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Abstract The observation of animal orofacial and behavioral reactions has played a fundamental

role in research on reward but is seldom assessed in humans. Healthy volunteers (N = 131) received

400 mg of the dopaminergic antagonist amisulpride, 50 mg of the opioidergic antagonist

naltrexone, or placebo. Subjective ratings, physical effort, and facial reactions to matched primary

social (affective touch) and nonsocial (food) rewards were assessed. Both drugs resulted in lower

physical effort and greater negative facial reactions during reward anticipation, especially of food

rewards. Only opioidergic manipulation through naltrexone led to a reduction in positive facial

reactions to liked rewards during reward consumption. Subjective ratings of wanting and liking

were not modulated by either drug. Results suggest that facial reactions during anticipated and

experienced pleasure rely on partly different neurochemical systems, and also that the

neurochemical bases for food and touch rewards are not identical.

Introduction
Rewards are salient stimuli, objects, events, and situations that induce approach and consummatory

behavior by their intrinsic relevance for survival or because experience has taught us that they are

pleasurable (Schultz, 2015). Today, our understanding of the neurochemical basis of reward proc-

essing rests on 30 years of animal research, and on preliminary confirmatory findings in humans,

which led to the identification of two distinct components: wanting, that is, the motivation to mobi-

lize effort to obtain a reward, and liking, that is, the hedonic experience evoked by its consumption

(Berridge, 1996; Berridge, 2018; Berridge and Kringelbach, 2015; Berridge and Robinson,

1998). This conceptual division is paralleled in cognitive theories of economic decision making

(Kahneman et al., 1997; Berridge and O’Doherty, 2014) that similarly distinguish between decision

utility (how much the value attached to an outcome determines its choice or pursuit) and experi-

enced utility (referring to the hedonic experience generated by an outcome).

In animal research, the ‘taste reactivity test’, a method to assess eating-related pleasure by

observing facial and bodily reactions of animals and human infants to palatable and aversive tastes,

has played a fundamental role in the identification of discrete reward systems in the brain

(Barbano and Cador, 2007; Berridge, 2000; Dolensek et al., 2020; Grill and Norgren, 1978;

Steiner et al., 2001). Indeed, it has been shown that neither pharmacological disruption nor exten-

sive lesion of dopaminergic neurons affects facial liking reactions (e.g. relaxed facial muscles and lick-

ing of the lips) to the consumption of sweet foods in rats (Berridge et al., 1989; Treit and Berridge,
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1990), and that greater mesolimbic dopamine release induced by electric stimulation of the hypo-

thalamus results in greater food intake without modulating hedonic reactions (Berridge and Valen-

stein, 1991). On the other hand, (facial) hedonic reactions to sensory pleasure are amplified by

opioid, orexin, and endocannabinoid stimulation of various ‘hedonic hotspots’ of the brain, including

the nucleus accumbens (NAc) shell and limbic areas such as the insula and the orbitofrontal cortex

(Berridge and Kringelbach, 2015). These stimulations not only increase liking but also result in food

approach and feeding behavior (Peciña and Smith, 2010; Taha, 2010).

Evidence of similar neurochemical parsing of reward processing in humans is mainly derived from

research in clinical populations and a handful of recent pharmacological studies in healthy volun-

teers. For example, stimulation of D2/D3 receptors through dopamine agonists can induce compul-

sive medicament use, gambling, shopping, hypersexuality, and other addictive activities in some

patients with Parkinson’s disease, often without corresponding changes in subjective liking

(Callesen et al., 2013; Evans et al., 2006; Weintraub et al., 2010; but see Meyer et al., 2019 for

an account of the complexity of compulsive disorders in Parkinson’s disease). Evidence for disrupted

motivation to gain immediate rewards has been observed after dopamine D2/D3 receptors blockade

in healthy volunteers, in both a pavlovian-instrumental-transfer task and a delay discounting task

(Weber et al., 2016). Administration of m-opioid receptor agonists in healthy individuals has been

associated with changes in subjective feelings and motivational responses to different types of

rewards, as indicated, for example, by higher pleasantness of the highest-calorie (but least palatable)

food option available (Eikemo et al., 2016), greater effort to view, and liking of the most attractive

opposite-sex faces (Chelnokova et al., 2014), stronger preference for stimuli with high-reward prob-

ability (Eikemo et al., 2017), and enhanced emotional ratings to positive and negative images

(Atlas et al., 2014). Furthermore, administration of the non-selective opioid receptor antagonist nal-

oxone to healthy men decreased subjective pleasure associated with viewing erotic pictures and

reduced the activation of reward related brain regions such as the ventral striatum (Buchel et al.,

2018).

eLife digest Studies in rats and other species have shown that two chemical messengers in the

brain regulate how much an animal desires a reward, and how pleasant receiving the reward is. In

this context, chemicals called opioids control both wanting and enjoying a reward, whereas a

chemical called dopamine only regulates how much an animal desires it. However, since these

results were obtained from research performed on animals, further studies are needed to determine

if these chemicals play the same roles in the human brain.

Korb et al. show that the same brain chemicals that control reward anticipation and pleasure in

rats are also at work in humans. In the experiment, 131 healthy volunteers received either a drug

that blocks opioid signaling in the brain, a drug that blocks dopamine signaling, or a placebo, a pill

with no effect. Then, participants were given, on several occasions, either sweet milk with chocolate

or a gentle caress on the forearm. Participants rated how much they wanted each of the rewards

before receiving it, and how much they liked it after experiencing it. To measure their implicit

wanting of the reward, participants also pressed a force-measuring device to increase their chances

of receiving the reward. Additionally, small electrodes measured the movement of the volunteer’s

smiling or frowning muscles to detect changes in facial expressions of pleasure.

Volunteers taking either drug pressed on the device less hard than the participants taking the

placebo, suggesting they did not want the rewards as much, and they frowned more as they

anticipated the reward, indicating less anticipatory pleasure. However, only the volunteers taking the

opioid-blocking drug smiled less when they received a reward, indicating that these participants did

not get as much pleasure as others out of receiving it. These differences were most pronounced

when volunteers looked at or received the sweet milk with chocolate.

This experiment helps to shed light on the chemicals in the human brain that are involved in

reward-seeking behaviors. In the future, the results may be useful for developing better treatments

for addictions.
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Despite the progress made, the animal research is only partly informative to comprehend reward

processing in humans. While animal research allows to investigate the activity of neurons and neuro-

transmitters in a much more targeted way, it is also limited to certain measures of liking (i.e. behav-

ior and facial expressions, while humans can also provide subjective reports), and has mainly focused

on food rewards in the past. Moreover, human and animal research about the neurochemical regula-

tion of reward processing remain difficult to compare, as human pharmacological studies have strug-

gled to adopt translational paradigms and an operationalization of reward that resembles the one

used in animal research, that is, measuring decision utility and experienced utility in the same task,

providing primary rewards on a trial-by-trial basis, and/or using objective hedonic reactions to con-

sumed rewards, in addition to relying on subjective verbal report (Der-Avakian et al., 2016;

Pool et al., 2016).

