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Abstract

Autonomous robotics has been the subject of great interest within the research community
over the past few decades. Its applications are wide-spread, ranging from health-care to
manufacturing, goods transportation to home deliveries, site-maintenance to construction,
planetary explorations to rescue operations and many others, including but not limited to
agriculture, defence, commerce, leisure and extreme environments. At the core of robot
autonomy lies the problem of localisation, i.e, knowing where it is and within the robotics
community, this problem is termed as place recognition. Place recognition using only visual
input is termed as Visual Place Recognition (VPR) and refers to the ability of an autonomous
system to recall a previously visited place using only visual input, under changing viewpoint,
illumination and seasonal conditions, and given computational and storage constraints.

This thesis is a collection of 4 inter-linked, mutually-relevant but branching-out topics
within VPR: 1) What makes a place/image worthy for VPR?, 2) How to define a state-of-the-
art in VPR?, 3) Do VPR techniques designed for ground-based platforms extend to aerial
platforms? and 4) Can a handcrafted VPR technique outperform deep-learning-based VPR
techniques? Each of these questions is a dedicated, peer-reviewed chapter in this thesis and
the author attempts to answer these questions to the best of his abilities.

The worthiness of a place essentially refers to the salience and distinctiveness of the
content in the image of this place. This salience is modelled as a framework, namely
memorable-maps, comprising of 3 conjoint criteria: a) Human-memorability of an image, 2)
Staticity and 3) Information content. Because a large number of VPR techniques have been
proposed over the past 10-15 years, and due to the variation of employed VPR datasets and
metrics for evaluation, the correct state-of-the-art remains ambiguous. The author levels this
playing field by deploying 10 contemporary techniques on a common platform and use the
most challenging VPR datasets to provide a holistic performance comparison. This platform
is then extended to aerial place recognition datasets to answer the 3rd question above. Finally,
the author designs a novel, handcrafted, compute-efficient and training-free VPR technique
that outperforms state-of-the-art VPR techniques on 5 different VPR datasets.
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Chapter 1

Introduction

In the words of Nicola Tesla, “In the twenty-first century, the robot will take the place which
slave labor occupied in ancient civilization.” The realisation of this quote has crucial impli-
cations for the survival, evolution, comfort and collective growth of the human civilisation.
Robot autonomy is not a dream anymore, but in-fact, we now see real-world examples of
autonomous robotics in the forms of self-driving cars for example. Robot autonomy has now
become even more critical in today’s world and the COVID-19 pandemic has proven this
much needed revolution to transform the health-care, transportation, commerce, agriculture
and many other businesses and industries.

To achieve any task autonomously, a mobile robot equipped with some limited sensors
and actuators, needs to be able to plan its motion, execute and control this motion, localise
itself while performing this motion and potentially perform any required manipulation, if
required. Within robotics these are the major domains of research, usually referred to as,
motion planning, robot control, robot localisation and manipulation, respectively. All of these
research domains then branch-out based on the type of sensory input or the combination of
sensory inputs. Researchers working within robotic vision investigate these domains based
on visual information as the primary sensing modality. The author’s area of interest and the
scope of this thesis is localisation given only visual input.

This chapter introduces the problem of localisation within autonomous robotics. The
author discusses Visual Place Recognition (VPR) specifically, but also relates it to and
distinguishes it from closely related concepts of visual-SLAM, visual-localisation and the
image-correspondence problem. The various challenges within VPR, research gaps, applica-
tions and the theory behind VPR are presented.



2 Introduction

1.1 Background

The ability of a robot to autonomously perform various tasks has been the main focus of
the robotics community over the past few decades. The inherent interest of mankind in this
domain and the sheer amount of applications of robot autonomy has led to a large number of
academic institutions, research groups, industries and entrepreneurs to investigate the various
sub-domains of autonomous robotics. This is evident by the fact that almost every major
university now has a robotics and autonomous systems program in their curriculum.

One of the most investigated application of autonomous robotics has been in self-driving
cars, which has made significant progress over the past 2 decades. Not only have industry
joints like Google, Facebook, Tesla, Uber, Lyft, General Motors, Ford and others have
invested in driver-less cars, but academic institutions like Carnegie Mellon University (CMU),
Stanford, MIT, Harvard, Oxford and others have also designed modified versions of driver-
less cars for research purposes. Additionally, several spin-offs from academia have also
targeted directly or indirectly the self-driving cars industry, for example within UK, Oxbotica
originated from Oxford university, SLAMCore originated from Imperial College London
and Wayve from Cambridge University. There are many other small- and medium-scale
enterprises (SMEs) working in this domain, which have not been mentioned but that continue
to advance the state-of-the-art in autonomous robotics.

Some of the major breakthroughs as seen in the self-driving cars paradigm (or autonomous
robotics in general) have resulted from the DARPA (Defense Advanced Research Projects
Agency) Grand Challenge held in 2004, followed-up in 2005 and then the Urban challenge
held in 2007. The objective was to autonomously traverse a track of a few hundred kilometers
in challenging environments. All the participating cars were fully-autonomous and were
equipped with a range of different sensors including LiDARs, cameras, ultrasonic sensors,
radars and GPS. Figure 1.1 encloses the winners of the competition.

The autonomy of a robot can be broken down into its abilities to perceive, plan and
control a required task. Within perception, a key research challenge is to localise (identify
current robot location) given visual information and usually with no GPS (Global Positioning
System) prior. However, localisation is not the only requirement, because for an autonomous
robot to localise, it needs a map to localise itself within it. Often times, this map is not
available, especially when the underlying problem is related to exploration. Thus, creating a
map of the environment is also an essential element. This problem of simultaneously creating
the map and localising itself within it, is termed as SLAM (Simultaneous Localisation and
Mapping) and has been a major topic of research within the robotic vision community.

However, because any localisation estimates performed within a SLAM system are prone
to errors, which get accumulated over time as the robot explores an environment, there is the
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Stanley: DARPA Grand Challenge Winner 2005 Tartan: DARPA Urban Challenge Winner 2007

Fig. 1.1 The winners of the DARPA Grand Challenge 2005 (left) and the DARPA Urban
Challenge 2007 (right) are enclosed here.

need for a mechanism to correct these error drifts. This has been addressed by ‘loop-closure’,
where a robot is required to recall a previously visited place (when it revisits it) in its map
and then correct any error drifts accumulated over time. Within SLAM, the essence of loop-
closure is Visual Place Recognition and it has its corresponding challenges. Both SLAM and
VPR are further discussed in the following 2 sub-sections, respectively.

1.2 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) refers to the ability of a robot to simulta-
neously map an environment and localise itself within it. The existence of a map is crucial
for an autonomous robot due to several applications including path planning, obstacle avoid-
ance and navigation. This map can be built in various forms, including appearance-only,
metric-only, topological and topo-metric maps.

The essence of all of these maps are vertices and edges, where vertices define physical
points in the world and edges define the relations between them. An appearance-only map
contains visual information (either monocular, omni-directional, RGB-D or stereo images) as
the vertices of the map and edges define the topological relation (connectivity) between them.
A metric map (e.g, occupancy grid maps) consists of metrically precise locations/landmarks
as the vertices and edges define the exact metric distance between them. A topological
map contains only the topological relation between edges and does not contain any metric
information about either the vertices or the edges. A topo-metric map, however, contains
metric information about the edges, while the metric information about the vertices is
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unknown. For all of these maps, some level/type of landmark information is extracted from
the environment and associated with the edges of the map.

As the robot navigates through the environment it adds newer landmarks to its map.
However, as it is important for the robot to localise itself within the map (to account for dead-
reckoning errors), it needs to extract transitional relations between the landmarks as it moves
through the map. This extraction of transitional information (e.g, moved 1 meters forward
etc) from co-observed landmarks/features in the map is termed as localisation. Thus, as the
robot moves through the environment, it adds newer information into the map (mapping) and
also localises itself within the map (localisation) simultaneously, achieving SLAM as shown
in Fig. 1.2. When the added information is vision-based and the transitional-information is
extracted using co-observed visual features between consecutive images/sequences, SLAM
becomes visual-SLAM.

Fig. 1.2 An example of a robot creating a map and localising itself within it.

The localisation element of visual-SLAM is visual-localisation (also termed as the image
correspondence problem in computer vision community), which should not be confused
with Visual Place Recognition (VPR). Visual-localisation is not related to the revisiting
of a place as in VPR, but only refers to the extraction of transitional information between
consecutive images for motion estimates. However, because motion estimates extracted
using visual-localisation are prone to errors and these errors accumulate over time due to the
iterative nature of the SLAM mechanism, there is the need for correcting this accumulated
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error. This can be achieved if while exploring, the robot revisits a place/landmark that it had
previously seen, the exact location information of which is already available in the map and
can thus be used to correct errors. When this ability to recognise a previously visited place
is required from a robot equipped with only a camera, Visual Place Recognition becomes
the topic of research and has its own associated challenges, as discussed in the following
sub-section.

1.3 Visual Place Recognition (VPR)

Visual Place Recognition is a key research problem within the computer vision community
and refers to the ability of a system to match images of a place under changing viewpoint
and illumination conditions. This ability to recognise previously visited places has several
applications in various domains. As previously discussed, a major application of VPR is in
loop-closure for SLAM systems [10]. However, VPR is not limited just to SLAM systems
but can also be used for improved representations [11], asset management using aerial
imagery [12], location-refinement given human-machine interfaces [13], query-expansion
[14], image-search based on visual content [15], 3D-model creation [16] and vehicular
navigation [17].

Reference
Images

Query
Image

Feature 
 Descriptor 
Encoding

Feature 
Descriptor 
Matching

Query Image
Feature Descriptor

Reference Images
Feature Descriptors

Place
Match

VPR System

Fig. 1.3 A block diagram of a typical VPR system is shown here.

The usual architecture of any VPR system is shown in Fig. 1.3. The input of a VPR system
consists of a query image and reference images. A feature encoding block then computes
the feature descriptors of these query and reference images, either using handcrafted feature
encoding techniques or deep-learning-based techniques. Usually, the map (reference images)
is already available and thus the reference images’ feature descriptors are pre-computed to
save time. A feature matching technique is then used to match the feature descriptor of a
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query image with those of reference images. This feature matching can be done for all the
reference images (linear search) or for some of the reference images depending upon the
underlying search technique. The best matched image is then selected as the correct place
match. The place matching confidence is usually associated with the image matching score
(e.g, cosine-matching, L1-matching, L2-matching), such that the 2 images with the highest
matching score are considered to be the most likely place matches.

Fig. 1.4 Examples of places that a VPR system is expected to correctly match.

The objective of an ideal VPR system is to retrieve correct place matches under extreme
viewpoint, illumination, weather and seasonal variations as shown in Fig. 1.4, while requiring
minimum computational power and memory storage. Thus, the typical performance metrics
used to estimate the performance of a VPR technique are related to the accuracy and precision
of place matching, feature descriptor encoding time, feature descriptor matching time and
feature descriptor size (in Bytes). The exact details of these metrics are further explained
later in this thesis. The author would also like to clarify some common beginner-level
misconceptions about VPR for the reader of this thesis, as enlisted below.

1. VPR does not necessarily need to be a sub-module of a SLAM system, but can in-fact
be used as the primary localisation system for an autonomous robot [18]. However,
loop-closure for SLAM is one of the major applications for VPR.
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2. While viewpoint-invariance is a key requirement for a VPR system in general, there
are cases where some viewpoint-variance may be required instead of invariance. For
example, when VPR is the primary localisation system, viewpoint-invariance may
actually lead to errors in position estimates.

3. Unlike object-detection or other similar topics in deep-learning for computer vision,
where the number of output classes/labels are constant, the number of classes/places is
usually not constant for VPR and hence an end-to-end classifier cannot be designed.
However, if the environment/map is fixed and does not need to incorporate new places,
the earlier statement becomes invalid [19].

4. No universal state-of-the-art VPR technique exists in literature and each technique has
its strengths and weaknesses.

5. VPR has matured significantly as a field over the past 10-15 years, but there are
still a number of challenges yet to be addressed and it has huge potential for future
research. For example, controllable viewpoint-variance, salience-based ensemble of
VPR techniques, evaluation metric design, application of other deep-learning-based
techniques (transformers, deep reinforcement learning etc.) to VPR and many others.

1.4 Problem Statement and Challenges

Visual Place Recognition contains several interesting research challenges as a domain. This
sub-section identifies some of the most crucial challenges, which have also been addressed
in the later chapters of this thesis.

1.4.1 Perceptual Aliasing

The baseline requirement of a VPR system is to successfully recognise a previously visited
place, which for a monocular camera-based system essentially translates to matching the
visual content in multiple RGB images. Without any geographical prior, matching of images
that come from semantically similar areas (e.g, different road crossings at night time, different
car parkings at noon, natural scenery etc.) can be very challenging, because 2 images of
geographically different car parks at noon may have more in common than 2 images of the
same car park at noon and midnight times. This problem of different places that look similar
under certain conditions, is usually termed as perceptual aliasing.

Aliasing in general is the result of lack of sufficient information to distinguish two
models/functions/data from each other, and in RGB-based VPR refers to the lack of semantic
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context, lack of geographical prior and depth information of the scene. Fig. 1.5 presents
this challenge visually. Chapter 3 of this thesis is dedicated to addressing this challenge of
perceptual aliasing.

(a) Visually Different but Geographically Similar

(b) Visually Similar but Geographically Different

Fig. 1.5 (a) Places that are geographically similar may look very different, while (b) places
that are geographically different may look very similar. Images are taken from GardensPoint
dataset [1] and ESSEX3IN1 dataset [2].

1.4.2 Viewpoint and Conditional Variations

One of the most commonly attributed challenges for VPR systems is the extreme viewpoint
and conditional variations that a VPR system may be required to handle. The viewpoint
variation could be lateral/2D (2-Dimensional) as for cars changing lanes, 3D for human-like
motion and/or 6-DOF (Degrees-of-Freedom) for aerial platforms. Each of these variations
has its associated challenges and different VPR techniques have varying levels of invariance
to these viewpoint variations. Examples of these variations are shown in Fig. 1.6.
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Fig. 1.6 Different types of viewpoint changes that a VPR system may be required to handle.
Images are taken from GardensPoint dataset [1], Berlin Halenseestrasse dataset [3] and
ESSEX3IN1 dataset [2].

Conditional variations, on the other hand, could results from changes in times of the day,
weather conditions or seasonal changes. Fig. 1.7 show some of the challenges presented by
conditional variations to VPR systems. Chapter 6 of this thesis is dedicated to addressing
this challenge of perceptual aliasing.

1.4.3 Computational and Storage Needs

While successfully matching different places under changing viewpoints and conditions
remains the top requirement from a VPR system, computational and storage needs should
also be considered to reflect the practical deployment of a VPR technique. The performance
of a VPR system in real-time depends on its feature encoding time and descriptor matching
time; the higher these timings, the lesser the deployment practicality of the technique on
a resource-constrained platform. Additionally, because the feature descriptors computed
by a VPR technique are iteratively stored in the map as the robot explores an environment,
memory footprint also becomes an important criterion. Storage requirements scale linearly
with the number of images in the map, thus, lower memory footprint is desirable for VPR
techniques. Chapter 6 of this thesis is dedicated to addressing this challenge of perceptual
aliasing.
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Seasonal Change Day/Night Change Weather Change

Fig. 1.7 Different types of conditional changes that a VPR system may be required to handle.
Images are taken from Nordland dataset [4], GardensPoint dataset [1] and SPEDTest dataset
[3], respectively.

1.4.4 Establishing State-of-the-Art Technique

One of the major challenges that was identified and the author attempted to address through
this thesis (Chapter 4 and 5), is that of establishing which VPR technique out of the many
proposed over the past 15-20 years is state-of-the-art. This problem arises due to the
apparent zoo of VPR techniques, datasets and evaluation metrics available for VPR evaluation.
As a result, this makes comparison between different VPR techniques difficult, as some
datasets may or may not have a particular challenge. Moreover, the limited comparison with
contemporary VPR techniques leads to ambiguity of the correct state-of-the-art technique.

We show in Fig. 1.8 in a chronological order, the matching performance of various VPR
techniques. It is clear that the variation trends in between techniques and datasets is not as
expected and therefore, there is a need to evaluate the contemporary VPR techniques on a
common platform.

1.5 Thesis Contributions

The contributions of this thesis expand around addressing the challenges and limitations as
identified in sub-section 1.4. These can be primarily broken down into the below few points.
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Fig. 1.8 The matching performance of VPR techniques is presented in a chronological order
to reflect the ambiguity in establishing a state-of-the-art VPR technique.

1. The first contribution of this work is a framework designed to estimate perceptual
aliasing for VPR. This framework, namely ‘Memorable Maps’, attempts to classify
images based on the salience of their content and therefore, potentially enables the
prediction of false-positives. The efficacy of this framework is evaluated on challenging
VPR datasets and a performance boost is reported for a number of contemporary VPR
techniques, when used in conjunction with our framework.

2. The second contribution of this work is an extensive evaluation of 10 state-of-the-art
VPR techniques on some of the most challenging VPR datasets. This evaluation is
performed on a common platform and different evaluation metrics are used to report
the performance on a levelled playing field.

3. The third contribution of this work is the analysis of VPR state-of-the-art for aerial
platforms. Such aerial platforms have 6 Degrees-of-Freedom (DOF), which makes the
viewpoint-invariance element of VPR techniques very challenging. We provide several
useful insights into this area.

4. The fourth contribution of this work is a novel, handcrafted, training-free VPR tech-
nique that achieves state-of-the-art place matching performance per compute unit
against 10 VPR techniques on 5 challenging VPR datasets. This technique uses regions-
of-interest (ROIs) extraction and regional-convolutional matching of Histogram-of-
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Oriented-Gradients (HOG) descriptors to tackle perceptual-aliasing, viewpoint and
conditional variations.

1.6 Thesis Structure

The rest of the thesis is divided into the following 6 chapters:
In Chapter 2, we provide a detailed literature review of the existing research in the

domain of Visual Place Recognition, but also in the closely related topics of SLAM, image
matching and semantic mapping.

In Chapter 3, we present a cognition-inspired agnostic framework for building a map
for Visual Place Recognition. This framework draws inspiration from human-memorability,
utilises the traditional image entropy concept and computes the static content in an image;
thereby presenting a tri-folded criteria to assess the memorability of an image for VPR. A
dataset namely ESSEX3IN1 is also created, composed of highly confusing images from
indoor, outdoor and natural scenes for analysis. When used in conjunction with state-of-the-
art VPR methods, the proposed framework provided significant performance boost to these
techniques, as evidenced by results on ESSEX3IN1 and other public datasets.

Chapter 4 builds upon the fact that in recent years there has been significant improvement
in the capability of VPR methods, building on the success of both hand-crafted and learnt
visual features, temporal filtering and usage of semantic scene information. The wide range
of approaches and the relatively recent growth in interest in the field has meant that a wide
range of datasets and assessment methodologies have been proposed, often with a focus only
on precision-recall type metrics, making comparison difficult. Therefore, in this chapter,
we present a comprehensive approach to evaluating the performance of 10 state-of-the-art
recently-developed VPR techniques, which utilises three standardized metrics:(a) Matching
Performance b) Matching Time c) Memory Footprint. Together this analysis provides an
up-to-date and widely encompassing snapshot of the various strengths and weaknesses of
contemporary approaches to the VPR problem.

In Chapter 5, we propose that the existing VPR evaluations (including our Chapter
4) are performed for ground-based mobile platforms and cannot be generalized to aerial
platforms. The degree of viewpoint variation experienced by aerial robots is complex,
with their processing power and on-board memory limited by payload size and battery
ratings. Therefore, in this chapter, we collect state-of-the-art VPR techniques that have been
previously evaluated for ground-based platforms and compare them on recently proposed
aerial place recognition datasets with three prime focuses: a) Matching performance b)
Processing power consumption c) Projected memory requirements. This gives a birds-eye
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view of the applicability of contemporary VPR research to aerial robotics and lays down the
the nature of challenges for aerial-VPR.

