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ABSTRACT 

Coral reefs are the result of long-term net calcium carbonate (CaCO3) accretion and the balance 

between carbonate production and erosion, referred to as the carbonate budget. Coral calcification is 

influenced by environmental conditions (e.g. temperature, depth and ocean acidification) and 

depends on a symbiotic partnership between the coral and its dinoflagellate algae in the family 

Symbiodiniaceae. When a coral encounters stress, the symbiosis breaks down resulting in coral 

bleaching which impacts reef calcification. To effectively monitor reef health, it is essential to 

determine the current status of reef environments and whether reef frameworks are actively 

accreting CaCO3 or being eroded away. This study aims to determine reef accretional health in three 

bioregions: Bahrain (located in the hottest sea on the planet – the Arabian Gulf), the Seychelles 

(with an environment susceptible to regular El Nino disturbances - Western Indian Ocean) and 

Indonesia (located within the epicenter of marine biodiversity, the Coral Triangle - Central Indo-

Pacific). In addition, genetic diversity of selected coral symbionts is investigated. In light of 

predicted warming trends, which present a threat to the structural integrity of reefs worldwide, 

questions arise whether reefs will be able to maintain a positive carbonate budgetary state to keep 

pace with future sea level rise and maintain the stability of island-nations such as Bahrain, the 

Seychelles and Indonesia. This thesis explores the past and present trajectories of reefs within these 

bioregions whilst providing important insights for consideration to model future trajectories of these 

reefs. 
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1. INTRODUCTION  

1.1 | CORAL REEFS – DIVERSITY, STRUCTURE & IMPORTANCE  

Coral reefs are of high value, ecologically and economically, despite covering less than 0.1% of the 

ocean floor (Spalding & Grenfell, 1997). They harbour the highest concentration of marine 

biodiversity in the world’s oceans (Carpenter et al., 2008); amounting to one third of all recognized 

marine species (Bowen et al., 2013) making them extremely important ecosystems that support 

biodiversity. They provide numerous ecological, social and economic benefits to communities 

worldwide through their ecosystem services (Smith, 1978; Moberg & Folke, 1999; Cinner et al., 

2013; Laurans et al., 2013; Daw et al., 2016). For example, some of these services include providing 

~200 million people who live below 10 m elevation and within 50 km of reefs with coastal 

protection as reefs dissipate 97% of the energy that would otherwise hit shorelines (Ferrario et al., 

2014; Woodhead et al., 2019). This service of shoreline protection contributes towards reducing 

annual expected damages from storms across reef coastlines, by more than $4 billion (Woodhead et 

al., 2019). In addition, reefs further contribute to economies through generating income via reef 

tourism which is estimated to be worth ca. US $35.8 billion dollars per annum globally (Woodhead 

et al., 2019). However, the extent to which coral reefs can deliver their services (e.g. coastal 

protection) and functions (e.g. biodiversity) is associated and dependent on the persistence of their 

reef framework structure (Perry et al., 2008; Franco et al., 2016). Coral reefs are geomorphic 

structures built from a calcium carbonate (CaCO3) skeleton produced by primary reef builders (e.g. 

hermatypic corals) thereby providing an important three-dimensional structure (Perry et al., 2008). 

This structure gives rise to an array of different habitats for numerous associated species to use for 

foraging, shelter and interaction. The ability of coral reefs to sustain the integrity of their structural 

framework is based on the balance between the rate of carbonate production and erosion (removal) 
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or commonly known as the carbonate budget (Kleypas & Langdon, 2006; Perry & Hepburn, 2008; 

Perry et al., 2008; Januchowski-Hartley et al., 2017).  

 

1.2 | REEF CARBONATE BUDGETS  

Carbonate reef budgets rely on constructive (caused by reef-building organisms) and destructive 

(caused by bioeroders) influences, both of which, operate through a range of physical, chemical and 

biological processes over varying timescales and intensity (Tucker & Wright, 1990; Perry et al., 

2008) (Figure 1.1). Globally, ~50% of shallow water CaCO3 produced is due to coral reef 

calcification (Milliman, 1993) with an estimated CaCO3 production budget of 0.7-0.8 gigatonnes 

(Gt) year -1 (Vecsei, 2004), most of which (>25%) is buried and preserved in marine sediment 

(Jones et al., 2015). Therefore, unsurprisingly, calcification by coral reef communities is estimated 

to account for half of all carbonate produced in shallow water environments (Jones et al., 2015). The 

carbonate budget is defined as the sum of gross carbonate production from both primary and 

secondary reef builders in addition to sediment produced within or imported into the reef, minus 

carbonate removed through destructive physical and/or biological processes or sediment export 

(Table 1.1; Mallela & Perry, 2007; Perry et al., 2008, 2012; Leon & Woodroffe, 2013). 
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Figure 1.1. Overview of the coral reef framework net carbonate production & erosion 

(adapted from Glynn, 1997; Photo credit of organisms: Dr. Leanne Hepburn). 

 
CaCO3 production is mainly done by primary (hermatypic corals; Stearn & Scoffin, 1977; Perry & 

Hepburn, 2008) and secondary reef builders (calcareous encrusters; Goreau, 1963; Choi & 

Ginsburg, 1983), in addition to the reintroduction of carbonate sediment into the reef framework. 

Reef builders secrete, deposit and accumulate CaCO3 thereby, contributing towards the formation of 

the reef’s structure through accretion. The extent of carbonate production is dependent on the 

distribution within a reef in addition to the disturbances (natural and anthropogenic; Eakin, 1996). 

The amount of CaCO3 produced by primary builders (corals) has been estimated to range between  

<1 kg m-2 y-1 on a degraded reef and 14.3 kg m-2 y-1 on a healthy reef (Eakin, 1996; Edinger et al., 
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2000; Mallela, 2013). Production by secondary carbonate producers (calcareous encrusters), most of 

which is based on limited data, is estimated as ~0.05 kg m-2 y-1 by all encrusters (Hubbard et al., 

1990; Mallela & Perry, 2007; Mallela, 2013; Hepburn et al., 2015) with 0.02 kg m-2 y-1 produced by 

crustose coralline algae (CCA; Hubbard et al., 1990; Payri, 1997). Moreover, encrusting 

foraminifera (symbionts bearing ones and which are single-celled protists with shells) are estimated 

to produce a minimum of 130 million tons of CaCO3 per year thereby contributing approximately 

5% of the annual world reefs carbonate production and 2.5% of CaCO3 of global oceans (Langer, 

2008). The contribution of calcareous encrusters varies and is dependent on the reefs’ microhabitat 

whereby cryptic microhabitats (such as cavities and overhangs) will usually harbour a higher 

abundance of heterotropic encrusters (Mallela, 2013; Hepburn et al., 2015) but these remain more 

difficult to quantify. In addition to being important producers of CaCO3 on reefs, encrusting 

organisms such as non-geniculate crustose coralline algae (CCA), bryozoans, foraminifera and 

serpulids, play an important role in binding the reef together through colonising reef substrate 

thereby contributing extensively towards its cementation and stability (Rasser & Riegl, 2002; 

Langer, 2008; Perry & Hepburn, 2008; Fujita et al., 2009). This in turn, promotes accretion, 

enhances larval recruitment of various organisms and maintains wave resistance reef fronts (Rasser 

& Riegl, 2002; Mallela & Perry, 2007). Marine sediment also contributes to gross carbonate 

production rates on a reef, most of which is either imported from other areas (e.g. nearby shores 

through wave action), or present in-situ and form as a result of breakdown and/or degradation of 

calcareous organisms, which could be caused by grazers or disturbances on the reef (Hubbard et al., 

1990; Mallela & Perry, 2007). It is estimated that out of the 5 billion tons per year of CaCO3 

produced in the world’s oceans, ~3 billion tons of it is accumulated in sediments (Milliman, 1993). 

Moreover, 0.7 kg CaCO3 m-2 y-1 of carbonate sediment in a reef is estimated to be generated through 
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biological erosion whilst 0.4 kg CaCO3 m-2 y-1 comes from sediment reincorporated into reef 

systems (Hubbard et al., 1990). 
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Table 1.1. Examples of net carbonate production rates on reefs worldwide (unit = kg CaCO3 

m-2 year -1 expressed as G; *Pre and Post values refer to pre and post bleaching events). 

Location Depth Site 
Net Carbonate Production 

Rate (G) Source 

Caribbean Shallow reefs 
(<10 m) 

Bellairs Reef, 
Barbados 

4.5 
(Scoffin et al., 

1980) 

Caribbean Depth range (0-
60 m) 

Discovery Bay, 
Jamaica 

1.1 (Land, 1979) 

Caribbean 5-10 m Bonaire  Range: -0.9 to 9.5 (Perry et al., 2012) 

Caribbean Shallow reefs Bonaire Range: 0.2 to 2.0 
(de Bakker et al., 

2019) 

Caribbean - Cane Bay, St Croix 0.9 
(Hubbard et al., 

1990) 

Eastern Pacific 
Pre and Post- 
Bleaching* 

Uva Island 
Pre = 0.3; Post = 

-0.2 
(Eakin, 1996) 

Great Barrier 
Reef (North) 

- Reefs of Torres Strait Range: 0.5 to 10 
(Leon & 

Woodroffe, 2013) 
West Indian 

Ocean 
Shallow 
forereefs 

Southern Maldivian 
atoll of Gaafu Dhaalu 

Pre = 5.9; Post = 
-2.9 

(Perry & Morgan, 
2017) 

West Indian 
Ocean 

Reef crest and 
reef flat 

Southern Maldives 2.5 (Ryan et al., 2019) 

West Indian 
Ocean 

Pre and Post – 
Bleaching 

Inner – reefs 
Seychelles 

Pre = 4; Post = -1.5 
(Januchowski-
Hartley et al., 

2017) 
West Indian 

Ocean 
Pre and Post - 

Bleaching 
Chagos Archipelago Pre =13.1; Post = 3 

(Lange & Perry, 
2019) 

West Indian 
Ocean 

- Chagos Archipelago Range: -5 to 9.8 
(Perry et al., 

2015a) 

Indo-Pacific Fringing reef 
Kailua Bay, Oahu, 

Hawaii 
0.9 

(Harney & 
Fletcher, 2003) 

Pacific Fringing reef 
Lizard Island, 

Australia 
Range: 0.7 to 3.4 (Pescud, 2012) 

Indo-Pacific - 
Java Sea and Ambon, 

Indonesia 
Range: 7.6 to 11.7 

(Edinger et al., 
2000) 

Indo-Pacific 
Fringing reefs 

(5-12 m) 

Wakatobi National 
Biosphere Reserve, 

Indonesia 
Range: 3.3 to 16.7 (Franco, 2014) 

Red Sea - Gulf of Aqaba Range: -1.5 to 2.4 (Roik et al., 2017) 
 

Bioerosion is the mechanical and/chemical dissolution of hard substrates by living agents and it 

generally occurs as a result of CaCO3 removal from the reef framework. It is usually done by 

removing consolidated mineral matter either internally (within the calcareous reef skeleton) or 
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externally (on the reef surface) by organisms termed as bioeroders (Glynn, 1997). Bioeroders are 

key players in characterising a coral reef environment through sculpting its growth and in producing 

reef sediment (e.g. rubble and sand; Goreau & Hartman, 1963; Neumann, 1966; Hutchings & 

Bamber, 1985; Hubbard et al., 1990). In addition, dominant bioeroders, such as bioeroding sponges, 

invertebrate grazers and excavating fish are known to be major players in removing CaCO3 from 

reefs (Scoffin et al., 1980; Hutchings, 1986; Glynn, 1997; Schmidt & Richter, 2013), making 

bioerosion a key process in reef carbonate budgets. In addition, bioerosion rates are higher on dead 

substrate than live (Peyrot-Clausade et al., 1992; Tribollet & Payri, 2001; Perry et al., 2008). The 

net growth of coral reef frameworks is dependent on the balance between carbonate production and 

erosion, therefore, increased bioerosion could limit reef accretion – the overall net growth/ carbonate 

production - which may effectively lead to coral reef drowning (Holmes et al., 2000; Perry et al., 

2018a). Bioerosion is dependent on various environmental variables such as light availability, depth 

and nutrient supply (Chazottes et al., 1995). In addition, bioerosion is expected to increase with the 

weakening of existing carbonate structures driven by increasing ocean acidification and atmospheric 

carbon dioxide (Duckworth et al., 2012; Fang et al., 2013; Wisshak et al., 2014). 

Bioeroders can be separated into three main functional groups: macroborers (e.g. serpulids 

(polychaetes), bioeroding sponges, bivalves), microborers (e.g. cyanobacteria) and grazers (e.g. 

urchins). Macro- and micro- borers are known to usually infest dead carbonate substrate and live 

coral colonies beginning from the base through boring into the substrate utilising a chemical 

dissolution and/or mechanical abrasion mechanism (Glynn, 1997). Bioerosion rates of polychaetes 

are estimated to range between 0.1 kg CaCO3 m-2 y-1 (Kiene & Hutchings, 1994) and 0.2 kg CaCO3 

m-2 y-1 (Peyrot-Clausade et al., 1992). Excavating sponges compete for space with other sessile 

organisms through overgrowth by encrusting on the reef substratum (Marquez & Zea, 2012). 

Bioerosion rates for sponges vary greatly between species ranging from 0.1 (Rützler, 1975) to 12.5 
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kg CaCO3 m-2 y-1 (Zundelevich et al., 2007; De Bakker et al., 2018). The variation in erosion rates is 

associated with a range of biotic and abiotic conditions such as substrate exposure time (Tribollet & 

Golubic, 2005), grazing pressure (Sammarco et al., 1987), light availability (Magnusson et al., 

2007), sedimentation (Marlow et al., 2018) and eutrophication (Chazottes et al., 2002). Microborers 

bore holes in the reef substrate that are <100 µm diameter and include cyanobacteria, algae (e.g. 

chlorophytes, rhodophytes) and fungi (Enochs et al., 2016). Their erosion rates are influenced by the 

mineralogy, porosity and structure of the carbonate substrate in addition to various environmental 

variables which influences their community composition on carbonate substrate (dead/alive; 

Chazottes et al., 1995; Tribollet & Payri, 2001). Boring erosion rates of microborers documented 

include 0.03 kg CaCO3 m-2 y-1 in Jamaica (Mallela & Perry, 2007),  0.1 kg CaCO3 m-2 y-1 in French 

Polynesia (Chazottes et al., 1995), 0.1 kg CaCO3 m-2 y-1 in La Reunion Islands (Chazottes et al., 

2002) and ranged between 0.1 and 1.3 kg CaCO3 m-2 y-1 in the Great Barrier Reef (Tribollet & 

Golubic, 2005). External CaCO3 removed from hard reef substrata is a by-product of feeding by 

grazers (e.g. parrotfish and echinoids (urchins)). Parrotfish are well known for their important 

ecological role in controlling macroalgae on reefs, ensuring substrate availability for coral larval 

settlement and recruitment (Bellwood, 1995; Bellwood et al., 2004; Hoey & Bellwood, 2008). 

Previous studies have shown that bioerosion rates of parrotfish depend on species-specific, size and 

life phase (Bruggemann et al., 1994, 1996; Bellwood, 1995; Hoey & Bellwood, 2008). Parrotfish 

bioerosion in the Caribbean has been reported to be ~1 kg CaCO3 m-2 y-1 for Scarus spp. 

(Bruggemann et al., 1996; Perry et al., 2012) and 1.1 – 2.1 kg CaCO3 m-2 y-1 for Sparisoma viride 

(Bruggemann et al., 1996; Perry et al., 2012). In Australia, Chlorurus microrhinos was reported to 

remove 4.6 ± 3.1 kg CaCO3 m-2 y-1 while C. gibbus and C. sordidus removed 3.0 ± 2.0 kg CaCO3 m-

2 y-1 (Bellwood, 1995; Hoey & Bellwood, 2008); while Bolbometopon muricatum was reported to 

remove an estimated 2.3 m3 or 5.7 ± 0.5 t CaCO3 y-1 (Bellwood et al., 2003). Echinoids bioerosion 
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rates also vary between species, size and abundance, with most belonging to the genera Diadema, 

Echinometra, Echinostrephus and Eucidaris (Scoffin et al., 1980; Bak, 1990, 1994a). They are 

responsible for 80% of the total erosion of reefs (Scoffin et al., 1980) as they can process ~9.7 kg 

CaCO3 m-2 y-1 (Hunter, 1977; Bak, 1990) In general, echinoids have been recorded to have an 

erosion rate between 0.4 (Appana & Vuki, 2004) and 14 kg CaCO3 m-2 y-1 (Eakin, 1992).  Lastly, 

physical disturbances associated with the periodic occurrence of severe storms, typhoons and 

cyclones, also contribute towards the destruction of the reef framework resulting in the production 

of coral rubble and removal of sediment (Eakin, 1996; Blanchon & Jones, 1997; Rasser & Riegl, 

2002).  

Table 1.2. Examples of gross carbonate erosion rates worldwide (unit = kg CaCO3 m-2 year -1 

expressed as G; *Pre and Post values refer to pre and post bleaching events). 

