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Abstract
Tree decline is a global concern and the primary cause is often unknown. Complex interactions between fluctuations in
nitrogen (N) and acidifying compounds have been proposed as factors causing nutrient imbalances and decreasing stress
tolerance of oak trees. Microorganisms are crucial in regulating soil N available to plants, yet little is known about the
relationships between soil N-cycling and tree health. Here, we combined high-throughput sequencing and qPCR analysis of
key nitrification and denitrification genes with soil chemical analyses to characterise ammonia-oxidising bacteria (AOB),
archaea (AOA) and denitrifying communities in soils associated with symptomatic (declining) and asymptomatic (apparently
healthy) oak trees (Quercus robur and Q. petraea) in the United Kingdom. Asymptomatic trees were associated with a
higher abundance of AOB that is driven positively by soil pH. No relationship was found between AOA abundance and tree
health. However, AOA abundance was driven by lower concentrations of NH4

+, further supporting the idea of AOA
favouring lower soil NH4

+ concentrations. Denitrifier abundance was influenced primarily by soil C:N ratio, and correlations
with AOB regardless of tree health. These findings indicate that amelioration of soil acidification by balancing C:N may
affect AOB abundance driving N transformations, reducing stress on declining oak trees.

Introduction

Tree health is a global concern as they provide essential
ecosystem services, yet significant areas of forests are being
lost due to pest and disease outbreaks or environmental
change. In temperate regions, there is an increase in oak tree
decline and mortality rates [1–3]. Several biotic agents and
abiotic stressors have been proposed as contributing factors
to oak decline, including increased temperatures, pollution,

invasive pests and pathogens [4–9]. Due to the complex
interactions that occur between these stressors and agents,
identification and amelioration of soil stressors that lead
to decline symptoms is a challenge in oak health manage-
ment [10–14].

Across the United Kingdom and Europe, many oak trees
are experiencing an increase in nitrogen (N) deposition and
acidifying compounds, which have been proposed as fac-
tors destabilising the circulation of nutrients and reducing
stress tolerance [4, 15]. In N-limited systems, an increase in
soil N has been suggested to encourage vegetative growth
[16] that increases the susceptibility of trees to damage by
insects and plant pathogens [15, 17] thereby changing
insect activity and insect population densities [18] and
decreasing frost hardiness of trees [19]. In contrast, soils
deficient in N may inhibit plant growth, resulting in weaker
and slower growing plants, that may be more susceptible to
insect attack (e.g. Agrilus) and pathogens [16, 20, 21].
Thus, disentangling the direct and indirect effects of soil N
availability on tree health is difficult, largely due to the
confounding influences of plant pathogens and insect pests,
plant physiology, root microclimate and the soil micro-
biome [20, 22].
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Microorganisms play a pivotal role in soil N-cycling and
regulating soil N available to plants [23]. Two key pro-
cesses (i.e., nitrification and denitrification), are especially
important in this context. The critical process, and rate-
limiting step, of autotrophic nitrification involves the oxi-
dation of ammonium (NH4

+) to nitrite (NO2
−) and is driven

by ammonia-oxidising bacteria (AOB) and archaea (AOA)
[24, 25]. Nitrite is subsequently oxidised to nitrate (NO3

−),
resulting in a net loss of N from the ecosystem, via leaching,
and/or denitrification [24, 25].

Although AOA and AOB co-exist in soils, they respond
differently to soil environmental factors and there is evidence
of niche differentiation between AOB and AOA [25–27].
For example, the global dominance of AOA in acidic soils
[24, 25, 28], and AOA rather than AOB favouring low
ammonium environments, like unfertilised soils [29–34].
Additionally, studies have found plant modulation of AOA
and AOB community abundance, whereby a higher abun-
dance of AOB has been found under plant canopies, possibly
due to higher N concentrations that results from an increase
in plant litter [35, 36]. Changes in the microbial utilisation of
organic carbon and nitrogen can also alter the overall soil
microbial community structure [37–39], which in turn may
impact nitrification. In order to determine if destabilization of
soil N-cycling is associated with oak stress and decline,

a better understanding of the mechanisms that control the
abundance and diversity of soil microbes that mediate these
N-transformation processes is required.

In this study we characterised the abundance and diversity
of the microbial communities driving the N transformations
in soil associated with symptomatic and asymptomatic,
Quercus robur and/or Q. petraea trees across seven wood-
lands in the UK. We used piecewise structural equation
modelling to analyse the direct and indirect effects of the soil
abiotic environment on N-cycle microbial communities in
relation to oak tree health. We hypothesised that the structure
and abundance of N-cycling microbial communities would
differ between symptomatic and asymptomatic trees due to
inherent differences in soil chemical properties that may be
affecting microbial composition and function.