In Chapter 6, we present a novel, compute-efficient and training-free approach based on
Histogram-of-Oriented Gradients (HOG) descriptor for achieving state-of-the-art Performance-
per-Compute-Unit (PCU) in VPR. The inspiration for this approach (namely CoHOG) is
based on the convolutional scanning and regions-based feature extraction employed by Con-
volutional Neural Networks (CNNs). By using image entropy to extract regions-of-interest
(ROI) and regional-convolutional descriptor matching, our technique performs successful
place recognition in changing environments. The author has used viewpoint- and appearance-
variant public VPR datasets to report this matching performance, at lower RAM commitment,
zero training requirements and 20 times lesser feature encoding time compared to state-of-
the-art neural networks. The author also discusses the image retrieval time of CoHOG and
the effect of CoHOG’s parametric variation on its place matching performance and encoding
time.

Finally in Chapter 7, the author provides his concluding remarks and summarises
the contributions of this thesis. The future directions of research and the limitations in
contributions of this thesis are highlighted.

1.7 List of Publications

The following contributions were made during the course of this Masters by Dissertation:
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Hardware and Systems (AHS) (pp. 285-290). IEEE.

2. Zaffar, M., Ehsan, S., Milford, M. and Maier, K.M., 2020. “Memorable Maps: A
Framework for Re-defining Places in Visual Place Recognition”. IEEE Transactions
on Intelligent Transportation Systems.

3. Zaffar, M., Khaliq, A., Ehsan, S., Milford, M. and McDonald-Maier, K., 2019. “Lev-
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Approaches under Changing Conditions”. IEEE International Conference on Robotics
and Automation (ICRA 2019), Workshop on Database Generation and Benchmarking.
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Robotics?”. IEEE International Conference on Robotics and Automation (ICRA 2019),
Workshop on Aerial Robotics.
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Chapter 2

Literature Review

This chapter presents a detailed overview of the existing literature within Visual Place Recog-
nition. A breakdown of techniques is performed into feature-less techniques, handcrafted
feature descriptors-based techniques and deep learning-based techniques, which are then
each discussed in depth. Research within domains that are closely related to VPR is also
presented briefly. The author also presents detailed insights into the datasets and evaluation
metrics available for VPR. In summary, this chapter attempts to provide a strong literature
base for the contributions presented in later chapters, but also covers closely-related research
to provide a good overview for the reader.

2.1 Overview

Visual Place Recognition (VPR) has developed as an independent research domain over the
past 15-20 years, primarily due to its wide-spread applications in various fields of autonomous
systems, including but not limited to construction, surveying, guidance, agriculture, industry,
mining, transportation, human-machine interfaces and/or any other autonomous system
application that requires localisation estimates. A detailed survey of VPR has been conducted
by Lowry et al. [8], which should serve as a good point of start for any VPR researcher. The
survey of [8] develops the theory behind VPR, how it’s related to SLAM and other domains,
the challenges within VPR and future areas of investigation.

While the survey of [8] should be referred to for the theoretical aspects of what a Place is
and how the conceptual understanding of VPR can be broken down; this section attempts to
extensively cover more practical elements of VPR and also tries to bridge the gap between
VPR research performed within the years of 2015 and 2020. The rest of the Chapter is
divided as follows: In sub-section 2.2, the author provides a brief coverage of research works
done within SLAM systems. To set the tone for Chapter 3, we briefly discuss the research in
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semantic mapping in sub-section 2.4. Next, an extensive review of VPR techniques proposed
to date is presented in sub-section 2.5. The author provides details about the datasets available
for VPR in sub-section 2.6 and their strengths/weaknesses are listed. Finally, a summary of
evaluation metrics utilised for VPR is presented in sub-section 2.7.

Although this thesis presents a literature overview of both SLAM and VPR, a disclosure
is that VPR and SLAM are both different yet similar. VPR can be used as a sub-module
of a SLAM system [8], but a SLAM system can have other methodologies to achieve loop
closure as well [10]. On the other hand, VPR does not necessarily have to be a sub-module
of SLAM, but can also act as an independent primary localisation system [20].

2.2 A Brief Overview of SLAM Research

Simultaneous Localisation and Mapping (SLAM) has been one of the most active field of
research within robotics over the past couple of decades. Due to the wide coverage of the
SLAM problem by the robotics community, Cadena et al. [10] presented the most detailed
survey of SLAM systems. This survey paper touches both the software and hardware aspects
of research within SLAM, because SLAM is highly dependent on the sensing modality (or
modalities). The author of this thesis also linked the research between the hardware and
software aspects of SLAM and how they affect the long-term autonomy of the system [21].

The core research goals in SLAM have been efficient mapping topologies [22], feature
extraction and matching [23], location estimation [24] and loop closure techniques [25].
Interestingly, research in each of these areas has mostly been fuelled by the underlying sensor
technology. Acoustic sensors are some of the earliest, low-cost, compact, range-measurement
sensors, which have been widely used in solving the SLAM problem. An early imple-
mentation of this is [26]. In [27], the authors show an implementation of Acoustic-SLAM
using moving microphone array and surrounding speakers. Assuming an Omni-directional
acoustic sensor and receiver, [28] presents Echo-SLAM with a co-located microphone and
acoustic source. Using landmarks as nodes of a sensor network, authors in [29] have shown
a range-only SLAM system working in conjunction with sensor networks.

Light Detection and Ranging (LIDAR) has driven a lot of research in range-based SLAM
systems. LIDAR provides depth point-clouds of the environment, as shown in Fig. 2.1, at a
very high latency and resolution. An early work utilising LIDAR in conjunction with Rao-
Blackwellized particle filters is presented in [30]. Authors in [31] present an approach for
finding interest regions in the data coming from Laser Sensors. Using occupancy grid-maps
for mapping, [32] shows a scalable SLAM system with full-estimation of 3D pose. In [33],
real-time loop-closure is achieved with a LIDAR.
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Fig. 2.1 A point-cloud map created by a LIDAR scan is enclosed here.

One of the prime sensors used for SLAM is a monocular camera, primarily inspired by its
low-cost, wide-availability, ease-of-use and information quality. The first-time a fully capable
SLAM system was demonstrated based on a monocular camera was the pioneer work of
[34]. A real-time SLAM system based on a single camera is also presented in [35]. A SLAM
system resulting from the fusion of monocular cameras and inertial sensors is proposed in
[36]. A comparison of monocular SLAM and Stereo SLAM is presented by authors in [37].
A semantic SLAM system for a monocular camera is proposed in [38]. Other than traditional
monocular cameras, omni-directional cameras have also been used for SLAM due to their
wide field-of-view. An early implementation of SLAM with an omni-directional camera can
be observed in [39]. Authors in [40] combine particle filters with a SIFT feature extractor for
images obtained from Omni-directional camera. An extensive review of SLAM based on
Omni-directional camera is presented by [41].

Depth measuring RGB cameras, in the form of RGB-D sensors and Stereo cameras,
introduced a new dimension to the SLAM problem and have drawn significant interest from
the community due to their similarity with biological visual cognition. Authors in [42],[43]
and [44] present an evaluation of RGB-D SLAM. A real-time, large-scale dense SLAM
system is developed in [45] using RGB-D sensors and an application of RGB-D SLAM
to aerial systems is shown by [46]. While RGB-D cameras are active, power-hungry and
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expensive, stereo cameras are passive, cheaper and closer to biological vision. Authors in
[47], present an implementation of Stereo-SLAM using particle filters. To perform SLAM
in large indoor and outdoor environments, [48] presents a 6-DOF SLAM using hand-held
stereo camera. Using iterative closest point algorithm, [49] shows a robust 3D stereo camera
SLAM. In [50], the ability of stereo cameras to provide depth information in addition to the
conventional multi-view disparity-based depth calculation is exploited.

Recently, event cameras led to a new branch of SLAM systems, due to their very high
dynamic range, no motion blur and a latency in the order of microseconds. These event
cameras output pixel-level intensity changes instead of standard RGB-frames in a sequential
asynchronous manner. Fig. 2.2 shows the difference between an RGB image and an event
camera image. Parallel Tracking and Mapping (PTAM) [51] is one of the major SLAM
techniques and [52] shows an implementation of PTAM for event cameras. Although event
cameras are an excellent choice for dynamic scenes but in static scenes, they give little-to-no
information. Thus, [53] combines event cameras and monocular cameras to achieve an
ultimate SLAM system. Authors in [54] present a complete continuous-time event-based
SLAM system in conjunction with inertial measurements.

Fig. 2.2 Difference between an RGB image and an event-camera image is shown here, where
the latter only focuses on the dynamics in the image, thereby avoiding redundant static
information. Picture courtesy: Prophesee France.
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2.3 Visual-SLAM, Visual-Localisation and VPR

This brief sub-section attempts to identify the differences between the closely related concepts
and terms of Visual-localisation, Visual-odometry, Visual-SLAM, Visual Place Recognition,
Image Matching and the Correspondence Problem for the clarity of the reader. These terms
are so similar that without any prior knowledge of each of the domains, it is too difficult to
distinguish which term may refer to which domain. Because there is a significantly large
literature published in each of these domains, which is out of the scope of this thesis, the
objective of this sub-section is to primarily distinguish between the domains, explain all of
these terms and to provide reference to surveys conducted in each of these domains.

Visual-SLAM refers to a Simultaneous Localisation and Mapping System, where the
source of information is a camera (usually monocular but can also be other variants like
omni-directional, stereo etc.). The objective of a Visual-SLAM system is two-fold: (a) Create
a map of a previously unknown environment, (b) Localise the robot within this map. A
good survey of Visual-SLAM has been presented in [55]. The localisation element is further
sub-divided into 2 categories: (a) Visual-localisation, (b) Visual Place Recognition for loop-
closure. Visual-localisation, which may also be referred to as Visual-odometry estimates the
motion of a robot by using overlapping information between consecutive frames and has been
covered in [56]. While Visual-localisation is an application-specific term, Image Matching
or the Correspondence Problem abstracts away the underlying problem for identifying and
locating overlapping information between 2 camera frames. A good discussion about Image
Matching is presented by [57]. Visual Place Recognition (more abstractly Image Retrieval)
is different from each of these problems and refers to identifying a previously visited place
under changing viewpoint and appearance conditions [8]. VPR finds its major application in
loop-closure for Visual-SLAM systems but also has many other computer vision applications
[20]. Being the main area-of-interest for this thesis, VPR has been discussed in depth in this
literature review in the following sub-sections.

2.4 Semantic Mapping

Semantic mapping refers to the creation of maps where the nodes of the map have a semantic
attribute. This semantic attribute could be based on object classifiers, scene segmentation,
place salience and any other. In general, semantic mapping techniques for summarizing
a robot’s experience are surveyed by Kostavelis et al. [58]. The author’s objective in this
thesis is to discuss semantic mapping but with focus on VPR and how semantic mapping is
associated with VPR.
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VPR requires a pre-known map of the environment in the form of images representing
places. Traditionally, places have been described by camera frames, where a place is selected
from multiple video frames based on either time-step, distance or distinctiveness. Most of
the VPR datasets (discussed in sub-section 2.6) are time-based, as frames are selected given
a fixed FPS (frames per second) rate of a video camera. However, time-based place selection
assumes a constant non-zero speed of the robotic platform and is thus impractical in many
situations. To cater for variable speed, distance-based frame selection is used where a frame
is picked every few metres to represent a new place [59] [60]. Both time- and distance-based
approaches lead to huge database sizes and frequently sample visually identical frames as
different places; thus leading to inaccuracies and impracticality for long-term autonomy.

Different research works have tried to overcome these intrinsic limitations of image
sampling by proposing image selection based on visual distinctiveness. Chapoulie et al. [61]
use a customised algorithm that detects change point for segmentation between different
topological places in both indoor and outdoor scenes. Image sequence partitioning for
creating sparse topological maps is presented by Korrapati et al. [62], where sequences of
images are divided into nodes/places using four descriptors namely GIST, Optical Flow,
Local Feature Mapping and Common-Important Words. In [63], a thematic approach is
adapted to evaluate the novelty of an incoming image by co-relating it with the redundancy
of visual features/topics. Bayesian surprise is adapted with immunity to sensor type, for
extracting landmarks to create a sparse topological map in [64]. Online topic modeling with
visual surprise calculation is done by Girdhar et al. [65] for under-water explorations. An
incremental unsupervised place discovery scheme is adopted by Murphy et al. [66] which
fuses information over time to find visually distinct places.

Authors in [67] present both offline and online solutions for finding images that best
summarize a given sequence. The score for every incoming image is related to the difference
of posterior distribution from prior distribution using bayesian surprise or set theoretic
surprise. In [68], coresets are used to pre-cluster input image stream and then topic-based
image representation is used followed with graph-based incremental clustering. A place
detection scheme is proposed by Karaoguz et al. [69] based on bubble-space representation.
A new place is checked for informativeness based on surface deformation and variance in a
time-window of coherent images. The authors in [70] use region proposals in spatio-temporal
context instead of low-level features to represent input frames and then based on region-
adjacency-graph detect visually distinct places. A human-augmented change point detection
scheme is presented by Topp et al. [71] where a change stimuli could either be pointed out
by the robot or its operator. The authors propose the change as a structural ambiguity, which
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can be pointed out either by the robot or a human operator during a guided tour. Detection of
change point is also targeted by Ranganathan [72] with a Bayesian probabilistic model.

One common element to all these works is that they focus on map compression, video seg-
mentation or experience summarisation, but do not discuss if the resulting compressed/summarized
map is actually composed of good matchable images of places. These methods define the
distinctive nature of images based on their visual difference from previously seen images.
Resultingly, such visually different images may come from grassy plains, natural scenery,
dynamic objects or low-textured places leading to poor VPR performance.

2.5 Visual Place Recognition Techniques

This section presents the various VPR techniques that have been proposed over the past
many years. These techniques have been further sub-classified based on their prominent
technology/mechanism.

2.5.1 Feature-less VPR Techniques

VPR essentially unravels into an image matching problem, where the objective is to dis-
tinguish images of the same place from images of different places. Under no viewpoint
and conditional variations, VPR is a straight-forward process of matching the pixel-level
intensities e.g, by using Sum-of-Absolute-Differences (SAD) on grayscale or RGB images.
This, however, is almost never the case, because revisiting a place always has some level of
viewpoint and/or conditional variation, and there is the need to have a mechanism where
these variations can be handled.

If there is no conditional variation and only lateral (perpendicular to the axis of movement)
viewpoint variation is present, it may still be possible to achieve VPR by segmenting the
query and reference images into multiple crops and using an All-to-All matching (SAD) of
these crops to achieve some level of viewpoint invariance. These rather simplistic approaches
do not work well in real-world because there is always some sort of conditional variation
resulting from different times of the day, different seasons and weather conditions and/or
dynamic objects. However, Milford et al. (SeqSLAM [5]) showed that it is still possible to
use feature-less VPR for handling conditional variations by using sequence of images even
under challenging day-to-night and extreme weather conditions. This sequential matching is
implemented as a confusion matrix of templates as shown in Fig. 2.3, which are then searched
across at different angles for prospective ‘sequence’ matches. The original SeqSLAM
algorithm did not accommodate variable speed of the robot platform, so Pepperell et al.
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[59] extended SeqSLAM by accommodating odometry information and employing sky
filtering in SMART. This was further extended to show the effects of various parameters
in [73]. A detailed analysis of the various parameters of SeqSLAM has been shown in
[74], where the author performs stress testing of the SeqSLAM algorithm. An open-source
detailed toolbox based on SeqSLAM is presented in [75]. This sequence-based VPR is
then combined with a biologically-inspired SLAM system (RAT-SLAM) in [76]. More
recently, a sequence-inspired approach is presented in [77], where change across sequence is
used for descriptor computation, namely delta-descriptors. In general, these sequence-based
feature-less techniques do not perform well under significant conditional variations and
especially under viewpoint variations. Therefore, viewpoint- and condition-invariant feature
extraction, description and matching have been the key areas of research within SLAM, as
discussed in the following sub-sections.

Fig. 2.3 The sequential matching of templates, followed by local contrast enhancement as in
SeqSLAM is enclosed here. Darker shades mean stronger matches. Figure taken from [5].

2.5.2 Handcrafted VPR Techniques

The traditional computer vision research which usually refers to the pre-deep-learning era
(generally pre-2012) was focused on designing handcrafted feature descriptors that were
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resilient to viewpoint and conditional variations. These descriptors were not designed
specifically for any particular task such as VPR, but were general purpose and found usage
in almost all computer vision applications, including object-detection, pose-estimation,
localisation, structure-from-motion, scene segmentation and many others. The viewpoint and
conditional invariance requirements for handcrafted feature descriptors actually lead to two
separate classes of descriptors: local feature descriptors and global feature descriptors, as
visually differentiated in Fig. 2.4.

Scale Invariant Feature Transform (SIFT [78]) and Speeded Up Robust Features (SURF
[6]) are two of the most widely used local descriptors. These local techniques extract
keypoints from an image, describe these keypoints by an underlying low-level gradient-based
descriptors. They have been applied to the VPR problem in [79] [80] [81] [82] [83]. FAB-
MAP (Frequent Appearance Based Mapping [84]) is a probabilistic visual-SLAM algorithm
that represents places as visual words and uses SURF as the underlying interest point
detector. An open-source implementation of FAB-MAP is presented in [85]. Furthermore, an
extension to FAB-MAP is presented by utilising odometry information in CAT-SLAM [86].
Center Surround Extremas for real-time feature detection and matching (CenSurE [87]) has
been used for VPR in [88]. FAST [89] is a high-speed corner detector for real-time image
processing that has been used for SLAM by Mei et al. [90], coupled with SIFT descriptor.
One common drawback to all these keypoint based approaches is the extensive matching
requirements, which has been addressed by Bag of visual Words (BoW [91]) approach.
BoW collects visually similar features in dedicated bins (pre-defined or learned by training
a visual-dictionary) without topological consideration, enabling direct matching of BoW
descriptors. Different research works have used BoW for VPR, including [92] [93] [94]
[95]. While local feature descriptors have viewpoint invariance, they suffer from conditional
changes as there is no underlying mechanism to handle this.

Global feature descriptors like Gist [7] use Gabor filters to create the signature of an entire
image and have been used for VPR with panaromic images by Murillo et al. [96] and Singh
et al. [97]. BRIEF [98] descriptor due to its lower encoding requirements and faster matching
time is combined with Gist by Sünderhauf et al. [99] to perform large scale visual-SLAM.
Whole-Image SURF (WI-SURF) is a global variant of SURF and has been used for visual
localization by Badino et al. [100]. McManus et al. [101] have proposed an approach where
scene signatures are extracted and described by dedicated HOG descriptors. Global feature
descriptors can handle moderate illumination changes by normalisation-techniques because
the change is usually uniform and global, however, suffer from all levels of viewpoint change.
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Fig. 2.4 The usual approach towards handcrafted feature descriptors is shown here: (a) Local
feature descriptor SURF [6] extracts keypoints from an image, (b) Global feature descriptor
Gist [7] divided image into fixed-size portions and computes global descriptor. Picture taken
from [8].
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2.5.3 Deep Learning-based VPR Techniques

Because handcrafted feature descriptors cannot handle extreme viewpoint variations and
conditional changes, the use of deep learning was explored for VPR by the robotic vision
community, which led to some successful works. Since 2014, deep learning has been
the most prominent and successful go-to area of research for VPR. Within deep learning,
Convolutional Neural Networks (CNNs) have been the most investigated for VPR. These
CNNs convolutionally scan for features in an image, spanning both low-level features (in
earlier layers) and high-level semantics (in later layers). A typical architecture is shown in
Fig. 2.5.

Fig. 2.5 A Convolutional Neural Network (CNN) architecture is shown here. Each Yellow
box represents a layer in the CNN architecture consisting of several convolutional filters
(orange boxes). The output of these convolutional layers is combined in a Softmax layer to
obtain a final descriptor. Figure taken from [102]

Features extracted from CNNs showed promising results on condition- and viewpoint-
variant datasets, leading to a paradigm shift in VPR research from traditional handcrafted
feature descriptors to neural network activations-based descriptors. Chen et al. [103] used
features from all layers of Overfeat Network [104] and integrated it into the spatial filtering
scheme of Seq-SLAM. Improving upon CNN-based VPR, Chen et al. [102] trained two
neural networks on Specific Places Dataset (SPED), namely AMOSNet and HybridNet.
AMOSNet was trained from scratch on SPED while HybridNet initialized weights from top-5
convolutional layers of Caffe-Net. Different off-the-shelf feature encoding methods have
been used to create the signature of an image from CNN activations; including cross-pooling
[105], holistic pooling [106] and multi-scale pooling [102]. However, in Net-VLAD [107],
authors introduce a new VLAD (Vector-of-Locally-Aggregated-Descriptors [108]) layer into
the CNN architecture for end-to-end VPR-specfic training, achieving excellent results.