Location Depth Site 
Gross Carbonate Erosion Rate 

(G) 
Source 

French 
Polynesia Fringing reef Moorea Island 2.6 

(Chazottes et al., 
1995) 

Caribbean 5-10 m Bonaire  Range: 1.0 to 2.8 (Perry et al., 2012) 

West Indian 
Ocean 

Pre and Post- El 
Nino 

Inner – reefs 
Seychelles 

Pre = 1.9; Post = 2.9 
(Januchowski-
Hartley et al., 

2017) 
West Indian 

Ocean 
Reef crest and 

reef flat 
Southern Maldives 3.4 (Ryan et al., 2019) 

     
West Indian 

Ocean 
- Chagos Archipelago Range: 1.4 to 7.4 

(Perry et al., 
2015a) 

Indo-Pacific Fringing reef 
Kailua Bay, Oahu, 

Hawaii 
Range: 0.1 to 1.2 

(Harney & 
Fletcher, 2003) 

Indo-Pacific - 
Java Sea and Ambon, 

Indonesia 
Range: 0.9 to 10.1 

(Edinger et al., 
2000) 

Indo-Pacific 
Fringing reefs 

5-12 m 

Wakatobi National 
Biosphere Reserve, 

Indonesia 
Range: 0.7 to 5.6 (Franco, 2014) 

Red Sea - Gulf of Aqaba Range: 0.4 to 1.0 (Roik et al., 2017) 
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1.3 | CARBONATE BUDGET ASSESSMENTS  

In recent years, reef carbonate budget measures have been recognised as a key metric in assessing 

coral reef health (Mace et al., 2014; Perry & Morgan, 2017). Coral reef structural integrity is 

associated with carbonate budgets, which quantifies the overall CaCO3 input and output on a reef 

framework. Positive reef budgets occur when CaCO3 production exceeds erosion, representing reef 

accretion whilst negative reef budgets occur when physical abrasion, bioerosion and dissolution 

outweigh production (Leon & Woodroffe, 2013). In the last three decades, several attempts at 

quantifying and assessing coral reef gross production and calcification rates have been undertaken 

(Milliman, 1993; Eakin, 1996; Perry et al., 2008, 2012; Leon & Woodroffe, 2013; Franco, 2014; 

Hepburn et al., 2015; Vargas-Ángel et al., 2015; Perry & Morgan, 2017). The carbonate budget 

approach enables linking ecological and morphological changes (within or between reefs) across 

different spatial scales whilst analysing various components of reef function and structure 

effectively over time (Perry et al., 2008; Leon & Woodroffe, 2013; Januchowski-Hartley et al., 

2017). This allows us to understand the coping abilities of reefs to maintain themselves and enables 

detection of change in the budgetary trend as a result of reef functionality change or stressors (Perry 

et al., 2014; Lange & Perry, 2019). Carbonate budgets have been used to investigate various 

processes that influence reef growth or degradation all of which are related to the dynamics amongst 

various physical, chemical and biological processes (Stearn & Scoffin, 1977; Kiene, 1988; Eakin, 

1996; Edinger et al., 2000; Appana & Vuki, 2004; Mallela & Perry, 2007; Perry et al., 2012; 

Franco, 2014; Hepburn et al., 2015; Vargas-Ángel et al., 2015). The majority of previous studies 

adopted a census-based approach to quantify carbonate production on reefs in different locations, 

which can be translated into a mathematical equation (Mallela, 2004; Perry et al., 2012; Franco, 

2014) whereby each component is associated with the accretion or erosion aspect of the reef 
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framework. In order to calculate the production and erosion rate separately (in kg CaCO3 m-2 y-1 

hereafter referred to as G), a rapid non-destructive census based protocol termed “ReefBudget” has 

been proposed as a standardized methodology to conduct carbonate budget assessments (Perry et al., 

2012, 2015b, 2018b). The protocol utilizes a series of equations to calculate production and erosion, 

derived from published work and empirical data. This standardized approach enables accurate global 

comparisons of carbonate budgets, even though designed originally for the Caribbean, it can be 

adapted to different regions through using algorithms for varying components e.g. bioerosion by 

parrotfish. Carbonate budget assessments play an important role in providing insights into coral reef 

health and status under various environmental conditions (Eakin, 1996; Mallela & Perry, 2007; 

Perry et al., 2012). They can hence be utilised to aid in coral reef conservation management due to 

their ability to quantify functional and structural changes in reef ecosystems (Perry et al., 2008) 

especially when integrated in models  to predict future changes in reef systems (Franco, 2014).  

 

1.4 | THREATS TO CORAL REEF FRAMEWORKS 

Globally, coral reefs have suffered severe impacts due to various environmental and anthropogenic 

factors that have resulted in their degradation and destruction (Hoegh-Guldberg, 1999; Douglas, 

2003; Hoegh-Guldberg et al., 2007; Carpenter et al., 2008; Hoegh-Guldberg, 2011; Seemann et al., 

2014). Anthropogenic pressures such as destructive fishing practices (Jones & Steven, 1997), 

overfishing activities (Bellwood et al., 2004; Mallela & Perry, 2007) and pollution arising from 

urban and coastal developments (Lafferty et al., 2004; Browne et al., 2012a; Fan et al., 2013) have 

resulted in altering coral reefs ecosystems worldwide, thus threatening their functionality. In 

addition, reef accretion and coral growth rates have been reported to be negatively impacted from 

anthropogenic pollution caused by sedimentation and eutrophication (Edinger et al., 2000; Mallela 
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& Perry, 2007; Browne et al., 2012b). Impacts of high sedimentation include declining calcification 

rates (Mallela, 2013), increase in coral mortality due to smothering and burial (Loya, 1976; Nugues 

& Roberts, 2003), increase in coral disease (Bruno et al., 2003), reduced larval settlement (Fabricius 

et al., 2005) and reduced light availability necessary for photosynthesis (Rogers, 1990; Wolanski & 

De ’ath, 2005; Browne et al., 2012a). In addition, sedimentation has been noted to negatively impact 

secondary reef builders, especially encrusters (Fabricius & De’ath, 2001; Mallela, 2007). Globally 

recognised as key threats to coral reefs, ocean warming and ocean acidification (both by-products of 

a changing climate) contribute immensely to altering ocean chemistry and temperature (Pandolfi et 

al., 2011; IPCC, 2015). By the year 2100, climate change is expected to increase global ocean 

surface temperatures by >3°C and decrease its pH by up to 0.32 units (IPCC, 2013; Prada et al., 

2017). Increasing atmospheric concentrations of CO2 are reducing ocean pH and carbonate ion 

concentrations (CO3
2-) resulting in more acidic water thereby reducing the calcification rate of reef 

framework builders due to lower levels of calcium carbonate (CaCO3; Gattuso et al., 1998; Kleypas 

et al., 1999; Orr et al., 2005; Anthony et al., 2008). As a result, it is predicted that within decades, 

erosion rates will exceed reef accretion rates due to lower CaCO3 production (Hoegh-Guldberg et 

al., 2007; Fabry et al., 2008; Pandolfi et al., 2011). Moreover, increasing sea surface temperatures 

(SST) also impact corals and their symbiosis due to coral bleaching events, resulting in negative 

consequences for coral survival, growth and reproduction (Hoegh-Guldberg et al., 2007; Anthony et 

al., 2008). This is alarming especially with coral bleaching episodes predicted to increase in 

frequency and severity threatening reefs worldwide. The future of coral reefs look bleak with 

speculations of long-term degradation due to the rise in global mass coral bleaching incidences in 

recent decades attributed to rising temperatures (Hoegh-Guldberg, 1999; Wellington et al., 2001; 

Sheppard, 2003; Donner et al., 2005; Januchowski-Hartley et al., 2017). 
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1.5 | THE CORAL HOLOBIONT 

Hermatypic (reef-building) corals are typically composed of polyp colonies, however, solitary single 

polyp corals are also present (e.g. Fungia), whose tissues host a single-celled dinoflagellate 

microalgae (commonly known as zooxanthellae) in the family Symbiodiniaceae (LaJeunesse, 2001). 

The foundation of coral reefs is based on the symbiotic association between hermatypic corals and 

dinoflagellates in the family Symbiodiniaceae (Rouzé et al., 2017). The Symbiodiniaceae species 

inhabits the vacuoles (known as symbiosome) which is present within the endodermic layer of the 

coral polyp tissue (Trench, 1979). Corals are supplied by photosynthetic products such as sugars, 

fatty and amino acids, carbohydrates and small peptides, thereby receiving 95% of its nutrition from 

the Symbiodiniaceae species (Trench, 1979; Papina et al., 2003). This energy supply by the 

Symbiodiniaceae species is also related to the amount of energy available for calcification (Jones & 

Berkelmans, 2010). In return, the Symbiodiniaceae species receives crucial plant nutrients such as 

ammonia and phosphate from the coral’s waste metabolism (Furla et al., 2000; Al-Hammady, 2013). 

In addition, all corals host large populations of microorganisms including eukaryotic algae, bacteria, 

viruses, fungi and archaea in their mucus layer, skeleton and tissues whereby by the 

Symbiodiniaceae species is just one of them (Rosenberg et al., 2007; Littman et al., 2011). This 

collective diverse and dynamic group of microbial communities together with the Symbiodiniaceae 

species make up what is referred to as the coral holobiont (Rohwer et al., 2002; Thompson et al., 

2015). These microorganisms provide their host with benefits by various mechanisms, including 

photosynthesis, nitrogen fixation, the provision of nutrients and infection prevention thereby 

contributing towards coral health (Trench, 1979; Rohwer et al., 2002; Rosenberg et al., 2007). The 

coral holobiont functions as a dynamic system whereby external environmental conditions 

determines its members (Shashar et al., 1993; Tanner, 1996; Thompson et al., 2015; Roik et al., 
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2016). Therefore, any change in environmental conditions will change the relative abundance of 

microbial species in order to facilitate the coral holobiont to adapt to the new condition (Reshef et 

al., 2006). In addition, these symbiont microbial populations may reach densities of several million 

or more per square centimeter of host tissue (LaJeunesse, 2002). With the advancement of molecular 

techniques in the last 20 years, evidence has been attained regarding the diversity in the 

Symbiodiniaceae species hosted within invertebrate populations (Rowan & Powers, 1991; 

LaJeunesse, 2001, 2002; Pochon et al., 2001; Coffroth & Santos, 2005; Sampayo et al., 2009; Hill et 

al., 2011). Recent phylogenetic reconstructions have revealed nine widely recognized divergent 

phylogenetic lineages of Symbiodiniaceae species referred to as “clades” (A-I) which, based on the 

18S rDNA and internal transcribed spacer regions (ITS) analyses (Rowan & Powers, 1991; 

LaJeunesse, 2001, 2002; Pochon et al., 2006; Pochon & Gates, 2010; Hill et al., 2011; Yang et al., 

2012; Rouzé et al., 2017), are further divided into sub-clades or types (Rowan & Knowlton, 1995). 

Over the years, several new species of Symbiodiniaceae species have been formally described, 

classified and named amounting to 22 species at present (Trench & Blank, 1987; Jeong et al., 2014; 

LaJeunesse et al., 2014; Hume et al., 2015; LaJeunesse et al., 2015; Parkinson et al., 2015; Ramsby 

et al., 2017; LaJeunesse et al., 2018). Studies have revealed that within various sub-clades 

Symbiodiniaceae species exhibit distinct genetic, physiological, and ecological variation associated 

with the multiple species concept (Lajeunesse et al., 2012; LaJeunesse et al., 2018). 

Symbiodiniaceae species clades and sub-clades vary in their levels of tolerance to heat and light 

(Stat et al., 2006; Hennige et al., 2011; Silverstein et al., 2012). Coral-Symbiodiniaceae species 

associations have been seen to include mono or multi-clade associations (Fabina et al., 2012; 

Silverstein et al., 2012; Rouzé et al., 2017). Regional and local environmental factors are known to 

influence their clade associations and ecological dominance (Baker, 2003; Ziegler et al., 2017). 

Symbiodiniaceae species in clades A-D are commonly seen associated with corals (LaJeunesse, 



Chapter 1 | Introduction 

	 35	

2001), whilst those associated with clades F and G remain rare (Ramsby et al., 2017). Favourable 

environmental conditions promote harmonious functions between the host and its associated 

symbiosis. However, when subjected to various stressors that induce environmental change caused 

by natural and/or anthropogenic sources, this symbiotic relationship is impacted and can breakdown. 

The degree of how this relationship is impacted is determined based on the degree of stress tolerance 

of either partner (Yang et al., 2012; Rouzé et al., 2017). Previous studies have suggested that 

accretion rates of corals are affected in hosts harbouring thermally tolerant symbionts when 

compared to those with the thermally sensitive type (Jones & Berkelmans, 2010; Pettay et al., 2015). 

Reef carbonate budgets and associated coral-Symbiodiniaceae species in the bioregions selected for 

this study remain poorly explored, especially at this crucial time following the 2015-2016 named the 

“Godzilla El Nino” event that has generated significant coral bleaching and mortality worldwide 

(Ampou et al., 2017). 

1.6 | CORAL BLEACHING 

Bleaching is a term used to address the partial or complete loss of the Symbiodiniaceae species from 

coral tissues which occurs when corals are under stress from elevated temperatures thereby 

exceeding their thermal tolerance levels (Hoegh-Guldberg, 1999; Donner et al., 2005; Hoegh-

Guldberg et al., 2007). It can also be used to describe the discolouration due to the loss of 

pigmentation (from the Symbiodiniaceae species and coral cnidarian host tissue), in addition to, the 

loss of all the Symbiodiniaceae species cells from coral tissue (Suggett & Smith, 2010). An increase 

by one or two degrees Celsius is enough for corals to expel their associated Symbiodiniaceae species 

(Lesser, 2007; Desalvo et al., 2008; Ricaurte et al., 2016). The effects of coral bleaching may not 

have major consequences to the coral depending on the length of exposure and degree of elevation 

(Baker et al., 2008). Suggett and Smith (2010) proposed that bleaching has three stages: (1) “non-
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lethal” bleaching occurs as part of a natural phenomena that is driven by natural change in 

environmental conditions (e.g. temperature and light) and biological interactions (e.g. disease and 

microbial activities). (2) “sub-lethal” is when corals encounter stress due to an increase in the 

amplitude and frequency of environmental variability that is beyond normal thereby exceeding the 

coral’s tolerance. However, this kind of bleaching does not result in coral mortality and is reversible 

once conditions return to normal. (3) “lethal” bleaching is when corals exhibit an irreversible 

bleaching process due to rapid and extreme environmental change that results in coral mortality. The 

loss of Symbiodiniaceae species cells and/or host tissue leave the underlying CaCO3 skeleton 

vulnerable with little hope of recovery when environmental conditions return to normal (Suggett & 

Smith, 2010). Lethal and sub-lethal bleaching, negatively impact accretion rates on reefs, as coral 

colonies are more prone to erosion during this vulnerable phase. Bleaching has been proposed to be 

a survival mechanism used by corals to overcome severe stress through dynamic modification of 

their Symbiodiniaceae species community composition which is a concept termed as “Adaptive 

Bleaching Hypothesis” (Buddemeier & Fautin, 1993). This is done by either switching their 

Symbiodiniaceae species clades with those more resistant in the present surrounding environment or 

through shuffling the pre-existing clades with those more resistant (Rowan & Powers, 1991; Baker 

et al., 2004; Rouzé et al., 2017). For example, in a study on a common Indo-Pacific branching coral 

species (Acropora millepora), it was found that switching to thermally tolerant Symbiodiniaceae 

species type D (Durusdinium sp.) increased the coral’s thermal tolerance between 1.0-1.5°C 

(Berkelmans & Van Oppen, 2006). Coral are known to be restricted to certain temperature 

thresholds (Webster et al., 2011) and in light of rising SST levels, it is necessary to understand the 

various associations between the assemblages of Symbiodiniaceae species and coral host along with 

how this relationship will affect future accretion rates on reefs in the face of predicted global 

environmental change. Previous studies have stated that accretion rates of reef-building corals are 
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likely to be compromised significantly by two different processes: the effect of the actual bleaching 

stress and the other being the process of symbiont shuffling to more thermally tolerant types due to 

thermal stress before bleaching (Little et al., 2004; Mieog et al., 2009; Jones & Berkelmans, 2010). 