Materials and methods

Sample sites and strategy

This study was conducted in seven oak dominated broadleaf
woodlands across England, where both declining oak trees
(symptomatic) and non-declining (asymptomatic) trees were
present (Fig. 1). Ten symptomatic and ten asymptomatic

Fig. 1 Location of seven woodland sites used in this study, sampled
between the years 2016–2017. A Attingham; B Bigwood; C Lang-
dale; D Winding Wood; E Speculation; F Chestnuts Wood; G Great

Monks Wood. Ten symptomatic (red) and ten asymptomatic (green)
trees are indicated at each site).
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trees were selected at each site based on their phenotypic
crown condition [21], as well as either the presence of stem
lesions associated with acute oak decline [5], or the pre-
sence of stem lesions associated with root decay fungi
(Armillaria sp. or Gymnopus fusipes) (data not shown).
Major soil groups were identified at each site using Cran-
field University 2020, The Soils Guide [40]. Attingham,
Bigwood, Great Monks Wood, Langdale and Speculation
were identified as surface water gleys, while Chestnuts
Wood and Winding Wood were identified as brown soils
(Table S1). Oak tree density was variable across the sites
ranging from 214.29 oak trees/ha at Chestnuts wood to
30.95 oak trees/ha at Langdale (Table S1). The mean basal
area of the studied oak trees was also variable across the
sites ranging from 32.55 m2/ha at Attingham to 11.55 m2/ ha
at Bigwood (Table S1). At Attingham, Chestnuts and
Winding Wood the mean basal area of the studied oak trees
was higher than the recommended threshold of 22 m2/ha
[41]. Soil samples were taken from the top 0–20 cm of the
soil profile, from three evenly spaced soil cores, located 2 m
from the base of each tree. Across all the sites sampled,
rainfall had occurred either one day prior to, or during,
sampling. A total of 420 soil cores were collected across the
seven study sites. Soils were placed on ice at 4 °C for 5 h in
the field before being stored at −20 °C.

Soil chemical analysis and nitrification potentials

Soil samples were prepared and analysed for soil moisture
content and chemical properties by Forest Research
laboratory services at Alice Holt Lodge, Farnham, UK
following the EU ICP Forests Soil Manual [42]. Soil
moisture content was analysed by oven drying at 105 °C for
24 h or until constant weight was reached. Total C and N
concentrations were measured using a C:N Elemental
Analyzer, Carlo Erba Flash EA 1112 Series (Thermo Sci-
entific, UK). Soil pH was measured in water suspension
(soil:water ratio 1:2.5). Available soil nitrate (NO3

−) and
ammonium (NH4

+) were extracted from fresh soil cores
using 1M KCl and measured by colorimeter analysis [43].

Soil nitrification potentials were measured using a sha-
ken soil-slurry as previously described [44] supplemented
with NH4

+ (0.3 mM NH4Cl). NH4
+ concentration was

measured using a Dionex ICS-3000 (Thermo Scientific,
UK) as previously described [45]. Rates of NH4

+ removal
were determined by linear regression analysis of NH4

+

concentration with time.

qPCR and amplicon sequencing of N-cycle genes

DNA was extracted from 0.25 g wet weight soil using a Soil
DNA Isolation Plus Kit (Norgen Bioteck Corp., Canada)
following the manufacturers recommendations. Gene

abundance was quantified by qPCR with a SensiFAST
SYBR No-ROX Kit (Bioline) on a CFX96 Real-Time PCR
Detection System (BioRad) using the following primers:
ammonia monooxygenase (amoA) genes from archaea—
CrenamoA-23F/CrenamoA-616R [46], and bacteria—
amoa-1F/amoA-2R [47], nirS (nitrite reductase) gene nirsS-
Cd3aF/nirS-R3cd [48], nirK (nitrite reductase) gene nirK-
1F/nirK-5R [49] and nosZ (nitrous oxide reductase) gene
nosz2F/nosz2R [50].

Thermocycling involved an initial denaturation at 95 °C
for 3 min followed by 40 cycles of 95 °C for 5 s, 60 °C for
30 s, which included a combined annealing and extension
time. Product specificity was confirmed using melting point
analysis (52–95 °C with a plate read every 0.5 °C) and
amplicon size was verified with agarose gel electrophoresis.
Gene abundances were quantified with an absolute quanti-
fication method against an internal standard calibration
curve using DNA standards of each target gene from 101 to
108 copies in 20 µl reactions containing 200 nM of primers
and 1 µl of DNA template. R2 values for the standards
curves were >0.99 and slope values were between −3.2 and
−3.4 giving estimated amplification efficiency between 104
and 95%. Standards, samples and non-template controls
were run in duplicate and samples were diluted 10× before
adding to the master mix.