Including the recording of hedonic facial reactions, the ‘gold standard’ in animal research on the

neurochemical regulation of reward processing in human studies seems to be a promising avenue in

this regard. Recently, the use of facial electromyography (fEMG) has gained increased attention in

the context of human reward processing. Results suggested that human adults relax the corrugator

muscle (involved in frowning), and to a lesser extent activate the zygomaticus muscle (involved in

smiling), during both anticipation and consumption of different types of pleasurable stimuli, although

differences between types of rewards exist (Bershad et al., 2019; Franzen and Brinkmann, 2016;

Korb et al., 2020; Mayo et al., 2018; Pawling et al., 2017; Rasch et al., 2015; Ree et al., 2019;

Sato et al., 2020; Wu et al., 2015). Notably, to the best of our knowledge, no study has yet investi-

gated implicit hedonic facial reactions to different types of rewards after pharmacological drug chal-

lenge in humans.

To fill this knowledge gap, we pharmacologically manipulated the dopaminergic and opioidergic

systems in humans via oral administration of the highly selective D2/D3 dopamine receptor antago-

nist amisulpride (400 mg), the non-selective opioid receptor antagonist naltrexone (50 mg), or pla-

cebo, in a randomized, double-blind, between-subject design in 131 healthy volunteers (group sizes

were 42, 44, and 45, respectively, for amisulpride, naltrexone, and placebo), and investigated the

effects with a recently developed experimental paradigm (Korb et al., 2020), in which reward proc-

essing is operationalized similarly to animal research. Explicit subjective ratings of wanting and liking,

physical effort (squeezing of an individually thresholded hand-dynamometer to obtain rewards) and

implicit hedonic reactions (fEMG) during anticipation and consumption of primary social and nonso-

cial rewards of similar magnitude were obtained on a trial-by-trial basis (Figure 1). Sweet milk with

different concentrations of chocolate flavour served as nonsocial food rewards. Gentle caresses to

the forearm, delivered by a same-sex experimenter at different speeds, resulting in different levels

of pleasantness (Ackerley et al., 2014; Löken et al., 2009; McGlone et al., 2014), served as non-

sexual social rewards.

By adopting a translational approach, which makes human research comparable to animal

research (e.g. measuring both real effort and hedonic facial reactions to primary rewards), we investi-

gated two fundamental yet unresolved research questions: (1) to what extent do motivational and

hedonic implicit and explicit responses during the anticipation and consumption of rewards rely on

the dopaminergic and opioidergic systems in humans, and (2) do food and touch rewards share the

same neurochemical basis in humans.

We made the following hypotheses based on the literature. First, because liking relies heavily on

the opioidergic but not the dopaminergic system (Berridge and Kringelbach, 2015), subjective rat-

ings of liking, and hedonic facial reactions during reward consumption, were expected to be lower

after administration of the opioid antagonist naltrexone, compared to placebo, but not after admin-

istration of the dopamine antagonist amisulpride, particularly for the most preferred rewards

(Eikemo et al., 2016; Smith and Berridge, 2007). Second, because wanting is believed to be regu-

lated by the dopaminergic and opioidergic systems (Peciña and Berridge, 2013), we expected sub-

jective ratings of wanting, and physical effort applied to obtain the preferred announced reward, to

be lower after administration of both naltrexone and the D2/D3 receptor antagonist amisulpride.

Third, because facial responses during reward anticipation – previously shown to occur to learned

cues for rewards in rats (Delamater et al., 1986), and humans (Korb et al., 2020) – may reflect

anticipated pleasure during a period commonly associated with wanting, they were expected to be

affected by naltrexone, as well as by amisulpride, compared to placebo. Finally, based on fEMG

results showing similar hedonic facial reactions to food and touch rewards, such as relaxation of the

Korb et al. eLife 2020;9:e55797. DOI: https://doi.org/10.7554/eLife.55797 3 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.55797


corrugator supercilii muscle and in some cases activation of the zygomaticus major muscle

(Bershad et al., 2019; Korb et al., 2020; Mayo et al., 2018; Pawling et al., 2017; Ree et al., 2019;

Sato et al., 2020), and on evidence from neuroimaging studies that supports the ‘common currency

hypothesis’ of reward processing (Berridge and Kringelbach, 2015; Ruff and Fehr, 2014), we

expected the same pattern of results for both types of rewards.

Figure 1. Main elements in each trial for the food (top) and touch (bottom) reward types. Before the main task, participants experienced and ranked

three food stimuli and three touch stimuli, based on liking (Figure 2). In the main task (here depicted), the highest-ranked (‘high’) reward was

announced in half of the trials and the second-highest ranked (‘low’) reward was announced in the other half of trials. The probability of obtaining the

announced reward was determined linearly by participants’ hand-squeezing effort, which was indicated in real-time. Participants knew that they would

obtain the announced reward if they reached the top of the displayed vertical bar, which corresponded to their previously measured maximum

voluntary contraction (MVC). The gained reward (which was either the one announced at the beginning of the trial, or – in the case of lower probability

due to less squeezing – the least-liked ‘verylow’ reward) was then announced and delivered. To assess reward anticipation, EMG data was analyzed

during the Pre-Effort anticipation period (3 s) at the beginning of the trial, when a possible reward was announced, as well as during the Post-Effort

anticipation period (3 s announcement) preceding reward delivery. To investigate reward consumption, EMG data was analyzed during reward Delivery

(5 s for food and 6.5 s for touch), and in the immediately following Relax phase (5 s). Rating slides stayed on screen indefinitely, or until participants’

button press. For a representation of all trial elements see Figure 1—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. All trial elements.
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Results

Matching of drug groups
In order to rule out eventual group differences that were not of interest, we conducted a series of

statistical tests to verify the matching of the three groups.

The three drug groups did not differ significantly in rankings of rewards before the main task, as

shown by the absence of a significant Drug X Reward Level interaction for both food and touch

rewards (Figure 2). Only a significant main effect of Reward Level was found for food (X2 (2)=78.1,

p<0.001) and for touch rewards (X2 (2)=115.71, p<0.001), confirming the expected pattern of pre-

ferred food rewards (milk with greater chocolate content being preferred to milk with lower choco-

late content), and of touch rewards (slower caresses being preferred to faster caresses).

In the main task, the level of reward (high, low, verylow) received in each trial depended on both

the announcement cue at the beginning (high or low) and the force exerted to obtain it (verylow

rewards were only obtained when participants exerted low effort, which linearly converted into low

Figure 2. Pre-experimental mean (SE) rankings of rewards by preference. This ranking occurred just before the main task, which adapted to these

preferences by using for each Reward Type (food, touch) the highest ranked stimulus as ‘high’ reward, the second-highest ranked stimulus as ‘low’

reward, and the lowest-ranked stimulus as ‘verylow’ reward.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Effect of time (trial) on ratings and effort.
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probability to obtain the announced reward). The number of trials in which high, low, and verylow

rewards were obtained did not differ significantly across groups. Only a significant main effect of

Reward Level was found (F(2, 763)=27.84, p<0.001), due to a greater number of high (M = 33.07,

SD = 4.97) than low (M = 29.85, SD = 6.03) and verylow (M = 17.14, SD = 8.99) trials received,

across all three drug groups and both reward types.

As expected, ratings of wanting and liking, as well as effort exerted to obtained the cued

rewards, decreased over the course of the experiment due to habituation and fatigue (Figure 2—

figure supplement 1). This decrease was similar across drug groups. Nevertheless, the covariate

Block (recoded into first and second block separately by Reward Type) was included in the analyses

of behavioral and fEMG measures (see below), to control for habituation and fatigue.