Moreover, it has been suggested that accretion rates of coral are affected in hosts harbouring 

thermally tolerant symbiont when compared to those with the thermally sensitive type (Jones & 

Berkelmans, 2010; Pettay et al., 2015). Examining the cost-benefit trade-offs in hosting thermally 

tolerant Symbiodiniaceae species and its relation to accretion will aid in providing valuable insights 

as to the future of coral reefs. This is particularly pertinent given that one-third of the world’s coral 

reefs are at risk of extinction (Carpenter et al, 2008; Huang & Roy, 2015) due to climate change 

combined with other anthropogenic impacts such as overfishing and destructive fishing practices 

(Hoegh-Guldberg, 1999; Douglas, 2003; Hoegh-Guldberg et al., 2007; Carpenter et al, 2008; 

Hoegh-Guldberg, 2011; Seemann et al., 2014). Therefore, this thesis aims to contribute towards 

filling the knowledge gap within the interlinked fields of reef carbonate budgets and coral-

Symbiodiniaceae associations in three selected bioregions. These were chosen based on differences 

in their (1) thermal regimes (e.g. Arabian Gulf1 (AG): 16-36°C; West-Indian Ocean (WIO)/Central 

Indo-Pacific (CIP): 24-33°C); (2) latitudinal position (reefs in AG are considered high latitude reefs 

whilst both WIO and CIP host low latitude reefs); and (3) range in species diversity (e.g. CIP = high 

biodiversity whereas AG = low biodiversity (see section 1.7 for more details). In addition, the 

selection of countries and local sites within each bioregion for this thesis was further determined 

based on local collaborations and the availability of reef sites that harbour different environmental 

characteristics (e.g. reefs in clear-water vs. turbid environments) to enable site comparisons. 

  

																																																								
1 The Arabian Gulf is also referred to as the Persian Gulf (the difference in terminology is geopolitical), the UN refers to the region as 
the ROPME Sea Area. Since the selected site within this region for this thesis is located within an Arab nation, the terminology used 
will adhere to the official term referred to by the country i.e. the Arabian Gulf. 
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1.7 | CONNECTING BIOREGIONS THROUGH EVOLUTIONARY HISTORY 

Ocean currents (past and present) determine biogeographic patterns which define connectivity 

among sites including historical patterns of speciation, extinction and immigration (Obura, 2012). 

Understanding biogeographic patterns and their mechanisms in addition to their classification is 

crucial for conserving ecologically representative systems which intends to protect genetic diversity, 

species, higher taxa including evolutionary patterns and ecological processes that sustain 

biodiversity (Spalding et al., 2007). The Marine Ecoregions of the World (MEOW) provides a 

global hierarchy system which classifies the world’s coastal and shelf waters into 12 realms, 26 

provinces and a total of 232 ecoregions (Spalding et al., 2007; Figure 1.2). The analysis of 

biogeographic datasets of scleractinian corals across all tropical MEOW provinces, showed 

significant segregation of provinces between the four Indo-Pacific realms (Obura, 2012). This thesis 

focuses on three of these provinces: (30) the Central Indo-Pacific (CIP; which includes the Coral 

Triangle) and the Western Indo-Pacific (Figure 1.2). Provinces within the Western Indo-Pacific 

realm cluster coral species strongly together with the exception of the Andaman Seas (Obura, 2012). 

The Western Indo-Pacific realm consists of 7 provinces namely: (18) the Red Sea and Gulf of Aden, 

(19) Somali/Arabian, (20) Western Indian Ocean, (21) West and South Indian Shelf, (22) Central 

Indian Ocean Islands, (23) Bay of Bengal and (24) Andaman (Figure 1.2; Spalding et al., 2007). Of 

these seven provinces, two are of particular interest for this reef carbonate budget and 

Symbiodiniaceae species study: (19) Somali/Arabian (which includes the Arabian Gulf; AG) and 

(20) Western Indian Ocean (WIO; Figure 1.2). It is thought that sea level and climatic fluctuations 

during the Plio-Pleistocene period and their effect on dispersal–vicariance2 may have acted as a 

diversity centre, driving the phylogenesis of new species in these ecoregions (Obura, 2016). In 

																																																								
2 The geographical separation of a population, typically by a physical barrier such as a mountain range or river, resulting in a pair of 
closely related species [Source: Oxford Dictionary] 



Chapter 1 | Introduction 

	 39	

addition, species accumulation in the WIO is predicted to be a result of species immigration or gene 

flow from the Central Indo-Pacific Realm (Veron, 2000; Obura, 2012). Moreover, the fluctuating 

isolation and connectivity of the Red Sea and Arabian Gulf due to their shallow and restricted 

openings to the northern Indian Ocean may have impacted the speciation processes (Sheppard et al., 

1992; Dibattista et al., 2016; Obura, 2016), thus contributing to their dispersal to the broader species 

pool shared across the Western and Northern Indian Ocean (Obura, 2012, 2016; Bowen et al., 

2013). Despite hosting unique coral reef ecosystems, the seas surrounding the Arabian Peninsula, 

including AG remains understudied (Ziegler et al., 2017). In terms of coral communities (genera and 

species diversity), the Coral Triangle is considered the epicenter of marine diversity (Sanciangco et 

al., 2013) as it hosts the highest diversity of hermatypic (reef building) corals (92%) on the planet 

(Veron, 2000). This pattern of maximum number of genera and species is seen to decrease once 

outside this zone whereby generas reach <30 in AG and the Gulf of Oman (Coles, 2003). Previous 

studies have quantified reef carbonate budgets in CIP to range between 0.9 and 16.7 kg CaCO3 m-2 

y-1 (Edinger et al., 2000; Harney & Fletcher, 2003; Franco, 2014) covering accretion of  reefs that 

harbour different environmental gradients and are exposed to various anthropogenic pressures. 

Regional studies have also reported that Symbiodiniaceae species clades C (Cladocopium sp.) & D 

(Durusdinium sp.) are dominant in coral species hosting a mixture of thermo-tolerant and thermo-

sensitive lineages (Lajeunesse et al., 2004a; Lajeunesse, 2005; Hennige et al., 2010).  
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Figure 1.2. MEOW Biogeographic Framework: (a) Biogeographic realms with ecoregions 

boundaries outlined (b) Provinces with ecoregions outlined whereby provinces are numbered 

and listed in the original paper. Source: Spalding et al., 2007.  

On the contrary, coral communities in AG are considered a subset of the extremely diverse Indo-

Pacific which disperses across the Pacific and Indian Oceans from the west coast of Central and 

South America to the east coast of Africa (Coles, 2003). AG is reported to host only 10% of the 
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species that occur in the Indo-Pacific (Coles, 2003) which could be attributed towards the region’s 

geographic isolation and its extreme and stressful environmental conditions defining it as the hottest 

sea on the planet which in turn limits the diversity of species it hosts (Coles, 2003; Coles & Riegl, 

2013; Hume et al., 2013).	Coral reefs in this region exist in harsh environments enduring high (up to 

36°C; Coles & Riegl, 2013; Hume et al., 2013) and low (<18°C) temperatures (Coles & Fadlallah, 

1991; Ziegler et al., 2017), high salinity (42-44) and extreme low tides (Sheppard et al., 2010; Hume 

et al., 2013); all of which may contribute towards limiting coral genera diversity in the region. Due 

to its geographically isolated nature it is thought that corals have developed their thermal resistance 

over the period of the region’s isolation (~6 kilo-annum years) during which reefs have been 

subjected to a warmer climate in comparison to corals from other regions (Purkis et al., 2010; Hume 

et al., 2013). It is thus unsurprising that coral communities in AG are seen to harbour the highest 

bleaching threshold globally (D’Angelo et al., 2015), however, despite their high threshold, they are 

still susceptible to bleaching (Burt et al., 2019). It is said that 70% of original AG reef cover may be 

considered lost and a further 27% threatened or at critical stages of degradation (van Lavieren et al., 

2011) with strong declines linked to major bleaching events (Sheppard & Loughland, 2002; Riegl et 

al., 2011; Burt, 2013; Coles & Riegl, 2013). To date, no studies have been conducted to investigate 

accretional health of reefs in AG and to our knowledge this study is the first attempt to quantify reef 

carbonate budgets in this region. Nevertheless, in recent years, a rise in research has taken place in 

the region, most of which is focused on the reefs of the United Arab Emirates (UAE) and Oman 

(Burt, 2013) to understand the mechanisms behind the ability of these reefs to survive in their harsh 

environments particularly in relation to high temperatures (Sheppard et al., 1992; Hume et al., 2013; 

D’Angelo et al., 2015; Bento et al., 2016; Ziegler et al., 2017). The presence of Symbiodiniaceae 

species type D (Durusdinium sp.; known to increase thermal tolerance in coral hosts) has been 

reported in northwest (off Saudi Arabia) and northeast (off Iran) of AG (Baker et al., 2004; Ghavam 
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Mostafavi et al., 2007; LaJeunesse et al., 2014) and was inferred to as the reason behind their 

tolerance. However, recent studies reported that in areas where Symbiodiniaceae species 

(Durusdinium sp.) is said to be absent, sub-clade C3 (Cladocopium sp.) was prevalent instead all 

year-round in the south of AG (Abu Dhabi) (Hume et al., 2013; D’Angelo et al., 2015). This was 

surprising considering that sub-clade C3 members are considered cosmopolitan thermally sensitive 

generalists (Lajeunesse, 2005; Hume et al., 2015). Following the recognition of this contradictory 

findings, the discovery of a new species (C3-Gulf) was announced which was found to be the pre-

dominant coral symbionts in the South of the AG and was named “Cladocopium thermophilum” 

(Hume et al., 2015). 

Whilst AG and CIP are considered as bioregions with characteristics that are on the opposite 

spectrum of each other both in terms of environmental conditions and diversity, WIO harbours a 

unique environmental gradient ranging from tropical to temperate due to complex currents that 

interact between the African coastline and nearby islands (e.g. La Reunion, Madagascar, the 

Maldives, Mauritius and the Seychelles; Mcclanahan et al., 2011). Hence, acting as an ideal median 

bioregion in terms of environmental conditions for this study in between the two opposite 

bioregions. The WIO is known for its biodiverse rich marine life and hence is considered to be an 

important biogeographic region of tropical seas due to being a coherent subdivision of the Indo-

Pacific (Sheppard, 2000; Ridgway & Sampayo, 2005). Reefs in the WIO are impacted by various 

anthropogenic activities (e.g. habitat destruction, overfishing and pollution) as a result of poverty 

and rapid population growth (Berg et al., 2002). Similar to AG, the WIO was also severely impacted 

by the 1998 mass bleaching event which resulted in 75-99% mortality of corals in heavily impacted 

sites (Wilkinson et al., 1999; Wilkinson, 2000; Graham et al., 2006) while areas such as Mauritius 

and La Reunion reported lower levels of bleaching (Obura, 2005). Previous regional studies in WIO, 

have indicated that Symbiodiniaceae species clade C (Cladocopium sp.) is dominant across the 



Chapter 1 | Introduction 

	 43	

region with clade D (Durusdinium sp.) becoming more evident in areas (Burnett, 2002; Ridgway & 

Sampayo, 2005; Mcclanahan et al., 2011). Reef carbonate budgets and Symbiodiniaceae diversity in 

this region remain understudied.  

The ecological functions of reefs rely on their structural complexity, which depends on the ability of 

reef building corals to maintain their functional roles (net reef accretion) over the long term 

encompassing both chronic and acute shifts. Since maintaining their structural framework, measured 

by their carbonate budget, is linked to their survival in the face of rising sea levels (Perry et al., 

2015a, 2018a); carbonate budgets allow us to understand the coping abilities of reefs to maintain 

themselves in light of a changing climate that threatens their functionality. Understanding reef 

dynamics under extreme conditions such as AG, could present a possible window to the future of 

reefs worldwide since these reefs currently exist in a thermal environment that is similar to that 

predicted for future tropical reefs whereby climate scenarios predict a future in which reefs will face 

an increase in ocean temperatures by 1-3°C (Riegl et al., 2011).  
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Figure 1.3. Location of Selected Study Bioregions: Arabian Gulf (AG), the Western Indian 

Ocean (WIO) and Central Indo-Pacific (CIP). 

1.8 | THESIS AIM 

The overall aim of this thesis is to assess reef accretional health and explore Symbiodiniaceae 

diversity of selected reef sites in Bahrain located in the Arabian Gulf (AG), the Seychelles located in 

the Western Indian Ocean (WIO) and Indonesia located in the Central Indo-Pacific (CIP; Figure 

1.3).  
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Chapter aims: 

Ø Chapter 2: To examine the thermal stress history on reefs in the three bioregions for a period 

of 35 years (1982-2017) in order to identify periods of vulnerability and mortality caused by 

bleaching events impacting reef carbonate budgets. 

Ø Chapter 3: To determine the current status and trends of reefs in the three selected 

bioregions through conducting a systematic review. 

Ø Chapter 4: To quantify reef carbonate budgets in the three selected bioregions. 

Ø Chapter 5: To investigate the diversity of Symbiodiniaceae species for selected coral species 

across different thermal regimes in the three bioregions through ITS2 region sequence 

analysis.  
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2. THERMAL HISTORY OF REEFS IN THE ARABIAN GULF, WESTERN INDIAN AND 
CENTRAL INDO-PACIFIC OCEAN 

 

ABSTRACT 

One of the main climatic shifts affecting tropical coral reefs is increased sea surface temperatures 

(SST), which is one of the main triggers of coral bleaching. However, the effects of temperature on 

many localized regions remain unexplored and it is important at this time, to determine refugia areas 

for reefs. Therefore, this study aimed to characterize the thermal history of three bioregions located 

in three latitudes. Sea surface temperature (SST) between the periods 1982-2017 (35 years) was 

derived from the CoRTAD satellite to quantify spatial and temporal characteristics of thermal 

history metrics in localized sites within the three bioregions. Results illustrated that the higher 

latitude bioregion was subject to warmer conditions. In addition, thermal stress anomalies were 

observed to significantly increase over time in all three bioregions, which could impact accretional 

health and framework production. High latitude reefs (e.g. Bahrain) experience high and intense 

temperature disturbance (>4°C-DHW) in comparison to those in the eastern lower latitudes (e.g. 

Indonesia), which experience low intensity, increase in temperatures (<4°C-DHW) but at a higher 

frequency. Reefs in the higher latitudes persist despite frequent disturbances caused by temperature 

changes, which may imply that corals in these regions exhibit resilience towards such climatic 

extremes. This offers a window of opportunity for exploration as to how reefs in other lower 

latitudes might cope in the future in light of predicted increased warming. 

	
2.1 | INTRODUCTION 

Sea surface temperatures (SST) have witnessed an increase globally with records documenting a rise 

by 0.7◦C, 0.4◦C and 0.3◦C in the Indian, Atlantic and Pacific oceans respectively between 1950-2009 
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(Hoegh-Guldberg et al., 2014). Temperature anomalies, which are predicted to increase with climate 

change, have been well documented to cause coral bleaching and increase coral mortality 

(Berkelmans & Oliver, 1999; Baker et al., 2004; Hughes et al., 2017a). This in turn impacts reef 

capacity to sustain their three dimensional framework through accretion and keep pace with sea 

level rise (Januchowski-Hartley et al., 2017; Perry & Morgan, 2017). Despite reefs being faced with 

multiple stressors (e.g. changes in light, salinity and nutrient availability), all of which may 

contribute towards triggering bleaching (Coles & Jokiel, 1978; Lesser et al., 1990; Kleypas et al., 

1999b; Baker et al., 2008; Wooldridge, 2009), SST anomalies are seen as the most influential trigger 

(Pramanik, 2014; Hoegh-Guldberg et al., 2017; Claar et al., 2018). In environments such as the 

Arabian Gulf (AG), corals are subjected to dramatic swings in environmental conditions with 

temperatures 5-6◦C higher than any other reef system (Coles & Riegl, 2013; Hume et al., 2013). In 

the last two decades, reefs in this region have been exposed to severe temperature anomalies at a 

rapid and high recurring rate (Riegl, 2002, 2003; Sheppard & Loughland, 2002; Burt et al., 2012) 

similar to those projected to occur globally by 2100 (IPCC, 2014).  

Thermal limits of corals are known to vary by region with high latitude sub-tropical reefs (e.g. AG) 

existing in more stressful environmental conditions than those in tropical waters (Riegl, 2003). This 

variation results in different thermal thresholds which range from as low as 25◦C (e.g. South-Eastern 

Pacific Ocean; Wellington et al., 2001) to 36◦C (e.g. AG; Kleypas et al., 1999; Coles & Riegl, 

2013). Despite this range an increase in temperature anomaly by just a 1-2◦C is sufficient to cause 

global mass bleaching (Hoegh-Guldberg, 1999; Kleypas et al., 1999b; Purkis & Riegl, 2005; Heron 

et al., 2016; Hoegh-Guldberg et al., 2017; Lough et al., 2018).  

Due to their geographically isolated nature, it is thought that corals in the AG have developed their 

thermal resistance over the period of the region’s isolation (~6000 years – Holocene) during which 

reefs have been subjected to a warmer climate in comparison to corals from other regions (Purkis et 
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al., 2010; Hume et al., 2013). It is thus unsurprising that coral communities in the AG are seen to 

harbour the highest bleaching threshold globally (D’Angelo et al., 2015). However, despite their 

high threshold, they are still susceptible to bleaching with reports of bleaching between 1997-2017 

(Rezai et al., 2004; Riegl et al., 2011; Kavousi et al., 2014; Shuail et al., 2016). Reefs in the lower 

latitude tropics region such as the Central Indo-Pacific (CIP) have also been impacted by bleaching 

(Wouthuyzen et al., 2018), however, interestingly, the rate and magnitude of bleaching severity is 

observed to be lower in comparison to other regions (Goreau et al., 2000). Despite this, contrary to 

CIP, reefs in the Western Indian Ocean (WIO; also considered in a low latitude area), reefs have 

experienced severe bleaching events that has resulted in fatal mortality on many reefs (Goreau et al., 

2000; Smith et al., 2008; Zinke et al., 2014; Januchowski-Hartley et al., 2017). Severe bleaching 

events are associated with the El Niño Southern Oscillation (ENSO) events, which occur due to an 

atmospheric shift in circulation caused by SST rising above normal in the central and eastern 

tropical Pacific Ocean. 