Amplicon libraries were prepared by a 28 cycle PCR
amplification using Illumina Nextera adapted primers and
MyTaq Red DNA polymerase (Bioline, UK). The adapted
primers used for gene sequencing included: Bakt 341F/Bakt
805R [51] for 16S rRNA bacteria; 344F/915R [52, 53] for
16S rRNA archaea; as well as amoA AOB, amoA AOA,
nirS and nosZ nitrogen cycle functional genes (as listed
above). Amplicon quality was assessed by visualisation
using gel electrophoresis, followed by purification with
AMPure XP (Agencourt) SPRI bead protocol and amplifi-
cation in a further eight cycles of PCR to attach one of 96
unique combinations of Nextera paired-end indexes. After a
second round of purification with the AMPure XP beads,
the final amplicon was quantified using the Quant-iT
Picogreen dsDNA assay kit (Life Technologies) and the
Nanodrop 3300 fluorospectrometer (Thermo Scientific) and
then pooled in equimolar concentrations. The amplicon
libraries were quality checked using a DNA 1000 kit on a
2100 Bioanalyzer (Agilent) before final pooled libraries
were sequenced on the Illumina Miseq platform using a
MiSeq reagent kit V3 (2 × 300 bp) at The University of
Essex (Colchester, Essex, UK).

Assembly and analysis of sequencing reads

Sequence reads were demultiplexed on the MiSeq platform
and analysis was performed as described by Dumbrell et al.
[54]. The sequences were quality trimmed using Sickle [55],
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with a min quality threshold of q20. Sequences were then
error corrected with SPAdes [56] using the BayesHammer
algorithm [57]. The sequences were then de-replicated,
sorted by abundance and OTU centroids were picked using
VSEARCH [58] at 97% similarity. Singleton OTUs were
removed from the dataset, along with any chimeric
sequences identified by both de novo and reference-based
chimera checking with UCHIME [59]. Taxonomy assign-
ment for 16S rRNA sequences was performed with the RDP
Classifier [60]. For all functional genes (amoA, nirS, nosZ),
non-locus-specific OTUs were detected and filtered using
the online FrameBot tool with default settings [61]. Cen-
troid sequences of the most abundant OTUs (comprising
>99% of the sequencing reads for each gene) were aligned
by codons using MUSCLE, in the MEGA6 program
[62, 63]. Sequences were aligned with other known func-
tional gene sequences from the FunGene database [64] and
from BLAST analyses [65].

Statistical analyses

All analyses were conducted in R Studio (version 2.1; R
Development Core Team, 2016). Piecewise structural
equation modelling (Piecewise SEM) [66] was used to
evaluate the direct and indirect relationships between
the soil abiotic variables (soil carbon, pH, NH4

+, NO2
−+

NO3
−, C:N ratio, soil moisture, nitrification potential), N-

cycle microbial gene abundances (amoA AOA, amoA AOB,
nirS, nirK, nosZ) and tree health status (asymptomatic or
symptomatic). We generated the median value of the three
core replicates per tree for use in statistical analyses. Con-
struction of the priori model required checking normality of
the endogenous variable and further log-transforming the
gene abundance data to improve normality. Tree health
status was given a binary assignment (1: asymptomatic; 0:
symptomatic) to allow comparisons between this catego-
rical variable. The priori model included the combined
effects of all soil abiotic variables and N-cycle genes on tree
health status as a composite model. The random effects of
each of the seven wood sites were also accounted for in the
model. We assessed the fit of the model using Shipley’s test
of directed separation, which tests the assumption that all
variables are conditionally independent, indicating that
there are no missing relationships among unconnected
variables, supported by a non-significant Fisher’s C value
(P > 0.05) [67]. We could then interpret the path coefficients
of the model (that describe the strength and direction of the
relationship of the variables) and their P values [68]. After
assessing the overall relationships between the amoA AOB
and AOA gene abundance with tree health through the
piecewise SEM, we constructed a separate quasibinomial
generalised linear model (glm) and assessed the least
squared means to determine the relationship between the

ratio of AOB:AOA associated with tree health status at each
of the sites.

After discarding excessively small samples, OTU tables
were rarefied to an even depth with the “vegan” package [69]
including 900 sequences per sample for AOB, 800 for AOA,
500 for nirS and 700 for nosZ. Compositional differences in
the soil microbial communities of each gene functional group
were quantified using model-based analysis of multivariate
abundance data using the mvabund package in R-studio [70]
and visualised using non-metric multidimensional scaling
(NMDS) (two axes) on the Bray–Curtis distance matrix using
the metaMDS function in the vegan package [69]. Raw
sequence data were submitted to the European Nucleotide
Archive under accession number PRJEB35364.

Phylogenetic analysis was performed using the 50 most
abundant OTUs from each of the genes sequenced. Repre-
sentative OTU gene sequences and reference sequences, from
NCBI Blast Database, were aligned using the ClustalW
alignment followed by neighbour-joining phylogenetic trees
with calculated bootstrap analysis (based on 1000 replicates)
using Geneious package 9.0.2 (https://www.geneious.com).