Recently, CNN-based description of images/places using only regions of interest (ROI)
showed enhanced performance compared to whole-image description. The work in [109],
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namely R-MAC (Regions of Maximum Activated Convolutions) uses max-pooling on
cropped areas in CNN layers’ features to extract ROI. Chen et al. [3] in Cross-Region-
BoW used the CNN layers behaving as high-level feature extractors to identify salient
regions in an input image which were subsequently described by low-level feature encoding
convolutional layers. This work was followed-up with a flexible attention-based model for
region extraction [110]. Khaliq et al. [111] combine VLAD with ROI-extraction to show
significant robustness to appearance and viewpoint variation. Authors in [112] propose a
multi-scale, non-rigid, pyramidal fusion of local features as extracted from CNNs for VPR.

A convolutional auto-encoder network is trained in an unsupervised fashion by Merrill et
al. [113], utilising HOG-descriptors of images and synthetic viewpoint variation. Authors in
[114] present a compact neural-architecture for VPR, which has been shown to work well for
previously-observed but conditionally changed (weather, seasons, time-of-day etc.) traverses.
An ensemble-based approach to VPR is shown by [115], where a framework is designed to
sequentially use the place matching proposals from 6 different VPR techniques.

An interesting approach is adopted by [116] for VPR-based localisation in underground
tunnel environments, where sequential inter-image and intra-image similarity is employed for
localisation. This work is further extended in [18], where now a front-facing camera and an
upward looking camera are collectively used for accurate localisation. Authors improve the
accuracy of their front-camera-based coarse localisation system by training a neural-network
for homography estimation in the sequential images obtained from the upward-facing camera.
This work is then followed-up with [117], by creating mosaics of images obtained from the
upward-facing camera and using these mosaics for much accurate localisation.

While most of these works have been explored specifically for VPR, some recent tech-
niques including SuperPoint [118] and D2-net [119] propose generic, deep-learnt, sparse
descriptors that are robust across various conditional changes. Authors in [120] [121] have
formulated VPR as a two-stage process: 1) global matching-based, less-intensive place
matching candidates selection 2) local features-based, intensive final candidate selection with
focus on spatial constraints. Other interesting approaches to place recognition have also been
adopted, including semantic segmentation-based VPR (as in [122] [123] [124]) and object
proposals-based place recognition [125]. For images containing repetitive structures, Torii et
al. [126] proposed a robust mechanism for collecting visual words into descriptors. Synthetic
views are utilised for enhanced illumination invariant VPR in [127], which shows that highly
condition variant images can still be matched if they are from the same viewpoint.
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2.6 Visual Place Recognition Datasets

A key reason for the rapid growth of VPR as a field is the widely available and open-sourced
datasets. A large number of VPR datasets have been proposed over the past many years.
These datasets have their own associated challenges and this sub-section is dedicated to
discussing all of these VPR datasets. The author has summarised all of these datasets in
Table 6.1, while Fig. 2.6 shows samples of images from these datasets. Most of these datasets
are available in the author’s GitHub repository1 for the convenience of VPR researchers. The
basic template of these datasets is two folders (a query images folder and a reference images
folder) containing multiple images of the same place but under different viewpoint and/or
appearance conditions. Sometimes the indices of the images in the two folders represent the
same place, but this may not always be the case and therefore usually associating ground-
truth information is provided. The number of images in each dataset vary from one usage
to another, because sometimes subsets of these datasets are used by researchers. Therefore,
in this sub-section the author has referenced the originally proposed datasets and avoided
specifying the exact number of images in each of these datasets.

The Gardens Point dataset (introduced in [1]) is one of the most widely employed
datasets in VPR for the purpose of testing. This dataset consists of three traverses performed
through the Garden Point campus of Queensland University of Technology. Two of the
traverses are performed during day time and have lateral viewpoint variation. The third
traverse is performed during night time and serves as a good challenge for condition-invariant
VPR techniques. The 24/7 Query dataset was introduced in [127] and contains a pair of
three images of the same place under different conditions and correspondingly many such
pairs of places. This difference in conditions includes 6-DOF extreme viewpoint variation,
different times of the day (noon, evening and night) and a large number of dynamic objects.
Synthia dataset is a large-scale dataset of various environments traversed in a simulated world
environment and has been presented in [128]. This dataset consists of traverses through
different types of outdoor environments and within each environment during different seasons.
The dataset also has simulated dynamic objects and some lateral viewpoint variation, when
occasionally driving lane is changed.

The Cross-Seasons correspondence dataset [129] is built on top of the CMU Visual
Localisation dataset [130] and the Oxford RobotCar dataset [131], which each consist of
conditional changes resulting from different seasons and times of day. A small-scale indoor
dataset of a Corridor consisting of very low-resolution images is presented in [74]. This
Corridor dataset has lateral viewpoint variation and no appearance change, but serves as

1https://github.com/MubarizZaffar/VisualPlaceRecognitionDatasets

https://github.com/MubarizZaffar/VisualPlaceRecognitionDatasets
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Fig. 2.6 Exemplar images from all the datasets discussed in this thesis are presented here.

a challenge for VPR given low-resolution images. The 17-Places dataset is introduced by
[132], which consists of several different indoor scenes, ranging from office environment
to labs, hallways, seminar rooms, bedrooms and many other. Authors in [133] introduced
the Living Room dataset, consisting of high-resolution, wide field-of-view images obtained
from a home service robot. This dataset introduces the world appearance from a different
perspective of a close-to-ground mounted camera rather than the usual egocentric viewpoint.
This dataset exhibits both viewpoint and illumination variations. The Nordland dataset [4]
consists of a train journey through a natural environment in Norway performed during 4
different seasons. The original dataset does not have any viewpoint variation but some usages
have employed manual cropping to introduce synthetic lateral viewpoint variation [113]
[134].

The Specific Places Dataset (SPED) was introduced in [102] and consists of images of
various places as seen through the eyes of CCTV cameras taken under different seasonal
conditions. This dataset does not have any viewpoint variation, but serves as a good challenge
due to the randomness in conditional changes, i.e, the conditional changes vary significantly
in comparison to other datasets which usually have a few particular appearance conditions
(e.g, day/night, summer/winter etc). The SPEDTest dataset was introduced by the same
author later in [110] and consists of previously unseen images of the same nature, but limited
in number for the purpose of VPR evaluation. StLucia dataset consists of a car-journey in
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Table 2.1 Visual Place Recognition Datasets

Dataset Name Environment Viewpoint Variation Conditional Variation
Gardens Point Mixed Lateral Day-Night

24/7 Query Outdoor 6-DOF Day-Eve-Night
Synthia Synthetic Urban Lateral (Occasional) Seasonal

Cross-Seasons Outdoor Lateral Time and Weather
Corridor Indoor Lateral None
17 Places Indoor Lateral Illumination

Living Room Indoor Lateral Illumination
Nordland Natural None Seasonal

Oxford Robotcar Urban Lateral Time and Weather
SPED Outdoor (CCTVs) None Time, Seasonal and Weather

Berlin Datasets Urban Extreme Time and Weather
Campus Loop Mixed Lateral Seasonal

SPEDTest Outdoor (CCTVs) None Time, Seasonal and Weather
Stlucia Outdoor Lateral (Occasional) Times of Day

Shopping Street City Center 6-DOF Illumination and Dynamic Objects

a sub-urban environment during five different times of the day and has been presented in
[9]. Campus Loop dataset is a small-scale dataset of a university campus traversed during
different seasons (summer and winter) and has been presented in [113]. This dataset also
contains lateral viewpoint variation in between the traverses. The Berlin datasets (three
different datasets) were introduced in [3] and have been captured from crowd-sourced photo-
mapping platform Mapillary2. The traverses exhibit extreme viewpoint variation compared
to all available VPR datasets and also contain conditional changes. Due to its urban nature,
dynamic objects such as vehicles and pedestrians are observed in most of the captured frames.
The Shopping Street datasets contains the interesting 6-DOF viewpoint change, which has
been utilised and serves as the basis for Chapter 5 of this thesis. This viewpoint change
has been introduced by mounting the camera on a 4 meter long rod such that the motion
of camera imitates the flying behavior of a drone. This dataset also contains significant
illumination variation and temporal appearance change.

2.7 Visual Place Recognition Evaluation

In this section, the author presents the different evaluation metrics that have been used within
VPR, but also sets the motivation for the evaluation-based work done in Chapter 4 and
Chapter 5 of this thesis. Because a large number of techniques have been proposed over the

2https://www.mapillary.com/
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past many years and due to the apparent zoo of VPR datasets to choose from, establishing
state-of-the-art in VPR has been a challenge. Prior to this thesis, no performance evaluation-
based work existed for VPR and therefore, it was difficult to compare the strengths and
weaknesses of techniques with each other.

In general Precision-Recall curves (PR curves) have been the most utilised mode of
statistical evaluation for VPR [8]. These precision-recall curves comprise of finding the
precision and recall values of the system at different cut-offs of the matching confidence.
The precision and recall of a system at a particular confidence threshold can be calculated as:

Precision =
True Positives

True Positives+False Positives
(2.1)

Recall =
True Positives

True Positives+False Negatives
(2.2)

Where, true-positives are the images/places that are correctly matched by a VPR technique
based on ground-truth information and false-positives are the images that are incorrectly
matched by the VPR technique based on ground-truth information. False-negatives are
images that were correctly matched by a VPR technique, but their matching score was lower
than the confidence threshold and hence these matches were incorrectly discarded. Usually
in VPR, the descriptor matching score (e.g, cosine-matching, L1-Match, L2-Match etc) has
been employed as the confidence score, but theoretically it can be another criterion and
is an open area of research within VPR. By varying the confidence-threshold (descriptor
matching score) from minimum to maximum value, different values of precision and recall
are computed, which are then plotted against each other to yield PR-Curves.

Using the PR-Curves, Area-Under-the-Curve (AUC) has mostly been the go-to metric
for giving a single quantitative performance value to the corresponding VPR technique.
Most of the VPR techniques (e.g, [102] [111] [3] [110] [8] [113] ) have used this metric
for performance evaluation. Given the different values of Precision and Recall at various
confidence thresholds (the author used confidence thresholds at all matching scores of query
images), AUC can be computed as below:

AUC =
N−1

∑
i=1

(pi + pi+1)

2
× (ri+1 − ri) (2.3)

where; N = No. o f Query Images

pi = Precision at point i

ri = Recall at point i
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Recall at 100% Precision has also been employed as a relevant metric for VPR, especially
when false-positives are unacceptable for the system, but [8] proposes that the availability of
false-positive prediction systems advocates for the use of AUC rather than Recall at 100%
Precision. More recently, [135] provide a counter argument against the usage of AUC as an
evaluation metric and present a new metric, namely ‘Extended Precision (EP)’.

EP =
PRmin +RP100

2
(2.4)

In equation 2.4, RP100 is the maximum value of recall at which precision is equal to 1,
i.e, Recall at 100% Precision, while, PRmin is the value of precision at the minimum value of
recall and generally represents the highest possible value of precision. Please note that the
minimum value of recall in a PR-curve may or may not be zero.

In addition to the metrics focused on the matching performance of a VPR technique,
computational and storage needs are also important for real-world applications. For VPR,
the most discussed computational metric has been the image retrieval time of a technique, i.e,
how quickly can this VPR technique retrieve a match given a query image. This retrieval time
is then further divided into feature encoding time (te) and descriptor matching time (tm). The
feature encoding time represents the time taken by a particular VPR technique to compute
the feature descriptor of a query image and the descriptor matching time is the time taken by
this technique to match this query descriptor with a pre-computed reference descriptor.

Additionally, run-time memory (RAM) consumption of a VPR technique and the depen-
dency on GPU are also computationally-relevant. The feature descriptor footprint/size is also
an important metric for storage needs, because it scales linearly with the map-size.

2.8 Summary

This chapter presented a detailed review of the research performed for localising an au-
tonomous robot and with exclusive focus on Visual Place Recognition-the subject of this
thesis. In summary the below few points were covered.

1. An overview of research in Simultaneous Localisation and Mapping (SLAM) from
both software and hardware perspectives.

2. Co-relating and distinguishing closely related concepts within localisation, including
Visual-SLAM, VPR, visual-odometry, image matching, visual-localisation and the
correspondence problem.
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3. An overview of research within Semantic Mapping-the ground-work for Chapter 3 of
this thesis.

4. A detailed literature survey of Visual Place Recognition (VPR), the VPR techniques
and datasets proposed to date and the evaluation metrics utilised within VPR. This
serves as the basis for Chapters 4 and 5 of this thesis.

5. Identification of the explicit challenges within VPR for the various classes of VPR
techniques and their corresponding strengths. These challenged serve as the motivation
and the gap addressed by Chapter 6 of this thesis.

The existing literature in VPR is primarily focused on proposing new VPR tech-
niques that achieve state-of-the-art performance on some datasets for a given choice
of metrics and within a custom suite of comparison techniques. Most of the newly
proposed techniques are deep-learning-based and therefore environment-specific and
computationally-expensive. A very limited comparison of VPR techniques exists in
literature and the focus has almost always been on retrieving a correct match for a VPR
technique, rather than evaluating the quality of the query image for VPR before any
such retrieval is performed. Therefore, in this thesis, the author has tried to bridge these
gaps and the following chapters present how these existing gaps have been covered
with due diligence of the respective limitations.



Chapter 3

Memorable Maps: A Framework for
Redefining Places in Visual Place
Recognition

One of the critical challenges for VPR systems, as identified in Chapter 1, is the perceptual
aliasing and non-salience of images or content within images. The ability to model and
compute this non-salience can have applications for VPR systems and prevent potential
false-positives. Therefore, in this chapter, the author presents a cognition-inspired agnostic
framework for building a ‘memorable map’ for Visual Place Recognition (VPR). This
framework draws inspiration from human-memorability, utilises the traditional image entropy
concept and computes the static content in an image; thereby presenting a tri-folded criteria
to assess the ‘memorability’ of an image for VPR. A dataset namely ‘ESSEX3IN1’ is
created, composed of highly confusing images from indoor, outdoor and natural scenes for
analysis. When used in conjunction with state-of-the-art visual place recognition methods,
the proposed framework provides significant performance boost to these techniques, as
evidenced by results on ESSEX3IN1 and other public datasets. This chapter presents all the
details of the developed framework and an extensive analysis of this framework.

3.1 Background

Chapter 1 discussed that VPR is a well-defined, albeit a highly challenging module of a
Visual-SLAM based autonomous system [8] and that a VPR system needs to be robust to
viewpoint and conditional changes. Chapter 2 then presented a number of research works
that have handled these challenges. However, perceptual aliasing and VPR-specific salience
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of the content within an image has mostly been unexplored, which sets the stage for the
research presented in this chapter.

Generally, VPR can either be used as a stand-alone vehicle localization system in an
appearance-only topological and/or topometric map or it can be combined with metric SLAM
techniques to perform loop closure [66]. The scope of this chapter and the evaluations is
limited to the former, however, it is possible to adopt the combination of this work and VPR
within SLAM systems for loop-closure. Some key advances in SLAM research can be broken
down into semantic mapping (surveyed in [58]) and VPR (surveyed in [8]), where the latter
can be annexed into the former [58].

Traditionally, for VPR, ‘Places’ have been selected/sampled based on time-interval [136],
distance [60] or distinctiveness [61] in different approaches. Most of these methods attempt
to reduce the size of robot’s map and do not quantify if a sampled/sub-sampled image is a
good representation of a place; thereby has a greater chance of matching upon revisiting. The
quality of image selection mechanism restricts the performance of a VPR system, both in the
short-term and long-term. Due to limited number of images being stored in the map, it is
critical to select those images that can be matched successfully upon repeated traversal-the
motivation for this research.

Therefore, in this chapter, the author looks at image selection from a semantic point
of view and draws inspiration from images memorable to a human-cognition system. A
Convolutional Neural Network [137] is used to compute the memorability of an incom-
ing camera frame. However, while objects like vehicles and pedestrians in an image are
subjectively-memorable; they are intrinsically not good for VPR as these dynamic objects
are rarely re-observed. The author thus performs object detection to compute the staticity of
an image and mask memorability of dynamic content. In addition to being memorable and
static, an image should be content-rich thus the entropy map is calculated.

The contribution of this chapter is a semantically coherent framework (Fig. 3.1) that
filters an input image through a tri-folded criteria. Hence, ensuring that every image to
be inserted against a place in robot’s map is a good representation of the said place and
highly recognizable. To analyze the effectiveness of this framework, a dataset ‘ESSEX3IN1’
is created from indoor, outdoor and natural environments. Unlike existing VPR datasets,
ESSEX3IN1 mimics a robot exploring an environment instead of traditional path-following
and is thus composed of highly confusing images from all three environments. The author
shows how these confusing images lead to poor performance of current VPR systems. The
final results show the effectiveness of proposed framework in segregating these ‘confusing’
images from ‘good’ images, thereby increasing VPR precision and reducing database size.
The framework is also evaluated on other public VPR datasets to show that this performance
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Fig. 3.1 A block-level overview of the proposed memorable maps framework is shown here.

enhancement can be generalized. Due to its agnostic nature, any VPR technique can obtain a
performance boost by stacking the presented framework as an additional layer in the VPR
pipeline.

In addition to the semantic mapping literature review in Chapter 2, the author discusses
two works that have similar motivation to the proposed approach. The interesting work
by Hartmann et al. [138] proposes a random forest classifier of 5 decision trees trained on
a dataset of 455 outdoor images. The objective of this random forest is to find keypoints
in an image with low matchability and subsequently discarding them. This technique is
computationally intensive in comparison to the proposed methodology as we compute a
single matchability (memorability) score against an image instead of scores against each
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image keypoint. Moreover, in VPR, features coming from dynamic objects and low-textured
scenes are usually not re-observable/matchable (as shown later in this Chapter) but have
not been examined in [138]. Although vegetation is considered to belong to non-matchable
category, results show features coming from trees as being classified as matchable in [138];
which usually in VPR contribute negatively to the distinctiveness of a place (as shown in
Fig. 3.3). More recently, a CNN able to classify input frames as stable/unstable is trained
by Dymczyk et al. [139] for long term visual place recognition. Similar to [138], this work
also proposes that vegetation in outdoor scenes is not suitable, but does not consider outdoor
dynamic objects like cars, pedestrians, animals etc. Also, informativeness of stable frames in
terms of extracted features and predicted matchability is not inspected given that walls are
selected as stable elements of an image. Therefore, to the best of author’s knowledge, this
work combines for the first time all three of these criteria namely memorability, staticity and
entropy to create memorable maps.

3.2 Methodology

This section presents in depth the framework developed in this work. A sub-section is
dedicated to each of the three criteria (i.e., memorability, staticity and entropy) adopted
by the framework. The author also discusses the integration of this framework with VPR
techniques as a final sub-section.

For the purpose of evaluation and analysis, the author has used AMOS-Net [102], Hybrid-
Net [102] and Region-VLAD [111] as the VPR techniques throughout this chapter. The
details of these techniques are given in Section 3.3.2.

3.2.1 Memorability

Why Memorability?

The human-cognition system is powerful in evaluating what images are useful to be stored in
the brain’s memory fragments [140] [141]. We usually remember concrete structures like
buildings, streets, squares etc. However, more natural scenes like fields, forests, grassy plains
and far out sceneries are less memorable. This ‘memorability’ concept is also intuitive as it
is easy to confuse different natural scenes with each other compared to concrete structures.
In reference to VPR, there are two further reasons for the non-salience of trees, vegetation
and natural scenery: 1) They are highly appearance-variant compared to concrete structures,
2) Local features coming from trees and vegetation etc. are usually mismatched, as explored
in the works of [142] [143] [144]. In order to explain (1), the author has shown samples of
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Fig. 3.2 Concrete structures appear similar under seasonal changes while non-memorable
elements like trees, vegetation and natural scenery appear very different. The memorability
maps (in last row) show the effectiveness of proposed memorability implementation (sub-
section 3.2.1) in segregating concrete structures from these appearance variant regions.

appearance changes in Fig. 3.2, along with the memorability maps created (methodology
explained in sub-section 3.2.1) by this framework. All example images in Fig. 3.2 have been
utilised from the Nordland dataset [4] and SPEDTest dataset [110] to ensure consistency
with the evaluation mechanism. In Fig. 3.3, the author has also shown how non-memorable
scenes are mismatched by state-of-the-art VPR systems leading to false-positives.