To date, efforts have been made to describe the thermal patterns that induce coral stress and 

mortality in a global and/or regional context (Purkis & Riegl, 2005; Selig et al., 2010; Hoegh-

Guldberg et al., 2014; Pramanik, 2014; Claar et al., 2018). However, only a few have focused on 

describing the patterns in a more localized context (Riegl, 2003; Purkis & Riegl, 2005; Kavousi et 

al., 2014), which is crucial for locating and identifying future reef refugia areas. Understanding how 

these reefs cope may present a clue as to the survival mechanism future reefs experiencing historic 

temperature fluctuations may adopt to persist in the face of climate change. Therefore, the aim of 

this chapter is to investigate the thermal history of SST of three selected site-specific reefs in 

Bahrain, the Seychelles and Indonesia located in three bioregions (AG, WIO and CIP respectively). 

This will be achieved through the following objectives: 
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• To assess the temporal change in SST over a 35-year period (1982 -2017) across the study 

sites and identify anomalies associated with documented global mass bleaching events. 

• To assess the extent (duration) of degree heating weeks (DHW) across the study sites as a 

mode of investigating the severity of bleaching. 

2.2 | METHODOLOGY 

2.2.1 | Site description   

Three study locations (Figure 2.1) situated across three bioregions (AG, WIO and CIP), were 

targeted representing different latitudes (Table 2.1) using remote sensing tools over a period of 35 

years (1982-2017). At each location, reefs from both turbid and clear-water (herein referred to as 

optimal) sites were chosen to represent different environmental characteristics (Table 2.2) 
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Table 2.1. Coordinates of the localized sites in the three selected bioregions. 
 

Site Site Code 
Latitudinal 

Gradient* 
Latitude Longitude 

Bahrain  (AG) 

Fasht Al Adhm 

(Turbid) 
BH-TB 

High 

26.104166 50.770828 

Reef Bul Thamah 

(Optimal) 
BH-OP 26.895834 50.97916 

Seychelles (WIO) - Curieuse Marine National Park 

Praslin 

(Turbid) 
SY-TB 

Low 

-4.3125 55.72916 

East Bay 

(Optimal) 
SY-OP -4.270833 55.72916 

 Indonesia (CIP) – Wakatobi Marine National Park, South East Sulawesi 

Sampela 

(Turbid) 
IN-TB 

Low 

-5.479167 123.729164 

Ridge 

(Optimal) 
IN-OP -5.4375 123.770828 

* For the purpose of this study, study sites are assigned a latitudinal gradient category. 
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Figure 2.1. Location of Study Sites – (a) Location of Bahrain (Arabian Gulf), the Seychelles 

(Western Indian Ocean) and Indonesia (Central Indo-Pacific); (b) Location of study sites 

within Bahrain; (c) Location of study sites within Curieuse Marine National Park, Seychelles; 

(d) Location of study sites within the Wakatobi Marine National Park, Indonesia. Dark grey 

areas indicate land whilst light grey indicates shallow reef areas. 
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Table 2.2 Environmental characteristics of the selected study sites.  

Site Site Code Depth 
(m) 

Temp. 
(°C) 

Salinity 
(ppt) 

Sedimentation rates 
(g cm-2 d-1)** 

Light 
attenuation 

(Kd PAR)*** 
Distance Impacts 

Bahrain (AG) 
Fasht Al 
Adhm 

(Turbid) 
BH-TB 5-7 

16-35 42-44 

0.23±0.04 0.02 
~11 km east 
of the main 
island. 

Heavily impacted due to various anthropogenic 
activities mainly reclamation and dredging. 

Reef Bul 
Thamah 

(Optimal)* 
BH-OP 10-12 0.19±0.04 0.04 

~80 km 
northeast of 
the main 
island. 

Although located within a Marine Protected 
National Park (MPA), the site is subjected to 
illegal fishing and destructive fishing practices. 

Seychelles (WIO) - Curieuse National Park 

Praslin 
(Turbid) SY-TB 5-10 

25-29 ~35 

0.03±0.01 0.2-0.4 

~1.5 km 
southwest 
Curieuse 
Island 

Site is subjected to large sediment load since it is 
located closer to Praline island, which has 
intensive tourist marine activities. 

East Bay 
(Optimal)* SY-OP 5-12 0.04±0.01 0.1-0.2 

~1.5 km 
southeast 
Curieuse 
Island 

One of the least impacted sites with minimum 
anthropogenic impacts. Carbonate fringing reefs 
with minimal tourist activity. 

Indonesia (CIP) – Wakatobi Marine National Park, South East Sulawesi 

Sampela 
(Turbid) IN-TB 3-10 

26-30 32-34 

6.3±2.7 0.01 
~1.5 
southwest 
Hoga Island 

Site is adjacent to the Bajo village of Sama Bahari 
and is subjected to large sediment load and various 
anthropogenic activities, thus heavily impacted. 

Ridge 
(Optimal)* IN-OP 5-20 2.6±1.0 0.02 

~1 km 
northwest 
Hoga Island 

One of the least impacted sites within the area with 
some artisanal line fishing occurring. 

* Optimal in this study is referred to as clear waters. 
** Bahrain: Due to time restrictions, sedimentation rates (g cm-2 d-1) were measured at 10m depth using sediment traps (n=6). Traps were deployed for a period of three days at 
each of the study sites in May 2018; Seychelles: Sedimentation rates (g cm-2 d-1) were measured at 10m depth using sediment traps, however, due to expedition time constraints 
the traps were only deployed for a total of 4 days in April 2018; Indonesia:  Sedimentation rates (mg cm-2 d-1) collected by Operation Wallacea between 2006-2011 (mean values 
are reported here along with ±SD and taken from Franco, 2014). 
*** Bahrain & Indonesia: Light intensity was measured using hobo loggers deployed at two measurements 3 and 7m in Bahrain and 5 and 10m in Indonesia, then calibrated 
following the methods outlined in Long et al., (2012) to calculate photosynthetically active radiation (PAR). Seychelles:  Light attenuation coefficients (Kd (PAR), m-1) for each 
site was obtained from Gardner et al., (2018).  
NB: Although the data collected from the hobologgers does not reflect a clear distinction between turbid and clear-water due to time restraints on the field, these sites were chosen 
and classified based on local knowledge acquired from local people and/or long term researchers who have worked in these sites for over 20 years e.g. Operation Wallacea & 
EarthWatch-Seychelles. 
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2.2.2 | Satellite Data Acquisition and Processing 

To characterise the thermal history of the three selected bioregions, weekly SST data was acquired 

from the CoRTAD1 version 6 database. Data was extracted and assessed for thermal history of SST 

during the period 1982-2017. Data was processed via the “University of Essex – School of 

Biological Sciences’ Genomic Cluster” due to large file datasets requiring high computational 

capacity. SST values derived from the CoRTAD database were converted from Kelvin (K) to 

Celsius (◦C). Following the conversion, data was extracted for the specific sites through their co-

ordinates and calculations were conducted to determine the change in SST metrics over time to 

examine the thermal history of the bioregions over the 35-year period.  

2.2.3 | Definitions and Calculation Methods of Thermal History Metrics 

SST Trends: Defined as the rate of change in SST over time. 

Climatology: Defined as the long-term mean of SST conditions. Positive or negative values of SST 

that exceed long term mean SST (climatology) of a particular area, which indicates whether SST is 

warmer or cooler than usual (Heron et al., 2016). 

Climatology = Σ weekly SST over an extended period /n (total no. of weeks) 

SST Variability: Seasonal variability in SST over time was calculated based on the difference 

between the maximum and minimum climatology. 

Seasonal Variability = Maximum Climatology – Minimum Climatology 

 

Thermal Stress Anomaly (TSA): Described as a positive SST anomaly above the maximum of the 

monthly mean SST climatology. TSA, also referred to as “Hotspots”, is calculated through 

																																																								
1 Coral Reef Temperature Anomaly Database (CoRTAD) is a dataset of SST and related thermal stress metrics, which was 
developed by NOAA specifically for coral reef ecosystem applications. The CoRTAD Version 6 database used in this study contains 
global ~4km resolution SST data on a weekly time scale for the period 1982 – 2017. 
<ftp://ftp.nodc.noaa.gov/pub/data.nodc/cortad/README.html> 
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examining the difference between the weekly SST and maximum long term SST mean (climatology; 

Pineda et al., 2013). 

TSA = Weekly SST – Maximum weekly Climatology 

Degree Heating Weeks (DHW): Defined as the accumulated thermal stress on corals whereby one 

DHW unit equals to when SST are 1◦C above the expected mean summertime maximum for a period 

of one week (Wellington et al., 2001; Heron et al., 2016). Therefore, a DHW is calculated as the 

sum of accumulated daily hotspots over 12 consecutive weeks when the hotspot value (TSA) is ≥1◦C 

(Couch et al., 2017). 

DHW = Σ TSA ≥1◦C for 12 consecutive weeks 

Bleaching Threshold: Described as the value where SST has exceeded maximum long-term mean 

by 1◦C. It is calculated based on DHW combining magnitude and duration of temperature exceeding 

the long-term mean (climatology). DHW at ≥4◦C-weeks is used as an indicator of thermal stress of 

bleaching level whilst ≥8◦C-weeks is referred to as the threshold for thermal stress mortality-level 

(Liu et al., 2006; Heron et al., 2016; Couch et al., 2017). 

Bleaching Threshold = Max. weekly Climatology + 1◦C 

2.2.4 | Data analysis 

Data was analysed using the “R” software (R, 2018) and “RStudio” version 1.1383 through which 

raster maps and plots were produced using the ggplot function in the “tidyverse” package in R 

(Wickham et al., 2019). The R code written by Brisneve Edullates was used to calculate the thermal 

history metrics utilizing the equations outlined in Section 2.2.3, whilst the R package THE (see 

Supplementary Material - S1), was utilised to retrieve and curate for time series analysis and SST 

values for each study site. To determine significant differences in the thermal metrics across 
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bioregions, analysis of variance (ANOVA) was used. Through this test, each of the continuous 

dependent variables (i.e. mean, min and max SST; TSA values) was compared across the categorical 

independent variable, which are the bioregions (i.e. AG, WIO, and CIP). All observations were 

independent of each other. The data was tested for normality using histograms, which illustrated that 

in general, the data was normally distributed. In addition, Levene’s test was conducted to test for 

homogeneity of variance, which showcased that the variance among groups (i.e. bioregions) was 

observed to be generally equal. A post hoc Tukey test was used to compare the means (i.e. mean, 

min and max SST; TSA values) between groups. Furthermore, a time series analysis was conducted 

to determine how SST changes over time in each of the bioregion. The time series was decomposed 

to examine the trend, seasonality, and random variation of SST. The time series data was further 

analysed using a linear regression to determine the direction and magnitude of the slope.  

2.3 | RESULTS 

2.3.1 | Spatial Trends in Regional Sea Surface Temperatures  

Results from the CoRTAD dataset illustrate that, on a bioregional level, there is a difference across 

the three sites in the overall mean SST with the AG being 2◦C higher than WIO and CIP (Figure 2.2 

and Table 2.3). In addition, the variance in seasonal SST is greater in the AG when compared to the 

lower latitude sites, with the overall minimum SST recorded as 16.5◦C for the AG, 23.3◦C for WIO 

and 24.5◦C for CIP whilst the overall maximum SST is recorded as 37.0◦C for the AG, 32.2◦C for 

WIO and 33.5 ◦C for CIP (Figure 2.2 and Table 2.3). Significant differences in maximum SST 

(F(2,5825.2) = 1331.2, p<0.05) and minimum SST (F(2,28318) = 1272.2, p<0.05) across sites was also 

noted across bioregions. 
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2.3.2 | Thermal History Metrics  

Results of the localized sites showed that there were no differences observed in terms of all thermal 

metrics between optimal and turbid sites in both the Seychelles and Indonesia (Table 2.3) whereas, 

in Bahrain slight but not significant difference was observed between the two sites (Table 2.3). The 

turbid site in Bahrain had the highest bleaching threshold, maximum SST, climatology and DHW 

across all sites (Table 2.3). In addition, it is also the site with the lowest minimum climatology and 

with the highest variance in seasonality. Negligible differences were observed between Indonesian 

sites when compared to the Seychelles. In terms of the trends in weekly mean SST, remote sensing 

data showed a significant increase across sites over time across the three bioregions (F(2,2369) = 

115.4, p<0.05; Figure 2.3). Sites in Bahrain had the highest rate of change (slope = 1.6 e-04, SE = 3.0 

e-05, p = 2.3 e-07) followed by the Seychelles (slope: 4.5 e-05, SE = 8.7 e-06, p = 2.0 e-07) and Indonesia 

(slope: 4.5 e-05, SE = 7.6 e-06, p = 4.7 e-09; Figure 2.3). In addition, the Bahraini sites were observed 

to have more pronounced positive and negative temperature anomalies. Trends in TSA are in-line 

with the reported global mass bleaching events (e.g.1998 and 2016), however, Bahrain had a 

delayed response whereby a severe bleaching event took place in 2017, following the 2016 elevated 

SST episode. The dataset shows a significant difference in TSA trends across sites (F(2,15493) = 485.8, 

p<0.05). TSA was highest in Bahrain (-6.9 ± 0.1) and lowest in the Seychelles (-10.4 ± 0.1; Figure 

2.4). Trends in DHWs revealed that prior to the 1998 bleaching, all DHWs were constantly lower 

than 4◦C-weeks across all bioregions (Figure 2.4). This remained the case in the Seychelles until 

2016 where for the first time, DHWs was recorded to reach 7◦C-weeks. However, for Bahrain, in the 

last 20 years, DHWs were recorded to reach ≥8◦C-weeks, however, 1998 and 2017 were the only 

episodes whereby DHW reached ≥15◦C-weeks, ironically these episodes are 20 years apart. In 

Indonesia, DHW remained ≤8◦C-weeks for the last 35 years, though it is interesting to note that high 

DHW and TSA episodes are seen to be frequent and less intense than those in Bahrain, whereas in 
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Bahrain the episodes are less frequent but higher in intensity (Figure 2.4). It can be concluded that 

thermal stress, measured by DHWs, that reach ≥8°C-weeks are more intense but less frequent in 

Bahrain whilst in Indonesia DHWs are more frequent but with lower intensity (<4°C-weeks). 

Table 2.3. Summary of thermal SST history metrics (°C) across the selected sites between 

1982-2017 whereby annual mean refers to long-term mean over a 35-year period (n= 1878; 

*unit=°C-weeks). 

SST metrics 

(°C) 
BH-OP BH-TB SY-OP SY-TB IN-OP IN-TB 

Min. SST 16.5 15.5 23.4 23.3 24.5 24.6 

Max. SST 36.2 37.0 32.2 31.9 32.7 33.5 

Annual Mean 26.2±0.1 26.0±0.1 28.0±0.1 28.0±0.1 28.5±0.1 28.4±0.1 

Min. 

Climatology 
19.1 17.9 25.8 25.7 26.5 26.6 

Max. 

Climatology 
33.1 33.5 30.1 30.0 29.7 29.9 

Seasonal Range 14.0 15.6 4.2 4.3 3.2 3.3 

Bleaching 

Threshold 
34.1 34.5 31.1 31.1 30.7 30.9 

Max DHW* 18.2 20.8 6.5 5.6 6.1 14.7 

Mean DHW* 4.8±0.3 4.7±0.3 1.7±0.1 1.6±0.1 2.2±0.1 3.7±0.2 

 

 



Chapter 2 | Thermal History 

	 61	

 

Figure 2.2. Spatial distribution of the overall minimum, maximum, mean and standard error (SE) of SST across the three selected 

bioregions for the period (1982-2017). Data derived from CoRTAD version 6, 4x4km resolution - available online. 
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Figure 2.3. Trends in weekly SST mean for the period (1982-2017; n=1878) illustrating the 

change in SST across the three selected study sites. The blue and red dotted lines indicate the 

minimum and maximum climatology, respectively, whilst the red solid line indicates the 

bleaching threshold. The blue solid line indicates the linear fit with standard error of the 

regression in dark grey shading. Data derived from CoRTAD version 6 database, 4x4km 

resolution - available online.  
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Figure 2.4. Trends in Degree Heating Weeks (DHW; in red solid lines) across the three 

selected study sites for the period (1982-2017). DHW is defined as of accumulated daily 

hotspots over 12 consecutive weeks when the thermal stress anomaly (TSA; in black solid 

lines) is ≥1◦C. The grey dotted lines indicate the DHW values of ≥4◦C and <8°C-weeks, which 

corresponds to delineation between coral bleaching and mortality levels. Years that 

correspond to coral bleaching and mortality were highlighted in blue and red fonts, 

respectively. Data were derived from CoRTAD version 6 database, 4x4km resolution - 

available online.  
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2.4 | DISCUSSION 

Historically, as the hottest sea on the planet (Sheppard et al., 2010; Riegl & Purkis, 2012; Burt, 

2013), it is unsurprising that the AG was observed to have the highest maximum and lowest 

minimum mean SST in comparison to the other bioregions illustrating the ability of these reefs to 

exist in waters that are 5-6◦C higher than other regions. In addition, due to their location in a higher 

latitude, reefs are expected to face harsher environmental conditions in comparison to low latitude 

tropical reefs (Beger et al., 2014). 