Results

Soil chemical characteristics and nitrification
potential rates

The soils were highly heterogeneous across and within the
seven sites. Across sites, pH ranged from the more acidic soils
at Winding Wood (pH 3.6 to up to 7.6), to less acidic soils at
Langdale (pH 4.7 to 8.3; Table 1). When comparing NH4

+

concentration between sites, irrespective of tree health status,
Great monks wood, Winding Wood, Langdale and Atting-
ham, showed higher NH4

+ concentrations (medians ranging
between 11.3 and 29.4 g N kg−1 dry soil) compared to
Speculation, Chestnuts and Bigwood (1.2–2.5 g N kg−1 dry
soil). This allowed for two clear groups of sites (1) those with
high ammonium (Attingham, Great Monks Wood, Langdale
and Winding Wood) and (2) those with lower ammonium
concentrations (Bigwood, Chestnuts and Speculation).
NO2

−+NO3
− concentration at Attingham, Great Monks

Wood and Langdale had lower NO2
−+NO3

− (1.7, 1.7 and
2.3 g N kg−1 dry soil respectively) compared with Bigwood,
Chestnuts and Speculation (6.7, 6.8 and 4.1 respectively)
(Table 1). Winding Wood was found to have high levels of
NO2

−+NO3
−, particularly in association with asymptomatic

trees (23.4 g N kg−1 dry soil). While net nitrification potential
was generally low across all soils (supporting both sympto-
matic and asymptomatic trees), the highest nitrification
potential rates were found at Langdale (for both asymptomatic
and symptomatic); which corresponded to the highest NH4

+

concentration.

K. Scarlett et al.
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Relationship between soil parameters and N-cycle
genes on tree health

The abundance of amoA genes for AOA ranged from 2.6 ×
101 to 1.4 × 105 gene copies g−1 dry weight soil with the
highest abundances found at Chestnuts, Bigwood and
Speculation, while AOB amoA gene abundance ranged
from 3.1 × 101 to 4.1 × 105 gene copies g−1 dry weight soil
with the highest abundances of AOB found at Winding
Wood and Great Monks Wood (Fig. 2). Similarly, the
abundance of nitrate reductase (nirS, nirK) and nitrous
oxide reductase (nosZ) genes also varied significantly across
the sites (P < 0.001) (Fig. S1). The abundance of nirS genes
ranged from 1.4 × 103 to 8.4 × 105 nirS gene copies g−1 dry
weight soil, nirK gene ranged from 2.7 × 102 to 8.7 × 105

gene copies g−1 dry weight soil and nosZ gene abundance
ranged from 1.1 × 103 to 2.2 × 107 gene copies g−1 dry
weight soil (Fig. S1).

Our a priori Piecewise SEM model provided a satis-
factory fit to our data, as suggested by the non-significant
Fisher’s C P value (P= 0.977; df= 8; Fig. 3). The SEM
model revealed that asymptomatic trees were associated
with a higher abundance of AOB amoA gene copies than
symptomatic trees (path coeff. = 0.23; R2 = 0.07; P=
0.008; Fig. 3; green arrow). In turn, the abundance of
AOB amoA genes was driven by pH, with increased
abundance in higher pH soils (path coeff.= 0.26; R2=
0.77; P < 0.001) (Fig. 3; red arrow) supporting our
hypothesis that soil conditions exert an indirect effect
on tree health status by modulating ammonia-oxidising
bacterial abundance (Fig. 3). In contrast, we observed no
association between AOA amoA abundance and tree
health. AOA abundance instead was primarily driven by
soil NH4

+ concentration.

Unexpectedly, the abundance of denitrification genes
showed associations with soil parameters and each other,
but not tree health status. The C:N ratio proved to be the
direct primary driver of nitrite reductase gene abundance
(nirS; path coeff.= 0.22; P= 0.01, nirK; path coeff.=
0.26; P= 0.02) (Fig. 3; grey arrows). Nitrate reductase
genes nirS and nirK were found to highly positively covary
(path coeff.= 0.73; P < 0.001) with each other and with
nitrous oxide reductase gene (nosZ; path coeff.= 0.69;
0.91; P < 0.001) abundance (Fig. 3; grey arrows). In addi-
tion, AOB was found to positively covary with nirS (path
coeff.= 0.21; P < 0.001), nirK (path coeff.= 0.21; P=
0.007) as well as nosZ (path coeff.= 0.26; P < 0.001) gene
abundance (Fig. 3; grey arrows).

Soil parameters were also associated with each other,
further demonstrating the complex relationship between
soil, microbiomes and tree health. Soil pH was largely
influenced by C:N ratio, where a direct negative relationship
between NO2

−+NO3
− (path coeff.=−0.14; P= 0.04) and

NH4
+ (path coeff.=−0.20; P= 0.003), as well as a posi-

tive relationship between total soil carbon (0.69; P < 0.001)
affected C:N ratio and in turn was found to drive pH (path
coeff.=−0.21; P < 0.05). Moisture content had a direct
positive effect on NO2

−+NO3
− (path coeff.= 0.39; P=

0.03), NH4
+ (path coeff.= 0.20; P < 0.001) and total carbon

(path coeff.= 0.16; P= 0.04), while total soil carbon
positively covaried with NH4

+ (path coeff.= 0.34; P <
0.001), suggesting that both moisture and total carbon are
involved in mineralisation of organic matter influencing
NO2

−+NO3
− and NH4

+ concentrations (Fig. 3; blue
arrows). Moisture content was also found to positively drive
nitrification potential (path coeff.= 0.08; P= 0.04), in
addition to the positive relationship with pH (path coeff.=
0.11; P= < 0.001).

