from Montagnes, Morgan, 
Bissinger, Atkinson, Weisse (2008) was found to best describe the 
thermal performance.

(1)�=k+ ln

(

1

0.8

)

(2)Rate=
[

a ⋅
(

T−Tmin

)]2
⋅

[

1−exp
(

b ⋅
(

T−Tmax

))]2

(3)Rate=a+b ⋅T+c ⋅T
2
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where T in both equations is the assay temperature at which growth 

rate and carrying capacity were measured.

The fitted TPCs were used to obtain the optimum tempera-

ture for growth (Topt), the maximum growth rate (µmax) at this tem-

perature, and the low and high temperatures at which μ = 0.5μmax 

(CT50min and CT50max). Single parameters of nonlinear model fits can 

be found in Tables S2-S4.

To investigate whether the thermal niche differed significantly 

between (a) the two species, and (b) two nutrient scenarios, a two-

way MANOVA was used to examine the 4 dependent variables (Topt, 

CT50min, CT50max, and µmax). The two independent variables were 

“species” (levels: P. tricornutum and T. pseudonana) and “nutrient sce-

nario” (levels: high N and low N). Sample size was n = 11 (4 P. tricor-

nutum replicates in high N, and 2 in low N, as well as 3 T. pseudonana 

replicates in high N and 2 in low N), and significance levels were set 

to a p-value of 0.05. By conducting a MANOVA, we could access 
all pairwise comparisons to determine which cardinal temperatures 

(a) changed significantly in the overall thermal niche and (b) were 

affected by a “species” and “nutrient scenario” interaction.

To test whether the thermal dependency of carrying capacities 

under low N conditions differed between the two species, individ-

ual one-way ANOVAs were conducted with “species” as the inde-

pendent variable on the four dependent parameters Topt, CT50min, 

CT50max, and maximum carrying capacity (Kmax). MANOVA testing 
was not possible due to the replication number of n = 2 for the mono-

cultures grown in low N conditions. p-values of the single ANOVAs 
were adjusted for multiple testing with a Bonferroni correction and 

reported as q-values.

2.6.3 | Predicted competition coefficients

Competition coefficients across assay temperatures in high N 

and low N conditions were predicted from the mean growth rates 

(Equation 4a) or mean carrying capacities (Equation 4b) of each spe-

cies calculated from the fitted TPCs.

where (µ1)T and (µ2)T are the growth rates of species 1 and species 2 

at temperature T.

where (K1)T and (K2)T are the carrying capacities of species 1 and 2 at 

temperature T.

Since competition coefficients are traditionally calculated from 

growth rates (e.g., Low-Décarie, Fussmann, & Bell, 2011; Segura 
et al., 2011), coefficients calculated from carrying capacities must be 

treated with caution, as the relationship between K and competitive 

outcome is not established for steady-state nutrient-limited condi-

tions. Higher K does not necessarily signify better competition abil-
ity. Under steady-state nutrient limitation, it is R* that determines 

competitive outcome (Tilman, 1981), but because the NOX concen-

trations were below the detection limit of our assay, we could not 

measure R* in our experiment.
The predicted temperature dependence of competition coeffi-

cients was modeled with a local estimated scatter plot smoothing 

(LOESS) from the R core package “stats” (R Core Team, 2016). LOESS 
fits a smoothing curve into data that is distributed on a scatter plot 

to graphically represent the relationship between an independent 

and a dependent variable. It is a suitable method for visualizing 

complex nonlinear relationships. The final smoother curve is the 
result of many local regression curves fit together (Isnanto, 2011; 

Jacoby, 2000). As such, it is a tool for predicting specific points on a 
regression, such as the inflexion point of competition, and to explore 
data. To display the strength of how closely our LOESS smoother 
followed the calculated competition coefficients, we reported R2-

values and residual standard errors (RSE) in the results.

2.6.4 | Observed competition coefficients

Changes in the ratio of the abundances of the two species through 

time (Figures S10 and S11) were used to calculate observed com-

petition coefficients. The competition coefficient was calculated 

as the slope of the change in the natural logarithm of species fre-

quency over time. Competition coefficients were calculated with 

Equation (5) for mixed high N cultures and mixed low N cultures.

where N = species abundance, and t = time. At the temperature at 
which competition coefficients are 0, stable coexistence of the two 
species is expected.