On a local scale, trends in Bahrain SST illustrated that the local sites were subjected to both positive 

and negative temperature anomalies. The negative anomalies are caused due to the extreme cold 

Shamal north winds that blow from the highlands of Iran into the low atmospheric pressure of the 

Arabian peninsula (Murty & El-Sabh, 1984; Riegl, 2003). Interestingly, the turbid site in Bahrain 

showed more pronounced thermal history metric conditions (e.g. higher max SST, bleaching 

threshold, DHW), which could be attributed to the shallow depth of the site (~ 5-6 m) making it 

warmer than the clear-water site, which is deeper (~10m; Wilkinson, 1998). 

Furthermore, trends in SST showed significant increases overtime across sites in all three bioregions 

showcasing that high latitude reefs experience different temperature dynamics than those in lower-

latitude tropical reefs with higher seasonal ranges and extreme temperatures. Similarly, trends in 

TSA were seen to be mostly in-line with the reported global mass bleaching events (e.g.1998, 2002, 

2016; Wilkinson, 2000; Berkelmans, 2002; Kavousi et al., 2014; Hughes et al., 2017; Perry & 

Morgan, 2017; Burt et al., 2019) across all sites reflecting the different disturbance dynamics 

amongst reefs. This was also reflected in the results of the extent and duration of the DHWs and the 

impact this has had on coral mortality which has been reported in Bahrain (see Chapters 3 and 4) 

and the Seychelles (Januchowski-Hartley et al., 2017). In regards to Indonesia, interestingly, 
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previous reports have stated that there was no evidence of bleaching in the area (in and around 

South-East Sulawesi) in 1998 (Wilkinson, 1998) and no reports were found in regards to the 2016 

bleaching hence flagging this area as a possible refugia area for reefs. Despite some reports of 

bleaching in specific areas of Indonesia (e.g. Badi Island (Spermonde Islands) in 2010, DHW >8°C-

week (severe bleaching) and Mentawai Islands and Pagai Islands in 2016, >8°C-week (mild to 

severe with bleaching cover: 37-89%) (Wouthuyzen et al., 2018), interestingly, the rate and 

magnitude of bleaching severity is observed to be lower in comparison to other regions (Goreau et 

al., 2000) which is also supported by the remote sensing data. DHWs that reach above 4°C-weeks 

are seen to be more intense in Bahrain however, Indonesia had more frequent DHW but with low 

intensity (<4°C-weeks). Overall, it can be concluded that across the selected study sites high latitude 

reefs experienced high and intense temperature disturbances at a higher frequency in comparison to 

both the mid and low latitude tropical reefs of the Seychelles and Indonesia.  

In light of the projected increase in global SST as a result of climate change, reefs in the future are 

expected to experience greater disturbances due to further warming and more frequent bleaching 

events lessening the time for reef recovery and regeneration (Sheppard & Loughland, 2002; Riegl, 

2003; Sheppard, 2003). Therefore, higher latitude reefs such as in the AG offer a window of 

opportunity to study what reefs may face in the future and what the outcome might look like in 

tropical low latitude reefs. Previous studies have reported shifts in the diversity and abundance of 

coral symbionts (Symbiodiniaceae species – see Chapter 5 for more details) whereby diversity and 

richness is lower in higher latitude reefs in comparison to those in low latitude reefs (Chen et al., 

2019). This is in line with the pattern observed in terms of coral communities (genera and species 

diversity) where high latitude reefs, e.g. the AG, host low coral diversity (~10%; Coles, 2003) when 

compared to low latitude reefs e.g. reefs in the coral triangle located in the Indo-Pacific host 92% of 

the world’s reef building corals (Sanciangco et al., 2013; Veron, 2000). Fluctuations in both climate 
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and sea level during the Plio-Pleistocene period could be attributed towards driving the phylogensis 

and gene flow of these species thereby defining the diversity within these bioregions in relation to 

their thermal regime which is also influenced by their latitudinal position (Obura, 2016). Linking 

thermal regimes to shifts in coral symbionts communities, evidence suggests that shifts tend to occur 

in the composition of Symbiodiniaceae species from thermal sensitive species (e.g. common 

generalist Cladocopium also referred to as C3) to thermally tolerant types (e.g. Durusdinium) as a 

mechanism to adapt and acclimatise to long term exposure to elevated temperatures (Berkelmans & 

Van Oppen, 2006; Palumbi et al., 2014; Wang et al., 2019). In addition, previous studies have 

reported a dramatic shift in C3 prevalence depending on the reefs’ latitudinal position whereby the 

usually common (on low latitude reefs) C3 was reported to be extremely rare or absent on high-

latitude reefs (Lajeunesse et al., 2004b). 

Recent research has revealed that corals in the AG are associated with thermo-tolerant symbiont 

species based on the discovery of a new species (C3-Gulf) which was found to be the pre-dominant 

coral symbionts in the South of the AG and was named “Cladocopium thermophilum” which plays a 

role in their resilience (Riegl, 2003; Hume et al., 2013; D’Angelo et al., 2015; Hume et al., 2015). 

This indicates that these corals have evolved with symbionts that may enable them to display 

resilience in these extreme conditions and thus to persist in a climate with frequent disturbances. In 

addition, representatives of the AG symbiont group have been detected adjacent to the AG within 

the Gulf of Oman providing a potential source of thermo-tolerant symbionts that may facilitate the 

adaptation of Indian Ocean coral holobionts to the predicted future warmer temperatures (D’Angelo 

et al., 2015). Findings from the genetic study conducted for this thesis have detected the presence of 

C3-Gulf Symbiodiniaceae species in the Seychelles (WIO), which is a novel observation as no 

documentation or reports, has been found in regards to its presence at the time of writing this thesis. 

This suggests that perhaps as water temperatures continue to rise due to climate change, corals are 
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evolving towards hosting more specialized thermo-tolerant Symbiodiniaceae species. However, 

despite this exhibited resilience in the AG reefs, this comes at what might be described as a “trade 

off” where, resilience comes at a cost of a low ability of carbonate production resulting in low 

accretion rates and minimal reef framework structures (Riegl, 2003; Riegl & Purkis, 2012). In WIO, 

the recent bleaching events has highly impacted accretional health of reefs with their carbonate 

budgets tipping over from positive to negative budgets in reefs such as the Maldives (Perry & 

Morgan, 2017) and the Seychelles (Januchowski-Hartley et al., 2017). To date, no long-term 

comparison of pre and post accretion rates have been reported for reefs in CIP and the AG. Future 

research must focus on understanding the degree or extent of the cost and benefit relationship of 

hosting specialised thermo-tolerant symbionts especially in the context of reef carbonate budgets. In 

order for reefs to cope with rising temperatures, it is crucial for corals to evolve through harbouring 

thermo-tolerant symbionts, however, for reefs to keep pace with sea level rise, this requires reefs to 

accrete at a rate that exceeds their erosive state. If one aspect hinders the other, how are reefs meant 

to cope? These are questions that reefs in the AG might offer insights into. 

In conclusion, higher latitude reefs persist in areas faced with frequent disturbances caused by 

temperature changes, which may infer that corals in these regions exhibit resilience towards such 

climatic extremes. This offers a window of opportunity for exploration as to how reefs in lower 

latitudes might cope in the future of a changing climate. 
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3. STATUS & CHANGE IN CORAL COVER: HISTORY OF 35 YEARS THROUGH A 

SYSTEMATIC REVIEW OF THREE BIOREGIONS 

 

ABSTRACT 

Coral reefs worldwide are experiencing continuous change due to amplified heat stress events that 

induce coral bleaching as a consequence of ocean warming. This impacts coral mortality and 

calcification rates which influences reef growth threatening reefs accretional health and structural 

integrity. This study aims to determine the current status of reefs (represented as percentage of live 

coral cover) and rate of change in coral cover over the past 35 years (1985-2020) in three 

bioregions: the Arabian Gulf (AG), Western Indian Ocean (WIO) and Central Indo-Pacific (CIP). In 

order to identify the temporal change of coral cover, a systematic review of the available literature 

on the topic was conducted using the ISI Web of Science and Google Scholar search engines in 

addition to other online databases. Results from the extracted data points illustrated non-linear 

fluctuations in the change of live coral cover over time with reefs experiencing an increasing trend 

at certain periods followed by declines across all bioregions. Overall recovery rates were estimated 

at 0.9, 1.2 and 2.0 % per year on reefs in the AG, the Seychelles (WIO) and Wakatobi, Indonesia 

(CIP) respectively. Disturbances that interrupted recovery rates on reefs in the AG and the 

Seychelles (WIO) were mainly attributed to bleaching events, while in the Wakatobi anthropogenic 

impacts were the main drivers of coral decline. 
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3.1 | INTRODUCTION 

Coral reef ecosystems are in decline worldwide driven by global and local stressors such as rising 

ocean temperatures (Hughes et al., 2017), ocean acidification (Anthony et al., 2008), overfishing 

(Loh et al., 2015), declining water quality associated with nutrient runoffs (Browne et al., 2012) and 

excessive sedimentation (Nugues & Roberts, 2003). Coral mortality, reduced coral growth and 

reproduction rates are results of these stressors which combined result in overall reef degradation 

(Darling et al., 2010). One of the most traditional methods to assess reef degradation and health is 

through measuring the change in live hermatypic (reef building) coral cover on reefs over time. 

Their ability to produce calcium carbonate (CaCO3) allows for coral reefs’ geomorphic structure, 

thereby, providing structural complexity (Perry et al., 2008). Therefore, hard corals are important 

reef builders and engineers (Zawada et al., 2019) due to their calcification role as primary reef 

carbonate producers (Eakin, 1996; Edinger et al., 2000) thereby influencing reef accretion rates. In 

addition, hermatypic corals are documented to have a significant influence on reef associated fish 

communities (Bell & Galzin, 1984).  

In recent years, reef carbonate budget measures (the difference between carbonate production and 

erosion) have been used as a key metric in assessing coral reef health (Mace et al., 2014; Perry & 

Morgan, 2017). Therefore, decline in coral cover ultimately implicates the 3-D framework of reefs 

through reduced accretion compromising structural integrity (Perry & Morgan, 2017) and the 

functionality of reef associated fish (Pratchett et al., 2011). Many reefs worldwide are reported to 

have experienced shifts in coral and associated species community composition (Hoey et al., 2016; 

Ryan et al., 2019), as coral cover continues to decline worldwide (Wilkinson, 2000; Hughes et al., 

2003; Sheppard et al., 2010; Burt et al., 2013; Graham et al., 2015; Perry & Morgan, 2017; 

Gouraguine et al., 2019). 
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In order to track temporal and spatial change in accretional health of reefs, it is important to identify 

the current status and trajectories of reefs which could reveal the ability of reefs to recover from 

disturbances and the time frame required for recovery. This could provide insights as to reef 

resilience in the face of a warming ocean and increasing local pressures. Studies investigating the 

status and trajectories of reefs have increased, especially following global mass bleaching events 

(Smith et al., 2008; Harris et al., 2014; Januchowski-Hartley et al., 2017; Perry & Morgan, 2017; 

Robinson et al., 2019). Examining reefs that exist under naturally extreme (e.g. reefs in the Arabian 

Gulf), and marginal (e.g. turbid sites) conditions, which persist on the edge or outside the perceived 

thresholds of coral growth (Kleypas et al., 1999), yet support corals that have acclimatized or 

adapted to these extreme conditions (Palumbi et al., 2014), are important to aid predictions of future 

reef structure and function (Camp et al., 2018). Understanding how reefs vary over a range of 

environmental conditions in different bioregions is key to understanding how coral reefs will adapt 

to changing environments worldwide. Therefore, this chapter presents a collective assessment of 

essential information on hard coral cover, their ability to recover and persist following major 

bleaching disturbances (e.g. 1998 and 2016). This is achieved by reviewing the current state of 

knowledge that exists on the status and change in coral cover over the past 35 years (1985-2020) in 

three different bioregions (the Arabian Gulf (AG), Western Indian Ocean (WIO) and Central Indo-

Pacific (CIP)). This analysis will allow for the tracking of temporal change of primary carbonate 

producers in reefs inhibiting various environmental gradients in different geographic regions and 

latitudes of reef growth. Overall, this study aims to determine the current status of reefs (represented 

as percentage of live coral cover) through tracking change in coral cover over a 35 year period 

(1985-2020) in three bioregions: the Arabian Gulf (AG), Western Indian Ocean (WIO) and Central 

Indo-Pacific (CIP). 
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3.2 | METHODOLOGY 

3.2.1 | Literature search and data extraction 

To identify primary literature associated with the reporting of coral cover on reefs in the selected 

bioregions, a systematic review of the available literature on the topic was conducted using the ISI 

Web of Science and Google Scholar search engines. The following search terms were therefore 

used: (coral* OR reef*) AND (coral* OR cover* OR health* OR status) AND (Persian* OR 

Arabian Gulf); (coral* OR reef*) AND (coral* OR cover* OR health* OR status) AND 

(Seychelles); (coral* OR reef*) AND (coral* OR cover* OR health* OR status) AND (Wakatobi). 

The systematic review literature search for each selected bioregion was conducted separately and 

was performed over the period between February and April 2020. Initially, the intention for this 

review was to target the specific selected local sites of interest in this thesis, this was possible with 

the Indonesian sites, however, due to the limited research done on the local sites in Bahrain and the 

Seychelles, a decision was made to focus efforts to track coral cover change on a country level. 

During the search, data revealed that although this was appropriate for the Seychelles, unfortunately, 

reefs in Bahrain remain understudied and available data was limited. Using the search terms: (coral* 

OR reef*) AND (coral* OR cover* OR health* OR status) AND (Bahrain); in the Web of Science 

search yielded a total of only 9 hits of which only one hit was relevant to this study. Similarly, the 

same search terms were used in the Google Scholar engine, which yield a total of 690 hits of which 

50 studies were examined and only 2 studies were relevant to this study. Therefore, a decision was 

made to conduct the search on a regional level in the AG.  

In order to further access studies or reports that might not have been published in the primary 

literature, the online database of the International Coral Reef Symposium (ICRS) through Reefbase 

and Reef Check were both used. To determine relevance of a paper, abstracts were systematically 
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reviewed and evaluated, if the abstract was found relevant to the research question the full text was 

evaluated for the presence of the required data. If data was included in the paper, raw data were 

either extracted from the text if available or figures using WebPlot Digitizer (Rohatgi, 2019). In 

order for a publication or dataset to be included in the study, it had to provide: (1) the hard coral 

percentage cover (%) at a given site; (2) some measure of variance i.e. standard error (SE) or 

standard deviation (SD); (3) sample size; (4) year of data collection and (5) methods used for data 

collection. Methods were grouped in general based on the overall methodology i.e. studies that 

reported data collected via photo quadrats and underwater visual quadrats were assigned into the 

same group. Similarly, those that were collected via benthic transects, but did not specify whether it 

was through point intercept transect (PIT; measurements are made at specific points throughout the 

transect e.g. every 1m or 5m), or line intercept transect (LIP; measurements are taken at a higher 

resolution of 1 cm increments throughout the transect), were assigned to the LIP group (which for 

the purpose of this study, is considered any data collected via benthic transect). In general, if a 

published paper was relevant to the study but did not meet the inclusion criteria for this study 

(Figure 3.1), the authors were contacted and requested to share the missing information. If a 

response was received with the missing factors (e.g. sample size) thus enabling the dataset to meet 

the inclusion criteria, the data was used in this analysis, if not, then the paper was excluded. Due to 

the low number of studies that qualified for inclusion from the AG and the Seychelles, personal 

communications were made with regional researchers to identify datasets that were published and/or 

in the grey literature that could have not appeared through the database searches. 

To avoid data duplication and pseudo-replication, data from papers with similar authors and/or co-

authors were examined carefully. If relevant studies had similar authorships, the year of collection 

verses reef sites were used as a determiner of whether the dataset should be included. Furthermore, 
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authors were contacted for confirmation and if no response was received, only one of the data points 

was included.  
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Figure 3.1. Flow diagram of PRISMA (Preferred Reporting Items for Systematic Reviews and 

Meta-analysis) illustrating the steps taken starting from studies returned from the search for 

literature through the Web of Science, Google Scholar, ICRS Proceedings (Reefbase 

database), Reef Check and Personal communications. Inclusion criteria states that studies 

must include: (1) percentage cover (%) of hard coral at a given site; (2) some measure of 

variance i.e. standard error (SE) or standard deviation (SD); (3) sample size; (4) year of data 

collection and (5) methods used for data collection. Bioregions of interest: Arabian Gulf (AG); 

Seychelles, Western Indian Ocean (WIO); Wakatobi, Indonesia, Central Indo-Pacific (CIP).  
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3.2.2 | Study Sites  

Overall, the data extracted and included in this study represent a total of 44 reef sites in the AG, 133 

in the Seychelles (WIO) and 7 in the Wakatobi Marine National Park, Indonesia (CIP; hereafter 

referred to as Wakatobi) (Figure 3.2). 