Table 1 Chemical properties of soil associated with tree health status among different wood study sites (median value, minimum and
maximum value).

Health status Study site Moisture
content (%)

NO2
−+NO3

−

(g N kg−1 dry soil)
NH4

+

(g N kg−1 dry soil)
pH Carbon

(g kg−1)
C:N ratio Nitrification

potential
(μmol NH3 g

−1

per day)

Asymptomatic Attingham 18.6 (8.4, 62.7) 1.6 (0, 41.0) 16.8 (0, 82.6) 4.7 (3.9, 5.5) 5.6 (2.4, 14.0) 15.6 (12.8, 19.4) 0.12 (0.0, 0.4)

Bigwood 18.6 (4.5, 36.7) 5.4 (1.4, 13.4) 1.5 (0.3, 27.4) 4.4 (4.0, 7.7) 3.5 (2.3, 6.8) 16.5 (13.3, 22.0) 0.04 (0.0, 0.19)

Chestnut 23.5 (9.7, 73.3) 7.4 (3.4, 17.5) 2.5 (0.8, 15.4) 4.2 (3.8, 5.2) 2.8 (1.4, 10.2) 15.5 (13.4, 32.4) 0.03 (0.0, 0.13)

Great monks wood 19.1 (15.1, 40.3) 1.7 (1.4, 30.4) 20.0 (6.3, 53.3) 4.6 (4.1, 7.5) 3.9 (2.3, 18.2) 16.5 (14.0, 19.5) 0.05 (0.0, 0.14)

Langdale 22.2 (13.1, 37.3) 2.2 (1.4, 6.2) 28.3 (2.2, 40) 5.8 (5.5, 8.3) 4.9 (1.7, 8.6) 13.3 (12.2, 16.0) 0.43 (0.26, 0.61)

Speculation 26.5 (14.2, 49.0) 4.5 (0.7, 39.0) 1.9 (0.8, 8.15) 4.3 (4.0, 4.7) 9.3 (2.9, 51.1) 24.5 (14.6, 36.7) 0.09 (0.0, 0.16)

Winding wood 31.4 (11.8, 66.0) 23.4 (1.5, 153.0) 12.4 (3.4, 218) 4.0 (3.6, 7.6) 7.3 (2.5, 34.4) 18.5 (14.6, 21.6) 0.33 (0.13, 0.90)

Symptomatic Attingham 18.8 (11.6, 45.4) 1.8 (0, 39.9) 16.2 (0, 79.6) 4.5 (4.1, 6.7) 4.1 (2.2, 17.7) 16.1 (14.0, 21.3) 0.13 (0.0, 0.24)

Bigwood 15.4 (10.4, 26.8) 7.9 (3.1, 17.4) 0.9 (0.2, 19.5) 4.7 (4.1, 7.1) 3.9 (1.3, 5.5) 16.6 (12.3, 23.8) 0.04 (0.02, 0.12)

Chestnut 26.3 (4.8, 89.2) 6.2 (2.8, 39.4) 2.5 (0.6, 45) 4.2 (3.9, 4.6) 3.0 (1.5, 6.8) 15.4 (13.8, 17.8) 0.04 (0.00, 0.21)

Great monks wood 19.5 (13.6, 35.9) 1.7 (1.4, 15.7) 15.2 (4.0, 53.3) 4.6 (3.9, 5.2) 3.3 (1.6, 17.6) 16.0 (13.9, 20.9) 0.06 (0.02, 0.11)

Langdale 24.4 (15.1, 36.5) 2.4 (1.5, 10.2) 30.4 (16.7, 70.4) 5.7 (4.7, 7.5) 4.5 (3.1, 8.3) 13.4 (11.4, 19.1) 0.40 (0.23, 0.59)

Speculation 29.5 (21.3, 42.7) 3.7 (1.3, 17.6) 1.1 (0.72, 4.9) 4.2 (4.1, 5.7) 6.7 (2.3, 16.4) 19.5 (13.8, 31.1) 0.12 (0.01, 0.41)

Winding wood 27.6 (10.2, 61.6) 7.1 (1.8, 102.0) 11.3 (3.6, 5.2) 4.1 (3.6, 4.8) 8.3 (3.5, 36.8) 18.6 (16.1, 20.7) 0.28 (0.12, 0.51)
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Ratio of AOB and AOA ammonia monoxygenase
(amoA) in relation to tree health