The three groups of participants did not differ significantly in their maximum voluntary contrac-

tion (MVC) of the hand dynamometer, which was measured right before the main task and at the

end of the main task, nor in their positive and negative mood measured with the PANAS at time of

pill intake and 3 hr later (all b < 0.6, all t < 0.8, all p>0.4; see Table 1). Finally, the three groups of

participants did not differ significantly in terms of possible side effects, which were self-reported at

time of pill intake and 3 hr later (see Table 1 for nausea scores).

Explicit measures: ratings of wanting, ratings of liking, and physical
effort
Drug effects were investigated on ratings of wanting provided at the beginning of each trial, on

physical effort to obtain an announced reward, and on ratings of liking provided after having

obtained a reward. Interactions with the factor Drug were only found for physical effort.

Behavioral analyses on ratings of wanting (Figure 3—figure supplement 1, A–B) resulted in an

expected significant main effect of Reward Level (F(1, 128.0)=119.28, p<0.001), due to higher rat-

ings of wanting for high reward (M = 4.83, SD = 4.31) compared to low reward (M = 1.14,

SD = 4.46), and a significant main effect of Block (F(1, 9653.7)=54.30, p<0.001) due to decreasing

wanting from the first (M = 3.19, SD = 4.70) to the second block (M = 2.85, SD = 4.83). All other

effects were not significant (all F < 2.3, all p>0.11).

To verify the lack of drug effects on ratings of wanting, we ran the same LMM using the full

Bayesian method with the brms package (Bürkner, 2017). A normal prior with M = 0 and SD = 5

was defined for population-level (fixed) effects, and a half student-t prior with 3 degrees of freedom,

M = 0, and scaling parameter = 4.7, was set for the standard deviation of subject-specific (random)

effects. Results showed that neither amisulpride (bmean = 1, 95% Bayesian credible interval [�0.03,

2.07]), nor naltrexone (bmean = 0.07, 95% Bayesian credible interval [�0.94, 1.09]) had credible main

effects on ratings of wanting (based on their respective 95% Bayesian credible interval crossing

zero), nor did they interact with Reward Level or Reward Type (all bmean < 0.3, all 95% Bayesian

Table 1. Participants’ characteristics across groups, as tested with linear regression (the t and p

value refer to the main effect of Group).

BMI = Body Mass Index; MVC = Maximum Voluntary Contraction; PANAS = Positive and Negative

Affective Schedule; M = Mean; SD = Standard deviation.

Amisulpride Naltrexone Placebo Group differences

N (male, female) 42 (14, 28) 44 (14, 30) 45 (15, 30)

Age M (SD) 23.7 (4.1) 22.9 (2.8) 23.1 (3.7) t = �0.73, p=0.46

BMI M (SD) 22.7 (2.5) 23.0 (2.3) 22.2 (2.5) t = �0.99, p=0.32

MVC M (SD) 211.9 (86.3) 208.7 (81.8) 215.3 (73.1) t = 0.19, p=0.85

PANAS pos T1 M (SD) 30.5 (5.4) 29.7 (7.3) 29.4 (6.7) t = �0.8, p=0.42

PANAS neg T1 M (SD) 12.1 (3.2) 14.3 (7.5) 11.5 (2.1) t = �0.7, p=0.52

PANAS pos T2 M (SD) 27.1 (6.3) 24.7 (8.0) 26.7 (7.4) t = �0.3, p=0.80

PANAS neg T2 M (SD) 10.1 (2.8) 12.1 (5.5) 10.5 (0.9) t = �0.5, p=0.58

Nausea T1 M (SD) 1.05 (0.2) 1.02 (0.1) 1.00 (0.0) t = �1.5, p=0.14

Nausea T2 M (SD) 1.00 (0.0) 1.20 (0.6) 1.00 (0.0) t = �0.1, p=0.93
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credible interval crossing zero). In addition, a second Bayesian LMM was fitted without the main and

interaction effects for the predictor Drug. The two models were compared using a Bayesian leave-

one-out cross-validation (LOO-CV; Vehtari et al., 2017). This revealed a greater predictive ability

for the null model (weight = 0.67, averaging via stacking of predictive distributions) than the full

model (weight = 0.33), meaning that the null model is expected to be two times more accurate in

predicting new data. One can thus conclude, that taking into account the drug administered does

not improve the ability to predict participants’ ratings of wanting.

The LMM on effort (Figure 3—figure supplement 1, C–D) resulted in the expected significant

main effect of Reward Level (F(1, 128.5)=54.41, p<0.001), due to stronger force applied for high

(M = 80.49, SD = 22.35) than low rewards (M = 71.74, SD = 25.42); a significant main effect of Block

(F(1, 7527.4)=175.49, p<0.001) due to decreasing effort from the first (M = 78.27, SD = 23.79) to the

second block (M = 74.02, SD = 24.65); and a significant Reward Type X Drug interaction (F(2, 128.4)

=4.71, p=0.01; Figure 3A) reflecting lower effort for food in the amisulpride (M = 74.98,

SD = 26.57) and naltrexone (M = 73.51, SD = 24.43) groups compared to the placebo (M = 80.20,

Figure 3. Marginal means (and 95% CIs) for interactions with the predictor Drug in behavioral analyses. Physical effort was lower in the amisulpride and

naltrexone groups compared to placebo (A) for food but not touch rewards, and (B) non-significantly (p=0.056) for low but not high rewards. This

suggests lower wanting after inhibition of both the dopaminergic and the opioidergic systems, specifically for high and low food rewards and for low-

level rewards of both reward types. These null effects were confirmed with Bayesian analyses. See Figure 3—figure supplement 1 for all behavioral

results.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Ratings and Effort by Reward Type, Reward Level, and Drug.
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SD = 22.41) group, but similar force across drug groups for touch (amisulpride: M = 78.34,

SD = 25.14; naltrexone: M = 73.78, SD = 23.15; placebo: M = 76.11, SD = 23.51). The Reward Level

X Drug interaction (Figure 3B) reflected lower effort for low rewards in the amisulpride (M = 71.67,

SD = 27.60) and naltrexone (M = 67.90, SD = 24.45) groups compared to Placebo (M = 75.65,

SD = 23.60), but failed to reach significance (F(2, 128.5)=2.95, p=0.056). All other effects were not

significant (all F < 0.9, all p>0.4).

The same LMM on ratings of liking (Figure 3—figure supplement 1, E–F) resulted in the main

effect of Reward Level (F(1, 126.4)=150.55, p<0.001), with greatest liking of high rewards (M = 5.02,

SD = 4.10), followed by low rewards (M = 1.79, SD = 4.15), and verylow rewards at the bottom

(M = �1.19, SD = 3.89). Decrease of liking over time was shown by a significant main effect of Block

(F(1, 9400.7)=129.40, p<0.001), due to a decrease in liking from the first (M = 2.90, SD = 4.61) to

the second block (M = 2.25, SD = 4.79). All other effects were not significant (all F < 1.1, all p>0.34).

The lack of an effect of drug on liking was confirmed by fitting a Bayesian LMM (the same priors

were set as for the models on wanting). Neither amisulpride (bmean = 0.78, 95% Bayesian credible

interval [�0.20, 1.77]), nor naltrexone (bmean = 0.25, 95% Bayesian credible interval [�0.71, 1.18])

had main effects on ratings of liking, nor did they interact with Reward Level or Reward Type (all

bmean < 0.30, all 95% Bayesian credible interval crossing zero). The full model had lower predictive

ability (weight = 0.002) than the model without main and interaction effects of the predictor Drug

(weight = 0.998), as shown with LOO-CV. These Bayesian analyses strengthen the view, already con-

veyed by the frequentist LMMs, that neither drug affected explicit wanting or liking of both types of

rewards in this study.