 

Figure 3.2. Estimated location of reef sites (red points) represented through the data points 

extracted for this study: (a) Location of the selected bioregions; (b) Arabian Gulf; (c) 

Seychelles (Western Indian Ocean) and (d) Wakatobi, Indonesia (Central Indo-Pacific).  
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3.2.3 | Data analysis 

Trends in coral cover over time within bioregions 

The R software (R Development Core Team, 2016) was used to conduct the data analysis. Initial 

plots were created using the ggplot function in the “tidyverse” R package (Wickham et al., 2019) to 

estimate the mean percentage coral cover at each reef data point reported in the selected published 

literature across the three bioregions. Further plots exploring patterns in the variation of mean coral 

cover among studies on these reefs in relation to year of data collection, methodology, and sample 

size were created. 

Rate of change in coral cover over time within bioregions 

Temporal variation in coral cover was analysed in two stages for each of the following time periods: 

(a) 1993-2003, (b) 2003-2013, and (c) 2013-2018.  These time periods were chosen to assess change 

in correspondence to major bleaching events identified in Chapter 2, e.g. the 1998 bleaching event 

occurred in the middle of the 1993-2003 allowing a 5 year observation period for reef change (i.e. 

recovery or decline). Firstly, coral cover was fitted against time (year collected) in a simple linear 

regression model to determine the rate of change in each time period (lm(coral cover ~ year 

collected, data)). Secondly, generalised linear mixed models (GLMM) were used, with the package 

lme4 (Bates et al., 2015), to further examine the temporal variation in coral cover while taking into 

the account the random effects of methodology used and the site of data collection. The mean 

estimates of coral cover were fitted against the year of collection in each of the three time periods to 

examine the temporal variation (fixed effect) whilst taking into account the random effects of site-

specificity and methodology dependency, and were weighted by the sample sizes. This preferred 

model (GLMM 1) was compared against a model without the weights, and models with one random 

variable omitted from the equation (GLMM 2 – 4). This analysis was also used to infer the 

contribution of the random effects to the temporal variation of coral cover. The marginal R2 and 
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conditional R2 were also computed to examine how much variation was explained by the 

fixed and/or the random effects. The analysis of variance (ANOVA) was also used to compare this 

preferred model to the reduced model. The following outlines the structure of the GLMMs used for 

the analysis: 

GLMM1 <- glmer(coral cover ~ year collected + (1|Methodology) + (1|Site), weights = sample size, 

data) 

GLMM2 <- glmer(coral cover ~ year collected + (1|Methodology), weights = sample size, data) 

GLMM3 <- glmer(coral cover ~ year collected + (1|Site), weights = sample size, data) 

GLMM4  <- glmer(coral cover ~ year collected + (1|Methodology) + (1|Site), data) 

Lastly, a likelihood ratio (LR) test was used to determine the significance of a single factor by 

comparing the fit for models with and without the factor. The Chi square statistic was used as a 

bases for determining the difference in the rate of change in coral cover between the full and 

reduced model. Akaike information criterion (AIC) was used to determine whether the preferred 

model would describe the relationship better than the reduced models. 

3.3 | RESULTS 

3.3.1 | Trends in coral cover within bioregions 

Arabian Gulf 

Overall, estimates of mean coral cover varied across time in each of the three bioregions. In the AG, 

the extracted data have enabled the tracking of coral cover on reefs in this region over a 32-year 

period (1986-2018). The distribution of data points over time illustrates a non-linear change in the 

temporal trend of coral cover, which averaged at 25.1 ± 2.0% between 1986-2018 regardless of 

methodology used for measurement by the studies (Figure 3.3). Data points reported in 1986 were 

collected via the use of quadrats following which a 12-year data gap is observed between 1987-1999 
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(Figure 3.3). Between 1999-2006, all data was collected using LIT/PIT following which photo 

quadrats were used over the next 10 years (2006-2015), with LIT/PIT used in the most recent years 

(2015-2018; Figure 3.3). Results (Figure 3.3) showcase coral cover on reefs in 1986 to be above 

average (i.e. >25%) with reports of reefs in Kuwait to range between 26.4 ± 5.4% and 43.8 ± 5.0%. 

Between 1999-2001, coral cover is observed to be on the lower spectrum (below and/or average) 

with reports ranging between 0 ± 0% in Bahrain and 29.2 ± 2.7% in Iran (Figure 3.3). In 2002-2008, 

the majority of the reefs are observed to shift towards higher (above average, i.e. >25%) coral cover 

reaching 56.2 ± 4.5% in Kuwait (2002), 48.5 ± 1.4% in Iran (2010), 47.0 ± 4.0% in Oman (2008) 

and 44.5 ± 6.0% in United Arab Emirates (UAE; 2008; Figure 3.3). Following those six years of 

positive shifts, the next three years (2009-2012) find the majority of reefs beginning to fall into the 

lower spectrum (below average, i.e. <25%) with reports of coral cover estimated between 0.2 ± 

0.2% and 16.3 ± 2.6% in Bahrain (2011) whilst reefs in Iran reported 10.3 ± 6.4% (2009; Figure 

3.3). Nevertheless, during this period, some reefs (mainly in the South of AG) remained stable and 

maintained their high coral cover such as some reefs in the UAE (62.0 ± 3.8%; 2009) and Oman 

(58.9 ± 6.8%; 2011; Figure 3.3). This pattern of coral cover dipping into the lower spectrum on the 

majority of reefs is observed to continue throughout 2013-2018. During this period, the majority of 

coral cover on reefs is observed to be below average (<25%) such as reefs in Bahrain (1.4 ± 0.6%; 

2018) and Qatar (22.9 ± 2.4%; 2015) whilst reefs in Kuwait maintained their position in the higher 

spectrum (38.8 ± 3.2% and 28.2 ± 2.3%; 2015; Figure 3.3). 
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Figure 3.3. Mean live coral cover (±SE) of reefs reported for the period 1986-2018 in each 

identified study in the Arabian Gulf. Dotted line represents overall regional mean percentage 

cover. Methodology codes: LIP = Line intercept point transect; PIT = Point intercept transect. 

The full list of papers used in this study is available in Supplementary Material (S2). 	
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Seychelles 

The overall live coral cover in the Seychelles averages at 14.4 ± 0.8% based on the data points 

extracted for the period 1994-2018. The distribution of the data points reveal an interesting trend 

regarding coral cover which indicates that the majority of reefs in this region have predominantly 

hosted low coral cover (i.e. below average <14%) over the course of this 24 year period (Figure 3.4). 

Coral cover in the Seychelles is observed to be above average (i.e. >14%) prior to 1998 following 

which a decline is noted which puts coral cover on reefs in the lower spectrum (i.e.<14%) for almost 

a decade (Figure 3.4). Between 2009-2016, a shift is noted with coral cover on many reefs 

exceeding the overall mean (14.4 ± 0.8%) illustrating a rise in coral cover which is terminated in 

2016, resulting in coral cover to decline again between 2016 and 2018 (Figure 3.4). The majority of 

the data extracted from studies are observed to be measured through LIT/PIT with only a few data 

points collected using random points (i.e. random quadrats placed on a reef; Figure 3.4).  

In 1994, the reefs in the inner Seychelles (e.g. Mahe, Praslin and Cousine Island) were reported to 

have coral cover ranging between 19.2 ± 0.7% and 38.6 ± 9.2% across coral, granitic and rocky 

habitats. In 1998, the reefs in the outer Seychelles (e.g. Aldabra Atoll) were reported to host high 

coral cover (59.1 ± 9.6%), however, this was documented to decrease a year later (15.8 ± 3.6%; 

Figure 3.4). Similarly, reefs in the Southern Seychelles (e.g. Alphonse Atoll) also witnessed a 

decrease from coral cover that ranges between 17.7 ± 3.0% and 26.6 ± 5.7% in 1998 to 10.3 ± 0.3% 

in 1999 (Figure 3.4).  

Over the next five years (2001-2005), reefs in the inner Seychelles were seen to continue declining 

with coral cover ranging between 0.9 ± 0.3% and 31.3 ± 5.1% in Mahe, 0 ± 0% and 15.0 ± 3.3% in 

Praslin, 0.5 ± 0.1% and 1.8 ± 0.7% in Cousine Island (Figure 3.4). Both the outer (Aldabra Atoll) 

and southern reefs (Alphonse Atoll) were observed to maintain their coral cover ranges in this time 

period (0.3 ± 0.8% and 15.3 ± 3.5%; 17.5 ± 1.4% and 22.6 ± 1.4% respectively; Figure 3.4). Coral 
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cover remained low (3.3 ± 1.8%) in the following five year period (2005-2010) for reefs in the outer 

Seychelles (Aldabra Atoll) while coral cover on reefs in the inner Seychelles varied widely with 

some harbouring higher than average coral cover (>14%) whilst others had low cover (Figure 3.4). 

For example, coral cover on reefs around Mahe ranged between 0 ± 0% and 45.7 ± 5.2%, similarly 

coral cover in Praslin ranged between 0.1 ± 0.4% and 30.0 ± 2.0% whilst reefs around Cousine 

Island had the lowest coral cover in the region (1.0 ± 0.4% and 5.5 ± 0.7%; Figure 2.4). The 

southern reefs such as Alphonse Atoll (21.2 ± 1.7%) and Farquhar Atoll (range = 3.4 ± 0.9% and 

33.0 ± 6.3%) are seen to have maintained their coral cover.  

In the eight years between 2010 and 2018, no data points were found during the study search for 

reefs in both the outer and southern Seychelles whilst reefs in the inner Seychelles continued to 

harbour reefs with a large variation in coral cover some of which had higher than average coral 

cover (>14%) whilst others had low cover (Figure 2.4). This includes reefs around Mahe (3.0 ± 

1.6% and 38.3 ± 7.1%), Praslin (0.1 ± 0.1% and 42.0 ± 7.0%) and Cousine Island (0.3 ± 0.3% and 

11.1 ± 2.8%; Figure 2.4).	
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Figure 3.4. Mean coral cover (±SE) of reefs reported for the period 1994-2018 in each identified study in the Seychelles. Dotted 

line represents overall regional mean percentage cover. Methodology codes: LIP = Line intercept point transect; PIT = Point 

intercept transect. The full list of papers used in this study is available in Supplementary Material (S2). 
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Wakatobi, Indonesia 

In the Wakatobi, distribution of the extracted data points over time illustrates that between 2001-

2018 coral cover on reefs in this region averaged at 29.3 ± 1.8% regardless of the method used for 

measurement by the studies (Figure 3.5). In 2001, coral cover was reported to range between 6.6 ± 

1.2% and 17.7 ± 2.8%, these measurements were obtained through utilising LIT and PIT methods 

(Figure 3.5). No records of data prior to 2001 was found through all the search routes used in this 

study, thus, making this year the starting point for these reefs. Between the period 2002-2006, the 

Wakatobi was observed to maintain high coral cover (highest = 59.9 ± 3.7%) in relation to the 

average mean (29.3 ± 1.8%) measured across extracted data points (Figure 3.5). Beginning 2006-

2007, the majority of the data points illustrate low values of coral cover (<29%) with the lowest 

coral cover reported at 4.6 ± 3.8% (Site Kaledupa, 2010; Figure 3.5). This trend of low cover is 

noted profoundly between 2010 and 2014 (Figure 3.5). However, high variation in coral cover is 

observed to return between 2014-2017 revealing that coral cover on reefs in the Wakatobi maintain 

the range between 7.4 ± 1.5% and 49.9 ± 8.2%, which is similar to the range reported a decade ago 

(Figure 3.5). In terms of methodology used to measure coral cover reported in the studies, LIT and 

PIT were used to collect data points reported on reefs for 2001- 2007 whereas, 2007 onwards a 

mixture between photo quadrats and LIT/PIT methods were used. Data reported for the period 2014-

2017 was collected via photoquadrats whilst data collected for the period 2017-2018 using LIT 

revealed the final range of coral cover at this moment in time to be between 13.6 ± 2.0% and 35.5 ± 

6.1% (Figure 3.5). 
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Figure 3.5. Mean coral cover (±SE) of reefs reported for the period 2001-2018 in each 

identified study in the Wakatobi Marine National Park, Indonesia. Dotted line represents 

overall regional mean percentage cover. Methodology codes: LIP = Line intercept point 

transect; PIT = Point intercept transect. The full list of papers used in this study is available in 

Supplementary Material (S2).  
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3.3.2. Rate of change in coral cover within bioregions 

Despite the inconsistency encountered in terms of the reporting of mean coral cover on site specific 

reefs in the three bioregions, extracted data points allow a detection of the trends in coral cover over 

time. Through calculating the mean for each individual data point reported per year regardless of 

site, an increasing trend can be detected in coral cover on the AG reefs between 1998-2003 

indicating slow recovery (Figure 3.6). However, the GLMM does not reflect this as it indicates a 

change of -0.6% per year during this period. The fixed effect of ‘year’ in the GLMM indicates a 

negligible percentage of the variation, however taking into account the random effect of 

methodology, sites and sample size used to measure coral cover, it suggests that the majority 

(94.4%) of variation in coral cover and trend is dependent on sites (x2 = 20.7, p<0.01), methodology 

(x2 = 9.3, p<0.01), and sample size (x2 = 0, p<0.01). Between 2003-2013, the decline continued in 

coral cover at a decreased rate of 0.3% per year (Figure 3.6). Only 4.3% of the coral cover variation 

was explained by the GLMM fixed model whilst the random effect model indicated that the trend is 

dependent on the site (x2 = 7.3, p<0.01) and sample size (x2 = 0.8, p<0.01) but not the methodology. 

The following five-years (2013-2018) witnessed an increase in the decline of coral cover by a rate of 

4.7% per year on reefs across the AG (Figure 3.6) with the GLMM fixed effect explaining only 15% 

of the coral cover variation whilst the random model offered 40.9% suggesting that the trend is site 

dependent rather than methodology or sample size dependent.  

In the Seychelles, reefs witnessed a decrease at a rate of 0.6% per year between 1998-2003 with 

GLMM indicating that sample size (x2 = 29.1, p<0.01) has an effect on coral cover variation (Figure 

3.6). Through the following ten-year period (2003-2013), these reefs witnessed an increase in coral 

cover by 1.2% per year; with GLMMs indicating that the variation of coral cover is affected by 

sample size (x2 = 64.1, p<0.01; Figure 3.6). However this increasing trend began to decline by 1.0% 

throughout 2013-2018 with the GLMM suggesting that sample size (x2 = 0.9, p<0.01) has an effect 
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on coral cover variation (Figure 3.6). Reefs in the Wakatobi were observed to have an decreasing 

trend at a rate of 2.3% per year between 1998-2003 with GLMM indicating that sites (x2
 = 15.0, 

p<0.01), methodology (x2
 = 20.9, p<0.01) and sample size (x2 = 0.4, p<0.01) all have an effect on 

the variation in coral cover (Figure 3.6). Following which a further decline in coral cover was 

encountered at a rate of 2.6% throughout the period 2003-2013 with both site (x2 = 31.7, p<0.01) 

and sample size (x2 = 3.9, p<0.01) causing coral cover variation based on the GLMM (Figure 3.6). 

However, reefs illustrated an increase in their coral cover by a rate of 1.9% per year in the five years 

between 2013-2018 with the GLMM indicating that the only factor contributing to the variation in 

coral cover is site (x2 = 18.0, p<0.01). 
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Figure 3.6. Rate of change in mean coral cover of reefs over three time periods (i.e. 1998-2003; 

2003-2013; 2013-2018) in the three bioregions: (a) Arabian Gulf; (b) Seychelles; (c) Wakatobi 

Marine National Park, Indonesia. Black circles represent individual data points while 

coloured circles (red, blue and grey) represent mean of coral cover (%±SE) per year; lines 

indicate trends based on the simple linear regression.   
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3.3.3. Change in coral cover within reef-specific sites 

Despite the gaps between the data points available on reef specific sites, enough data was obtained 

to enable the tracking of coral cover change over time. Data revealed that in the AG some reefs 

experienced an increase in coral cover over time whilst others suffered a decrease (Figure 3.7). Both 

site specific reefs of interest in Bahrain showed opposite trends with Fasht Al Adhm (turbid reef) 

experiencing an increase in coral cover from 0 ± 0% reported in 2000 to 9.8 ± 0.8% in 2011 to a 

further 13.6 ± 7.0% in 2017; however, this reef witnessed a drastic decline in 2018 with coral cover 

averaging at 1.4 ± 0.6% (Figure 3.7). On the other hand, Reef Bul Thamah (clear water reef), 

experienced a continuous increase from 12.5 ± 4.0% in 2000 to 16.3 ± 2.6% in 2011 with a 0.8% 

decrease in 2018 (15.5 ± 2.2%; Figure 3.7).  