Memorability Implementation

Inspired from human-memorability, the author applies the work done originally for marketing
and advertising in [137] to VPR problem. A Convolutional Neural Network namely Hybrid-
CNN [145] which was originally trained on Places365 dataset [145] for deep learning-based
scene recognition, has been fine-tuned on LaMem dataset by Khosla et al in [137]. The
authors in [137] have named this fine-tuned Hybrid-CNN as ‘MemNet’. The LaMem dataset
(introduced by [137]) is composed of 60,000 images covering multiple scenarios ranging
from natural scenery, indoor scenes, outdoor scenes and distinctive objects. The ground-truth
human-memorability provided in LaMem dataset has been computed for each of the images
using an interactive game played by multiple human subjects. Images are shown to players
in a sequence and are repeated after a random interval where a human has to identify/recall
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Fig. 3.3 Natural places mismatched by VPR methods due to confusing features coming from
trees, grass and plains are shown here. Red boundary represents an incorrect match while
green boundary represents a correct match. All images in this figure were found static and
information-rich, i.e., human-memorability is the only criterion that can discard these images.

a previously seen image. By using this LaMem dataset, the authors [137] fine-tuned the
Hybrid-CNN achieving a high co-relation (0.64) with human memorability. Resultingly,
the output of this fine-tuned Hybrid-CNN (MemNet) is a human-memorability score m for
each input image in the range of 0− 1, with m = 1 being the most memorable. However,
for the proposed framework, a memorability map is required (as in Fig. 3.6) against every
image instead of a single memorability score as output by MemNet. The motivation for this
memorability map is to cater for highly memorable but dynamic objects as discussed later in
this sub-section and utilised in sub-section 3.2.4.

The CNN input layer size is set to W1×H1. The author re-sizes every incoming image
to W2×H2.
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where; W2 = a×W1, H2 = b×H1

Then this rescaled-image is split into C (where, C = a× b) non-overlapping crops of
size W1×H1 each and which are sequentially fed as inputs to CNN. This in turn yields the
memorability matrix M as shown below.

M =


m11 m12 . . . m1b

m21 m22 . . . m2b
...

... . . . ...
ma1 ma2 . . . mab


Where, mi j is the memorability of each W1×H1 cropped image. To create a memorability

map, the author rescales the matrix M from a× b to W2×H2 with bilinear interpolation.
Some examples of memorability maps overlayed on images are shown in Fig. 3.2 and Fig.
3.6. The author has employed C = 5×5 through-out this work and a parametric variation
of this is shown later in sub-section 3.4.6. It can be seen (in Fig. 3.2 and Fig. 3.6) that
vegetation, natural scenery and trees are identified as less-memorable which is consistent
with the motivation in sub-section 3.2.1. However, for human cognition (and therefore for
[137]), objects such as faces, animals and vehicles are memorable. But, such dynamic objects
are not re-observable and therefore, they are not salient for VPR; the author caters for this in
the following sub-section.

3.2.2 Staticity

Why Staticity?

The previous sub-section shows how memorability is a good evaluation criterion for a camera
frame to be used in VPR. However, one limitation is the fact that objects like cars, pedestrians,
buses, animals and bicycles in an image are all classified as highly memorable but are not
re-observable (for VPR problem). Resultingly, images that may be memorable but have high
dynamic content will fail to match upon repeated traversal. Fig. 3.4 shows some of these
images mismatched by VPR techniques [102] [111].

Staticity Implementation

To cater for highly dynamic images, the author performs image segmentation into static
and dynamic pixels. All input images are re-sized to W2×H2. An object detector is used
[146] that can detect 80 different classes of objects in an image. Out of these 80 classes, 21
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Fig. 3.4 Dynamic places mismatched by state-of-the-art VPR systems. Features coming
from vehicles are not re-observable in addition to the occlusion caused by them in different
scenes. Red boundary represents an incorrect match while green boundary represents a
correct match.

correspond to highly-dynamic, commonly-observed objects. These dynamic objects include
cars, pedestrians, buses, trucks, animals etc. The author, therefore, only considers proposals
of bounding boxes coming from objects of interest, i.e., dynamic objects. Please note that
the default parameters of YOLO [146] were used in this work.

Since the staticity map is computed for each pixel in the image, it can be represented as a
staticity-matrix S of size W2×H2 as below.
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S =


s11 s12 . . . s1W2

s21 s22 . . . s2W2
...

... . . . ...
sH2W2 sH2W2 . . . sH2W2


where; {si j ∈ Z2 | Z2 = [0,1]}

si j = 1|Pixel = Static

si j = 0|Pixel = Dynamic

Fig. 3.6 shows the typical staticity map computed in our framework. However, although
an image containing low-textured scenes (walls/door/pillars) can be classified as concrete
(memorable) and static but it does not have distinguishable features and hence, it is not
distinct. This limitation is accommodated in the following sub-section.

3.2.3 Entropy

Why Entropy?

An input camera frame containing a room/lift door is commonly observed by a robot nav-
igating indoors. Such a frame is classified as memorable and static, but has little to no
information differentiating it from other doors in the building, thus leading to false positives.
The same can be extended to any other frame with occlusion resulting from walls, pillars etc.
Examples of such confusing frames are shown in Fig. 3.5.

Entropy Implementation

To avoid less informative or occluded frames, the information content of an image is evaluated
by computing its local entropy against every image pixel. This local entropy corresponds to
the number of bits required to encode the local gray-scale distribution in an image. Based
on standard boolean algebra, the number of bits required to represent any positive integer
value can be computed by log2(Numerical_Value). A circular window of r pixels radius
is used as the local neighbourhood to get the entropy map of an incoming camera frame
against each pixel. The total number of histogram bins used for entropy computation are 256
corresponding to 0−255 gray-scale intensity values. The generic algorithm for entropy map
computation is shown below and adapted from [147].
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Fig. 3.5 Low-entropy places mismatched by state-of-the-art VPR methods can be commonly
observed in indoor robot navigation datasets. Along with intrinsically less-informative
images of doors/walls, static occlusion can also lead to poorly defined places. Red boundary
represents an incorrect match while green boundary represents a correct match.

Algorithm Computing entropy map
Create a Histogram o f 256 Bins
for all Local Neighbourhoods in Image do

for all Pixels in Current Neighbourhood do
if Current_Pixel lies in BinX then

Items_in_BinX = Items_in_BinX +1
end if

end for
Local_Entropy = log2 (No.o f Filled Histogram Bins)
Clear all Histogram Bins

end for
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This algorithm gives the entropy map represented as matrix E of size W2×H2. Local
circular regions of images containing texture-less doors/walls have a small range of intensity
gradients within the region and thereby have lower entropy value. The maximum value of
entropy is computed from equation (1) and equals 8, given that the maximum number of
filled histogram bins is 256. Fig. 3.6 shows examples of entropy maps computed by the
proposed framework. The author has used r = 5 in this work, where the reasons for this
selection and parametric variation are shown in sub-section 3.4.6.

Max Entropy = log2 (No.o f Histogram Bins) (3.1)

E =


e11 e12 . . . e1W2

e21 e22 . . . e2W2
...

... . . . ...
eH2W2 eH2W2 . . . eH2W2


where; {ei j ∈ K | K ⊆ R∧K = {0, . . . ,8}}

Fig. 3.6 The three types of image maps created by the proposed framework for evaluating the
content of an input image. Concrete structures like buildings and roads are memorable in
comparison to grassy plains and trees [Top]. Cars, pedestrians and other dynamic objects
are detected and evaluated for the amount (approximate) of pixels they occupy [Middle].
Uniform and texture-less scenes, sky portions have low-entropy compared to feature rich
structures [Bottom].
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3.2.4 Computing Scores and Thresholding

After acquiring all three maps of an image, the author masks memorability map and entropy
map with staticity map. This ensures that the decision to select an image based upon
memorability and entropy is immune to the information coming from dynamic objects.
Next, the author computes the memorability score (MS) of an image as the average value of
memorability map and compares it with a memorability threshold (MT ) to evaluate if this
image/frame is memorable enough for use in VPR. Secondly, we compute the percentage
of static pixels in our staticity map to get a staticity score (SS). This is then contrasted
with staticity threshold (ST ) to decide if an incoming frame has enough static content to be
inserted into the map. Thirdly, the author calculates the average value of entropy map and
scales it with the maximum value of entropy to get the percentage of information content.
This percentage dubbed as the entropy score (ES) is compared with the entropy threshold
(ET ) to settle if an input frame has enough information. Please note that for computing the
average values of staticity-masked memorability-map and entropy-map, the normalisation is
done over the original map-size (i.e. W2×H2), because masking actually leads to a lack of
information and should therefore be penalised.

Finally, a tri-input AND criteria is used to select images that are memorable, static and
information-rich to be inserted into the memorable map.
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Algorithm Image Selection For Memorable Map
for all Incoming Images do

Compute All T hree Image Maps

MS =
1

W2×H2

W2,H2

∑
i, j=1,1

mi j

SS =
1

W2×H2

W2,H2

∑
i, j=1,1

si j

ES =
1

W2×H2×8

W2,H2

∑
i, j=1,1

ei j

if MS ≥ MT & SS ≥ ST & ES ≥ ET then
Insert into Map

else
Dicard Image

end if
end for

3.2.5 Integration of Memorable Maps and VPR Techniques

The integration of proposed framework with VPR techniques is seamless and straight-forward.
The core component that all VPR techniques require to operate is a reference image database,
using which the VPR techniques propose a place-match (image-retrieval) given an input
query image. The creation of this reference database by employing the memorable maps
framework instead of the traditional time-based or distance-based approaches is what brings
our framework together with state-of-the-art VPR techniques. This integration of memorable
maps framework with the VPR methods can be in an online or an offline fashion.

In an offline approach, where a priori knowledge of the environment is available in the
form of images, memorable maps framework can take this knowledge (images) and output a
memorable map as depicted in Fig. 3.1. In this case, the ‘Input Camera Frames’ block of Fig.
3.1 represents the input knowledge where each image is indexed in a sequential manner and
evaluated by our framework yielding a memorable map. The contemporary VPR techniques
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can then use this memorable map instead of the original time-based, distance-based or
distinctiveness-based reference image database, achieving place matching performance boost
and map-size reduction as reported later in Section 3.4.

Before discussing the integration of proposed framework in an online manner, it is
important to understand that every query image in an online VPR system becomes a reference
image at the next time step and is stored in the reference image database. Thus, for every input
query image two operations are traditionally performed: 1) It is input to a VPR technique to
search for a prospective place match, 2) If it matches to a previously known place, it is stored
as an additional representation of the place and if it does not match to a previously known
place, it is stored in the map as a ‘new place’. Given this understanding, the memorable
maps framework can easily be integrated into an online VPR system, where the input query
image is first evaluated for its salience by our framework. If it is largely memorable, static
and information-rich, only then it is used for VPR and subsequent storage in the reference
map. For the online case, images in Fig. 3.1 would represent query images such that their
indices represent time-stamps.

3.3 Experimental Setup

This section discusses the datasets, VPR techniques and evaluation metric used in the analysis
of this chapter. Although these have been previously touched very briefly in the literature
review, the author has explained each of these further in detail here for ease of reproducibility
and to avoid any utilisation confusions. A new dataset ESSEX3IN1 is presented, which is
publicly available 1. Additionally, the author further discusses three previously introduced
public datasets used for reporting the framework’s performance. The VPR techniques used
for the results and analysis are then summarized. The author uses AUC for reporting results
which is a well-established performance metric for VPR techniques as previously discussed.

3.3.1 Evaluation Datasets

This sub-section introduces the 4 datasets that have been used in this work to discuss and
analyse the performance of memorable maps framework. Please note that none of these
datasets were used for training the 3 VPR techniques employed in this work.

1https://github.com/MubarizZaffar/ESSEX3IN1-Dataset
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ESSEX3IN1 Dataset

From sub-section 2.6, it is clear that most of the Visual Place Recognition datasets have been
created from a pre-planned path traversal. Thus, these datasets do not contain confusing
images that an exploration robot may come across. Also, these datasets focus on a single
type of environment either indoor or outdoor. To evaluate and challenge the memorable maps
framework, the author has created a new dataset ESSEX3IN1 which is composed of images
from indoor, outdoor and natural scenes.

The dataset was created in two stages using a human-held mobile phone camera at the
University of Essex (Colchester Campus) and contains 210 query images and 210 reference
images with viewpoint variations. In the first stage, the objective was to take images from
all sorts of environments that were either ‘confusing’ or didn’t qualify the definition of a
‘distinct Place’, where this indistinctness of a place refers to perceptual aliasing. Two-thirds
of the images in ESSEX3IN1 are from this first stage. The second stage, consists of images
that were not confusing and could be defined as ‘distinct places’. One-third of the total
images are from this second stage. Some images from these stages are shown in Fig. 3.7.
The ground-truth data provides information about a single correct reference image against
every query image. This ground-truth is created manually by looking at individual images
such that the ground-truth pair of query and reference image represent the same geographic
location in the world.

It is important to note that none of these images were used in tuning the three thresholds
and were not seen prior by the proposed framework. The collection of dataset in this
two-staged manner was useful for analysis in Section 3.4.

Nordland Dataset

The Nordland dataset [4] comprises of a train journey through Norway and is collected in
four different seasons with frame-to-frame ground-truth correspondence. The author uses
a subset of this dataset which consists of 1622 query images and 1622 reference images.
The query images are from the traversal performed in summer whereas the reference images
are from winter. Although this dataset does not provide any viewpoint variation, but has
significant conditional variation. A retrieved image n is considered true-positive if the original
ground-truth is between n−1 to n+1, i.e., each query image has 3 ground-truth references.

St. Lucia Dataset

The St. Lucia dataset was first introduced in [9]. It was recorded in the surroundings of
University of Queensland’s St. Lucia campus during multiple times of the day. This dataset
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Fig. 3.7 Sample images from ESSEX3IN1 dataset. The first stage [on the left hand side]
images contain occlusions, dynamic objects, information-less frames and non-memorable
content like plains, natural scenery, vegetation and trees. In contrast, the second stage [on
the right hand side] contains semantically identifiable and distinguishable images of various
places from University of Essex (Colchester campus).

consists of moderate viewpoint and illumination variation. The dataset also contains dynamic
objects and scene variation. The ground-truth is derived manually from GPS data such that
each query image has three reference images as true-positives. The total number of query
images is 1261 and the total number of reference images is 1317.

SPEDTest Dataset

The SPEDTest dataset was introduced in [110] and is a sub-set of the original Specific
Places Dataset [102]. It consists of 607 query images coming from a variety of scenes and
environments. Frame-to-frame correspondence is available as the ground-truth.
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3.3.2 VPR Techniques

The author has used three state-of-the-art VPR techniques (namely AMOS-SPP, Hybrid-
SPP and Region-VLAD) [102] [111] that have shown promising results in recent research.
AMOS-Net is a modified Caffe-Net [148] with all parameters trained on SPED dataset.
Hybrid-Net is another modified version of Caffe-Net with weights for top 5 convolutional
layers initialized from Caffe-Net. The author has used Spatial Pyramidal Pooling as a feature
descriptor for both AMOS-Net and Hybrid-Net since it shows excellent results as compared
to other feature encoding methods. Features are extracted from ‘conv5’ layer in case of
both Amos-Net and Hybrid-Net. The third VPR technique, Region-VLAD, uses features
extracted from selected/interesting regions of an AlexNet pre-trained on Places365 dataset
[145]. Vector-of-Locally-Aggregated-Descriptors [108] is subsequently used for encoding
the extracted features. In case of Region-VLAD, the author uses features from ‘conv4’,
number of regions-of-interest as 400 and a visual dictionary size of 128. Evaluation of
VPR techniques on existing datasets is an offline process, therefore the integration of the
memorable maps framework with these techniques is in accordance to the discussion for an
offline VPR system in sub-section 3.2.5.

3.3.3 Evaluation Metric

The extensive review of VPR research performed by Lowry et al. in [8] and the VPR research
community [110] [3] [107] [103] [102] [134] [149] in general agree that a highly precise
VPR system with high recallability is required, which serves as the author’s motivation to
adopt AUC as an evaluation metric. This chapter ensures consistency and fair comparison of
AUC scores for different VPR methods on all datasets by computing and reporting results
only using equation 2.3.

3.4 Results and Analysis

This section presents the results and analysis in a sequential manner. The author first shows
that images collected from the first stage of ESSEX3IN1 actually lead to poor performance
of VPR systems and are not good for insertion into a robot map. Secondly, the author
shows the segregation performance of proposed framework on these ‘confusing’ images and
‘good’ images. Thirdly, the AUC improvement of different VPR systems is presented when
plugged with the proposed framework on all datasets discussed in sub-section 3.3.1. This
is followed-up with a sub-section dedicated to qualitative analysis showing sample images
selected and discarded from all datasets. The author then highlights the contribution of each
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Fig. 3.8 VPR false positives upon evaluation on ESSEX3IN1 stage: 1. Images with cars,
trees and natural scenes are mismatched. Additionally, images with low information and
memorability are almost indistinguishable for even human cognition.

framework criterion qualitatively and quantitatively. Next, the author reports the effect on
VPR performance by sweeping framework parameters within possible range. The author
shows in the next sub-section, how this framework leads to reduced map size and place
matching time. Finally, the integration of Spatio-Temporal filtering with proposed framework
is presented to avoid large image gaps for localization.

3.4.1 Contemporary VPR Systems on ESSEX3IN1 Stage 1

The majority of VPR false positives against ESSEX3IN1 are from the first stage of dataset
collection. This is due to the confusing images of fields, trees, doors, cars etc that lead to
perceptual aliasing. Some of these false positives are shown in Fig. 3.8.

The author shows the AUC performance of VPR systems separately on Stage 1 and Stage
2 in Fig. 3.9.
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Fig. 3.9 Separate evaluation of VPR methods on each of the ESSEX3IN1 stages reveals
the challenge faced by contemporary VPR techniques for matching low-entropy, low-
memorability and dynamic images.

3.4.2 Segregation Performance of Proposed Framework

For this sub-section, the author applies the proposed memorable maps framework on complete
and randomized ESSEX3IN1 dataset. The below thresholds are used to segregate and discard
‘confusing’ images from ‘good’ images.

Memorability-threshold = 0.5

Staticity-threshold = 0.6

Entropy-threshold = 0.4

These values for the thresholds were selected from analysis on pre-existing public
VPR datasets. Increasing these thresholds reduces the number of images inserted into the
memorable map. This is shown in Fig. 3.10 by varying each threshold from 0−1, while
setting the other two equal to 0, i.e, inactive. The manual selection of these particular values
is based on the detailed analysis provided in sub-section 3.4.6. Briefly, these particular
values were employed for 3 reasons: 1) Agnostic performance boost across all 4 datasets
(refer sub-section 3.4.3)., 2) Reasonable number of ‘good’ images are left in the database
as loop-closure candidates (refer sub-section 3.4.7)., 3) Deviating significantly from these
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Fig. 3.10 The decrease in total selected images as each selection criterion is increased can
be observed here for the whole ESSEX3IN1 dataset. Majority of the ET/MT based image
selection is done between 0.4− 0.7. Purely static images (without vehicles, human and
animals) exist in the dataset which is why ST = 1 does not reduce map size to zero.

values could lead to zero or negative changes in the AUC (refer sub-section 3.4.6). Setting any
of the 3 thresholds equal to 0 will disable the corresponding criterion, e.g., in a continuous
highly crowded scene, the ST can be disabled or the value of MT can be decreased for a
continuous agricultural/natural environment. Increasing the thresholds towards 1 will result
in decreased no. of images in the database, which will have higher salience.

The new database created by presented framework consists of memorable, static and
informative images, thus dubbed as a memorable map. The author shows in Fig. 3.11,
how many of the total images selected by presented framework are from which stage of the
dataset.