Implicit measures: facial EMG
To investigate drug effects on reward anticipation and reward consumption, facial EMG was ana-

lyzed in relation to trial-by-trial subjective ratings and effort (as continuous predictors) in four periods

of interest (see Figure 1). In short, the following results were found. In the Pre-Effort anticipation

period (Figure 4) the corrugator was, as expected, relaxed for greater wanting and effort, and was

more activated to food in the amisulpride and naltrexone groups compared to the placebo group.

In the same time window, the zygomaticus muscle showed, as expected, stronger activation for

greater wanting, however only in food trials. In the Post-Effort anticipation period, a non-significantly

greater zygomaticus activation for greater wanting was found. In the Delivery phase, a Liking X Drug

interaction was found in the zygomaticus muscle (Figure 5), reflecting the expected zygomaticus

activation for greater liking in the placebo and (to a lesser extent) amisulpride group, while the

opposite pattern of lower zygomaticus contraction for greater liking was found in the naltrexone

group. Importantly, this interaction did not survive FDR correction (p=0.09) but seems credible

based on a Bayesian LMM. Finally, in the Relax window immediately following reward administration,

the corrugator significantly relaxed for the most liked food rewards, but not touch rewards.

Pre-Effort anticipation
For the corrugator muscle by Wanting, significant main effects of Reward Type (F(1, 267.9)=10.31,

p=0.01), Wanting (F(1, 238.5)=7.75, p=0.01), and Block (F(1, 7867.4)=7.76, p=0.01) were found. Acti-

vation of the corrugator was greater for food (M = 116.35, SD = 84.72) than touch (M = 110.21,

SD = 60.63) and decreased, as expected, with increasing ratings of wanting (slope b = �2.80;

Figure 3A). A significant Drug X Reward Type interaction (F(2, 267.8)=4.08, p=0.04) reflected

(Figure 4D) greater corrugator activation to food than touch in the amisulpride group (p=0.006;

food: M = 119.12, SD = 95.82; touch: M = 109.46, SD = 53.44) and naltrexone group (p=0.001;

food: M = 120.00, SD = 101.29; touch: M = 109.66, SD = 67.25), while the placebo group had similar

activations across both reward types (p=0.66; food: M = 110.30, SD = 48.29; touch: M = 111.44,

SD = 59.87). Corrugator activation to food was also significantly greater in the amisulpride and nal-

trexone groups compared to the placebo group (p=0.03 and. 01).

For the corrugator muscle by Effort, we found a significant main effect of Reward Type (F(1,

277.2)=11.04, p=0.008), with greater activation for food (M = 116.35, SD = 84.72) than touch

(M = 110.21, SD = 60.63), a significant main effect of Effort (F(1, 207.9)=6.38, p=0.04) due to greater

corrugator relaxation with increasing levels of Effort (b = -2.59; Figure 4B) a significant main effect

of Block (F(1, 7662.4)=5.72, p=0.04) due to greater corrugator activation in the second (M = 115.55,
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SD = 87.5) compared to the first block (M = 110.98, SD = 56.4), and a significant Drug X Reward

Type interaction (F(2, 277.2)=4.03, p=0.04) reflecting greater corrugator activation for food than

touch in the amisulpride group (p=0.007; food: M = 119.12, SD = 95.82; touch: M = 109.46,

SD = 53.44) and naltrexone group (p<0.001; food: M = 120.00, SD = 101.29; touch: M = 109.66,

SD = 67.25), while the placebo group had similar activations across both reward types (p=0.72;

food: M = 110.30, SD = 48.29; touch: M = 111.44, SD = 59.87). Corrugator activation for food was

also significantly greater in the naltrexone group compared to the placebo group (p=0.03).

For the zygomaticus muscle by Wanting (random slopes for the Reward Type X Effort interaction

were removed to allow model convergence), a significant main effect of Reward Type (F(1, 125.9)

=13.78, p=0.001) was found, reflecting greater zygomaticus activation for food (M = 138.79,

SD = 145.48) than touch (M = 122.98, SD = 130.67). Moreover, greater wanting predicted zygomati-

cus contraction in food trials (b = 5.6) but not in the touch trials (b = �2.73), as shown by a

Figure 4. EMG during Pre-Effort anticipation. The corrugator relaxed in trials with greater wanting (A) and greater effort (B). Zygomaticus activation to

food (C) showed the opposite pattern of activation for trials with greater wanting. This is in line with the literature and was also expected for touch. A

significant Drug X Reward Type interaction was found in the corrugator analyses by wanting (D), and by effort (not shown). The anticipation of food

rewards resulted in greater corrugator activation in the two drug groups compared to placebo, suggesting a reduction in hedonic facial responses.

Plots A-C show marginal means and 95% CIs; plot D shows marginal means with standard errors and averages by subject.
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significant Reward Type X Wanting interaction (F(1, 2925.7)=6.62, p=0.04; Figure 4C). All other

effects were not significant (all F < 0.8, all p>0.68).

For the zygomaticus muscle by Effort (random slopes for the Reward Type X Effort interaction

were removed to allow model convergence), only a significant main effect of Reward Type was found

(F(1, 129.2)=14.70, p=0.001), with greater zygomaticus activation to food (M = 138.79, SD = 145.48)

compared to touch (M = 122.98, SD = 130.67). All other effects were not significant (all F < 1.2, all

p>0.81).

Post-Effort anticipation
No significant effects were found for the corrugator muscle, neither by Wanting nor by Effort (all

F < 1.7, all p>0.78).

For the Zygomaticus, a greater contraction for increasing levels of Wanting (b = 6.82) was

observed, but the effect fell short of significance (F(1, 186.9)=6.55, p=0.08). All other effects were

not significant (all F < 1.5, all p>0.51).

Figure 5. Zygomaticus during Delivery (marginal means and 95% CIs). A Liking x Drug interaction (not significant after FDR correction, p=0.09, but

credible according to a Bayesian LMM) reflected zygomaticus activation for greater liking in the placebo group, and to a lesser extent also in the

amisulpride group, but zygomaticus relaxation in the naltrexone group. This suggests that blocking of the opioidergic system resulted in an inverted

effect of liking on zygomaticus activation, with less smiling for the most liked rewards.
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Reward delivery
Analysis of the corrugator resulted in a significant main effect of Reward Type (F(1,121.9) = 8.21,

p=0.04), due to greater corrugator activation in response to food (M = 153.25, SD = 216.96) than

touch (M = 117.23, SD = 298.61). All other effects were not significant (all F < 2.4, all p>0.48).

For the zygomaticus a significant main effect of Reward Type (F(1, 126.1)=77.97, p<0.001), was

observed, due to greater zygomaticus activation in response to food (M = 264.83, SD = 233.77) than

touch (M = 125.21, SD = 211.39). A Liking X Drug interaction, falling short of significance after FDR

correction (F(2, 132.2)=4.22, p=0.09, Figure 5), was also found. Greater liking resulted, as expected,

in greater zygomaticus activation in the placebo group (b = 5.74), and to a lesser extent also in the

amisulpride group (b = 0.56). By contrast, the opposite pattern was found in the naltrexone group,

with a negative slope (b = �7.86) that was significantly different from the placebo group (p=0.006)

but not from the amisulpride group (p=0.09). The amisulpride and placebo group did not differ sig-

nificantly between each other (p=0.3).