As described above (Section 2.1), each nutrient scenario had 4 
competition replicates across the temperature gradient. In the final 

analysis of competition under high N conditions, the acute and ac-

climated competition replicates were pooled because we did not 

find an effect of temperature acclimation and could not observe a 

significant difference in the temperatures at which the competitive 

advantage switched from P. tricornutum to T. pseudonana (F1,2 = 4.34, 

p = .173) (Figure S12, and Table S5). Due to a lack of an effect of 

temperature acclimation on the progression of competition across 

temperatures, we did not structure the competition replicates into 

acclimated and nonacclimated in the low N scenario and focussed on 

culturing the monocultures to N limitation, pooling the four compe-

tition replicates as well.

In order to determine whether nutrient regime significantly 

changed the temperature at which P. tricornutum and T. pseudonana 

coexisted (i.e., the inflexion point temperature at which the compe-

tition coefficient equalled 0), we conducted a one-way ANOVA with 
the temperature of competition inflexion as the response variable 
and “nutrient regime” as the independent variable. Significance lev-

els were set to a p-value of .05.
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All data analysis and calculations mentioned above were car-
ried out with the statistical software R (version 3.3.1) (R Core 

Team, 2016).

3  | RESULTS

3.1 | Differences in temperature and nutrient 
response between species in monoculture

When P. tricornutum and T. pseudonana were grown as monocultures, 

the thermal niches of the two species differed significantly from 

one another irrespective of nitrogen conditions (2-way-MANOVA, 
F1,7 = 103.49, p < .001) (Figure 2, Table S6). The contrasting ther-

mal niches between the two species were evident in differing car-

dinal temperatures (CT50min, Topt, CT50max) (Figure 3a) and µmax 

(Figure 3b). Phaeodactylum tricornutum occupied a cooler thermal 

niche than T. pseudonana, characterized by lower cardinal tempera-

tures (Figure 3a), and could not sustain growth when temperature 

was in excess of 30°C (Figure 2). In contrast, T. pseudonana occupied 

a warmer thermal niche and was struggling to grow toward the cool-

est tested assay temperatures. In the range of 10°C and below, the 

growth rate of T. pseudonana approached 0 d−1, indicating that the 

thermal tolerance minimum of this T. pseudonana strain was being 

reached (Figure 2).

N limitation altered the thermal niche of both species (Figures 2 

and 3). The 2-way MANOVA confirmed that nitrate levels had a 
significant effect on the cardinal temperatures of the TPCs of the 

two monocultures (F1,7 = 9.59, p < .05). However, the two diatoms 
responded differently to a reduction in N and consequently there 

was a significant interaction between “N regime” and “species” 

(F1,7 = 17.84, p < .01). Specifically, the thermal niche for P. tricornu-

tum became slightly more narrow (increase in CT50min by 0.31°C), 

and µmax at Topt increased by 14%. In contrast, the thermal niche of 

T. pseudonana widened (CT50min dropping by 2.38°C), and the µmax 

of T. pseudonana getting reduced by 17% (isolated ANOVA results 
within the MANOVA test for each cardinal temperature can be 
found in Tables S7-S10).

Similar to the growth rate results, carrying capacities also dis-

played a unimodal nonlinear response along the assay-temperature 

gradient and monocultures reached higher carrying capacities the 

closer the assay temperatures were to the species' Topt (Figure 4a). 

All of the cardinal temperatures for carrying capacity TPCs differed 
significantly from one another between species (Topt: F1,2 = 545.9, 

q < 0.01; CT50min: F1,2 = 78.28, q = 0.05; CT50max: F1,2 = 743.1, 

q < 0.01) (Figure 5a). Similar to the growth trends in the high N sce-

nario, these significant differences arose because the thermal niche 

of T. pseudonana was shifted more toward warm temperatures than 

P. tricornutum. Despite differences in the thermal niches, the max-

imum carrying capacity at Topt did not differ significantly between 

species (F1,2 = 6.96, q = 0.48) (Figure 4b). Individual test statistics 

for the single one-way ANOVAs can be found in the Supplementary 
Material (Tables S11-S14).