3.4.3 AUC Improvement of VPR Systems

By selecting images that are memorable, static and have a higher entropy, the memorable
maps framework gives performance boost to state-of-the-art VPR techniques. Here, the
author used fixed thresholds, as in previous sub-section 3.4.2, but an AUC sweep across
these thresholds is presented later in sub-section 3.4.6. AUC evaluation is performed on the
entire (both stages combined randomly) ESSEX3IN1 dataset along with the three public VPR
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Fig. 3.11 The objective of memorable maps framework is to sample good frames and discard
confusing frames. This objective achievement is presented by showing the contribution in
memorable map from each ESSEX3IN1 stage.

datasets. It is important to note that bad/confusing images found by proposed framework
are not removed from the reference database when evaluating AUC, but are treated as true
negatives. This ensures that AUC boost reported here is not due to reduction of reference
database size. For comparison with proposed framework, the author also shows the AUC
performance for each technique by only employing static images on all datasets. Please note
that because SPEDTest, Stlucia and Nordland datasets are largely static, the performance
boost by just employing static images is only evident for ESSEX3IN1 dataset. This further
validates the utility of the new proposed dataset ESSEX3IN1 for VPR, while simultaneously
advocating for the efficacy of memorability and entropy criteria.

Fig. 3.12 depicts the AUC increase by employing proposed framework on ESSEX3IN1,
St. Lucia, Nordland and SPEDTest dataset, respectively. The author uses the same values for
MT, ST and ET as in sub-section 3.4.2 for ESSEX3IN1, Nordland and SPEDTest dataset.
However, for St. Lucia we reduce each of the 3 selection thresholds by 0.05 to get a non-zero
map size. This performance increase for all techniques on all datasets advocates for the
utility, generalisability and agnostic nature of proposed framework. Reference database size
remained the same for all AUC evaluations by treating confusing images as true-negatives.
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Fig. 3.12 Increase in AUC by using the proposed framework in combination with VPR
techniques on all 4 datasets employed in this chapter is presented here. Please note that
ESSEX3IN1 is the only dataset with highly dynamic content and therefore the AUC boost
for employing only static images is not evident on other datasets.

3.4.4 Selected vs Discarded Images

In this sub-section, the author shows some images from all 4 datasets that were selected
or discarded by proposed framework. This gives a qualitative insight into the working of
this framework in different environments/datasets. Since the memorable maps framework
evaluates both the query images and reference images, the images in Fig. 3.13 are impartial
to such distinction. Selected images from ESSEX3IN1 are pre-dominantly of buildings with
distinctive patterns and are largely static, while discarded images consist of far out natural
scenes, dynamic objects or have low-entropy. Selected images in Stlucia dataset contain
road signs, squares and houses. On the other hand, discarded images comprise of far out
road scenes with trees and large portions of sky. Selected images from Nordland dataset
consist of either appearing tunnels or bridges which contribute to their distinctiveness, while
discarded images consist of vegetation or have low information. Staticity does not play any
role in Nordland dataset due to the absence of dynamic objects. Selected images in SPEDTest
dataset are from CCTVs covering buildings or distinctive locations, while discarded images
consist of far out natural scenes and dynamic objects.

The author also reports the distribution of memorable images over the trajectories of
Stlucia and Nordland datasets in Fig. 3.14. Because the ground-truth information for these
datasets does not contain the exact inter-frame distance/time, the distribution in Fig. 3.14 is
shown over image indices, which is very close to a constant distance-based distribution, as
the speed of camera platform is mostly constant over the respective trajectories. ESSEX3IN1
and SPEDTest datasets are not trajectory-based, therefore, this distribution of memorable
images over trajectory is not shown for these datasets.
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Fig. 3.13 Examples of images selected and discarded by the memorable maps framework
from all 4 datasets are shown here. Top-left pairs of 4 images in each selected and discarded
division are from ESSEX3IN1 dataset, followed-up with pairs from Stlucia dataset, Nordland
dataset and SPEDTest dataset in clockwise manner.

3.4.5 Criterion Contribution Analysis

Each criterion in the memorable maps framework contributes to AUC boost. This subsection
is dedicated to giving an insight into this individual contribution. The author uses ESSEX3IN1
for this purpose as it contains confusing images from all three (memorability, staticity
and entropy) paradigms. For the AUC evaluation on ESSEX3IN1, the author shows the
contribution of each criterion in Fig. 3.15. The analysis is performed based on the number of
images that were mismatched by a VPR technique and were also discarded by at least one of
the memorable maps framework criterion. Additionally, the author also shows in Fig. 3.16, a
qualitative holistic view into cases where each criterion fails and others are used to cater for
this failure, thereby, explaining intuitively why each of the criterion in proposed framework
has its individual significance.

While Fig. 3.15 suggests that each of the three criteria are useful; the % contribution is
linked to (and can vary with) the number of non-memorable, dynamic and information-less
images in the dataset. (refer Fig. 3.10)

3.4.6 Parametric Variation

In this subsection, the author presents the variation in Visual Place Recognition performance
with strictening framework criteria on ESSEX3IN1. The author sweeps each of the three
criteria from 0-1 (Step size: 0.1), while keeping the other two inactive (i.e., set equal to zero).



56 Memorable Maps: A Framework for Redefining Places in Visual Place Recognition

Fig. 3.14 Images selected as memorable over the trajectories of Stlucia [9] and Nordland
datasets [4] are shown here. The horizontal axis represents the discrete, positive and equally-
spaced indices of all the images in respective dataset. Each vertical bar represents an image
selected as memorable by proposed framework. Because Spatio-Temporal filtering has not
been utilised for this analysis, the selection of images is not uniform.

The data points for memorability and entropy thresholds have an upper-bound after which
the total number of selected images equals to 0 (refer Fig. 3.10).

Fig. 3.17 shows that increasing entropy-threshold and memorability-threshold increases
the AUC Performance for all three VPR techniques and follows a direct-relationship. On the
other hand, the variation in AUC with increasing staticity-threshold follows a different trend.
Firstly, the increase in AUC with ST is comparatively lower compared to MT/ET; which is
due to the less number of dynamic images in the dataset compared to non-memorable and
low-entropy images. Secondly, the variation in AUC with ST for Region-VLAD is higher
compared to AMOS-SPP/Hybrid-SPP. This associates with the fact that AMOS-SPP/Hybrid-
SPP have been trained on SPED (Specific Places Dataset) and discourage features coming
from vehicles. While the analysis/results reveal that Region-VLAD extracts and positively
matches features coming from cars in different places (See Fig. 3.4). Thirdly, there is
an evident decrease in AUC as ST goes above 0.9. This decrease is expected as images
with very low dynamic content can still be matched by contemporary VPR-techniques and
discarding such images leads to the observed decline in VPR-performance. Please note
that the best AUC results in Fig. 3.17 are higher than the results reported in Fig. 3.12.
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Fig. 3.15 Percentage contribution of each criterion into AUC increase is shown for the
ESSEX3IN1 dataset. This contribution is directly linked with the type of environment
being explored. In a highly dynamic environment, the contribution of staticity will be more
significant than suggested by this chart and such.

This trend needs to be seen in co-relation with the reduction in map size as reported in
Fig. 3.10. Increasing the three thresholds results in highly salient images stored in the map
leading to higher AUC, however, it also reduces the absolute number of place recognition
(loop-closure) candidates in the map and therefore, the framework thresholds need to be
selected accordingly. The presented trends give a general idea for setting thresholds, thus to
maintain a good balance between VPR performance and a salient representation of the world
in a metric/topological/topo-metric map.

The author also shows the effect of varying the value of C from sub-section 3.2.1 in Fig.
3.18 for the reader’s understanding. Changing this parameter within the range shown in
Fig. 3.18 does not have any effect on the AUC performance of all techniques on SPEDTest
dataset, suggesting that proposed framework is not sensitive to this parameter. The effect
on entropy map and entropy score (ES) by varying the local circular neighbourhood (r)
in sub-section 3.2.3 is reported in Fig. 3.19. The entropy score (ES) is dependent on this
local circular neighbourhood r, such that increasing the value of r reduces the resolution of
entropy map and increases the entropy score ES. This effect is similar to low-pass filtering
and is explained as: Increasing the value of r increases the number of pixels to be added to
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Fig. 3.16 Examples of images that are selected/discarded based on various combinations
of memorable maps framework criteria are shown here. Please note that the understanding
for ‘informative’ and ‘memorable’ nature of an image is subjective and in this work, it is
expressed by the practical/implementation nature of the term. For-example, an image of a
bush (top-left) is called informative because it has several edges, corners and contours for
computer-vision feature descriptors and thereby has a high entropy. Similarly, memorability
is explained by its cognitive perception, i.e., the work of [137].

the histogram, where the larger the radius of the circle, the greater will be pixel intensity
divergence and hence higher is the log2 score, leading to higher ES. This therefore, requires
to affix the value of r to a value where coupled with ET , the framework can successfully
distinguish between low and high informative images. The author is also interested in having
high-resolution entropy maps instead of low-resolution entropy maps due to the salience of
low-level features (like edges, corners etc) to the VPR problem.

3.4.7 Reduced Map Size and Computational Time

In addition to the increase in AUC, the developed framework helps in reducing the robot’s
map size which has been the motivation for semantic mapping research reviewed in Chapter
2. This size reduction also leads to lesser computational overhead for VPR. The reduction in
map size for the thresholds presented in Section 3.4.2 is shown in Fig. 3.20. Because the
map-size reduction by discarding non-memorable images can also lead to the reduction of
absolute number of true-positives, the author shows this trend in Fig. 3.21. It can be seen
in Fig. 3.21 that using the memorable maps framework does result in the decrease of true-
positives, however, the proportion of discarded false-positives is greater than true-positives,
which leads to the AUC boost reported previously in sub-section 3.4.3.

The computational performance is reported by calculating the time required to match
a query image with all the reference images (having pre-computed feature descriptors) in
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Fig. 3.17 Variation in VPR AUC performance by changing each of the memorable maps
framework thresholds within their full range on ESSEX3IN1 is presented. Memorability
and entropy continuously increase AUC until the total number of selected images equals
to zero; suggesting that images with higher memorability and entropy are well-matched by
VPR methods. On the contrary, since images with low dynamic content should/can still be
matched, variation in staticity threshold does not lead to a continuous AUC increase. AUC
change with ST is not at the same scale as MT/ET so it is shown separately.

both a conventional map and a memorable map. This offline matching time is elaborated in
Table 1, where a memorable map having lesser number of reference images (see Fig. 3.20)
achieves better matching time. The end-to-end time required in author’s implementation to
compute the salience of an image for memorable map is around 5 sec. Because the current
implementation utilises a sequential combination of different research works, i.e., YOLO
and MemNet, the timing is bottle-necked by the sum of individual timings of each of these
works. The author believes that there is room to improve the time required to compute these
maps by employing a different suit of CNNs (object detectors and memorability maps),
improving software implementation, utilising hardware advances and by parallelizing the
map computation by exploiting the independence of the three maps from each other.

Table 3.1 Matching Time Per Query Image

System Specs Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz, 64GB Physical Memory
Framework Without Memorable Maps With Memorable Maps

VPR Methods AMOSNet HybridNet RegionVLAD AMOSNet HybridNet RegionVLAD
ESSEX3IN1 (sec) 10.2 9.9 0.14 4.1 3.9 0.05

Nordland (sec) 78.7 76.4 1.1 9.1 8.7 0.12
St. Lucia (sec) 63.9 62.1 0.88 14.7 14.2 0.21
SPEDTest (sec) 29.5 28.6 0.41 7.7 7.5 0.11

3.4.8 Spatio-Temporal Filtering with Proposed Framework

A natural extension to the memorable maps framework is to define an upper bound on the
maximum distance and/or time travelled within which a best image (or Top-N images) from
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Fig. 3.18 Changing the value of C for computing memorability map does not result in any
major change, as shown here. Images employed are from the SPEDTest [110] dataset and no
change in AUC for this dataset was observed for the range of C used in this figure.

the traversed sequence should be be selected, even if the said image does not fully satisfy
the proposed criteria. This can also be accommodated using a hysteresis-mechanism, where
if a scene is continuously non-salient, the values for thresholds can be reduced to select
relatively-less salient images. Depending on the size of employed hysteresis, it can be
ensured that salient images distributed through-out the trajectory are selected. Thus, in a long
traversal where the depicted scenery may not be memorable, static and/or highly-informative
through-out the sequence, spatio-temporal filtering will ensure that the most memorable,
static and informative image within the sequence is selected. This image can then be flagged
as a ‘low-quality’ image in the memorable map and depending on the under-lying VPR
system can either be treated differently (e.g., use longer matching sequences in [5]), avoided
for use in loop-closure or treated as a potential false-positive prediction [150].

Because employing such a mechanism can lead to changes in AUC, the author has
reported this analysis of AUC boost with and without the spatio-temporal filtering in Fig. 3.22
for Nordland dataset. The selection of filtering methodology is hysteresis-based, such that if
in a sequence of 20 consecutive frames, none of the images satisfy the criteria thresholds of
sub-section 3.4.2, the thresholds are reduced by 0.03 for the respective sequence. It can be
clearly seen in Fig. 3.22 that allowing less-salient images into the map does lead to lesser
AUC boost. The author also shows the changes in distribution of a total of 412 memorable
images over the Nordland trajectory by employing such hysteresis-based spatio-temporal
filtering in Fig. 3.23.
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Fig. 3.19 Variation in the entropy map and the entropy-score (ES) are shown here for different
values of local circular neighbourhood (r) given fixed image size (W2×H2). The larger the
radius, the lower the resolution of entropy map. Increasing r also increases the value of ES
due to increased no. of pixels for grayscale histogram that results in higher pixel intensity
deviation.

3.5 Summary

This chapter presented a cognition-inspired generalized framework for creating ‘memorable
maps’. This framework evaluates an incoming camera frame for its memorability, staticity and
entropy to decide a frame’s insertion into the robot’s map. By using ‘ESSEX3IN1’, the author
has shown how images that are confusing and indistinct lead to perceptual aliasing and are
also mismatched by contemporary VPR systems. The application of proposed framework in
detecting these confusing images and subsequently improving VPR performance is presented.
The author generalises the applicability of proposed framework by reporting results on
multiple public datasets. Due to its agnostic nature, memorable maps framework can be
plugged into any VPR technique giving performance boost.
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Fig. 3.20 Reduction in topological map size given similar or better VPR results is of prime
importance for an autonomous robot to efficiently map/explore an environment. As depicted
here, memorable maps framework intrinsically reduces map size while giving AUC boost to
contemporary VPR systems.

Fig. 3.21 The absolute decrease in true-positives and false-positives by using the memorable
maps framework is shown here for all techniques on the ESSEX3IN1 dataset.
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Fig. 3.22 Employing spatio-temporal filtering within the memorable maps framework to
avoid large geographical gaps between salient images leads to lesser AUC boost as less salient
images are added to the map. Using the proposed framework without spatio-temporal filtering
leads to the highest AUC, followed by the proposed framework with spatio-temporal filtering
and lastly without the memorable maps framework. Region-VLAD has significantly less
number of true-positives through-out the trajectory, therefore AUC boost with spatio-temporal
filtering is not evident for this technique.
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Fig. 3.23 Changes in memorable images selected over the Nordland trajectory by employing
hysteresis-based spatio-temporal filtering within the memorable maps framework are shown
here. Depending on the width of hysteresis, image gaps can be further reduced at the cost of
reduced map salience.



Chapter 4

A Comprehensive Comparison of VPR
Approaches under Changing Conditions

As discussed in this thesis, recent years have seen a significant improvement in the capability
of Visual Place Recognition (VPR) methods, building on the success of both hand-crafted and
learnt visual features, temporal filtering and usage of semantic scene information. The wide
range of approaches and the relatively recent growth in interest in the field has meant that a
wide range of datasets and assessment methodologies have been proposed, often with a focus
only on precision-recall type metrics, making comparison difficult. In this chapter, the author
presents a comprehensive approach to evaluating the performance of 10 state-of-the-art
recently-developed VPR techniques, which utilises three standardized metrics: (a) Matching
Performance b) Matching Time c) Memory Footprint. Together this analysis provides an
up-to-date and widely encompassing snapshot of the various strengths and weaknesses of
contemporary approaches to the VPR problem. The aim of this chapter is to help move
this particular research field towards a more mature and unified approach to the problem,
enabling better comparison and hence more progress to be made in future research.

4.1 Background

By now, VPR is a well-understood problem and acts as an important module of a Visual-
SLAM based autonomous system [8]. However, VPR is highly challenging due to the
significant variations in appearance of places under changing conditions. Throughout VPR
research over the past years, we see 4 such variations in appearances of places, which have
been widely discussed and tackled by different novel VPR techniques. Seasonal Variation:
Appearance of places change drastically from summer to winter or spring to autumn posing
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Fig. 4.1 Variations in the appearance of places are illustrated where; (a) Seasonal variation
observed from summer to winter in the same place (b) Change in camera viewpoint leading
to drastic change in observed structures (c) Commonly seen dynamic objects in urban scenes
(d) Appearance change as a result of day-to-night transition.

challenges for state-of-the-art VPR techniques [151][152]. Viewpoint Variation: Images of
the same place may look very different when taken from different viewpoints [153]. This
viewpoint variation could be a simple lateral variation or a more complex angular variation
coupled with changes in focus, base point and/or zoom during repeated traversals [154].
Illumination Variation: This is the result of daylight changes and intermediary transitions
during different times of the day/night, which make place recognition difficult to perform
[155][5]. Dynamic Objects: Objects such as cars, people, animals etc. can also change the
appearance of a scene and thus a VPR technique should be able to suppress any features
coming from these dynamic objects [156] [124]. The author has shown all these variations in
Fig. 4.1 for a quick recap of reader.

While many different techniques have been proposed to tackle each (or a combination)
of the 4 variations, a thorough and holistic comparison of these techniques is needed for
an up-to-date review. In this chapter, the author takes up the task to evaluate 10 novel
VPR techniques on the most challenging public datasets using the same platform, evaluation
metric and ground truth data. While presenting the matching performance and (more recently)
matching time has been common in VPR research; the author additionally enlists the memory
footprint of these VPR techniques which is an essential factor at deployment. The novel
contributions of this chapter are as follows:
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1. The techniques compared in this chapter encompass years of VPR research and a
comparison of such magnitude has not been reported previously.

2. VPR performance is highly sensitive to the choice of evaluation datasets, computational
platform, evaluation metric and ground truth data. By keeping all of these variables
constant, the author brings VPR techniques to a common ground for evaluation.

3. Memory footprint for map creation at deployment time is a critical factor and thus, the
author reports the feature vector size for all 10 VPR techniques.

4.2 Experimental Setup

This section first presents the operational details of the VPR techniques that are compared in
this chapter. The author then specifies the details of the datasets used for evaluation. Finally,
the evaluation metrics considered for comparison in this chapter are quickly introduced.

4.2.1 VPR Techniques

HOG Descriptor

Histogram-of-oriented-gradients (HOG) is one of the most widely used handcrafted feature
descriptor. While it does not perform nearly well to any other VPR technique, it is a good
starting point for a comparison such as ours. Author’s motivation to select HOG is also
based upon its performance as shown by McManus et al. [101] and the utility it offers as an
underlying feature descriptor for training a convolutional auto-encoder in [113]. A cell size
of 8×8 and a block size of 16×16 with total number of histogram bins equal to 9 is used.
HOG descriptors of two images are subsequently compared using cosine similarity.

Seq-SLAM

Seq-SLAM showed excellent immunity to seasonal and illumination variations by using
sequential information to its advantage. The proposed implementation has been open-sourced
in MATLAB and ported to Python. The author has used a sequence size of 10, minimum
velocity of 0.8 and max velocity of 1.2 for evaluating Seq-SLAM.

AlexNet

Sünderhauf et al. studied the performance of features extracted from AlexNet and found
conv3 to be the most robust to environmental variations. The activation maps are encoded
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into feature descriptors by using Gaussian random projections. The author’s implementation
of AlexNet is similar to the one presented by authors in [113].

NetVLAD

The author has employed the Python implementation of NetVLAD open-sourced in [157].
The model selected for evaluation is VGG-16 which has been trained in an end-to-end manner
on Pittsburgh 30K dataset [107] with a dictionary size of 64 while performing whitening on
the final descriptors.

AMOSNet

AMOSNet has been trained from scratch on SPED dataset and the model weights have been
open-sourced by authors in [102]. The author has therefore implemented spatial pyramidal
pooling on pre-trained AMOSNet and used activations from conv5 to extract and describe
features. L1-difference is subsequently used to match features descriptors of two images.

HybridNet

Similar to AMOSNet, model parameters for HybridNet trained on SPED dataset have also
been open-sourced. However, the weights of top-5 HybridNet convolutional layers are
initialized from CaffeNet trained on ImageNet dataset. The author has employed spatial
pyramidal pooling on activations from conv5 layer of HybridNet. Feature descriptors of two
images are then matched using L1-difference.