To further probe the Liking X Drug interaction, we also ran a Bayesian LMM with the same predic-

tors (dummy coding was applied to the drug groups amisulpride and naltrexone, to compare them

to placebo). A normal, and a half student-t prior were chosen for, respectively, population-level

(fixed), and group-level (random) effects. Results confirmed a credible difference, compared to pla-

cebo, in the effect of liking on the zygomaticus activation in the naltrexone group (bmean = 13.62,

95% Bayesian credible interval [�23.37,–3.68]), but not in the amisulpride group (bmean = -4.92, 95%

Bayesian credible interval [�14.99, 5.09]).

Relax phase
For the corrugator by Liking (the random slope for the Reward Type X Liking interaction was

removed to allow model convergence), significant main effects of Reward Type (F(1, 155.0)=20.36,

p<0.001) and Liking (F(1, 184.6)=12.41, p=0.001), and a significant Reward Type X Liking (F(1,

9231.8)=7.66, p=0.01) interaction were found. The interaction reflected a significant corrugator

decrease with greater liking for food rewards (b = �23.2) but not for touch rewards (b = �5.6).

For the zygomaticus by Liking (the random slope for the Reward Type X Liking interaction was

removed to allow model convergence), a significant main effect of Reward Type was found (F(1,

126.7)=144.25, p<0.001), reflecting greater zygomaticus contraction to food (M = 211.17,

SD = 162.63) than touch (M = 132.05, SD = 208.32). Zygomaticus contraction was overall greater in

the second (M = 166.22, SD = 148.85) compared to the first block (M = 175.58, SD = 225.67), as

indicated by a significant main effect of Block (F(1, 9472.0)=7.44, p=0.03).

No significant main or interaction effects for the factor Drug were found in the CS and ZM data

(all F < 1.7, all p>0.19).

Discussion
By adopting a newly developed experimental paradigm (Korb et al., 2020), in which reward proc-

essing is operationalised similarly to animal research, in combination with a dopaminergic and opioi-

dergic drug challenge, we aimed to address two fundamental and as of yet unresolved research

questions: (1) to what extent do motivational and hedonic responses in adult humans rely on shared

or separate neurochemical systems, and (2) does the neurochemical basis of human reward process-

ing differ for touch and food rewards.

Analyses of the behavioral (subjective wanting and liking ratings and effort) and physiological

data (fEMG during anticipation and consumption of the reward) in relation to drug administration

led to the following main results: (1) neither ratings of wanting nor liking were modulated by the

pharmacological challenge (as confirmed with Bayesian analyses); (2) participants under dopaminer-

gic or opioidergic antagonists produced significantly lower effort to obtain food rewards

(Figure 3A), and non-significantly (p=0.056) lower effort to obtain low rewards of both touch and

food (Figure 3B); (3) during the Pre-Effort anticipation of food, significantly higher corrugator activa-

tion was found in both the amisulpride and naltrexone groups (Figure 4D), suggesting lower

hedonic anticipatory pleasure; and (4) during reward Delivery a Drug X Liking interaction was found

(p=0.09 after FDR correction, but confirmed by Bayesian analyses), which reflected greater zygoma-

ticus activation for liked rewards (and thus greater hedonic pleasure) in the placebo and to a lesser
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extent in the amisulpride groups, but weaker zygomaticus activation for liked rewards (less hedonic

pleasure) in the naltrexone group (Figure 5). These findings are now discussed in relation to our

main research questions.

Separate neurochemical systems underlie motivational and hedonic
responses
In line with animal models and recent human pharmacological studies, indicating that both the dopa-

minergic and the opioidergic systems underlie the motivation to obtain rewards (Chelnokova et al.,

2014; Peciña and Smith, 2010; Weber et al., 2016), we observed a similar effect of the D2/D3

antagonist amisulpride and the non-specific opioid receptor antagonist naltrexone on the effort pro-

duced to obtain the announced reward, resulting in a reduction of applied force. Notably, and differ-

ently from our original hypothesis, the effect was most pronounced for the second-preferred (low)

rewards, as indicated by a Drug x Reward Level interaction (which however was not significant,

p=0.056). A possible explanation for this finding is that our food stimuli did not vary in caloric con-

tent (i.e. the three reward levels were matched for fat and sugar). Therefore, individual preferences

were derived from other mechanisms than energy value, possibly leading to a different effect of the

drug on food reward processing (Barbano et al., 2009; Salamone et al., 2007). Another possible

explanation is that high rewards are less susceptible to changes in their incentive salience when

more options are available. Indeed, the majority of the studies in animals and humans have used

only two reward levels, and have found that interference with dopaminergic or opioidergic transmis-

sion alters the outcome of cost/benefit analyses involving work-related response costs for the most

valuable option (Salamone et al., 2007). Our finding suggests a similar shift in cost/benefit that is

possibly sensitive to a different experimental set-up (Barbano et al., 2009).

A similar effect of both amisulpride and naltrexone during food anticipation was observed in the

implicit measure of fEMG: corrugator activation was greater in both drug groups, compared to pla-

cebo. Because frowning typically reflects a more negative (or less positive) reaction to rewards and

emotional stimuli (Fernández-Dols and Russell, 2017; Heller et al., 2011; Lang et al., 1993;

Larsen et al., 2003), the observation that dopamine and opioid antagonists led to greater frowning

might be interpreted as a reflection of less anticipated pleasure, independently of reward level, in

these groups of participants.

During reward consumption, only the opioidergic antagonist naltrexone had an effect on implicit

hedonic facial reactions. Lower zygomaticus activation for greater liking was found in the naltrexone

group (with both frequentist and Bayesian LMMs), and this effect was significantly different from the

placebo group, who instead showed the expected pattern of higher zygomaticus activation for

greater liking. The amisulpride group showed the same pattern as the placebo group, although to a

lesser extent. We interpret this finding as less smiling to liked rewards after administration of the

opioid receptor antagonist naltrexone, as it parallels observations of fewer orofacial hedonic reac-

tions to most preferred foods after opiodergic blockage in animals (Smith and Berridge, 2007).

Zygomaticus activation is also known to increase for highly negative stimuli, in addition to positive

stimuli (Lang et al., 1999; Larsen et al., 2003), which could suggest that greater zygomaticus activa-

tion with decreasing liking in the naltrexone group is due to disgust expressions, or other negative

facial reactions to the least-liked rewards, rather than to a reduction in positive hedonic responses

(smiling). This, however, seems unlikely, as we only administered positive rewarding stimuli, and

because drug groups did not differ in (1) initial reward preferences (Figure 2); (2) the number of

high, low, and verylow rewards received; (3) the ratings of wanting and liking of these rewards; (4)

the change of ratings of liking over time (Figure 2—figure supplement 1); and (5) amounts of nau-

sea or other side-effects (Table 1). Moreover, this finding is unlikely to be explained by mouth move-

ments related to food ingestion, because participants were instructed to swallow the food after the

Delivery window, and no interaction with the factor Reward Type was found.

Taken together, and partially in line with the behavioral results (where the effects of the drugs

were only observable for effort, but not for subjective wanting and/or liking ratings), fEMG data sug-

gest a differential action of dopaminergic and opioidergic drug manipulation during the anticipation

and consumption of rewards, with an effect of both drugs during the anticipation of rewards, but

only of naltrexone during subsequent reward consumption. Interestingly, while the corrugator

showed a general increase due to drug administration, zygomaticus activity was only affected in its

relationship to subjective pleasure, and not in terms of overall activation. This differential pattern

Korb et al. eLife 2020;9:e55797. DOI: https://doi.org/10.7554/eLife.55797 12 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.55797


suggests that the two muscles, despite both tracking changes in hedonic value (Lang et al., 1993;

Larsen et al., 2003), do not necessarily behave in a complementary, but rather in an independent

way. This might also explain the heterogeneity of findings in previous studies, which often report an

effect of reward valence on only one of the two muscles.