After 15 days of growing the monocultures in the low N medium, cell 
size showed a U-shaped trend across assay temperatures with cell size 
increasing toward the coldest and warmest tested assay temperatures 

F I G U R E  2   Average temperature response curves depicting (a) acclimated growth rates of Phaeodactylum tricornutum (red circles and 

solid line) and Thalassiosira pseudonana (black squares and dashed line) under high nitrate conditions (n = 4 and 3 respectively) and (b) the 

initial acute growth rate (days 0–4) under low N conditions (n = 2 for both species). Shaded area denotes standard deviation of the average 

model calculated from replicate model fits. Symbols in (a) represent the growth rates from distinct biological replicates and were calculated 

from the average growth rates across dilution steps after the diatoms had acclimated to growth under assay conditions. Dotted line in (b) 

indicates ln(1/0.8), the daily dilution rate that was imposed by the sampling regime in these semicontinuous cultures; cell abundance would 

have declined in cultures with growth rates below this value which equates to a growth rate of 0.22 d−1. Raw data used to calculate growth 

rates in the high nitrate (882 μM NO−

3
) medium (a) can be seen in Figure S1, and data used to calculate growth rates in the low N (55 μM NO−

3

) medium (b) can be seen in Figure S7. Nonlinear model outputs of the single replicate models used to calculate the average model can found 

in Tables S2 and S3, and single model fits on the individual growth replicates can be found in Figure S2a,b
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(Figure 4b). There was a strong negative linear correlation between the 

logarithm of cell size and K (Figure 4c), with the smallest cell sizes being 

observed at assay temperatures closest to each diatom's Topt, meaning 

that cell size increased toward the diatoms' physiological limits.

3.2 | Competition across assay temperatures

Monoculture TPCs were used to predict competition across assay tem-

peratures. Under high N conditions, LOESS (represented by the solid 

black line in Figure 6a, R2 = 0.998, and RSE = 0.021) predicted an inflex-

ion point at 18.8°C (i.e., a competition coefficient equal to 0), indicating 

that P. tricornutum was predicted to outcompete T. pseudonana from 

the coldest assay temperature up to 18.8°C. N limitation was predicted 

to alter the competition across assay temperatures whereby the in-

flexion point would shift horizontally across the temperature axis to 
24.6°C (5.9°C warmer than under high N conditions; solid black line in 

Figure 6b, R2 = 0.996, and RSE = 0.026). Because K also showed a re-

sponse across the assay-temperature gradient, it was possible to make 

a second prediction of competition in the low N scenario based on K. 

F I G U R E  3   Comparison of (a) cardinal temperatures and (b) maximum growth rates from thermal performance curve model fits for growth 
rates between Phaeodactylum tricornutum and Thalassiosira pseudonana under high N and low N growth conditions. For Phaeodactylum 

tricornutum, n = 4 in high N and n = 2 in low N. For Thalassiosira pseudonana, n = 3 in high N and n = 2 in low N

F I G U R E  4   (a) Temperature response curves of carrying capacity of Phaeodactylum tricornutum (red circles and solid line) and Thalassiosira 

pseudonana (black squares and dashed line) under nitrogen depleted conditions in the N-limited phase of semicontinuous culturing in the 

low N medium (n = 2 for both species). Shaded area denotes standard deviation of the average model calculated from replicate model fits. 

Symbols show the carrying capacities from distinct biological replicates across the assay-temperature range. Raw data used to calculate 

carrying capacities can be seen in Figure S8. Nonlinear model outputs of the single replicate models used to calculate the average model 

can be found in Table S4, and single model fits on the individual growth replicates can be found in Figure S2c. (b) Forward scatter (FSC) from 

flow cytometry data of the low N experiment across assay temperatures. FSC measurements depicted here were taken on the last day of 
replicate monocultures before they were mixed together for the competition experiment. The purpose of the solid and dashed LOESS lines is 
to visualize the U-shaped trend of the data across assay temperatures (R2 = 0.85, and RSE = 4.503 for Phaeodactylum tricornutum; R2 = 0.97, 

and RSE = 3.378 for Thalassiosira pseudonana). LOESS was not used as a model to predict the relationship between temperature and cell size. 
Dotted line at 30°C indicates the critical maximum temperature for Phaeodactylum tricornutum beyond which it could not sustain growth. (c) 

Correlation between carrying capacity K and log(FSC) for both species. Solid and dashed lines are linear models of the regression
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Competition coefficients calculated from K predicted the switch at 

22.9°C (4.2°C warmer than under high N conditions; dotted black line 

in Figure 6b, R2 = 0.992, and RSE = 0.039). Competition was predicted 
to be strongest at assay temperatures where the growth rates or carry-

ing capacities in monocultures exhibited greatest divergence between 
species. Naturally, a species would lose the competition at an assay 

temperature where it could not sustain growth as an isolated species, 

having reached its physiological limits. Between the upper and lower 

temperature thresholds where both species could grow, the competi-

tive outcomes were determined by the thermal growth performances 

of the species in isolation.