The majority of the reefs in the Seychelles appear to have an increasing trend on reef specific sites 

however, both of the interest sites around Curieuse Island are observed to experience the opposite 

with a decline in coral cover over time (Figure 3.7). In 2009, the East Bay reef (clear water) was 

reported to have 34.9 ± 5.1% coral cover which increased to 49.2 ± 9.0% by 2015, followed by a 

drastic decrease by 44.5% in 2017 (27.3 ± 5.7%) and a further -43.3% by 2018 (15.5 ± 1.6%; Figure 

3.7). Similarly, coral cover on the Praslin (known locally as PS2; turbid) reef was documented as 

29.0 ± 1.8% in 2009 increasing to 40.0 ± 6.9% in 2016, however, this rise drastically declined to 

18.2 ± 7.5% in 2017 and further to 7.6 ± 2.2% by 2018 (Figure 3.7).  

Unfortunately, the majority of the reefs in the Wakatobi experienced a declining trend (Figure 3.7). 

Over the course of ten-years, coral cover on the Ridge reef was noted to decline by approximately 

3.5% (2008 = 31.0 ± 4.5%; 2018 = 29.9 ± 5.5%; Figure 3.7). Coral cover at the Buoy 3 reef 

decreased from 55.5 ± 12.2% in 2002 to 35.5 ± 6.1% in 2018 whilst the PK reef also experienced a 

drastic decrease of 61.3% over a period of 13 years (2005 = 40.0 ± 6.4%; 2018 = 15.5 ± 2.7%; 
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Figure 3.7). Lastly, the Sampela reef witnessed a heavy decrease in coral cover from 33.1 ± 2.2% in 

2002 to 13.6 ± 2.0 % in 2018 (Figure 3.7). 

Overall, when evaluating the distribution of the rate of change in coral cover across bioregions, the 

average rate was higher in the AG by 0.3% per year compared to the estimated rates in the 

Seychelles and Indonesia despite its insignificance (F(2,91) = 0.6, p = 0.5; Figure 3.8). 
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Figure 3.7. Change in mean coral cover of reefs over time within the three bioregion: (a) 

Arabian Gulf; (b) Seychelles; (c) Wakatobi Marine National Park, Indonesia. Grey dots 

represent individual data points extracted for this systematic review; if more than two data 

points of the same site/reef is detected, a trend is presented; coloured lines represent the 

interest sites of this study/thesis. 
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Figure 3.8. Distribution of the rate of change in reefs across the three bioregions (Arabian 

Gulf = 1986-2018; Seychelles = 1994-2018; Wakatobi, Indonesia = 2001-2018). Mean coral 

cover (±SE) of reefs is represented by the circle in the middle of each shape; mean at 0 = no 

change, >0 = positive change/recovery, <0 negative change/decline. 
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3.4 | DISCUSSION 

Through conducting a systematic review this chapter aimed to establish the current status and trends 

of reefs in the three chosen bioregions through investigating the temporal change in the abundance 

(percentage cover) of the primary reef carbonate producers (hard corals). 

3.4.1 | Trends in coral cover within bioregions 

Using the data points identified from the primary literature, coral cover change was tracked over a 

32-year period in the AG (1986-2018), 24-year period in the Seychelles (1994-2018) and 19-year 

period in the Wakatobi, Indonesia (2001-2018). Change in coral cover trends were non-linear 

fluctuating between an increase indicating recovery and declines across all bioregions.  

Arabian Gulf 

Despite the 12-year gap (1987-1999) in the AG data points, a few data points were obtained from 

1986 providing insights into what coral cover might potentially have been on reefs in this area 

(Figure 3.3). This large gap in data can be attributed to the limited research in the region with a 

study reporting that between 1950-2012 a total of 270 articles were published on reefs in the region, 

of which half (49.8%) were published between 2003-2012 (Burt, 2013). This lack of publications in 

the area coupled with literature not meeting the inclusion criteria when found through the systematic 

search has resulted in the gap observed. Nevertheless, although these studies were not included in 

the data analysis of this review, these publications reported an overview of the status of reefs during 

that period, which document reefs with high coral cover. In 1988, colonies of Acropora pharaonis 

were reported to cover 95% of the reef in Tarut Bay, Saudi Arabia (Coles & Fadlallah, 1991) with 

similar observations of dense Acropora spp. cover on reefs in Bahrain (50-90%; Vousden, 1995) 

and Qatar in the 1980s (Emara et al., 1985). Reports of high coral cover (75%) on reefs in Oman 

were also documented (Salm, 1993), and dense coral cover in the early 1990s between Ras Ghantoot 
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and Jebel Ali off the Deira corniche in Dubai, UAE (Purkis & Riegl, 2005; Purkis et al., 2005). 

These reports compliment the few data points identified in this study for the 1986 time point, filling 

in the gap whilst providing an overview covering the north, mid and south of the AG.  

Sharp declining trends were detected in coral cover between 1999-2001, which can be attributed to 

the 1998 global mass bleaching event (Figure 3.3). Reefs in the AG were reported to suffer major 

losses, which reduced live coral cover in many shallow areas to less than 1% due to the 1996, 1998 

and 2002 bleaching events (Sheppard & Loughland, 2002; Rezai et al., 2004). On a more local 

scale, for example, reefs in Bahrain recorded an estimated loss of >90% of coral cover (Rezai et al., 

2004; Al-kuwari, 2006) linked to the mass bleaching events in 1996 and 1998 where temperatures 

reached 37.7°C and 38°C respectively, making Bahrain the worst affected Gulf country by these 

events (Wilkinson, 1998; Uwate & Shams, 1999; Lough, 2000). Shifts towards increasing coral 

cover was detected on reefs over the next six years (2002-2008) indicating possible reef recovery 

and new coral establishments (Figure 3.3; 3.6; 3.7). Benzoni et al., (2006) documented an 

observation on reefs in Kuwait which experienced the 1992 bleaching episode that resulted in high 

(nearly 100% for Acropora downingi) coral mortality on shallow reefs. However, ten years later 

(2002), numerous Acropora downingi colonies (up to 4m in diameter) are reported to have 

recovered at all impacted reefs, suggesting that corals in this region can withstand extreme 

conditions and hence enable recovery following major disturbances (Benzoni et al., 2006). A similar 

observation was also reported in Dubai where six species of Acropora sp. ‘disappeared’ following 

the 1996 bleaching episode, however, ten years later, these species were reported to have re-

established themselves on the reef (Sheppard et al., 2010). This in turn could help explain the trend 

observed between 2002-2008, nevertheless, this recovery phase was short lived with a reverse trend 

observed between 2009-2012, causing a decline in coral cover on the majority of reefs (Figure 3.6; 

3.7). This can be attributed to the 2010 bleaching disturbance (Riegl & Purkis, 2015; Paparella et al., 
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2019), with the exception of some reefs in the South of the AG that were observed to maintain their 

status. The following years (2013-2018), witnessed an overall decline in the AG coral cover which 

is well documented (Figure 3.6; Bento et al., 2016; Grizzle et al., 2016; Sheppard, 2016; UNEP, 

2016; Riegl et al., 2018). It should be noted that reef degradation in the AG is not only a 

consequence of bleaching episodes, although this is the primary reason based on the literature 

reports, the presence of many local pressures that threaten and impact reef sites throughout the 

region are also contributors. One of the major pressures include coastal development, which is said 

to have altered 40% of the AG coastline in the last 20 years through dredging and reclamation 

activities (van Lavieren et al., 2011). For example, reefs in Dubai, UAE located between Ras 

Ghantoot and Jebel Ali off the Deira corniche which were reported to have dense coral cover in the 

early 1990s, have suffered severe losses, shortly following the intensive construction of the Jebel Ali 

Palm (Sheppard et al., 2010). Other contributors towards reef degradation include overfishing and 

destructive fishing practices (van Lavieren et al., 2011; Burt, 2014).	

 

Seychelles 

Data points identified for reefs in the Seychelles presented the temporal trends of reefs throughout a 

24-year period (1994-2018) which revealed large variations in coral cover between the inner, outer 

and southern Seychelles reefs (Figure 3.4). This variation could be linked to the unique 

geomorphological substrata found on these reefs. These are commonly categorized into coral patch 

reef habitats (with sand, rubble or rock base), carbonate fringing reefs or granite habitats (reef 

growth occurs on granitic rock substrate) especially in the Inner Seychelles reefs (Collier & 

Humber, 2012; Harris et al., 2014). Prior to the 1998 bleaching event, data points indicated that 

coral cover was higher than the average mean calculated for the Seychelles in this study (i.e. >14%) 

with reports of coral cover ranging between 19-39% in the inner reefs, 59% in the outer reefs and 
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17.7% in the southern reefs (Figure 3.4). This supports observations made by other studies that 

stated reefs in the Seychelles were characterised with high structural complexity and rich live 

branching and massive coral cover in 1994 (Graham et al., 2006). However, this positive status 

endured severe impacts due to the 1998 mass bleaching event which reduced coral cover to 3-5% 

(Obura et al., 2017). Due to this bleaching event, reefs in the inner Seychelles were reported to have 

suffered >90% coral cover loss (Goreau et al., 2000; Sheppard, 2003). In addition, reefs in the outer 

and southern Seychelles also suffered major losses in coral cover (41% and 74% respectively; 

Spencer et al., 2000), resulting in the collapse of their structural complexity with reports of slow 

recovery rates thereafter (Graham et al., 2015). The trends detected through the data points in this 

study between 1998 and 2015 are in line with these observations and indicate that reefs in the years 

following 1998 experienced a slow shift into a positive state (despite multiple minor bleaching 

episodes during this period); with coral cover growth on some reefs regaining its pre-bleaching level 

by 2015 (Figure 3.4; 3.6; Obura et al., 2017). Unfortunately, this positive recovery trend on reefs 

was abruptly cut short by another global mass bleaching event in 2016, resulting in devastating loss 

for reefs across the Seychelles (Figure 3.6; 3.7). On a more positive note, although the 2016 

bleaching episode was severe on reefs in this region, impacting the inner reefs more than the outer 

reefs (60% and 17% respectively), it is reported to be less severe than the 1998 event (Gudka et al., 

2018). During the period 2016-2020, coral cover decline has been reported by various studies on 

reefs in the Seychelles, all of which are mainly attributed to the 2016 bleaching event (Obura et al., 

2017; Gardner et al., 2018; Gudka et al., 2018, 2020; GVI Seychelles, 2018). 

 

Wakatobi, Indonesia 

Located in the heart of the Coral Triangle, the Wakatobi is naturally expected to have the highest 

coral cover in comparison to reefs in the AG and the Seychelles. Unfortunately, data prior to 2001 
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could not be found making it impossible to examine change in coral cover that might have been an 

implication of the 1998 bleaching event. The earliest record of coral cover found for this region was 

2001 following which the change in coral cover was documented to be non-linear. Coral cover 

increased with time and maintained a high range (i.e. above average = >29%, reaching 60%), this 

increase was interrupted around the period 2005-2006 which caused a clear decline in coral cover 

(Figure 3.5; 3.6). This observation is in line with other reports (Clifton et al., 2010; Gouraguine et 

al., 2019), although no clear reason is known for this decline, it has been suggested that this 

disturbance could be a result of anthropogenic activities. Evidence of destructive fishing techniques 

(blast fishing) has been reported to take place in the region between 2004-2005 which could be a 

reason behind the decline during the 2005-2006 period (Figure 3.5; 3.7; Pet-Soede & Erdmann, 

2003; Clifton et al., 2010). Despite the absence of bleaching reports in this region, data from remote 

sensing (see Chapter 2) indicates that these reefs experienced thermal anomaly temperatures in 

2002, 2005 and 2006 which could have contributed to the observed decline in coral cover 

(Gouraguine et al., 2019). Coral cover trends continued to remain lower (<29%) throughout the 

following ten years (2005-2015), which could be attributed to the increasing human population on 

the adjacent islands that rely on these reefs for their livelihoods and food. This reliance coupled with 

a history of poor resource management within the Wakatobi (Cullen-Unsworth, 2010), coral disease 

incidents (Haapkylä et al., 2009) and regional/global pressures have resulted in declines in both 

coral cover and fish abundance (Curtis-Quick, 2013; Gouraguine et al., 2019). During the last four 

years (2014-2018), increasing trends in coral cover have been observed through the extracted data 

points, however, the data also illustrates large variation in coral cover (7-50%) across reefs (Figure 

3.7). This result corresponds to that reported by Marlow et al., (2019) who observed a similar (7-

48%) variation in coral cover within the Wakatobi. This variation could be caused by the difference 

in methodology used to measure coral cover on reefs and sample size since for example, the use of 
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photoquadrats results in higher sample size. However, other studies have demonstrated that data 

obtained using different methodologies to measure coral cover can be legitimately comparable with 

no significant difference in results (Franklin et al., 2013; Jokiel et al., 2015). Overall, despite the 

increase in coral cover over the last four years (2014-2018), the decline in coral cover in comparison 

to nearly twenty years ago is evident with supporting studies (Clifton et al., 2010; Curtis-Quick, 

2013; Gouraguine et al., 2019; Marlow et al., 2019) . 

3.4.2. Rate of change in coral cover across bioregions 

Following the major bleaching event documented in 1998, reefs in the AG experienced a decline at a 

rate of 0.6% per year in coral cover during the period 1998-2003 (Figure 3.6). Despite this, signs of 

recovery and/or stability were observed between 2003-2013 on different individual reefs (Benzoni et 

al., 2006; Burt et al., 2013). However, during the period 2013-2018, a higher decline in coral cover 

was detected at a rate of 4.7% per year, which can be attributed to the bleaching disturbance 

documented in 2017 resulting in mass mortality throughout the region (Figure 3.6; Burt et al., 2019; 

Paparella et al., 2019). Observations from pervious studies (Benzoni et al., 2006; Sheppard et al., 

2010) have indicated that reefs in the AG, required an estimated ten years to recover and establish 

their pre-bleaching coral cover state. With bleaching episodes on the rise in both frequency and 

intensity (Sully et al., 2019), questions remain whether reefs can re-establish themselves enough to 

maintain their structural integrity and keep track of sea level rise. Similar to the AG, reefs in the 

Seychelles have also suffered extensive coral cover loss (>90%) as a result of the 1998 bleaching 

event (Obura et al., 2017). Based on the results of this study, coral cover was estimated to decrease 

at a rate of 0.6% per year between 1998-2003. This was reversed by a recovery trend in coral cover 

observed between 2003-2013 and estimated at a rate of 1.2% per year which is in line with previous 

studies that reported coral cover recovery rate at 1% per year between 2005-2011 (Wilson et al., 
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2012). Results from this study have also revealed that current trends reflect a decrease in coral cover 

at a rate of 1% per year since the 2016-bleaching event. Overall, it took reefs in the Seychelles a 

total of 17 years (1998-2015) to return to their pre-bleaching state which was severely interrupted by 

the 2016 bleaching event with observations suggesting that granitic reefs faired better than the 

carbonate in recovery (Obura et al., 2017). On the other hand, reefs in the Wakatobi, Indonesia have 

not been documented or observed to have suffered losses as a result of bleaching events, instead 

most of the decline in coral cover in the region is attributed towards anthropogenic impacts (Clifton 

et al., 2010). Prior to 2004, coral cover began to decline at a rate of 2.3% per year, which continued 

in the following years ten years, all of which could be linked to anthropogenic impacts and incidents 

of coral disease (Clifton et al., 2010; Haapkylä et al., 2015; Gouraguine et al., 2019). Since 2014, an 

increase of 1.9% per year was noted indicating a slow initiative of re-establishment in coral cover 

across reefs in the Wakatobi (Figure 3.6). 

3.4.3. Change in coral cover for thesis study sites 

Reefs of Bahrain, AG 

In Bahrain, the status of the reefs of interest are contrasting over time, with one reef fluctuating 

between positive signs of recovery and decline whilst the other suggests stability over time. Fasht Al 

Adhm represents a shallow (~5-7 m) reef in Bahrain that was majorly impacted by the 1998 

bleaching resulting in 0% coral cover documented by the year 2000 (Uwate et al., 2000). Ten years 

later, coral cover was observed to recover to 9.8 ± 0.8% in 2011 (Burt et al., 2013) indicating a 

recovery rate of 0.9% per year (Figure 3.3; 3.7). However, the 2017 bleaching episode resulted in 

severe mortality (Burt et al., 2019; Paparella et al., 2019) and coral cover declined to 1.4 ± 0.6% in 

2018 (Chapter 4). Contrastingly, at Reef Bul Thamah, coral cover increased between 2000 and 2011 

from 12.5 ± 4.0% to 16.3 ± 2.6% (Uwate et al., 2000; Burt et al., 2013) with a minor decrease in 
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2018 bringing its coral cover to 15.5 ± 2.2% (Chapter 4). The ability of this reef to maintain its coral 

cover despite the bleaching disturbances and other local pressures could be attributed to its depth 

(~10 m), which is an advantage (Bridge et al., 2014; Baird et al., 2018) and location (~80 km off-

shore) in comparison to the Fasht Al Adhm reef (depth = ~5-7 m; located ~ 11km off-shore). In 

addition, Hence, Reef Bul Thamah could be considered as a potential future refugia reef due to its 

high resilience to environmental change. 