Interestingly, drug effects were found on effort levels and fEMG, but not on subjective ratings of

wanting and liking. While this may come as a surprise, it is in line with several previous studies, which

have reported either null or weak effects of pharmacological interventions on pleasantness likings of

affective touch (Case et al., 2016; Ellingsen et al., 2014; Løseth et al., 2019; Trotter et al., 2016).

However, several studies have reported significant effects of naltrexone/morphine on food liking/

consumption (Bertino et al., 1991; Eikemo et al., 2016; Yeomans and Gray, 1996; Yeomans and

Gray, 1997; but see Hetherington et al., 1991 for a null effect). One possibly relevant difference

between some of the previous work, and our study, is that we kept calory intake constant across

food stimuli, and thus across participants. More research will be needed to clarify if drug-induced

changes in reward pleasantness can be reliably assessed with explicit measures (ratings) for some

types of rewards (food), but instead require more implicit measures (facial responses, effort) for

other types of rewards (affective touch).

Distinct neurochemical bases for food and touch rewards
Inclusion of both food and touch rewards allowed us to indirectly address the yet unresolved ques-

tion (Ruff and Fehr, 2014), whether different types of rewards are processed by the same neurobio-

logical systems (as proposed by the ‘common currency hypothesis’), or if representations coding for

different rewards occur in distinct neural circuits, albeit on a common scale (Grabenhorst and Rolls,

2011). In particular social rewards, like affective touch, may constitute a separate class of stimuli,

with a dedicated neural circuitry (Rademacher et al., 2010), which can be specifically impaired, for

example in people with autism spectrum disorders (Chevallier et al., 2012; Haggarty et al., 2020).

Although the magnitude of the two types of rewards in terms of subjective ratings and effort was

carefully matched (Korb et al., 2020), most drug effects were either stronger or restricted to food

trials, as indicated by significant Drug x Reward Type interactions for measures of effort to obtain

the announced reward, and for corrugator activation during Pre-Effort anticipation. This suggests

that the decision utility of touch and food rewards may not rely on the same neurochemical brain

systems. However, fEMG responses to food were also stronger to begin with, as indicated by signifi-

cant main effects of Reward Type for both muscles during the Pre-effort anticipation, Delivery, and

Relax analysis windows. This might explain why only reactions to food rewards were modulated by

opioidergic and dopaminergic antagonists. Another possible explanation for the less pronounced

drug effects for touch is that responses to social rewards, including touch, might also depend on

oxytocin and serotonin, in addition to dopamine and opioids (Fischer and Ullsperger, 2017;

Tang et al., 2020; Walker and McGlone, 2013). This is also suggested by the finding of higher

pleasantness ratings and greater zygomaticus activation to touch after administration of 3,4-methyle-

nedioxymethamphetamine (MDMA), a drug that modulates serotonin, dopamine, and possibly oxy-

tocin levels (Bershad et al., 2019; de Wit and Bershad, 2020).

Of note, drug effects on the activity of the zygomaticus muscle during reward consumption were

similar for touch and food rewards, as indicated by the absence of a Drug X Reward Type interaction

during the Delivery and Relax periods. To the best of our knowledge, this is the second study (after

Bershad et al., 2019) to report a pharmacological modulation of hedonic responses to experienced

touch (for a weaker effect see also Case et al., 2016). Major differences in our study compared to

previous work (Ellingsen et al., 2014; Løseth et al., 2019) are the delivery of affective touch with

the hand instead of a brush (Ellingsen et al., 2014 included touch by hand but wearing a glove),

and allowing participants to select their preferred touch speed. Regarding the way touch was deliv-

ered, it is possible that the social saliency of the touch stimuli delivered through direct skin contact

was enhanced, compared to when the touch is delivered with a brush, allowing us to detect subtle

effects of the drug. Regarding the selection of the preferred touch speed, even if the majority of our

subjects selected the slower speed as the preferred one, inter-individual differences were observed,

and the implementation of a task that could account for those, may have helped to detect the effect

of the drug. Further studies should investigate how such factors modulate drug responses to per-

ceived affective touch.
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The current study is characterized by a number of limitations. First, only two types of stimuli (food

and touch) were used to define social and non-social rewards, and only two neurochemical systems

(dopaminergic and opioidergic) were challenged. However, from the animal and human

literature, we know that other systems (e.g. endocannabinoids, orexin, benzodiazepine, etc.) also

contribute to the motivational and hedonic components of reward processing (Berridge and Krin-

gelbach, 2015). Future studies should therefore broaden the neuropharmacological investigation of

social vs. nonsocial reward processing, by using other compounds and different rewarding stimuli, to

allow for the generalizability of the findings to other social and nonsocial rewards, and to better

understand their neurochemical basis. Furthermore, computational approaches will most likely be

useful to reveal hidden psychological states subtending motivation and experienced pleasure, allow-

ing to refine how drug administration acts on these two components (Meyer et al., 2019).

Second, we used a relatively low dose of amisulpride (400 mg). Amisulpride can both increase

dopaminergic neurotransmission by blocking presynaptic autoreceptors when given at low doses

(50–300 mg), and decrease it by blocking postsynaptic D2/D3 receptors when given at higher doses

of 400–1200 mg (Racagni et al., 2004; Schoemaker et al., 1997). The used dose of 400 mg is at

the lower end of postsynaptically active high doses (Rosenzweig et al., 2002) and occupies ~70% of

D2 receptors when given for 2 weeks (Meisenzahl et al., 2008). We decided on 400 mg of amisulpr-

ide based on previous studies in humans (e.g. Weber et al., 2016), to obtain postsynaptic dopami-

nergic effects, while ensuring the safety and well-being of our participants, as well as allowing both

participants and experimenters to remain in the dark about the type of compound or placebo

administered (double blinding). The effects we observed (e.g. less effort) are in line with amisulpr-

ide’s antagonistic action on postsynaptic D2/D3 receptors. Upon availability of drug compounds

that more strongly modulate the dopaminergic systems with minimal side effects, future studies

should, however, explore dose-dependent changes in human reward processing.

Third, we used a cross-sectional design for drug/placebo administration. A within-subjects design

would certainly have resulted in greater statistical power. However, this would have come with the

cost of even greater habituation to the rewards.

Fourth, the study suffered from a lack of power to detect small effects. We had modeled the sam-

ple size on a previous study using the same drugs and doses (Weber et al., 2016). However,

Weber et al., 2016 only found relatively small drug effects, and several other studies have failed to

show effects of a pharmacological modulation of the opioid, serotonin, or oxytocin systems on

the liking of affective touch (Ellingsen et al., 2014; Løseth et al., 2019; Trotter et al., 2016). This

reveals the difficulty of uncovering the neurochemical basis of reward processing in humans and sug-

gests that larger sample sizes should be used in future pharmacological studies to investigate the

neurochemical bases of touch and other rewards.