When the two diatoms were mixed together and competed 
against one another, the observed competition coefficients dis-

played a similar progression across assay temperatures as the predic-

tions. In high N conditions, inflexion points occurred at 18.8 ± 1.2°C 
(predicted at 18.8°C) (Figure 6a). As predicted, P. tricornutum won 

competitions across temperatures colder than the inflexion point, 
whereas T. pseudonana won competitions at temperatures warmer 

than the inflexion point. When the nitrate concentration was re-

duced, the competitive switch occurred at a warmer temperature, as 

predicted from the temperature dependencies of low N growth rates 

and carrying capacities (Figure 6b). The average temperature for the 

F I G U R E  5   Comparison of (a) cardinal temperatures and (b) maximum carrying capacities from thermal performance curve model fits for 
carrying capacities between Phaeodactylum tricornutum and Thalassiosira pseudonana in low N conditions (n = 2 for both species)

F I G U R E  6   Predicted (black lines) and observed (symbols) competition coefficients between Phaeodactylum tricornutum and Thalassiosira 

pseudonana across assay temperatures in (a) high N conditions and (b) low N conditions. A coefficient of 0 indicates no competitive advantage 

for either species and predicts stable coexistence under the assay conditions. At coefficients greater than 0, Phaeodactylum tricornutum has the 

competitive advantage, and at coefficients below 0, Thalassiosira pseudonana has the advantage. The further the competition coefficient deviates 

from 0, the stronger is the competition between the two species. In (a), the solid black line indicates predictions for competition coefficients made 

from high N monoculture growth rates. The solid blue line is the LOESS smooth to visualize the progression of all observed high N competition 

coefficients across temperatures (R2 = 0.97, RSE = 0.047). Observed coefficients were calculated from changes in species frequencies over time in 

mixed cultures (data from Figure S10), calculated with Equation (5). Closed symbols represent the competition coefficients that were started when 

stock cultures were transferred to the temperature-gradient block, open symbols those that were started 2 weeks later to investigate the potential 

effects of temperature acclimation. In (b), solid black line indicates predictions made from the initial exponential growth rate in low N medium for 

monocultures, whereas the dashed line indicates predictions made from monoculture carrying capacities across the temperature gradient. The 

solid blue line is the LOESS smooth to visualize the progression of all observed low N competition coefficients across temperatures (R2 = 0.86, 

RSE = 0.051). Observed coefficients were calculated from changes in species frequencies over time in mixed cultures (data from Figure S11), 

calculated with Equation (5). Closed symbols represent competition replicates that were started at the onset of N limitation, and open symbols those 

that were started from monocultures that were cultured under N limitation for an additional 7 days
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inflexion point in low N medium was 6.5°C greater than in high N 
medium and differed significantly (F1,6 = 83.11, p < .001) (Table S15). 

The inflexion point was located at 25.3 ± 0.6°C (predicted at 24.6°C 
when growth rate was used to calculate the competition coefficients 

or 22.9°C when carrying capacity was used for the prediction). 

Pooling of mixed culture replicates for the final analysis due to a lack 
of a temperature acclimation signal in the high N scenario did not 

affect our interpretation of the conclusion that the competitive shift 

occurred at higher temperatures in the low N scenario.

3.3 | Predictability of change in competitive ability

In both nutrient scenarios, the predicted and observed competition 

coefficients were strongly correlated (R2-values of 0.76–0.98), in-

dicating that competition coefficients were very predictable from 

growth in monocultures (Table 1).

Progression of predicted and observed competition coeffi-

cients across temperatures was very similar, yet deviations existed 
between predictions and observations. For example in high N con-

ditions, observed coefficients tended to be lower than predictions 

across the five lowest assay temperatures, and therefore, observed 

competition was not as strong as predicted across the assay tem-

peratures where P. tricornutum outcompeted T. pseudonana (compe-

tition coefficient > 0). Likewise, across the temperatures at which 
T. pseudonana was predicted to win (competition coefficient < 0), the 

strength of the competition coefficients was slightly overestimated 

and predicted to be more negative than observed values (Figure 6a).