Cross-Region-BOW

The author has employed the [158] open-source MATLAB implementation for experimen-
tation; VGG-16 [159] pre-trained on ImageNet dataset is used while employing conv5_3
and conv5_2 for identification and extraction of regions respectively. Image comparison is
carried out by finding the best mutually matched regions and describing these regions using
a 10k BoW dictionary.

R-MAC

The MATLAB implementation for R-MAC is available at [160]. The author has used conv5_2
of object-centric VGG-16 for regions-based features. For a fair comparison, the author has
removed the geometric verification block while performing power and L2 normalization
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Table 4.1 Benchmark Place Recognition Datasets

Dataset Traverse Environment Variation
Test Reference Viewpoint Condition

Nordland 172 172 Train journey strong very strong
Berlin Kudamm 222 201 Urban very strong strong

Gardens Point 200 200
University

campus strong very strong

on the retrieved R-MAC representations. The retrieved R-MACs are mutually matched,
followed by aggregation of the mutual regions’ cross-matching scores.

Region-VLAD

The author has employed conv4 of HybridNet for evaluating the Region-VLAD VPR ap-
proach. The employed dictionary contains 256 visual words used for VLAD retrieval. Cosine
similarity is subsequently used for descriptor comparison.

CALC

Merrill et al. [113] trained a convolutional auto-encoder for the first-time in an unsupervised
manner for VPR, where the objective of auto-encoder was to re-create the HOG descriptor
of original image given a distorted version of the original image as input. Authors have
open-sourced their implementation and this chapter uses model parameters after 100,000
training iterations for comparison.

4.2.2 Evaluation Datasets

A number of datasets have been proposed for evaluating VPR techniques over the years, as
discussed in Chapter 2 of this thesis. These datasets comprise of different types of variations
ranging from viewpoint, seasonal and illumination variations to a combination of these. In
order to challenge and put all the VPR techniques presented in sub-section 4.2.1 to their
limits, the author selects 3 datasets with the most extreme variations. This sub-section is
dedicated to introducing these 3 datasets. The author also summaries the qualitative and
quantitative nature of datasets in Table 6.1.
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Fig. 4.2 Berlin Kudamm dataset sample images are shown here. The query and reference
traverses exhibit extreme viewpoint variation. This dataset contains recurring and upfront
dynamic objects which is uncommon to any other VPR dataset.

Berlin Kudamm Dataset

This dataset was introduced in [3] and has been captured from crowd-sourced photo-mapping
platform called Mapillary1. Both the traverses exhibit strong viewpoint and conditional
changes as visualized in Fig. 4.2. Due to its urban nature, dynamic objects such as vehicles
and pedestrians are observed in most of the captured frames. Ground truth is obtained using
GPS information to build place-level correspondence. A retrieved image against a query is
considered as a correct match if it is either of the 5 closest frames in ground-truth. Thus, for
a query image q and its ground-truth image n in the reference database, images n−2 to n+2
also serve as corresponding correct matches.

Gardens Point Dataset

This dataset is constructed at the Gardens Point Campus of Queensland University of
Technology (QUT), with the first traverse captured during the day and the reference traverse
taken at night with laterally changed viewpoint. Variations in the dataset are shown in Fig.
4.3. The ground truth is obtained by frame- and place-level correspondence. A retrieved
image against a query is considered as a correct match if it is either of the 5 closest frames
in ground-truth. That is, for a query image q and its ground-truth image n in the reference
database, images n−2 to n+2 also serve as corresponding correct matches.

1https://www.mapillary.com/
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Fig. 4.3 Gardens Point dataset sample images are presented here. The query and reference
traverses are highly illumination variant and accompanied with lateral viewpoint variation.

Nordland Dataset

A train journey is captured in this dataset with the first traverse taken during winter and
the second traverse during summer. While this dataset contains strong seasonal changes
as shown in Fig. 4.4, the author has introduced lateral viewpoint variation by manually
cropping images. The ground truth consists of frame-level correspondence with a retrieved
image against a query considered as a correct match if it is either of the 3 closest frames
in ground-truth. Thus, for a query image q and its ground-truth image n in the reference
database, images n−1 to n+1 also serve as corresponding correct matches.

4.2.3 Evaluation Metrics

For evaluating the place matching performance, the author has continued the use of AUC
as the evaluation metric, as in equation 2.3. Moreover, for real-time autonomous robotics,
matching time is an important factor to be considered at deployment. Thus, for all 10 VPR
techniques, the author reports the matching time of a query image given pre-computed
feature descriptors of reference images. This matching time (reported in seconds) includes
the feature encoding time for an input query image and the descriptor matching time for R
number of reference images.

Generally, the deployment use of VPR is coupled with map creation in SLAM. Therefore,
the size of reference image descriptors is an important factor to be considered for the
practicality of a VPR technique. While this has not been previously discussed, the author
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Fig. 4.4 Nordland dataset sample images are presented in this figure. This dataset is one of
the highly seasonally variant dataset and has manually introduced lateral viewpoint variation.

enlists the size in bytes of a reference image feature descriptor for all 10 VPR techniques.
This gives a good idea about the scalability of a technique for large-scale VPR.

4.3 Results and Analysis

This section is dedicated to the performance evaluation of all VPR techniques. The author
presents the image matching performance on benchmark VPR datasets, followed by matching
time and memory footprint, each discussed in their respective subsections. All evaluations
are performed with an Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz with 64GB physical
memory running a Ubuntu 16.04.6 LTS.

4.3.1 Matching Performance

This sub-section reports the AUC performance of all 10 VPR techniques on each of the 3
datasets. The author also shows exemplar image matches from all three datasets in Fig. 4.9.
While some exemplar images have been matched by most state-of-the-art VPR techniques,
examples of images mismatched by all VPR techniques have also been presented.

Berlin Kudamm Dataset

Fig. 4.8 shows that NetVLAD achieves state-of-the-art performance on Berlin Kudamm
dataset, while Region-VLAD and Cross-Region-BoW follow-up with relatively poor per-
formance. AMOSNet and HybridNet with SPP also achieve nearly similar performance to
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regions based approaches and suffer due to the extreme viewpoint variation not catered by
SPP. It is important to note that due to urban scenario, both the traverses in Berlin Kudamm
dataset include dynamic and confusing objects such as vehicles, pedestrians and trees; as
illustrated in Fig. 4.2. These confusing objects and homogeneous scenes lead to perceptual
aliasing which coupled with extreme viewpoint variations makes Berlin Kudamm highly
challenging for all VPR techniques.

SeqSLAM being velocity dependent has shown inferior results due to the varying speed
of camera platform and significant viewpoint variation. One of the reasons for state-of-the-art
performance of NetVLAD could be its training on large urban place-centric dataset (Pitts-
burgh 250K) which exhibits strong lightning and viewpoint variations along with dynamic
and confusing objects. This is in contrast to the training datasets of VGG-16 (ImageNet)
and HybridNet (SPED). ImageNet is an object detection dataset and is intrinsically not good
for place recognition, while SPED does not contain dynamic objects observed in urban road
scenes.

Gardens Point Dataset

Although this dataset exhibits strong illumination and viewpoint variations, majority of the
VPR approaches perform relatively well. This is due to the distinctive structures captured in
both the traverses. Cross-Region-BoW achieves state-of-the-art results while Net-VLAD,
HybridNet and AMOSNet also perform nearly well on this dataset.

Nordland Dataset

Nordland dataset exhibits strong seasonal variation and synthetic viewpoint change, as
illustrated in Fig.4.4. Region-VLAD achieves state-of-the-art performance with Net-VLAD
and Cross-Region-BOW also giving comparable results. HybridNet performs better than
AMOSNet due to its weights being initialized from the weights of CaffeNet that have been
exposed to a variety of scenes available in the ImageNet dataset.

4.3.2 Matching Time

In real-time VPR systems, matching time is an important factor that needs to be considered
when comparing a query image against a large number of database images. The author shows
in Fig. 4.5, the feature encoding time for all VPR techniques given a single query image. Seq-
SLAM does not extract features from an image but directly uses patch-normalized camera
frames for comparison. As expected, CNNs take significantly more time to encode an input
image compared to handcrafted feature descriptors. However, convolutional auto-encoder in
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Fig. 4.5 Feature encoding time of all VPR techniques are shown in this figure. As ex-
pected, neural network based techniques have higher encoding time compared to handcrafted
techniques. Although, the matching performance of CALC is lower compared to some of
the neural network based VPR techniques, the significantly low encoding time of CALC
promises the possibilities of real-time highly accurate VPR in future.

CALC takes significantly lower time to encode features in comparison to other CNN based
VPR techniques. This is because the architecture of CALC is designed specifically for VPR
as compared to off-the-shelf CNN architectures employed in other VPR techniques.

While the feature encoding time is independent of the number of reference images, feature
descriptor matching time scales directly with the total number of reference images. Thus, the
author also shows the time taken to match feature descriptors of a query and a reference image
in Fig. 4.6. Please note that Fig. 4.6 uses logarithmic scale on horizontal-axis for clarity.
This descriptor matching time can be directly multiplied with the total number of reference
images in the database. It is interesting to note that although Cross-Region-BOW achieves
good AUC performance on different datasets, it suffers from a significantly higher descriptor
matching time. This can be associated with the one-to-many nature of Cross-Region-BOW
which finds the best matched regions between a query and a reference image.

4.3.3 Memory Footprint

The size of feature descriptors plays an important role when considering the practicality of a
VPR technique for deployment in real-world scenarios. Due to limited storage capabilities,
compact representations of image descriptors are needed. Thus, while matching performance
can be improved by increasing the size of feature descriptor (or number of regions where
applicable), it limits the deployment feasibility of such a VPR technique. The author reports
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Fig. 4.6 Descriptor matching time of all VPR techniques are compared here. Please note
that the horizontal axis is in logarithmic scale due to the high variance in-between matching
times of different techniques.

the feature vector size of all VPR techniques in Fig. 4.7. Cross-Region-BOW and Region-
VLAD notably have a large memory footprint compared to other VPR techniques. For
Cross-Region-BOW, this can be associated with the number of regions (200) that have to be
stored, where each region has a descriptor dimension equal to the depth (512) of convolutional
layer. While in Region-VLAD, the employed VLAD dictionary size is 256 with each word
in the dictionary having a dimension (depth of convolutional layer) of 384.

4.4 Summary

This chapter presented a holistic comparison of 10 VPR techniques on challenging public
datasets. The choice of evaluation datasets, ground truth data, computational platform and
comparison metric is kept constant to report the results on a common-ground. In addition
to the matching performance and matching time, the author reported the feature vector
size as an important factor for VPR deployment practicality. While neural network based
techniques out-perform handcrafted feature descriptors in matching performance, they suffer
from higher matching time and larger memory footprint. The performance comparison of
neural network based techniques with each other also identifies their lack of generalisability
from one evaluation dataset to another. While some VPR techniques can achieve better
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Fig. 4.7 Feature descriptor sizes of all VPR techniques are shown here. While this metric
has been rarely discussed in VPR literature, it is highly significant for resource-constrained
platforms and can hinder the deployment of a VPR technique in field. Thus, highly compact
feature descriptors that are encoded in real-time, are condition invariant, repeatable and
distinct should be the output of an ideal VPR system.

matching performance in contrast to others, there may be a trade-off between matching
performance and computational requirements (i.e. higher matching time and/or memory
demand). It is worth noticing that contrary to expectations, increase in VPR performance
(for the author’s choice of parameters and datasets) is not observed in a chronological order.

However, the evaluations performed in this chapter have been limited only to ground-
based platforms, but VPR finds significant applications in aerial robotics as well. In the next
chapter, this analysis of VPR techniques is extended to the aerial domain.
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Fig. 4.8 AUC under PR curves on the benchmark datasets of all VPR techniques.

Fig. 4.9 Samples of images matched/mismatched by different VPR techniques on all three
datasets are presented. The first two columns show the query and ground-truth reference
images respectively, followed by images retrieved by each of the 10 VPR techniques.





Chapter 5

Are State-of-the-art VPR Techniques any
Good for Aerial Robotics?

In the previous Chapter 4, evaluations are performed for ground-based mobile platforms,
which cannot be generalized to aerial platforms. The degree of viewpoint variation experi-
enced by aerial robots is complex, with their processing power and on-board memory limited
by payload size and battery ratings. Therefore, in this chapter, the author uses the previously
discussed state-of-the-art VPR techniques that have been evaluated for ground-based plat-
forms and compares them on 2 recently proposed aerial place recognition datasets with three
prime focuses: a) Matching performance b) Processing power consumption c) Projected
memory requirements. This gives a birds-eye view of the applicability of contemporary VPR
research to aerial robotics and lays down the nature of challenges for aerial-VPR.

5.1 Background

The existing research in VPR has been focused on ground-based mobile platforms and the
datasets used for evaluation contain planar viewpoint changes. However, aerial platforms like
drones introduce a third dimension (vertical) to viewpoint change. This added dimension,
coupled with 6-degrees of freedom of aerial platforms, limited computational payload, limited
sensing payload, limited power/energy, high velocity, difficulty of local motion estimation,
restrained storage and run-time memory, make VPR challenging for aerial robotics.

While most of the datasets used for evaluating VPR techniques, as explored in Chapter 2,
have been created using cameras mounted on cars, bicycles or hand-held setups during walk;
Maffra et al. [161] recently introduced the Shopping street datasets targeted for aerial place
recognition. Therefore, in this paper, the author takes up the task to evaluate 8 contemporary
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Fig. 5.1 The viewpoint variation challenge for aerial platforms is shown in comparison
to ground based platforms. On the left, sample images from Shopping Street 2 dataset
containing 6-DOF viewpoint change are shown. While, on the right, images from the widely
used Gardens Point dataset and Stlucia dataset posing lateral viewpoint change are shown.

VPR techniques on the datasets proposed in [161]. The objective of this paper is to answer
the question: Can VPR state-of-the-art research be extended to resource-constrained aerial
robotics and how can viewpoint change resulting from 6-DOF (degrees-of-freedom) platforms
affect place matching performance?

To explain the difference between a ground-based and aerial-based platform’s viewpoint
variation, the author shows in Fig. 5.1, a comparison between existing datasets and the
datasets used in our work. The novel contributions of this chapter are as follows:

1. This chapter discusses and evaluates inter-platform VPR (particularly ground and
aerial). This is important because the performance of a VPR technique immune to
planar viewpoint changes cannot be generalized to an aerial platform.

2. The author presents the crucial metrics of processing power needs and memory com-
mitment to be considered at the time of selecting a VPR technique against aerial
robotics. These metrics directly effect the practicality of using any VPR technique in a
resource-constrained, battery powered aerial robot.

It is important to note that although the datasets used in this evaluation particularly contain
3-dimensional challenging viewpoint variance, with illumination and temporal appearance
change; it has been created using a hand-held rod to imitate vertical viewpoint variation.
Both lateral and vertical position of the hand-held rod are continuously varied to simulate a
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drone-mounted camera. Despite the contrived nature of dataset, baseline VPR techniques
struggle (as shown later in sub-section 5.3.1) from such simulated 6-DOF viewpoint variation,
“validating” the difficulty of this dataset.

The VPR techniques used for evaluation in this chapter are a subset of the methods
discussed in Chapter 4 (and in [134]), and have shown promising results on different ground-
based datasets. The comparison performed for aerial robotics in this chapter is kept fair by
deploying all the techniques on a common platform. In addition to the matching performance
of all techniques, the author derives the relations for processing power consumption which
is an important factor of consideration for battery powered drones given limited flight-time
[162]. Unlike ground-based platforms, aerial robots are also limited by the available physical
memory for storing data, one reason being the increase in payload thus, faster battery
drainage. Also, larger memory size translates to greater memory power consumption. The
author therefore, gives the projected memory requirements of all techniques for storing each
dataset (feature descriptors of reference images) as a complete map. While there is significant
research into compact storage of robot maps and place selection as reviewed in [58], it is out
of the scope of this work and thus, the author considers all reference image descriptors as
nodes of the map.

5.2 Experimental Setup

The VPR techniques used in this chapter have already been introduced in Chapter 2 and
their exact details have been kept similar to those of Chapter 4. Therefore, in this section the
author only explains the datasets and the evaluation metrics used for this research.

5.2.1 Evaluation Datasets

The datasets used in this chapter are introduced by Maffra et al. in [161]. Essentially the
authors performed three traverses of a shopping street in the center of Zurich city from
different viewpoints and create two datasets. One of the three traverses serves as a constant
reference in both the datasets, while the other two traverses act as query images. Ground-truth
is provided for all three traversals in the form of timestamps. The details of these datasets are
summarized in Table 6.1.

Since the three traversals were recorded with a Visual-Inertial sensor that stores images
and timestamps as ROS (Robot Operating System) bag files, the author of this thesis wrote a
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Table 5.1 Benchmark Place Recognition Datasets

Dataset Traverse Environment Variation
Test Reference Viewpoint Condition

Shopping Street 1 8577 7494 Urban moderate moderate
Shopping Street 2 4781 7494 Urban strong moderate

Fig. 5.2 Samples of images from Shopping Street 1 dataset are shown here. Top row consists
of query images while the bottom row shows reference images. While this dataset contains
illumination variation and dynamic objects, it does not have any extreme viewpoint variation.
This makes Shopping Street 1 dataset a good reference in comparison to 6-DOF viewpoint
change of Shopping Street 2 dataset (sub-section 5.2.1).

simple Python utility to extract images from a bag file with filenames as timestamps. This is
provided here1 for future ease-of-use of any datasets created using ROS-based platforms.

Shopping Street 1 Dataset

This dataset consists of the two traverses of shopping street captured with a hand-held setup
as shown in Fig. 5.2. The undertaken traverses exhibit moderate viewpoint and appearance
variation with adequate perceptual aliasing. While this dataset does not pose any significant
6-DOF viewpoint change as compared to existing VPR datasets, it serves as a good reference
for the objective of this paper: observing the effect of extreme 6-DOF viewpoint change in
comparison to moderate viewpoint changes. Therefore, the author evaluates the 8 state-of-
the-art VPR techniques discussed in sub-section 4.2.1 on this dataset to give a qualitative and
quantitative insight into their prowess under moderate viewpoint changes.

1https://github.com/MubarizZaffar/rosbagextraction/

https://github.com/MubarizZaffar/rosbagextraction/
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Fig. 5.3 Samples of images from Shopping Street 2 dataset are shown here. Top row consists
of query images taken using a rod-mounted camera while bottom row shows images taken by
a handheld camera. Challenging viewpoint variation is depicted here, which is very similar
to the variation experienced by a 6-DOF aerial robot.

Shopping Street 2 Dataset

The Shopping Street 2 dataset contains the interesting 6-DOF viewpoint change. This
viewpoint change has been introduced by mounting the camera on a 4 meter long rod such
that the motion of camera imitates the flying behavior of a drone. This dataset also contains
significant illumination variation and temporal appearance change. The author shows some
sample query and reference images in Fig. 5.3.

5.2.2 Evaluation Metrics

Matching Performance

In image-retrieval for VPR, area under the precision-recall curves (AUC) is a well-established
evaluation metric, as widely reviewed in this thesis. Therefore, to maintain consistency in
this chapter, the author only computes and reports AUC performance by utilising equation
2.3.

Processing Power Consumption

The power consumption of a CPU is directly related to the CPU utilisation of running
processes as shown by authors in [163]. Over-time, this power consumption becomes a
critical factor for battery powered aerial robots. Since, computationally intense processes
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running for longer time-periods will quickly drain the battery, they lead to reduction of the
single-charge flight-time of a drone. Therefore, the author builds upon the power consumption
relations of [163] and derives the battery expense (Ampere-hours) for each of the 8 VPR
techniques. The CPU power consumption is linked to CPU utilisation by the below equation
5.1.

Pc = Pi +(Pb −Pi)×U (5.1)

where; Pc = Power consumption o f CPU

Pi =CPU power consumed in idle state

Pb =CPU power consumed under f ull load

U =CPU utilisation

Given that the author uses the same computational platform i.e. Intel(R) Xeon(R) Gold
6134 CPU @ 3.20GHz for evaluating all 8 VPR techniques, Pi and Pb can be taken as
constants while U is a variable parameter. Thus, by taking Pi as an offset a and Pb −Pi as the
slope s, equation 5.1 can further be modified as below.