Conclusion
We report pharmacological evidence in healthy human volunteers, across several measures including

the monitoring of facial expressions with fEMG, about the role of the dopaminergic system for the

motivational component and of the opioidergic system for both motivational and hedonic compo-

nents of reward processing. The effort to obtain a reward and valenced facial reactions during

reward anticipation were both modulated by the administration of dopaminergic or opioidergic

antagonists. By contrast, facial reactions during reward experience were only altered by the opioi-

dergic antagonist, suggesting neurochemical differences underlying hedonic expressions during

anticipation and experience of pleasure. Explicit ratings of reward wanting and liking were not mod-

ulated by either drug. This constitutes the first demonstration of this kind in adult humans, using an

operationalization of reward closely resembling previous animal research, and it suggests that the

neurochemical regulation of pleasure (as indicated by hedonic facial reactions) is phase-specific,

depending on whether the reward is anticipated or experienced. The finding that most drug effects

were either stronger for, or restricted to, food trials may indicate different neurochemical brain

mechanisms for social and nonsocial rewards. This point however requires further investigation via

brain imaging or more direct measures of brain activity in addition to pharmacological challenges

tailored to investigate the role of different neurochemical systems in the processing of social versus

nonsocial rewards.
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Materials and methods

Subjects
Based on previous work that had used the same compounds and doses (Weber et al., 2016), we

aimed at collecting data from 40 participants per group or more. The final study sample included

131 volunteers (88 females) aged 18–35 years (M = 23.3; SD = 3.5). In the amisulpride group, blood

concentrations of the drug (measured 5 hr after intake) were in or above the therapeutic range

(blood samples missing for six people). Specifically, the minimum was 212 ng/mL, and 19 partici-

pants were above 604 ng/mL. All participants reported being right-handed, to smoke less than five

cigarettes daily, to have no history of current or former drug abuse, to like milk and chocolate, not

to suffer from diabetes, lactose intolerance, lesions or skin disease on the left forearm, and to be

free of psychiatric or neurological disorders. Participants’ average Body Mass Index (BMI) was 22.6

(SD = 2.5, range 17.7–29.3). To reduce the chances that social touch would be perceived as a sexual

reward, the touch stimulation was always carried out by a same-sex experimenter (see Procedure),

and only participants who reported to be heterosexual were included. The study was approved by

the Ethical Committee of the Medical University of Vienna (EK N. 1393/2017) and was performed in

line with the Declaration of Helsinki (World Medical Association, 2013). Participants signed

informed consent and received monetary compensation of 90e.

Stimuli
Three stimuli with identical fat and sugar content (1.5 g fat, 10 g of sugar per 100 g) were used as

food rewards: milk, chocolate milk, and a 4:1 mix of milk and chocolate milk. Tap water served for

rinsing at the end of each trial. The initial stimulus temperature of these liquids was kept constant

(~4˚C) across participants. Stimulus delivery was accomplished through computer-controlled pumps

(PHD Ultra pumps, Harvard Apparatus) attached to plastic tubes (internal ø 1,6 mm; external ø 3,2

mm; Tygon tubing, U.S. Plastic Corp.), which ended jointly on an adjustable mount positioned about

2 cm in front of the participant’s mouth. In each trial, 2 mL of liquid was administered for 2 s. Over-

all, including stimulus pretesting (see Procedure), participants consumed 196 mL of liquids, com-

posed of 98 mL of water, and 98 mL of sweet milk with different concentrations of chocolate aroma

(depending on effort, see below).

Touch rewards consisted of gentle caresses over a previously-marked 9-cm area of the partici-

pant’s forearm (measurement started from the wrist towards the elbow). Three different caressing

frequencies, chosen based on the literature and pilot testing, were applied for 6 s by a same-sex

experimenter: 6 cm/s, 21 cm/s, and 27 cm/s. To facilitate stroking, the stimulating experimenter

received extensive training and, in each trial, heard rhythmic sounds, indicating the rhythm for stimu-

lation, through headphones.

EMG
After cleansing of the corresponding face areas with alcohol, water, and an abrasive paste, reusable

Ag/AgCl electrodes with 4 mm inner and 8 mm outer diameter were attached bipolarly according to

guidelines (Fridlund and Cacioppo, 1986) on the left corrugator supercilii (corrugator) and the zygo-

maticus major (zygomaticus) muscles. A ground electrode was attached to the participants’ forehead

and a reference electrode on the left mastoid. The EMG data were sampled at 1200 Hz with impe-

dances below 20 kOHM using a g.USBamp amplifier (g.tec Medical Engineering GmbH) and the

software Matlab (MathWorks, Inc).

Procedure
A monocentric, randomized, double-blind, placebo-controlled, three-armed study design was used.

The study took place in the Department of Psychiatry and Psychotherapy at the Medical University

of Vienna. Participants visited the laboratory for the first visit (T0) in which they received a health

screening, followed by a second visit (T1) that included oral drug intake and the experiment

described here. Pharmacological dosage, and length of waiting time after drug intake (3 hr), were

modeled on previous work (Weber et al., 2016), and on the drug’s pharmacodynamics. Amisulpride

reaches the first peak in serum after 1 hr, and a second (higher) peak after approximately 4 hr. The

elimination half-life is 12 hr (Rosenzweig et al., 2002). At doses of 400 mg or higher, amisulpride
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acts as a postsynaptic D2/D3 receptor antagonist and thus results in lower dopaminergic action

(Racagni et al., 2004; Schoemaker et al., 1997). Naltrexone reaches maximal concentration in

plasma after 1 hr, has an elimination half-life in plasma of approximately 4 hr, and is completely

cleared from plasma after 96 hr (Meyer et al., 2019). Importantly, up to 90% of mu-opioid receptors

in the brain remain blocked by naltrexone after 48 hr, and partial receptor blockade could be shown

up to 168 hr after intake (Lee et al., 1988).

Participants came to T1 with an empty stomach (it was morning, and they had been instructed

not to eat in the preceding 6 hr), filled out the PANAS questionnaire, tested negative (or were

excluded) on a urine drug screen sensitive to opiates, amphetamine, methamphetamine, cocaine

(among other things), and then received a capsule filled with either 400 mg of amisulpride (Solian),

50 mg of naltrexone (Dependex), or 650 mg of mannitol (sugar) from the study doctor. All capsules

looked identical from the outside, and neither participants nor the experimenters were informed of

their content. Drug intake was followed by a waiting period, EMG preparation, and task instructions.

The experiment comprised two tasks following procedures described elsewhere (Korb et al.,

2020). The main task started 3 hr after pill intake. Participants were seated at a table and comfort-

ably rested their left forearm on a pillow. A curtain blocked their view of the left forearm and the

rest of the room. This was particularly relevant for touch trials, in which one of two same-sex experi-

menters applied the touch rewards to the participant’s left forearm. Two experimenters were always

present during testing, to limit the influence of participants’ experimenter preferences, and to allow

participants to better concentrate on the (touch) stimuli.

Participants first completed a short task, in which they experienced and individually ranked three

food rewards, and separately three touch rewards, presented randomly in sets of three of the same

reward type. In the main task, which started 3 hr after pill intake, the previously most liked stimuli

were used as ‘high’ rewards, the stimuli with medium liking as ‘low’ rewards, and the least liked stim-

uli were used as ‘verylow’ rewards. To calibrate the dynamometer, the MVC was established right

before the short task, by asking participants to squeeze the dynamometer (HD-BTA, Vernier Soft-

ware and Technology, USA) with their right hand as hard as possible three times, each lasting 3 s .