In low N conditions, the predicted and observed coefficients 

aligned less strongly than in high N conditions, but correlation was 

still high (see R2 in Table 1). Predictions were more accurate when 

they were made from low N growth rates than from carrying capac-

ities (Figure 6b). As with the high N experiment, the predicted coef-
ficients were typically stronger than the observed. In addition, both 

low N predictions underestimated the temperature of the inflexion 

point and predicted the competitive advantage to switch at a lower 

assay temperature than it did in the experiment, therefore, under-
estimating the temperature range at which P. tricornutum was the 

better competitor.

4  | DISCUSSION

In this study, competition between P. tricornutum and T. pseudonana 

was determined primarily by the growth performance of these spe-

cies under specified thermal and nutrient regimes in isolation and in-

dicated that they did not interact strongly in mixed populations. The 
results provide support for our hypotheses as we show that in rela-

tively simple systems, prediction of competitive outcomes from iso-

lated species performance across a thermal gradient is possible. The 

amount of N present in the mixed cultures influenced the competi-
tion across the temperature gradient and showed that alterations in 

nutrient concentrations have the potential to change the outcomes 

of competition with all else being constant. Further aligning with our 

hypothesis, the better growing species in isolation had the competi-

tive advantage in mixed cultures, with the switch in competitive ad-

vantage occurring at or close to the temperature where the TPCs 

of the two species intercepted. The poorer competitor also lost the 

competition quicker when the absolute differences between mono-

culture thermal performances were the largest.

4.1 | Reduced nitrogen impacts competition across 
temperatures

Under low N conditions, we observed P. tricornutum to be the better 

competitor across most of the tested assay temperatures. Although 
N uptake rates were not measured in this experiment, the increased 
competitive success of P. tricornutum in low N conditions, and a 

warmer inflexion temperature of competitive advantage as a result 

TA B L E  1   Parameters for linear models (y = ax + b) correlating predicted (x) and observed competition coefficients (y) across assay 

temperatures

Correlation

Linear model parameters

R2 of 
correlation

Slope ± 95%-confidence 
interval

y-
Intercept ± 95%-confidence 
interval df t-value

p-value of 
correlation

High N growth rates with 
competition coefficients 

(n = 13)

0.98 1.37 ± 0.13 0.06 ± 0.04 11 22.60 <.001*

Low N growth rates with 
competition coefficients 

(n = 14)

0.93 1.73 ± 0.29 −0.01 ± 0.05 12 13.09 <.001*

Low N carrying capacity with 
competition coefficients 

(n = 13)

0.76 1.96 ± 0.72 −0.05 ± 0.11 11 5.98 <.001*

Note: Significant correlations (alpha level of 0.05) that conclude a relationship between predictions and observations are marked in bold and with an 

asterisk.
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thereof, could be attributed to its previously reported high affin-

ity and high uptake rates for nitrogen (Goldman & Ryther, 1976; 

Grover, 1991; Sharp, Underhill, & Hughes, 1979). This may have 
facilitated P. tricornutum to win competitions across most of the 

N-limited temperature gradient, including at assay temperatures up 

to 3.2°C warmer than predicted (22.9°C prediction from K across 

temperatures compared to warmest observed inflexion point in low 
N conditions at 26.1°C). To confirm that the increased competitive 

success can be explained through better nitrogen uptake rates and 
storage abilities, future experiments should quantify N uptake rates 
of the two species under the assay conditions described in this study. 

Its good nitrogen uptake ability could help P. tricornutum to win com-

petitions under N-limiting conditions at temperatures where other 

species can normally reach higher carrying capacities or grow faster 

when N is not limiting. However, the high N affinity of P. tricornutum 

may be nullified in conditions where N content of surface waters is 

high. For T. pseudonana, the reduction in µmax and shift of Topt toward 

colder temperatures in low N conditions was in accordance with 

Grimaud, Mairet, Sciandra, and Bernard (2017) and confirmed the 
effect of nitrogen concentration on T. pseudonana growth rates. This 

change in thermal performance indicates that T. pseudonana may be-

come less competitive in warm N-limited waters, but its competitive 

ability should be reinstated following the introduction of N into a 

system, for example, in coastal up-welling zones.
Despite presumed better nitrogen uptake abilities, P. tricornutum 