As our SEM model identified association between tree
health and the abundance of AOB, but not AOA, we further
investigated the relationship between AOB:AOA ratio in
association with tree health at each site. Across sites, amoA
AOA, and AOB gene abundance varied (P < 0.001), but the
AOB:AOA ratio was not significantly different according to
tree health (P= 0.21) overall. Instead, the relationship
between tree health and AOB:AOA ratios was site-specific.
Attingham had a significantly higher ratio of AOB:AOA
(93%) than symptomatic trees (63%; P= 0.007). In general,
Winding Wood, Langdale, Great Monks Wood and
Attingham had the highest ratio of AOB:AOA, while at
Bigwood, Chestnuts Wood and Speculation a higher ratio of
AOA:AOB was found (Fig. S2). As shown by the SEM
analysis, we found that an increase in pH significantly
increased the ratio of AOB:AOA (P= 0.007), particularly
at Bigwood, where a soil pH >5.8 was found to increase
AOB from less than 24% to greater than 87%. Similarly, at
Chestnuts Wood, soil pH >5.8 increased AOB from 34% to
greater than 73% (P= 0.004). While NH4

+ concentration
did not have an effect independent of sites, a lower

concentration of NH4
+ at Bigwood, Speculation and

Chestnuts Wood resulted in significantly fewer AOB than
AOA (P= 0.001).

Microbial community composition

In soils supporting asymptomatic trees, Proteobacteria
(41%), Acidobacteria (34%) and Actinobacteria (20%)
were the most abundant representing 95% of the total
bacterial community (data not shown). A similar pattern
was observed in soils supporting symptomatic trees,
where Proteobacteria (40%), Acidobacteria (37%) and
Actinobacteria (17%) were most abundant representing
94% of the total bacterial community. In soils of both
symptomatic trees and asymptomatic trees, Nitrospirae
(a phylum containing nitrite oxidising bacteria) made up
0.02% of the total bacterial community. Within the bac-
terial communities, five genera, associated with nitrifica-
tion (Nitrospira, Nitrobacter, Nitrococcus, Nitrosococcus,
Nitrosospira) were found in soils of both asymptomatic
and symptomatic trees. Together these genera represented
0.8% of the total bacterial composition and did not
differ in diversity or relative abundance according to tree
health status.
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Fig. 2 Abundance of AOA and AOB ammonia monooxidase (amoA) gene copies in relation to symptomatic and asymptomatic oak trees
across seven UK woodlands. Data are medians with upper and lower quartile (n= 10), dots are outliers.
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No significant differences in the composition of archaeal
phyla were observed between soils of symptomatic or
asymptomatic trees and were dominated by Thaumarch-
aeota and Crenarchaeota (between 57–58% and 25–27%).
Across all sites, nitrogen cycling archaea were found in
soils supporting both symptomatic and asymptomatic trees
including: Nitrososphaerales (56–57%), Thermoprotei
(25–26%), Thermoplasmata (6–7%) and Woesearchaeota
Incertae Sedis AR16 (4–5%) (data not shown). Nitroso-
sphaera (57%) and Nitrosopumilus (0.8%) that are involved
in nitrification were also found in soils underlying both
asymptomatic and symptomatic trees. Interestingly, a pro-
nounced difference in relative abundance according to tree
health status was evident with the archaeal class Methano-
microbia (Phylum Euryarchaeota), albeit forming a small
component of the archaeal population comprising 3% in
soils supporting asymptomatic trees and only 0.06% in soils
surrounding symptomatic trees.

Ammonia monoxygenase (amoA) gene composition

Following sequencing and quality filtering, 265 amoA
bacterial OTUs were obtained, of which 150 were asso-
ciated with asymptomatic trees and 157 associated with
symptomatic trees, although not exclusively. Using
Bray–Curtis distance, the OTU clusters showed distinct
patterns based on site but not by tree health (Fig. 4A) and
revealed that Langdale in particular contained a different
composition of AOB compared to the other six sites. This
result was supported by multivariate abundance analysis of
the amoA bacterial gene composition across all the sites that
pinpointed a significant association of amoA bacterial gene
composition with sites (P= 0.001), but not with tree health
status (P= 0.4). However, significant differences according
to tree health status at the individual site and OTU level
were detected. These differences occurred at only three sites
and involved only two OTUs. Thus, a higher abundance of
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soil variables, red arrows indicate the relationships between soil
variables and gene abundances, grey arrows indicate the relationships
between gene abundances and green arrows indicate the relationship
between gene abundances and tree health status. The width of the
arrow is proportional to the strength of path coefficients. The pro-
portion of variance explained (conditional R2) appears below every
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*P < 0.05, **P < 0.01 and ***P < 0.001.
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OTU106 (that had a high sequence similarity to an uncul-
tured amoA bacterial clone) was found in soils associated
with symptomatic trees at Winding Wood (P= 0.02), while
at Great Monks Wood and Speculation a significantly
higher abundance of OTU101 (P= 0.006) that also had a
high sequence similarity to an uncultured amoA bacterial
clone was found. Further multivariate abundance analyses
across sites including soil variables were performed to
investigate relationships with abiotic factors. Plotting the
community dissimilarities against the difference in pH, we
showed that differences in pH were associated with broad
level shifts in community composition (Fig. 4B).