The average MVC (peak force in newtons across all three trials) was 212 (SD = 80.4) and did not dif-

fer significantly between drug groups, as tested by linear regression (b = 1.6, SE = 8.68, t = 0.19,

p=0.85).

After calibration of the dynamometer, EMG electrodes were attached, participants received

detailed instructions, and completed four practice trials (two per reward type). The main task

included four experimental blocks with 20 trials each. Each block contained either food or touch tri-

als, and the blocks were interleaved (ABAB or BABA) in a counterbalanced order across participants.

Each trial included the following steps (Figure 1; see Figure 1—figure supplement 1 and Support-

ing Information for all elements of a trial): (1) a picture announcing the highest possible reward (high

or low, 3 s), (2) a continuous scale ranging from ‘not at all’ to ‘very much’ to rate (without time limit)

wanting of the announced reward (ratings were converted to a Likert scale ranging from �10 to

+10), (3) a 4 s period of physical effort, during which probability of receiving the announced reward

was determined by the amount of force exerted by squeezing the dynamometer with the right hand,

while receiving visual feedback (sliding average of 1 s, as percentage of the MVC), (4) a picture

announcing the obtained reward (3 s for food, 7.3 s for touch), which could be high, low, or – if insuf-

ficient effort had been exerted – verylow (the greater participants’ effort, the higher the probability

of obtaining the announced reward), (5) a phase of reward delivery (2 s for food, 6.5 s for touch –

this difference in timing was necessary to obtain sufficiently long tactile stimulation, while keeping

the overall trial duration similar across reward types), (6) for food trials instructions to lean back and

swallow the obtained reward (duration 3 s), (7) a relaxation phase (5 s), and (8) a continuous scale to

rate the liking of the obtained reward. In food trials, participants then received water for mouth rins-

ing. In both reward types, trials ended with a blank screen for 3–4 s. The last four trials in each block

did not require pressing of the dynamometer. These trials were added to the design, in case partici-

pants would never press at all, which did not happen for any participant. Trials without pressing

were kept in the data, as removing them from analyses reduced power but did not change the pat-

tern of results. After each block participants were allowed to take a short break.

Both tasks were run on a desktop computer with Windows seven using MATLAB 2014b and the

Cogent 2000 and Cogent Graphics toolboxes and presented on an LCD monitor with a resolution of

1280 � 1024 pixels. The positive and negative affect schedule (PANAS; Watson et al., 1988), and a
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questionnaire assessing nausea and 50 other side effects, was filled out twice at the main laboratory

visit: just before pill intake, and 3 hr later. Levels of amisulpride (ng/mL) were measured in blood

samples taken 5 hr after pill intake (after both tasks).

Analyses
Data and analysis scripts are available online (https://osf.io/vu8dz). Group comparisons for age, BMI,

MVC, PANAS scores, and side effects, were made with linear regressions using the lm() function. Dif-

ferences in the ranking of rewards across drug groups were tested with separate ordinal regressions

by Reward Type (food, touch), using the package ordinal.

All other analyses were done with linear mixed-effects models (LMMs), fitted through restricted

maximum likelihood (REML) estimation, using the lmer() function of the lmerTest package in R (which

adds p values to the lme4 output; Bates and Maechler, 2014; R Development Core Team, 2019),

and with Helmert contrast coding. In comparison to ANOVAs, LMMs reduce Type-I errors and allow

for a better generalization of findings (Judd et al., 2012). To control for the effect of time – possibly

inducing fatigue and/or habituation (Figure 2—figure supplement 1) – the four blocks were

recoded to two blocks by Reward Type and entered as covariates to the LMMs. Figures (except Fig-

ure 1) were created in R using the packages ggplot2, ggpirate, and cowplot.

Behavioral data were analyzed in the following manner. Outlier trials were defined as those with a

rating of wanting, rating of liking, or amount of exerted force, which was greater/smaller than the

subject’s mean +/- 2 times the subject’s standard deviation. This led to an average rejection of 6.56

trials per participant (SD = 3.71). The total number of excluded trials did not differ significantly

between groups (t(133) = �1.28, p=0.20). For each behavioral dependent variable (ratings of want-

ing and liking, and effort), a LMM was fitted with the fixed effects Reward Type (food, touch),

Reward Level (high, low, verylow), Drug (amisulpride, naltrexone, placebo), their interactions, and

with Block (first, second) as a covariate. Categorical predictors were centered through effect coding,

and by-subject random intercepts and slopes for all within-subjects factors and their interactions

were included as random effects (unless the model did not converge, in which case the random-

effects structure was gradually simplified, e.g. by first dropping the interaction among within-sub-

jects factors). Type-III F-tests were computed with the Satterthwaite degrees of freedom approxima-

tion. We report all statistically significant (p<0.05) effects, and non-significant effects with p<0.1 that

are of interest because related to the main hypotheses, as Anova() outputs. Model tables showing

all fixed and random effects can be found in the Supporting Information.

Due to technical failure, one participant lacked EMG data entirely, and another participant lacked

the EMG for half of the trials. The EMG data were pre-processed in Matlab R2018a (www.themath-

works.com), partly using the EEGLAB toolbox (Delorme and Makeig, 2004). A 20 to 400 Hz band-

pass filter was applied, then data were rectified and smoothed with a 40 Hz low-pass filter. Epochs

were extracted focusing on periods of reward anticipation (Pre-Effort and Post-Effort anticipation)

and reward consumption (Delivery and subsequent Relax). EMG was averaged over time-windows of

one second, with exception of the 6.5-seconds-long period of touch Delivery, which was averaged

over five windows of 1.3 s each, to obtain the same number of windows as for food delivery. We

excluded for each participant trials on which the average amplitude in the baseline period (1 s during

fixation) of the corrugator or zygomaticus muscles was lower than M�2*SD, or higher than M+2*SD

(M = average amplitude over all trials’ baselines for the respective muscle and participant). On aver-

age, this led to the rejection of 7.7% of trials per participant (SD = 2.5). EMG analyses were carried

out in four periods of interest: Pre-effort anticipation during reward announcement at the beginning

of each trial (3 s), Post-effort anticipation during the announcement of the gained reward (3 s), Deliv-

ery (5 s for food and 6.5 s for touch, both averaged to five 1 s time windows), and Relax (5 s). For

each trial, values in these epochs were expressed as percentage of the average amplitude during

the fixation cross at the beginning of that trial. For the Pre- and Post-Effort anticipation periods, sep-

arate LMMs were fitted by muscle, with the fixed effects Drug (amisulpride, naltrexone, placebo),

Reward Type (food, touch), and either trial-by-trial Wanting or Effort (these were continuous predic-

tors), and all interactions. During the Post-Effort anticipation period, participants could receive the

information that they were going to obtain the verylow reward, to which the preceding ratings of

wanting and effort did not apply. Because this may have been frustrating for participants, we also

carried out analyses excluding trials, in which verylow rewards were obtained. As the results did not

change, we kept all trials. For the Delivery and Relax periods, separate LMMs on all trials were fitted
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by muscle, with the fixed effects Drug, Reward Type, and Liking. In all LMMs Wanting, Effort, and

Liking were centered and scaled by subject, and Block (first, second) was added as a covariate to

control for the effects of fatigue or habituation. We controlled for the false discovery rate (FDR)

associated with multiple testing of the EMG data using the Benjamini-Hochberg method

(Benjamini and Hochberg, 1995). Model tables with un-corrected p-values can be found in the Sup-

porting Information.
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