did not win all competitions across the whole assay-temperature 

gradient in low N conditions. This may be due to the fact that good 

N uptake ability was offset toward the warm assay temperatures by 

physiological limits for growth of this diatom. Past research has iden-

tified R* across temperatures as a U-shaped function (Lewington-
Pearce et al., 2019; Tilman, Mattson, & Langer, 1981), and warmer 
temperatures were found to increase nitrogen demand in phyto-

plankton (Toseland et al., 2013). Toward the growth limits, the min-

imum nutrient requirements for a species rise rapidly within a small 

temperature range as cells become stressed and need a larger inter-

nal nutrient content (cell quota) to survive while other physiologi-

cal limits become more important (Rhee & Gotham, 1981; Thomas 

et al., 2017; Tilman, 1981). The circumstance that cell size was also 

found to display a U-shaped trend with assay temperatures could 
have reinforced the observed patterns of competition across the as-

say-temperature gradient. Cell size is known to play a role in compet-

itive success and species dominance because larger, slower growing 

cells tend to have lower nutrient uptake rates relative to smaller cells 

with more beneficial surface-area-to-volume ratios (Gallego, Venail, 
& Ibelings, 2019; Litchman & Klausmeier, 2008; Smith & Kalff, 1982). 
This study provides further support of this relationship, whereby cells 

growing toward their physiological limits (thermal extremes) were 
larger and grew slower, thus potentially amplifying the rate at which 

a species was losing competitions close to its physiological limits. As 
surface temperatures are expected to increase in aquatic systems 
worldwide, this temperature dependence of R* and cell size might 

play a crucial role for population dynamics under warming scenarios 

in future marine and freshwater ecosystems (Bernhardt, Sunday, & 

O'Connor, 2018; Lewington-Pearce et al., 2019). Approaching phys-

iological limits through warming might shift abiotic conditions in a 

direction in which a competitor might be at a loss although it is gen-

erally better at taking up nutrients in more moderate environments. 

Such an environmental change toward more critical conditions might 

offset the ability of a species to reduce nutrients to a concentration 

that is lower than the R* of a direct competitor (McPeek, 2019).
The observed changes in species frequencies over time in the 

low N scenario may have been due to interspecific differences in 

the capacity for surge uptake. Greater capacity for surge uptake is 

commonly defined as higher values of the maximum velocity of nu-

trient uptake (Vmax in the Michaelis–Menten equation), induced in 
phytoplankton as a physiological adjustment to nutrient limitation 

(Morel, 1987). The species with the greater capacity to increase Vmax 

will sequester nutrients quicker, effectively depriving them from 

the competitor with a lower capacity to increase Vmax. In our low N 

experiment, daily additions of fresh medium were followed by ex-

tensive phases of nutrient starvation when this added nitrate was 

fully taken up. Because we did not measure nitrate uptake kinetics, 

we cannot conclude from our experiments whether the outcome 
of competition depended on the ability to sequester nitrate quickly 

after N addition or the ability to live off the lowest nitrate concen-

trations (interspecific differences in the half saturation constant for 

uptake, Km of the Michaelis–Menten curve). The growth rates calcu-

lated from the increase in fluorescence during the first few days of 

the low N monocultures might be indicative of surge uptake playing 

a role in the competitive success under low N conditions. The predic-

tions of competitive outcomes from the exponential growth phase in 
low N medium did align closer with the observed competitions than 

the predictions from carrying capacities (see Figure 6b). However, 
using fluorescence-based growth rates or maximum K under low N 
conditions as predictors of competition can be regarded as proxies at 
best. Confirmation of a role for surge uptake in competition between 

these two species requires further experiments. The determination 
of N uptake rates and residual nitrate concentrations using more 

sensitive methods (e.g., stable isotopes) may help improve predic-

tions of competitive success.

4.2 | Predictability of competition under 
environmental change

In this study, monoculture responses of phytoplankton were found 

to be good predictors of competitive outcomes. Previously, they 

also have been identified as good predictors of phytoplankton bio-

geography (Barton, Irwin, Finkel, & Stock, 2016; Thomas, Kremer, 

Klausmeier, & Litchman, 2012). Whether such culture-based meas-

urements are ultimately suitable for forecasting shifts in phyto-

plankton communities in response to environmental change and 

whether the findings can be generalized for other species pairs or 

taxa remains to be tested. Predictability of competitive outcomes in 
complex communities still presents a major challenge (Pennekamp 
et al., 2019).
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As the species in this study did not appear to influence one an-