Pc = a+(s×U) (5.2)

The CPU utilisation U can further be broken down into the CPU utilisation Ue for an
image feature descriptor encoding and CPU utilisation Um for feature descriptor matching.
These two CPU utilisations correspond to the feature encoding time te for an input query
image and query descriptor matching time tm for M (M = 7494) reference images in the
database. Since encoding an input query image and matching it with all the reference images
in the database is the deployment application of VPR techniques, the power consumed Pq by
such a process can be represented as;

Pq = Pe +Pm (5.3)

Pe = a+(s×Ue) (5.4)

Pm = a+(s×Um) (5.5)

Given that CPUs are powered from a constant voltage rail V (typically V = 2.5 volts),
the ampere-hours consumed per query image Ahq can be estimated from equation 5.6. Thus,
the total Ah consumption Aht of each VPR technique for N query images and M reference
images can be computed by using equation 5.7.
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Ahq =
Pe × te +Pm × tm

V
(5.6)

Aht = N ×Ahq (5.7)

Projected Memory Requirement

Although the ability to retrieve correct image matches is critical for a VPR technique, there
is a trade-off between the amount of salient information that is encoded and the available on-
board storage. Thus, although a VPR method can achieve excellent matching performance, its
deploy-ability on an aerial platform depends on the memory footprint of its image descriptors.
Therefore, for each of the 8 VPR techniques, the author provides a projected memory
consumption for storing the descriptors of reference images corresponding to a complete
environment traversal.

5.3 Results and Analysis

This section discusses the performance evaluation of all the employed VPR techniques. A sep-
arate subsection is allocated to each criterion including matching performance, computational
power requirements and memory usage.

5.3.1 Matching Performance

For both the benchmark datasets, this sub-section outlines and compares the AUC under PR-
curves of all the 8 VPR approaches. For a qualitative insight, the author has also displayed
example scenarios where query images are successfully matched or mismatched by the
employed VPR techniques.

Shopping Street 1 Dataset

For this dataset, Fig. 5.5 illustrates the PR-curves of all the employed approaches. The
dataset contains mostly less-challenging planar (2-dimensional) viewpoint variation but has
moderate illumination changes and occasionally observed dynamic objects, therefore, most
of the techniques perform well. This shows the success of all the recently proposed VPR
techniques provided moderate viewpoint variation in the dataset. Out of all the techniques
and using AUC under PR-curves as an evaluation parameter, NetVLAD achieved state-of-the-
art performance followed by AMOSNet/HybridNet, RMAC and CALC with very minimal
differences. Examples of matches/mismatches are shown in Fig. 5.4.
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Fig. 5.4 Example images retrieved by all VPR techniques on both datasets are shown here.
All techniques show excellent matching performance on Shopping Street 1 dataset, but
struggle with 6-DOF viewpoint variation in Shopping Street 2 dataset.

Shopping Street 2 Dataset

The query and reference traverse exhibit strong viewpoint variation in this dataset (see Fig.
5.3). Fig. 5.6 reports the PR curves for this dataset; showing across-the-board decline in
matching performance with NetVLAD still outperforming other VPR techniques.

The significant performance degradation for all other approaches (in comparison to
NetVLAD) can be associated with the training of the CNN models. For instance, authors of
NetVLAD [107] trained VGG-16 on an urban 250k place-centric Pittsburgh dataset exhibiting
strong condition and viewpoint changes coupled with dynamic objects such as pedestrian,
vehicles etc. Whereas, although HybridNet used strong condition-variant SPED dataset, the
dataset intrinsically does not contain any viewpoint variation, thus, failing to perform on
Shopping Street 2 dataset. Since, HybridNet is also the underlying model for Region-VLAD,
where Region-VLAD does not explicitly tackle viewpoint variation; matching performance
degrades under 6-DOF viewpoint change. Similarly for RMAC, VGG-16 was pre-trained on
object-centric ImageNet dataset, therefore, it is not efficient in dealing with severe changes
in viewpoint. Although, authors of CALC have trained their auto-encoder with viewpoint
variant input images, the nature of variation is random planar projections which leads to the
observed performance degradation for aerial place recognition.

In summary, a common observation across all baseline techniques is the decline of
matching performance from lateral viewpoint variation of Shopping Street 1 dataset to 6-
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Table 5.2 Computational Power Requirements

Computational
Performance

VPR Techniques (Platform: Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz with 32 cores, 64GB RAM)
AlexNet NetVLAD AMOSNet HybridNet Cross-Region-BOW R-MAC Region-VLAD CALC

Ue 0.734 0.656 0.437 0.437 0.32 0.5 0.25 0.781
Um 0.0312 0.036 0.03 0.03 0.1 0.371 0.031 0.0312

te(sec) 0.666 0.77 0.359 0.357 0.834 0.478 0.463 0.027
tm(sec) 3.222 0.0374 0.614 0.584 1199.04 0.254 0.899 0.974

Aht 0.3128 0.2688 0.0931 0.0921 63.836 0.1768 0.0764 0.0272

DOF viewpoint variation of Shopping Street 2 dataset. However, the trend of this decline is
different between NetVLAD and the remainder techniques, primarily due to the absence of
viewpoint variation in the training datasets of latter. These observations outline the need and
significance of large-scale, 6-DOF viewpoint variant datasets for training VPR techniques,
especially for aerial robotics.

5.3.2 Processing Power Consumption

When we generally talk about aerial robotics or resource-constrained platforms, energy
management is the key component for any on-board deployed application. Thus, while
different VPR techniques have been proposed over the years, each achieving incremental
matching performance improvement and immunity to challenging conditional variations;
a thorough investigation of their practicality for VPR is presented in this sub-section. The
author enlists in Table 6.1, the CPU utilisation Ue for feature encoding, CPU utilisation
Um for feature matching, feature encoding time te and feature matching time tm. By taking
a = 0, s = 1, V = 2.5 and N = 4781, we also enlist the total battery consumption Aht for all
VPR techniques to give a comparative analysis. The units of times te and tm were changed
from seconds to hours for Aht computation. Since, CPU utilisation is a highly fluctuating
variable therefore, we take its average over run-time of a process with a sampling rate of
0.01sec. It can be clearly seen that Cross-Region-BOW is the most power-hungry VPR
technique primarily due to its computationally intense feature matching methodology. On
the other hand, CALC stands-out to be the most energy-efficient technique for VPR. Please
note that the author does not explicitly optimize any of the VPR techniques for performance
enhancement and the values of Aht in Table 6.1 will scale with the values of a and s.

5.3.3 Projected Memory Requirement

One of the well-researched areas in robotic navigation and mapping is the efficient storage
and indexing of a robot map. This primarily involves selection of images that correspond
to distinct places based on either time-interval [5], distance [60], distinctiveness [61] or
memorability [2]. While many different techniques have been presented in this regard, the
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underlying limitation is posed inherently by the memory footprint of a technique’s image
descriptor. Therefore, although place/image selection schemes can reduce the total number
of images to be stored in a robot map, the size of the map will still scale with the size of a
VPR technique’s output descriptor. Thus, with abstraction to any place selection scheme
employed, the author reports in Fig. 5.7, the projected memory consumption for all 8 VPR
techniques, given that the descriptors of all reference images are to be stored. Please note
that the size of reference database for both the evaluation datasets used in this work is same
and hence information in Fig. 5.7 is equally applicable.

5.4 Summary

In this chapter, the author performed a thorough evaluation of visual place recognition
state-of-the-art on two aerial place recognition datasets. It is shown that contemporary VPR
techniques generally perform well on datasets containing moderate changes in viewpoint
even under severe variations in illumination and conditions. However, the notable change
of matching performance in between the two datasets (Shopping Street 1 and Shopping
Street 2) reveals the extent of challenge posed by viewpoint variance; especially for 6-DOF
(degrees-of-freedom) platforms like drones.

The author also presents the limitations of VPR techniques from computational and
storage perspectives given the limited on-board resources and energy supply of an aerial
robot. This evaluation is the first step into generalisability analysis of VPR techniques
between different platforms and can be further extended upon proposal of more challenging
aerial datasets in future. Generally, the motor power requirement for drones takes the huge
chunk of battery storage rather than the computational platform, however our objective in this
chapter was to see the local comparison between techniques for such power requirements.
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Fig. 5.5 AUC-PR curves of the employed VPR approaches on Shopping Street 1 Dataset are
shown here. All VPR techniques achieve near-to-ideal matching performance on this dataset,
advocating that the past few years of VPR research has been highly successful against planar
viewpoint variations and conditional changes.
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Fig. 5.6 AUC-PR curves of the employed VPR approaches on Shopping Street 2 Dataset
are shown here. All VPR techniques clearly suffer from 6-DOF viewpoint variation in this
dataset, with NetVLAD achieving state-of-the-art matching performance.
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Fig. 5.7 Projected memory requirements for all the VPR approaches are shown here. The
vertical axis is in logarithmic scale for clarity. The leftmost bar shows the typical RAM
size of various development platforms. The reference features may not be loaded in RAM
and could essentially be stored in an on-board SD Card which usually has similar storage
capacity.





Chapter 6

CoHOG: A Light-weight,
Compute-efficient and Training-free
VPR Technique

The evaluations performed in Chapter 4 and Chapter 5 identified that the computational
performance in the form of image retrieval time, training time and memory consumption are
also important factors to be considered during the design of a VPR system. The existing VPR
techniques either do not regard these requirements or the place matching performance of
computationally-efficient techniques is significantly lower than the state-of-the-art. Therefore,
in this chapter, the author presents a novel, compute-efficient and training-free approach
based on Histogram-of-Oriented-Gradients (HOG) descriptor for achieving state-of-the-art
performance-per-compute-unit in Visual Place Recognition (VPR). The inspiration for this
approach (namely CoHOG) is based on the convolutional scanning and regions-based feature
extraction employed by Convolutional Neural Networks (CNNs). By using image entropy
to extract regions-of-interest (ROI) and regional-convolutional descriptor matching, this
technique performs successful place recognition in changing environments. The author uses
viewpoint- and appearance-variant public VPR datasets to report this matching performance,
at lower RAM commitment, zero training requirements and 20 times lesser feature encoding
time compared to state-of-the-art neural networks. The image retrieval time of CoHOG and
the effect of CoHOG’s parametric variation on its place matching performance and encoding
time is also discussed.
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6.1 Background

The Chapter 1 of this thesis introduced in detail the VPR problem and the various challenges
within VPR. It is a well-defined, albeit a highly challenging one, since places change their
appearance rapidly due to varying viewpoints and conditions. Other than the environmental
variations, texture-less and low-informative scenes also pose difficulty to place matching.
Fig. 1.4 has previously shown these different variations that a VPR system is expected to be
robust against. However, in addition to these variations, a VPR systems is constrained by
run-time memory, processing power and/or pre-deployment training needs.

Prior to the use of neural network based techniques, VPR research was primarily based
on local and global handcrafted feature descriptors, as reviewed in Chapter 2 of this thesis.
Local feature descriptors extract and describe keypoints (areas of interest) from an image,
therefore they are primarily viewpoint invariant but suffer from illumination variation. Global
feature descriptors, on the other hand, suffer from translational and/or rotational viewpoint
change but they are moderately illumination invariant. Moving away from handcrafted
feature descriptors, the application of Convolutional Neural Networks (CNNs) to VPR was
first studied by Chen et al. [103]. Since then, different CNNs with and without architectural
modifications have incrementally shown state-of-the-art VPR performance. However, CNNs
(and Convolutional Auto-encoders as in [113]) require significant model training with their
deployment accuracy directly linked to the size, inter-sample variance and nature of the
training dataset. Training of VPR-specific CNNs requires large-scale labelled datasets of
places from a multitude of environments, which is a practical limitation. Moreover, training
of these CNNs requires dedicated Graphical Processing Units (GPUs) with training time
usually ranging from a few days to a few weeks. One key limitation of neural network
based techniques is their intense computational nature requiring significantly higher run-time
memory and feature encoding time compared to handcrafted feature descriptors. Thus, while
the success of these recent CNN-based techniques from the perspective of place matching is
evident, their practical deployment in field is restricted. More specifically, such computational
intensiveness raises concerns for deployability on resource-constrained platforms (including
battery-powered aerial, micro-aerial and ground vehicles) as identified in [149] [164].

In this chapter, the author proposes a novel technique based on hand-crafted feature
descriptors delivering state-of-the-art (or close to state-of-the-art) VPR performance with no
training requirements compared to CNNs. The proposed technique has significantly lower
feature encoding time and RAM commitment while delivering comparable place matching
performance on challenging viewpoint- and conditionally-variant datasets. The inspiration
for this approach is drawn from the following:
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1. By design, CNNs are able to scan an entire image for a particular feature and irrespec-
tive of the location of that feature in an image, the same CNN filter (layer activations)
will fire.

2. CNNs trained/fine-tuned for VPR have the ability to extract regions-of-interest (ROI)
which are informative and distinct.

3. CNNs trained on condition-variant VPR datasets can internally learn representations
of places/images which are immune to seasonal and illumination variations.

From the above list, both 1 and 2 contribute towards viewpoint invariance. This is further
improved by manually introducing viewpoint variation in training datasets. Conditional
invariance is predominantly the result of 3, not user-defined and essentially a black-box.

By deriving motivation from this behavior of CNNs, the proposed technique first com-
putes the entropy map of an image and extracts information-rich regions from it. Each of
these ROI are then locally described by dedicated HOG-descriptors. Secondly, the author
uses convolutional matching of regional HOG-descriptors that provides viewpoint invariance.
This regional-convolutional matching is based on standard matrix multiplication and is there-
fore compute-efficient. For illumination invariance, block normalization of HOG-descriptors
is used, which shows acceptable performance on conditionally-variant datasets. The au-
thor’s choice of HOG-descriptor is based on its reliable performance across illumination
and seasonal variation as shown by McManus et al. [101], and its utility as an underlying
feature descriptor for training a VPR-specific convolutional auto-encoder in [113]. The
image retrieval scheme of CoHOG can be summarized by Fig. 6.1.

6.2 Methodology

This section presents the methodology adopted in this work that constitutes CoHOG. The
proposed technique can be broken down into 7 primary blocks (as shown in Fig. 6.2) for
end-to-end VPR image retrieval. The query image can be any incoming RGB camera frame
which is converted to grayscale and resized to W1×H1. The robot map consists of pre-
computed HOG-descriptors of reference images. Please note that the author has used ‘vanilla’
HOG in this work, but the implementation computes HOG in the regional sense instead of
the usual global fashion. A sub-section is dedicated to each of three crucial computational
tasks of the proposed technique, namely HOG-descriptor computation, ROI extraction and
regions-based convolutional matching.
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Fig. 6.1 The developed technique (CoHOG) is explained here. Each query image goes
through ROI extraction and HOG computation, which are then fed to the convolutional
matching block. This block outputs a similarity score against each reference image in the
robot map. The green squares in region extraction block represent salient regions while the
red squares are less-informative confusing regions.

6.2.1 ROI Extraction

Regions-of-interest based image matching has recently been the subject of significant VPR
research [3] [110] [111]. In CoHOG, the author uses regions in an image that are information-
rich. Firstly, the entropy map for each query image is computed using the following algorithm.
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Fig. 6.2 The block-level overview of CoHOG is shown here.

Algorithm Computing Entropy Map
Entropy_Map = Zeros_Matrix(W1,H1)
Max_Entropy_Value = log2 (256) = 8
Create a Histogram o f 256 Pixel Intensity Bins
Radius = UserDe f inedConstant
for all Pixels in Image do

Origin = Pixel_Index
Local_Neighbourhood = Circle(Origin,Radius)
Local_Neigh_List = Append(Local_Neighbourhood)

end for
for all Elements in Local_Neigh_List do

for all Valid Pixels in Local_Neighbourhood do
if Current_Pixel_Intensity lies in BinX then

Items_in_BinX = Items_in_BinX +1
end if

end for
Entropy_Map(i, j) = log2 (No.o f Filled Histogram Bins)
Clear all Histogram Bins

end for
Normalize Entropy_Map with Max_Entropy_Value

The entropy map has the same dimensions as the query image i.e. W1×H1 and example
query images with entropy maps computed using this algorithm are shown in Fig. 6.3. The
author now defines a region in an image as a W2×H2 image patch. Thus, a W1×H1
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image with regions/patches of size W2×H2 contains N regions in total, whose goodness is
represented by a matrix R;

Where; N = (H1/H2)× (W1/W2)

R =


r11 r12 . . . r1n

r21 r22 . . . r2n
...

... . . . ...
rmn rmn . . . rmn



Where; m = H1/H2 n =W1/W2

ri j ∈ Z2|Z2 = [0,1]

ri j = 1 |Region = Good

ri j = 0 |Region =Con f using

For evaluating the goodness rxy of each region in R, the entropy map is represented as
a matrix E. This entropy matrix has a size of W1×H1 with element values between 0−1
(with 1 being the ideal value) and has the below shape.

E =


e11 e12 . . . e1W1

e21 e22 . . . e2W1
...

... . . . ...
eH1W1 eH1W1 . . . eH1W1


where; {ei j ∈ K | K ⊆ R∧K = {0, . . . ,1}}

The goodness rxy of each region is calculated by thresholding the average entropy values
of a (W2× 2)× (H2× 2) block size i.e. each block containing 4 regions (each region of
size W2×H2), where all 4 regions have a common corner. Such a block-level evaluation
provides consistency with HOG-descriptor computation, as shown later in sub-section 6.2.2.
The stride of this block-level goodness evaluation is Stride =W2 = H2 and hence the total
number of regional blocks for evaluation is M = n−1×m−1. All G regions which have
an entropy score exy greater than or equal to the goodness threshold GT are selected for
matching. Therefore, G is a variable depending on the scene being represented in an image
and may vary from one query image to another. Selecting regions in this manner compared to
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Low                                 Entropy                                  High        

Fig. 6.3 Example of a query image [left] with its corresponding entropy map [right] is shown
here. Texture-less walls and floors get filtered out as lower entropy areas which is consistent
with the author’s motivation to discard such regions.

the conventional Top-G (where G is a constant) regions selection provides more saliency and
computational advantages. If an image has more confusing regions, only a few salient regions
are selected. This helps in successfully matching low-textured images and is not possible
with Top-G regions selection. Discarding confusing regions before regional convolutional
matching also leads to lesser computational intensity. Fig. 6.4 shows examples of good
regions extracted with varying GT .

6.2.2 HOG-descriptor Computation

Histogram-of-Oriented-Gradients (HOG) [165] [166] is a well-established handcrafted com-
puter vision technique used originally for object detection. The end-to-end HOG-descriptor
computation is quickly summarized as follows:

1. A gradient map is computed for an input grayscale image of size W1×H1.

2. A histogram-of-oriented-gradients (HOG) is created and computed for all N regions in
the image, where every region has a size of W2×H2. Each regional-histogram has L
bins, such that a bin is identified by a range of gradient angles assigned to it.

3. HOG computed previously is L2-normalised at a block level of size (W2× 2)×
(H2×2). This results in a descriptor of depth 4×L with the total number of block-
level HOG-descriptors equal to M. Refer to sub-section 6.2.1, each ROI now has a
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Query Image GT=0.4 GT=0.5 GT=0.6 GT=0.7 GT=0.8

Fig. 6.4 ROI extracted by CoHOG are shown here with varying GT . Each good region is
represented by a green colored square. Increasing GT reduces the number of regions selected
by the proposed technique. A clear range exists between GT = 0.5−0.7, where confusing
and low-informative regions coming from sky and texture-less walls/floors are filtered out,
while maintaining a reasonable number of regions for subsequent regional convolutional
matching.

corresponding HOG-descriptor of depth 4×L which is illumination invariant and can
be easily indexed/retrieved.

6.2.3 Regions based Convolutional Matching

After HOG-descriptor computation, a query image is essentially converted into M regions
with each region described by a vector of length 4×L. Based on ROI evaluation, these M
regions are reduced to G salient regions. This allows the author to shape the query image
HOG-descriptor as a 2-dimensional matrix A with dimensions [G,4×L]. The reference image
is also composed of M regions with descriptors of depth 4×L. Thus, the reference image
is shaped as a matrix B with dimensions [M,4×L]. Next, standard matrix multiplication is
performed between A and BT yielding a matrix C of dimensions [G,M]. Each row of matrix
C represents a query image region and every column in C represents the cosine-matching
scores against all reference image regions.