Sequencing of archaeal amoA genes identified 55 OTUs.
Across sites, asymptomatic trees were associated with 41
OTUs, while symptomatic trees were associated with 43
OTUs. As with the AOB, there were clear site differences in
community composition (P= 0.009), but no changes
according to tree health status (P= 0.74). No archaeal
amoA sequences were obtained from Winding Wood and
Attingham, and this result was supported by a low abun-
dance of amoA AOA found by qPCR analysis at these sites.

Denitrifier gene composition

Following filtering, 1135 nitrous oxide reductase (nosZ)
OTUs and nitrite reductase (nirS) 146 OTUs were obtained
across the seven woods. Permanova analyses revealed that
neither nosZ, nor nirS communities, to have distinct com-
positions between symptomatic and asymptomatic trees.

Instead, spatial differences between sites and soil pH
explained nosZ community composition (Fig. 4C, P < 0.01),
whereas only site differences were observed for nirS com-
munities (P < 0.02). For nirS communities, none of the
measured soil parameters showed any relationship with
community composition, suggesting spatial variables and
other, unobserved soil variables drive nirS composition.

Phylogenetic analysis

Phylogenetic analysis of the AOB amoA gene revealed that
Nitrosospira sp. dominated AOB amoA gene libraries
across sites (Fig. S3). One OTU (OTU50) grouped with N.
briensis (98% bootstrap support), while the remaining
OTUs grouped with uncultured soil bacterium clones
(amoA) gene. The majority of OTUs clustered with Nitro-
sotalea sp. across sites. OTU1 grouped with N. devanaterra
(97% bootstrap support) and Nitrosopumilus martimus was
closely related to OTU 43 and OTU 53. A large portion of
OTUs recovered aligned to undescribed or uncultured
Thaumarchaeote and Crenarchaeote clones (Fig. S4).

Analysis of the denitrifiers and nitrite reductase (nirS) gene
sequencing identified two OTUs (OTU 43 and OTU 30) that
grouped with Pseudomonas sp. with 97% bootstrap support.
Whilst other OTUs showed some relatedness to Azospirillum
sp. and Cupriavidus sp. the majority of sequences recovered
across sites grouped with uncultured bacterial nirS gene
clones (Fig. S5). Similarly, analysis nitrous oxide reductase
(nosZ) genes identified two clades related to Bradyrhizobium
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sp. (100% bootstrap support) and Mesorhizobium sp. with a
large portion of OTUs grouping with uncultured bacterial
nosZ gene clones (Fig. S6), including OTU1, 4, 6, 22, 27, 44,
50 that had less than 80% identity match to any reference taxa
on Genbank and formed a distinct clade.

Discussion

In this study we disentangled the interactions between
AOB, AOA and denitrifying communities in soils asso-
ciated with asymptomatic and symptomatic declining oak
trees. This is the first study to provide a comprehensive,
spatially replicated insight into the interactions between soil
parameters, N-cycle microbial communities and tree health
in temperate forests. Our study provides new empirical
evidence that asymptomatic oak trees are associated with
increased AOB amoA gene abundance, and that this is in
turn modulated by soil conditions, notably pH.

It is well known that soil pH is an important factor in
shaping ammonia oxidiser communities [28, 71, 72]; with
AOB (not AOA) shown to positively correlate with soil pH
[73]. Here, soil pH was found to be the key driver of AOB
abundance, suggesting that soil pH has an indirect effect on
tree health, by supporting AOB abundance and thus AOB-
driven ammonia oxidation. However, the underlying
mechanisms of soil pH in shaping the ammonia oxidiser
community are complex as direct and indirect influencing
factors can affect soil pH [74], including underlying geol-
ogy, plant species and anthropogenic disturbances. While
this study shows no direct significant relationship between
tree health and pH, it instead suggests that ammonia oxi-
diser abundance, specifically AOB, may represent a novel
indirect link between soil conditions and tree health, sup-
porting our hypothesis that tree health and soil conditions
interactively shape the soil N-cycle microbial community.

Recent studies have shown that vascular plants can
modulate AOB abundance by emphasising the role of dif-
ferent plant types or functional attributes that impact sur-
rounding soil microorganisms [35, 75]. Our observed
differences in the abundance of AOB between symptomatic
and asymptomatic trees may be due to the effect the tree is
having on the surrounding soil environment. Healthy trees
that support larger canopies produce greater levels of litter,
have lower soil temperatures, and higher organic matter
than declining trees. Therefore, a larger canopy from heal-
thy trees may lead to improved soil moisture conditions and
mineralisation rates, supporting higher pH ranges and by
extension, AOB abundance [35, 76, 77]. Additionally, tree
bark pH may also influence the pH of soil in close proxi-
mity to the trunk via stemflow [78, 79].