other in mixed cultures, it is likely that allelopathic interactions did 
not play a role in this competition scenario. Indeed, monoculture per-

formance would cease to be a good predictor of competitive ability if 

one species had a toxic effect on the other in a two species competi-
tion. For example, dinoflagellates can inhibit growth of competitors 
by releasing toxins (e.g., Kubanek, Hicks, Naar, & Villareal, 2005), and 
some diatoms excrete chemicals that inhibit growth of other diatoms 
(Pichierri et al., 2017). A slower growing species might be able to 
gain a competitive advantage through the excretion of allelopathic 
substances upon sensing another species in its surrounding. Such 

species-specific interactions may explain some of the uncertainty in 
modeling natural phytoplankton communities. Furthermore, TPCs 

for growth of the same species were found to vary slightly from lab-

oratory to laboratory even when similar protocols were employed 

(Boyd et al., 2013). These differences could be driven in part by data 

quality and model fitting (Low-Décarie et al., 2017), but they still 
raise concerns that predictability of competition response, which is 

dependent on thermal niche parameters and µmax, only remain valid 

within a specific setting. In addition, adaptive changes in nutrient 

requirements or physiological parameters could change competitive 

abilities and reduce predictability. Elucidating the role of evolution-

ary change and whether long-term interactions are affected by ge-

notypic variability will therefore play a crucial role in understanding 

future phytoplankton community structure (Bernhardt et al., 2020).

Our observations in monocultures were suitable for predicting 

the inflexion points of competition. However, the predictions across 
the whole temperature range commonly overestimated the magni-

tude of competition coefficients, and this increased the further the 

coefficients were from 0 (see Figure 6). The mismatch between pre-

dicted and observed coefficients at the extreme temperatures may 
be due to the fact that light microscopy counts could not distinguish 

between viable and nonviable cells. The outcome being that cell fre-

quency counts overestimated the number of reproducing cells of the 

losing competitor and incorrectly tipping the competition coefficient 

in its favor. Future studies could employ the use of a cell viable stains 

to discriminate between live and dead cells (e.g., Baker et al., 2018) 

when conducting cell frequency counts.

4.3 | Wider implications of the study

The nitrogen loads to many coastal waters are predicted to increase 

in the future due to agricultural runoff or other human activities 

(Beman, Arrigo, & Matson, 2005; Nixon, 1995), and surface wa-

ters are expected to become more stratified as warming increases 
(Bestion, Schaum, et al., 2018). The findings that competitive out-

comes change across temperatures and are dependent on the 

amount of N present in the experimental system imply that environ-

mental changes and alterations of marine environments will affect 

how phytoplankton communities will be structured in the future. 

Changes in species interactions could then have subsequent effects 

on ecosystem functioning since distinctively structured communities 

cycle nutrients and carbon differently or have varying nutritional 

value for higher trophic levels (Falkowski, Barber, & Smetacek, 1998; 

Litchman, Klausmeier, Miller, Schofield, & Falkowski, 2006; Schaum, 
Rost, Millar, & Collins, 2012).

Regardless of the importance for natural ecosystems, the finding 

that competitive outcomes could be well predicted in a simplified 

system could be of relevance for large scale pond maricultures or 

other algae biotechnological settings where simple model commu-

nities or monocultures are established for harvest or extraction of 
secondary metabolites. The ability to predict what the population 

composition would be under a defined set of abiotic parameters 

could help to control growth dynamics or purity of a culture (Regan 

& Ivancic, 1984). By being able to predict composition, parameters 

can be altered to potentially stabilize mixed cultures or purify them 
through changing temperature or nutrient loading.

5  | CONCLUSION

The current study demonstrated that competition between two dia-

toms could be well predicted in a controlled laboratory system. The 

aquatic environments where these algae naturally occur are however 

exposed to fluctuations in light, nutrients, temperature, as well as 
changes in species composition due to migrations and water currents. 

In order to achieve higher comparability with natural environments, 

further investigations should focus on the effects of temperature 

variations and other abiotic fluctuations and their effects on compe-

tition between these two diatoms. Other species combinations and 

more complex communities could also be investigated to understand 
how general the current findings are. The ability to predict where 

inflexion points of species interactions lie across gradients and when 
multiple environmental stressors interact will bring the scientific 

community closer to understanding nonlinear ecosystem responses 

and help to potentially find strategies to mitigate changes that are 

predicted to occur under future environmental scenarios.
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