The author employs max-pooling across all rows of matrix C to find the best matched
reference image candidate region for every query image region, which yields a vector D
having length G. Finally, the author takes the arithmetic-mean of vector D giving us the
similarity score of a query and reference image in the range of 0− 1. A query image is
matched with all reference images, such that the reference image with the highest matching
score is selected as the best match.
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Query
Image

Correctly
Matched
Reference

SPEDTest DatasetGardens Point DatasetESSEX3IN1 Dataset Synthia Dataset Cross-Seasons Dataset

Fig. 6.5 Samples of correctly matched places by CoHOG on all 5 datasets are shown here.
Given the viewpoint variations in ESSEX3IN1 [2] and Gardens Point datasets [1] datasets,
CoHOG’s regional-convolutional matching scheme can retrieve correct matches from the
database. Even with the conditional variation in SPEDTest [110], Synthia [128] and Cross-
Seasons datasets [129], the proposed technique is able to correctly match places. More
samples of correctly and incorrectly matched places and the open-source technique are
provided at https://github.com/MubarizZaffar/CoHOG_Results_RAL2019

6.3 Results and Analysis

This section first discusses the experimental setup used in this analysis including the VPR
datasets, VPR techniques and evaluation metric used for assessing CoHOG’s performance.
The author then presents a detailed qualitative and quantitative comparison of CoHOG with
state-of-the-art VPR techniques on the fronts of image matching, feature encoding time
and run-time memory requirements. The image retrieval performance of CoHOG is also
discussed and the effect on computational and matching performance by varying different
parameters is shown to give the reader an insight into the selection of thresholds.

6.3.1 Experimental Setup

In order to evaluate CoHOG, the author has utilised 5 VPR datasets that represent all the
challenges in VPR (as identified in Chapter 1). For viewpoint variation, the Gardens Point
dataset [1] is used. Secondly, the ESSEX3IN1 dataset which was introduced in [2] and
contains highly confusing and challenging images of places is used. Thirdly, the SPEDTest
dataset is used which has been introduced in [103]. In this chapter, the author also employed
the synthetically created Synthia [128] dataset, which consists of city-like traversal during
Winter and Spring seasons. The number of query and reference images are 959 and 947,
respectively. Finally, the author used the low-quality, highly dynamic and blurry Cross-
Seasons dataset [129] consisting of 206 sunny query images and 202 dusk reference images.
Results on this dataset present the failure-cases of CoHOG and identify important directions
for future research.

https://github.com/MubarizZaffar/CoHOG_Results_RAL2019
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For comparison with CoHOG, the author used all contemporary VPR techniques em-
ployed in Chapters 4 and 5. The implementation details, selected parameters and evaluation
platform have all been kept similar to the setup of Chapter 4 for a fair comparison, except
that AlexNet is used for the Region-VLAD approach instead of HybridNet. The author
has also reported the performance for using Top-G (at G=200, 400 and 800) based regions
selection with CoHOG. As the evaluation-metric, the author examined the place matching
performance per compute unit of all VPR techniques. The extensive review performed by
Lowry et al. in [8] identifies high precision to be a desirable characteristic of a VPR system
due to the advent of false-positive prediction systems (as in [150] [167] [168]). On the other
hand, authors in [113], [111], [149] and [134] have identified feature encoding time (te) to
be a crucial computational metric. Therefore, by combining precision at 100% recall with
encoding time per image, the author defines the Performance-per-Compute-Unit (PCU) as
below.

PCU = Precision× log(
Max Feature Encoding Time

Feature Encoding Time
+9)

In the above equation, higher precision directly leads to higher PCU. However, for
feature encoding time te, the author computes the logarithmic encoding time boost for
a given VPR technique to provide a reasonable combination of precision and encoding
time metrics. Thus, only exponential increase in encoding time for a highly precise VPR
technique leads to increase in PCU. Maximum feature encoding time (te_max) belongs to the
most computationally intensive VPR technique, which in this case is Cross-Region-BoW
with the highest feature encoding time of 0.83 seconds. A scalar ‘9’ is added to ensure that
PCU = Precision for the technique with te = te_max, instead of PCU = 0, thus providing an
interpretable scale.

6.3.2 Performance Evaluation

This section provides a detailed comparison of CoHOG with state-of-the-art VPR techniques
on the frontiers of performance-per-compute-unit and run-time memory requirements. The
reported performance is for GT = 0.5, W1 = H1 = 512, W2 = H2 = 16 and L = 8.

Place Matching Performance

This sub-section presents the PCU of CoHOG in comparison with other VPR techniques.
While Fig. 6.6 shows the PCU of all techniques, the absolute values of precision at 100%
recall and feature encoding time are listed in Table 6.1 for the reader’s reference.
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Table 6.1 Place Matching Precision, Feature Encoding Time and RAM Commitment

Performance Metric VPR Techniques (Platform: Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz with 32 cores, 64GB RAM, No GPU)
HOG AlexNet AMOSNet HybridNet CALC Cross-R-BOW NetVLAD R-VLAD RMAC Top-200 Top-400 Top-800 CoHOG

Precision ESSEX3IN1 0.01 0.14 0.26 0.28 0.1 0.62 0.76 0.56 0.12 0.75 0.79 0.82 0.84
Precision Gardens 0.2 0.49 0.64 0.81 0.44 0.81 0.95 0.9 0.42 0.74 0.82 0.87 0.9

Precision SPEDTest 0.02 0.03 − − 0.02 0.5 0.74 0.54 0.6 0.4 0.44 0.48 0.51
Precision Synthia 0.37 0.89 0.91 0.92 0.76 0.89 0.95 0.86 0.92 0.67 0.83 0.91 0.92

Precision CrossSeasons 0.5 0.85 0.93 0.96 0.67 0.9 0.97 0.87 0.83 0.68 0.75 0.43 0.65
Encoding Time(sec) 0.007 0.67 0.36 0.36 0.027 0.83 0.77 0.46 0.47 0.02 0.02 0.02 0.02

RAM Consumption(MBs) 0.02 47.04 4.22 4.22 2.3 0.58 1.21 47.04 0.58 0.06 0.06 0.06 0.06

CoHOG achieves state-of-the-art PCU on all the 5 datasets utilised in this chapter as
shown in Fig. 6.6. The author also reports state-of-the-art precision on ESSEX3IN1 dataset
and comparable precision on other datasets (except cross-seasons dataset), as listed in Table
6.1. The viewpoint variation in ESSEX3IN1 dataset is catered for by CoHOG’s regional
convolutional matching while confusing frames (and/or regions within) are handled by our
entropy-based region extraction. This matching performance is qualitatively shown in Fig.
6.5. The author achieved close-to-ideal place matching precision on Gardens Point dataset
and Fig. 6.5 shows samples of places correctly matched by the proposed technique despite the
viewpoint variation. The nature of challenges handled in SPEDTest and Synthia datasets is
also depicted in Fig. 6.5, where the author shows that under notable seasonal and illumination
changes, CoHOG can still retrieve correct place matches. However, the cross-seasons dataset
consisting of low-quality images with motion blur and significant dynamic objects identifies
important limitations of the proposed gradient-based technique, that can intrinsically be
handled by neural network-based techniques. Please note that the average number of regions
employed by CoHOG are 730, 790, 780 and 750 on SPEDTest, Synthia, Gardens Point and
ESSEX3IN1 datasets, respectively, but it still achieves better matching performance than
Top-800, similar to our motivation in sub-section 6.2.1.

The precision-recall curves for CoHOG are presented in Fig. 6.7. In an environment-
aware VPR system, conditional variations are predictable [169] and can either be avoided
or the VPR system be switched accordingly. Thus, given the lower computational and zero
training requirements, CoHOG presents the best overall utility for a computationally-efficient
VPR system in changing environments.

Run-time Memory Requirements

Due to their intense computational requirements, neural network-based techniques have
significantly higher run-time memory consumption which is an important factor for resource-
constrained and battery-powered robotic platforms that are usually running multiple tasks
simultaneously. The author reports the run-time memory consumption of all VPR techniques
in Table 1, which shows that CoHOG is light-weight compared to the rest of VPR techniques.
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Fig. 6.6 The PCU of CoHOG is compared with all other VPR techniques. HybridNet and
AMOSNet are trained on SPED dataset and thus not included for SPEDTest comparison.

This is because CoHOG intrinsically does not involve loading/deployment of any machine-
learning models into RAM for feature extraction/description. The reported RAM commitment
is only for encoding a single query image.

Descriptor Matching Time

The descriptor matching time (tm) represents the time required to match the feature descriptors
of 2 images and determines the retrieval performance of a VPR system. The image retrieval
time (T ) for any VPR system can be modelled as T = te+O(Z)× tm. Where, O(Z) represents
the total number of prospective candidate matches and could be linear, logarithmic or other
depending upon the employed neighbourhood selection mechanism (e.g., linear search,
approximate nearest neighbour search etc.). The author further models tm as tm = O(D)×
N1×N2, where O(D) is the time required to match 2 descriptors of length D, N1 is the number
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Fig. 6.7 The Precision-Recall curves for all 10 VPR techniques on the 5 datasets employed
in this chapter are presented. (Vector Graphics: Zoom-In Supported)

of query image descriptors and N2 is the number of reference image descriptors. Theoretically,
the value of tm for CoHOG is tm = O(4×L)×G×M. The values of te and tm for the author’s
implementation of CoHOG are 0.02 sec and 0.2 msec, respectively, for the parameters
specified in sub-section 6.3.2, such that the value of T will be T = 0.02+0.0002×O(Z) sec.

Because it is computationally intractable to have a linear O(Z) for larger values of Z,
different approaches exist to cater for this: 1) The total number of images in a map can be
limited to a fixed value [58], 2) A spatial context can be introduced to search across images
within a particular geographical radius [170], 3) A two-stage approach can be adopted to
first extract possible candidate matches, followed by rigorous feature matching [120] [121],
4) Multi-processing systems can be employed to distribute the matching task across several
processors. For further timing comparison between the techniques discussed in this work and
understanding respective limitations, the author would refer the reader to Chapter 4 ([134]),
provided the value of Z and the nature of O(Z) are known.

6.3.3 Parameter Sweep
This sub-section presents the effects of changing CoHOG’s parameters. The parametric
sweep is performed for GT , W1 and W2 on ESSEX3IN1 dataset. Each of the 3 parameters
is first varied within a suitable range while keeping the other 2 constant, where the values of
these constants are the same as used in sub-section 6.3.2. The author also shows the effect of
varying W1 and W2 with a constant ratio.

The qualitative effect of variation in GT is already shown in Fig. 6.4 and the quantitative
effect is reported in Fig. 6.8 (a). More salient regions and less confusing regions are
selected with increasing GT , leading to improved matching performance. The quantitative
contribution of GT to place matching performance is inherent to the places being represented
in the dataset and may vary. While feature encoding-time is independent of GT , it depends
on both W1 and W2, as reported in Fig. 6.8. Matching performance improves with increasing
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Fig. 6.8 The impact on CoHOG’s performance by sweeping various thresholds within a
suitable range is depicted here.

image-size [Fig. 6.8 (b)] as greater number of gradients now contribute to the regional
HOG-descriptors, which also results in increased gradient bin-assignment time. Increasing
the cell-size reduces viewpoint-invariance as lesser number of regions (N) are now available
for regional-convolutional matching, thus reducing matching performance [Fig. 6.8 (c)].
The key take-away here is the critical ratio of W1 and W2 that determines the number of
regions for entropy-evaluation and regional-convolutional matching. The area represented by
each region in an image should be small enough to accommodate for viewpoint variation
between adjacent regions and yet large enough for a suitable regional HOG-descriptor (i.e.
each region should contain a reasonable number of intensity-change gradients). Fig. 6.8 (d)
shows stable precision under a range of values for W1 and W2, given a constant value for
W1
W2 .

6.4 Summary

This chapter presented a light-weight, compute-efficient and training-free VPR technique
(namely CoHOG) based on Histogram-of-Oriented-Gradients (HOG) descriptor that achieves
state-of-the-art performance under computational constraints on standard VPR datasets. By
evaluating on both viewpoint and appearance variant datasets, the utility of the proposed
approach is discussed. The author shows highly precise place matching performance on view-
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point variant datasets, while comparable precision is achieved on condition variant dataset.
With zero training requirements, lower encoding time and lesser run-time memory footprint
than neural networks, CoHOG promises better deployability in real-world applications. The
technique presented in this work is agnostic in nature. Although, the author has used HOG
as the regional descriptor but any feature descriptor can be plugged-in for robustness to
viewpoint variations.





Chapter 7

Conclusions and Future Directions

Visual Place Recognition is a well-established, challenging and interesting research problem
for both the computer vision and the robotics community. It represents the ability of a system
to recognise a previously visited place using only visual information, under drastic view-
point, illumination and/or seasonal changes. Other than the appearance variation challenges
within VPR, computational requirements and storage needs are also crucial for real-world
deployment of VPR in resource-constrained platforms.

The application domains of VPR are wide-spread and so are the researchers investigating
it, which makes the VPR community diverse, multi-cultural, multi-talented and above
all, exciting to be a part of. Moreover, the equipment required to undertake research in
VPR is widely-accessible and several open-source datasets and VPR techniques exists for
effective analysis and comparisons to quickly evaluate new research. This makes VPR open
to a wide range of researchers coming from various backgrounds, which is generally not
the case for most research domains that require state-of-the-art machinery and controlled
environments. VPR is still far from saturation and several developments in hardware, newly
proposed learning techniques, large scale datasets, inter-domain research combinations, better
evaluation frameworks and incremental advances present a huge potential for any incoming
VPR researcher.

This thesis is an amalgamation of various research gaps addressed within VPR. As such
the author’s research could be divided into 3 primary tracks: (a) Perceptual Aliasing within
VPR and therefore predicting potential false-positives (Chapter 3), (b) Evaluation of VPR
techniques, the metrics and the methodology for that (Chapter 4 and 5), (c) Incremental
performance improvement by proposing novel VPR techniques (Chapter 6). Each of these
chapters is a peer-reviewed publication and has been through a series of revisions. Because
these chapters are mutually-independent, they identify parallel tracks for future research
within VPR, which is the objective of this Chapter 7.
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This chapter summarizes the presented research work in this thesis with potential future
directions. Section 7.1 outlines the research and contributions presented in this thesis. Section
7.2 presents the potential future directions of research in the field of VPR.

7.1 Contributions Summary

This thesis presents the author’s research performed within visual place recognition for
satisfying the requirements of the degree of Masters by Dissertation. The major contributions
of this thesis can be enlisted as follows:

1. Firstly, this thesis presents a detailed theoretical basis of the VPR research problem, its
challenges, existing research works and the open-source datasets and techniques. The
author also discusses, co-relates and distinguishes VPR from closely related topics of
Visual-SLAM, Visual-Odometry, image matching and the correspondence problem.

2. The literature reviewed in this thesis is not limited only to VPR techniques, but instead
research within semantic mapping, SLAM, hardware used within robotic vision and
other relevant works that have potential for VPR have also been reviewed.

3. The author has presented in Chapter 3 a detailed case study advocating for the efficacy
of predicting potential false-positives in VPR. This Chapter 3 presents heuristics that
can effectively determine the salience of an image for VPR. An input image undergoes
through an initial evaluation using 3 filters of memorability, staticity and entropy,
prior to its use for VPR. The author has presented a detailed analysis of this filtering,
including the individual contribution of each criterion, effect of sweeping each criterion,
spatio-temporal filtering to avoid large physical gaps, computational and storage needs,
benefits and limitations of the proposed approach.

4. In Chapter 4, an evaluation of 10 state-of-the-art VPR techniques is presented on 3
of the most challenging VPR datasets containing extreme viewpoint and illumination
variations. This is the first time such an extensive evaluation has been performed
for VPR techniques. The evaluation metrics include place matching performance
using Precision-Recall curves, feature encoding time, descriptor matching time and
memory footprint. Examples of images matched by some techniques, mismatched by
all techniques and matched by all techniques are also shown.

5. Building upon the work in Chapter 4, the same evaluation is extended to aerial plat-
forms in Chapter 5. In this evaluation, the author has utilised a recently proposed
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Shopping Street dataset [161] containing 6-DOF viewpoint variation as seen by aerial
robots. Other than the place matching performance using Precision-Recall curves,
storage requirements, run-time memory consumption, the author has also presented a
theoretical co-relation of image retrieval time of these 8 VPR techniques with electrical
power requirements based on CPU consumption.

6. In Chapter 6, the author presents a novel, handcrafted, training-less VPR technique,
namely CoHOG, that achieves state-of-the-art place matching performance per compute-
unit and close to state-of-the-art place matching precision. This proposed technique is
evaluated on 5 public VPR datasets and an extensive ablation study of the technique’s
parameters is performed.

7.2 Future Directions

One of the prime objectives of the author through this thesis is to leave a number of research
ideas and open research questions for the VPR research community. These are not restricted
only to the follow-up works and improvements to the contributions presented in this paper,
but also to other research gaps that the author has identified during his work within VPR over
the past 2 years. These are enlisted as follows:

1. The memorable maps framework is a very initial attempt at handling perceptual aliasing
and predicting potential false-positives for VPR. It presents and proves the hypothesis
that some images are confusing for VPR techniques, they will be mismatched and can
be predicted. There is a significant room for improvement in the memorable maps
framework (and generally within false-positives prediction for VPR) to achieve much
better AUC boost and much lesser discarded true-positives than reported presently.
Other salience evaluation criteria can be explored to achieve this.

2. The memorable maps framework coupled with different VPR techniques also enables
the creation of a large-scale dataset containing ‘good’ and ‘confusing’ images for
VPR state-of-the-art. Such a dataset should contain 4 classes of images: (a) confusing
but matched, (b) good and matched, (c) confusing and mismatched, (d) good but
mismatched. This could subsequently help in training an end-to-end neural network
for classifying an image as good/bad for map-insertion.

3. The current thresholds in the memorable maps framework are constant values. Al-
though their value is shown to change based on spatio-temporal filtering, this change
of values is based only on avoiding large physical gaps and otherwise do not entail a
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semantically-relevant change of thresholds. Ideally, in a continuously dynamic (e.g,
city centre) environment, the staticity threshold should be relaxed and so should the
memorability threshold in a continuously natural outdoor scenery. Moreover, the
entropy threshold is not illumination-invariant, i.e, the entropy of the same place can
be different if the images of this place are taken at drastically different times of the
day. Therefore, if ET is taken as a constant and is not made illumination-conscious,
the framework would end up discarding all images in a night traversal, which may not
be desirable. This presents a significant room for improvement.

4. The existing version of the memorable maps framework is not compute-efficient. As
reported, evaluating a single image based on all 3 criteria takes around 5 seconds.
This presents a bottleneck for online map creation and presents significant room for
improvement on computational fronts.

5. The evaluations performed in Chapter 4 are limited to small-scale datasets. This
should be further extended to large-scale datasets, for example the complete Oxford
RobotCar dataset [131]. The utility of other statistical evaluation metrics to VPR and
the discrepancies of the currently used metrics needs to be explored, similar to the
work of [135].

6. A key extension to the work in Chapter 5 would be the empirical analysis of the power
consumption model proposed in a theoretical setting currently. While the existing work
utilises a dataset simulating 6-DOF viewpoint variation, it would be useful to utilise or
introduce new datasets created for VPR with real aerial platforms.

7. The work in Chapter 6 proposes that further investigation into the application of
traditional handcrafted feature descriptors for VPR needs to be performed. Region
extraction mechanism of CoHOG can be improved, sequential/temporal information
can be integrated and the convolutional-regional matching mechanism can be improved
with a more efficient matching scheme that exploits the geometric constraints on these
regions.

8. Combining a range of different VPR techniques to complement the strengths and
weaknesses (as identified in Chapters 4 and 5 ) of each other is also an interesting
avenue. A hierarchical approach to this has recently been shown by authors in [115],
but there is a need to perform this selection based on intelligent heuristics which should
present better value and improved performance.
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9. VPR as a domain has matured enough to look into its combination with other modules
of robotics. In particular the combination of SLAM and VPR should be the logical next
step to understand the value presented by state-of-the-art VPR systems to these SLAM
systems. Another particularly interesting area is the combination of motion planning
and coverage path planning advances with map creation and place recognition.

10. As reviewed in the literature review Chapter 2 of this thesis, SLAM enjoys specific
techniques designed explicitly for the various range of sensors available today. VPR,
especially as a stand-alone localisation/navigation system has only recently been
investigated thoroughly and there is a significant room for further investigation based
on sensors like event cameras, omni-directional cameras and RGB-D sensors.
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