AOB were dominant at Winding Wood, Great
Monks Wood, Attingham and Langdale, whilst AOA were

dominant at Speculation, Bigwood and Chestnut. No rela-
tionship was found between AOA abundance and tree
health, nor was there any difference in AOB:AOA ratios
between symptomatic and asymptomatic trees. Instead,
AOA abundance was driven by lower NH4

+ concentrations
across sites, further supporting the role of NH4

+ con-
centration in niche differentiation of AOA and AOB
[29, 32, 34]. The finding that AOB and AOA abundances
were predominantly linked to different environmental fac-
tors (pH and NH4

+ concentration, respectively) also
explains the lack of association between tree health status
and AOB:AOA ratios. Whilst tree health status may indir-
ectly influence certain local soil conditions (e.g. pH, as
discussed above), others may vary according to larger
spatial-scale factors such as underlying geology or soil type,
supported by our finding that NH4

+ concentrations differed
by site rather than tree health. Consequently, tree health
would be unlikely to influence the AOB:AOA ratio as these
two clades respond to different environmental axes, that
themselves are differentially influenced by tree health.

It is suggested that soil depth, water-soluble carbon, and
nitrate have greater effects on denitrifying community
composition (nirK, nirS and nosZ) than soil pH [80]. In our
study, we observed that across sites C:N ratio was driving
the abundance of denitrifying genes (e.g. nirS/nirK), which
although highly positively covaried with each other, we
found no direct link between nirS/nirK or nosZ gene
abundance and tree health. The lack of relationship between
tree health and denitrifier abundance could be partly
explained by the comparatively higher phylogenetic diver-
sity encompassed by these groups in comparison to
ammonia oxidisers, suggesting a greater array of environ-
mental drivers.

Our study detected no compositional differences in
ammonia oxidising, or denitrifying communities between
symptomatic and asymptomatic trees, in contrast to our ori-
ginal hypothesis. Furthermore, the ability of soil parameters to
explain community composition also varied strongly between
the different functional groups analysed. Asymptomatic trees
were found to harbour a greater abundance of AOB, yet no
change in community composition was found, suggesting that
any links between soil parameters and tree health status do not
select for specific AOB. Only slight shifts in the abundances
of specific AOB OTUs in certain sites were found, suggesting
that compositional changes between trees are subtle and not
generalisable.

Additionally, we showed that differences in soil pH
across sites influenced AOB and nosZ community compo-
sition. These findings show that although composition of N-
cycle communities are site-specific and likely driven by site
edaphic factors, the abundance of AOB is driven by soil pH
at the tree level, which may be influencing soil N-cycling,
and in turn, tree health. Whilst soil pH is one of the
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strongest predictors of microbial community composition at
the macroscale, including field scale [81, 82], studies sug-
gest that soil pH may not be the main factor for determining
composition of soil N-cycle microbial communities at the
microscale level, given that pH ranges at this level may span
<1 pH unit [83, 84]. Across our sites, soil pH ranged from
pH 3–8 and changes in soil pH across sites were the most
important factors in explaining the broad shifts in AOB
composition.

Tree species, tree age and site edaphic properties can
all have a significant effect on soil bacterial community
composition [37, 85, 86]. Across sites, the major soil
groups were classified as either surface water gleys or
brown soil. However, there is likely fine scale variation
within sites affecting detectable bacterial composition
changes in relation to health status. Plant species have
also been shown to influence the composition of deni-
trifiers [87–89] and modulate their surrounding soil
microbiome. As the sites used in this study were mostly
mixed woodlands and of varying ages, it is possible that
the diversity of (spatially) closely associated trees and
shrubs may have also masked any composition relation-
ships that are occurring in response to oak tree health.
Additionally, variation in oak tree density and mean basal
diameter across the sites may also contribute to differ-
ences in N-cycle composition within and across sites.
Given the complexity of forest microbial communities and
high degree of heterogeneity in plant functional diversity
and soil chemistry, detectable changes in N-cycle com-
munity composition in response to tree health status were
not found within these sites. Future studies would gain
from discerning whether bark pH and stemflow pH (and
by extension the surrounding soil pH) are linked to oak
tree health status, or whether changes in soil pH are due to
secondary influences, driven by soil carbon and nitrogen
as found in this study.

Conclusion

In this study we showed that tree health status was asso-
ciated with an increased abundance of AOB but had no
consistent effect on community composition of N-cycling
microbiota. The positive association between increased
AOB abundance with asymptomatic trees and increased pH
indicates that soil pH is having an indirect effect on tree
health by potentially affecting AOB-driven ammonia oxi-
dation processes. This study also shows that soil pH is being
driven by C:N ratio. We propose that healthy trees that
support larger canopies produce greater levels of litter.
Greater leaf litter may alter the surrounding soil C:N ratio,
which in turn, influences the surrounding soil pH. These
findings therefore suggest that amelioration of soil

acidification by increasing soil organic matter may be one
management option to alleviate the stress on declining
oak trees.
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