 

Reefs of Curieuse Island, Seychelles – Western Indian Ocean  

Coral cover was observed to drastically decline at both interest sites around Curieuse Island (East 

Bay and Praslin). In 2016, prior to the bleaching event, it was reported that the live coral coverage at 

these sites were witnessing a steady increase between 2009 and 2016 from 35 ± 5% to 49 ± 9% in 

East Bay and 30 ± 2% to 42 ± 7% in Praslin (Gardner et al., 2018). However, the 2016 bleaching 

event terminated this growth in coral cover causing it to decline from 49 ± 9% (2016) to 15.5 ± 

1.6% (2018) in East Bay and 42 ± 7% (2016) to 7.6 ± 2.1% (2018) in Praslin (Figure 3.7; 2016 

values = Gardner et al., 2018; 2018 values = Chapter 4). Overall, the trajectories of the sites of 

interest are unfortunately negative placing these reefs in a very vulnerable position in the face of 

rising sea levels. 

 

Reefs of Hoga Island, Wakatobi, Indonesia – Central Indo-Pacific Ocean  

Overall, declining trends were detected at all of the interest sites within the Wakatobi (Figure 3.7). 

Sampela is a reef adjacent to the Bajo village of Sama Bahari and is subjected to large sediment load 

and various anthropogenic activities which heavily impact the site (Clifton et al., 2010; Powell et 

al., 2010). This is clearly reflected in the decline in coral cover from 33.1± 2.2% in 2002 (Crabbe et 

al., 2004) to 13.6 ± 2.0% in 2018 (Chapter 4). Ridge reef is considered one of the “healthiest” reefs 
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in the Wakatobi due to its geographical position and very low anthropogenic impacts, however, at 

Ridge reef live coral cover declined by 3.5% over the course of 10 years (2008 = 31.0 ± 4.5%; 2018 

= 29.9± 5.5%; Powell et al., 2010; Chapter 4 respectively). On the Hoga Island fringing reefs, Buoy 

3 exhibited a decline by 36% between 2002 and 2018 (2002 = 55.5 ± 12.2%; 2018 = 35.5 ± 6.1%; 

Haapkylä et al., 2015; Chapter 4 respectively) whilst PK decreased by 61.3% over 13 years (2005 = 

40.0 ± 6.4%; 2018 = 15.5 ± 2.7%; Scaps & Denis, 2008; Chapter 4 respectively). This decline in 

coral cover can be attributed towards synergistic disturbances, the majority of which are 

anthropogenic, whilst some may be biological such as coral disease occurrences and thermal 

anomalies detected through remote sensing data (Haapkylä et al., 2009; Clifton et al., 2010; 

Haapkylä et al., 2015; Gouraguine et al., 2019). 

3.4.4. Limitations 

Systematic reviews are considered evidence based to answer a scientific question, however, similar 

to every scientific process challenges and limitations are inherent. Some of the limitations 

encountered include the use of software to extract numerical values from published figures due to 

their absence in the text, which results in discrepancy in the extracted values. In addition, there 

might be data available at a governmental, NGO and/or private sector level that can contribute to 

filling the knowledge gap within the biroegions that might not be available online or is inaccessible 

hence contributing towards publication bias. This also results in some countries being under-

represented (e.g. reefs in Saudi Arabia in the AG).  

Nevertheless, despite these limitations, the results presented in this systematic assessment has 

revealed that despite the low rate of recovery on reefs within the three bioregions, disturbances 

caused mainly by bleaching events have impacted coral cover (primary carbonate producers) on 

reefs in the AG and the Seychelles whilst anthropogenic impacts were the main drivers of coral 
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decline in the Wakatobi. This decline across the bioregions influences long-term patterns in reef 

ecology and impacts accretional health especially that studies suggest that a threshold of 10% live 

coral cover is critical to enable reefs to keep pace with sea level rise through maintaining a positive 

carbonate production rates (Perry et al., 2013; Herrán et al., 2017). 

In conclusion, the findings derived from this systematic review have enabled the tracking and 

establishment of the current status and trends of coral reefs in the interest sites within Bahrain (AG), 

Curieuse Island, (Seychelles) and the Wakatobi (Indonesia) as well as providing insights into the 

overall status and trends of reefs at regional levels.  
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4.1 | CHAPTER INTRODUCTION 

In the last two decades, reef carbonate budgets have been recognised as a key metric to assess coral 

reef health thereby developing a greater understanding of reef state (Perry et al., 2008; Mace et al., 

2014; Perry & Morgan, 2017). The geomorphic state of coral reefs and their structural integrity can 

be assessed by their carbonate budgets, which quantify the overall CaCO3 input and output in a coral 

reef. Reef accretion occurs when CaCO3 production exceeds erosion, thereby considering a reef in a 

positive budgetary state whilst the contrary implies that reefs are in a negative state represented by 

physical abrasion, bioerosion and dissolution (Leon & Woodroffe, 2013). Insights are gained when 

quantifying and assessing reef carbonate budgets under different environmental conditions and 

across bioregions with regards to current status of reefs, change in reef functionality and whether 

reefs are able to track sea level rise (SLR). This comes at a crucial time as reefs worldwide are 

presented with anthropogenic challenges both on a global and local scale. This chapter documents 

the status of reef carbonate budgets in the three selected bioregions and determines whether reefs are 

maintaining a positive budgetary state or are exhibiting an erosive state with consequences for their 

future survival. In the last two decades, reefs in these three bioregions have faced multiple bleaching 

events, with some extreme episodes (e.g. DHW= ≥15◦C-weeks in Bahrain (2017); 7◦C-weeks in 

Seychelles (2016); whilst Indonesia did not face extreme events (5◦C-weeks; 2016)) resulting in high 

mortality rates of primary carbonate producers (see Chapters 2 and 3). Therefore, this chapter 

describes the current accretional health of reefs in each bioregion. Findings are presented as 

individual papers representing each bioregion.   
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4.2 | BLEACHING THREATENS POSITIVE CARBONATE BUDGETS AND REEF GROWTH 

POTENTIAL ON BAHRAINI REEFS 

ABSTRACT 

Coral reefs have been at the forefront of climate change threats, with rising sea surface temperatures 

(SST) contributing to intense and increasing episodes of global bleaching events. These episodes 

have impacted carbonate budget dynamics, which is reflected in reduced reef framework accretion 

of calcium carbonate (CaCO3), with future consequences on reef ability to keep pace with sea level 

rise (SLR) projections. Reefs in the Arabian Gulf (AG) exist in harsh environmental conditions with 

temperatures ranging between 16-36◦C. Despite the high thermal thresholds (~35◦C; mean DHW = 

4.8±0.3◦C-weeks) of corals in this region, extensive bleaching and high coral mortality has been 

reported regionally in 2017. This study quantifies reef carbonate budgets between 2017-2018 in 

Bahrain at shallow sites (5-10 m) and assesses the impact of the 2017 severe bleaching event on 

their budgetary state. Results indicate a decrease in hard coral cover from 14.2 ± 5.5% to 8.4 ± 

1.4%. In addition, a decline in positive budgetary state from 2.7 ± 0.7 to 1.7 ± 0.4 kg CaCO3 m-2 y-1 

was recorded in the offshore Reef Bul Thamah, whilst the shallower nearer shore Fasht Al Adhm 

has shifted into a negative budgetary state. This shift is attributed to the severe bleaching, which 

took place between June – September 2017, resulting in high coral mortality rates and subsequent 

reduced framework accretion. Predicted warming trends present a threat to the structural integrity of 

Bahraini reefs, compromising their ability to keep pace with future SLR projections. 

	
4.2.1 | INTRODUCTION 

Coral reefs are known for their high diversity and productivity (Carpenter et al., 2008; Bowen et al., 

2013) which makes them important ecosystems for both nature and mankind. They provide 
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numerous environmental (e.g. coastal protection; van Beukering et al., 2010), social (e.g. fisheries; 

Laurans et al., 2013) and economic (e.g. tourism; Cesar & Beukering, 2004) benefits to 

communities worldwide through their ecosystem services (Moberg & Folke, 1999; Cinner et al., 

2013; Daw et al., 2016). The extent to which coral reefs can deliver their services (e.g. coastal 

protection) and functions (e.g. biodiversity) is associated and dependent on the persistence of their 

reef framework structure (Franco et al., 2016; Perry, Spencer, & Kench, 2008). The ability of coral 

reefs to sustain their three dimensional structural integrity depends on the balance between the rate 

of carbonate production and erosion (Hubbard, Miller & Scaturo, 1990;  Kleypas & Langdon, 2006; 

Perry et al., 2008; Perry et al., 2015; Stearn & Scoffin, 1977). Calcium carbonate (CaCO3) 

production is done by primary (hermatypic corals; Perry & Hepburn, 2008; Stearn & Scoffin, 1977) 

and secondary reef builders (calcareous encrusters; Goreau, 1963; Choi & Ginsburg, 1983) in 

addition to the reintroduction of carbonate sediment into the reef framework. Reef builders secrete, 

deposit and accumulate CaCO3 thereby contributing towards the formation of the reef’s structure 

leading to accretion. Sea surface temperatures (SST) have increased globally with records 

documenting rises of 0.7◦C, 0.4◦C and 0.3◦C in the Indian, Atlantic and Pacific oceans respectively 

between 1950-2009 (IPCC, 2014a). Temperature anomalies, which are predicted to increase with 

global rising temperatures, have been proven to cause coral bleaching and coral mortality (Baker et 

al., 2004; Berkelmans & Oliver, 1999; Hughes et al., 2017). An increase in temperature anomaly by 

just 1-2◦C is sufficient to cause bleaching (Heron et al., 2016; Hoegh-Guldberg, 1999; Hoegh-

Guldberg et al., 2017; Kleypas, Mcmanus, & Menez, 1999; Lough, Anderson, & Hughes, 2018; 

Purkis & Riegl, 2005), impacting reef carbonate budgets and reef capacity to sustain their 

framework development (Januchowski-Hartley et al., 2017; Perry & Morgan, 2017). Despite reefs 

being faced with multiple stressors (e.g. changes in light, salinity and nutrient availability), all of 

which may contribute towards triggering bleaching (Baker, Glynn, & Riegl, 2008; Coles & Jokiel, 
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1978; Kleypas et al., 1999; Lesser et al., 1990; Wooldridge, 2009), SST anomalies are seen as the 

most influential trigger (Claar et al., 2018; Hoegh-Guldberg et al., 2017; Pramanik, 2014). In 

environments such as the Arabian Gulf (AG), corals are subjected to seasonal variations in 

temperatures (16-36◦C; Coles & Riegl, 2013; Hume et al., 2013). In the last two decades, reefs in 

this region have been exposed to severe temperature anomalies (~2◦C above the average) at a rapid 

and high recurring rate (Burt, Bartholomew, & Feary, 2012; Riegl, 2002; Sheppard & Loughland, 

2002), similar to those projected (1.5-2◦C above pre-industrial levels) to occur globally by 2100 

(IPCC, 2014b). It is thus unsurprising that coral communities in the AG have the highest bleaching 

threshold globally (Kavousi et al., 2014; Rezai et al., 2004; Riegl et al., 2011; Shuail et al., 2016). 

However, despite their high threshold, they are still susceptible to bleaching. It is documented that 

70% of original the AG reef cover may be considered lost with declines linked to major bleaching 

events e.g.1998 (van Lavieren et al., 2011; refer to Chapters 2 and 3). Regional studies, mostly 

focused on the reefs of the United Arab Emirates and Oman (Burt et al., 2016; Howells et al., 2014; 

Purkis & Riegl, 2005; Purkis et al., 2010; Sheppard et al., 2010; Sheppard, Price, & Roberts, 1992) 

have found that these reefs have the adaptive mechanisms to survive under harsh conditions, 

particularly in relation to high temperatures and large seasonal fluctuations (Burt, 2013). Over the 

past decades, efforts have been made to calculate reef carbonate budgets (Browne, 2011; Hepburn, 

2006; Holmes et al., 2000; Hutchings & Bamber, 1985) and assess the rate of change due to 

bleaching on reefs such as the Maldives and Seychelles (Januchowski-Hartley et al., 2017; Perry & 

Morgan, 2017; Perry et al., 2014). However, no previous attempt has been made to calculate and 

assess reef carbonate budgets in the AG. Therefore, the aim of this study was to: (1) characterise the 

benthic composition of reefs in Bahrain in order to quantify the rate of carbonate production and 

erosion and; (2) assess the change in carbonate budgets on these reefs between 2017-2018 post the 
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2017 bleaching which is considered as the most intense bleaching event in Bahrain following the 

documented event in 1998 (see Chapter 2). 

4.2.2 | MATERIALS & METHODS 

4.2.2.1 | Site descriptions  

Two study sites in Bahrain located in the southwest of the AG were investigated in April 2017 & 

2018 and September 2017 & 2018 (Figure 4.2.1). Reefs from both turbid and clear-water (herein 

referred to as optimal) sites were chosen to represent different environmental gradients with 

sampling occurring between 5-7 m in Fasht Al Adhm and 10-12 m in Reef Bul Thamah (see Table 

4.2.1 for environmental characteristics of sites). Sampling depths differ due to the natural 

topography of the sites; site BH-TB is a near-shore gently sloping shallow reef, with a maximum 

depth of 7 m and minimal relief due to the site being relatively homogenous and lacking in structural 

complexity. Site BH-OP is an off shore reef, also relatively homogenous, with a gentle slope starting 

at 10 m and continuing to 12 m when Pleistocene bedrock continues to a depth of 18 m after which 

the substrate becomes more patchy with sand and bedrock formations as it slopes off into the deep 

(>50 m). Bahrain is an archipelago of 33 low lying islands (Figure 4.2.1) and historically, it’s coral 

reefs were among the most extensive in the southern basin of the AG (Kavousi et al., 2014; Purkis 

& Riegl, 2005; Riegl, 2003). However, in the last four decades, these reefs have undergone 

significant decline due to intense bleaching events and large-scale coastal development in pursuit of 

socio-economic growth. This has added 12.8% to the Kingdom’s total land area between 1961 (690 

km2) and 2018 (778 km2) (World Bank, 2018). Coral reefs (locally known as “fasht”) occupy a total 

area larger than Bahrain (850 km2) with Fasht Al Adhm itself covering 200 km2, with most 

restricted to the east and north of the main island (Burt et al., 2013).  
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Figure 4.2.1. Location of Study Sites – (a) Location of Arabian Gulf (AG); (b) Location of 

Bahrain within the AG; (c) Location of selected study sites within Bahrain [Site codes: Fasht 

Al Adhm (BH-TB) and Reef Bul Thamah (BH-OP)]. 

Arabian Gulf

−50

0

50

−100 0 100
Longitude

La
tit

ud
e

Bahrain

Saudi Arabia
Qatar

UAE

Iran

0 250 500km
24

26

28

30

45 50 55 60
Longitude

La
tit

ud
e

●

●

Reef Bul Thamah

Fasht Al Adhm

0 20 40km
25.5

26.0

26.5

50.25 50.50 50.75 51.00 51.25
Longitude

La
tit

ud
e

(a) 

(b) 

(c) 



Chapter 4 | Reef Carbonate Budgets 

	 113 

Table 4.2.1. Site description and characterisation of study sites in Bahrain, Arabian Gulf.  

Site Site Code 
Depth 

(m) 

Temp. 

(°C) 

Salinity 

(ppt) 

Sedimentation 

rates (mg cm-2 d-1)* 

Light 

attenuation 

(Kd PAR)** 

Distance Impacts 

Fasht Al 

Adhm 

(Turbid) 

BH-TB 5-7 

20-36 42-44 

0.23±0.04 0.02 ± 0.04 

~11 km east 

of the main 

island 

Heavily impacted due to various 

anthropogenic activities mainly 

reclamation and dredging. 

Reef Bul 

Thamah 

(Optimal) 

BH-OP 10-12 0.19±0.04 0.04 ± 0.07 

~80 km 

northeast of 

the main 

island 

Although located within a 

Marine Protected National Park 

(MPA), the site is subjected to 

illegal fishing and destructive 

fishing practices. 

 

* Due to time restrictions, sediment traps (n=6) were deployed for a period of three days at each of the study sites in May 2018. 

** Data was logged using a hobologger at a one minute interval at two depths (BH-OP = 5m and 10m; BH-TB = 3m and 7m) over 5 days and 

were converted from Lux to µmol photons m−2 s−1 (as per Long, Rheuban, Berg, & Zieman, 2012) to return light attenuation coefficients (Kd 

(PAR), m−1) for each site. 
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4.2.2.2 | Quantifying the Carbonate Budgetary State in the Field 

Surveys were conducted in May and September 2017 & 2018 on both the near-shore (BH-TB) and 

off-shore reefs (BH-OP). Since the reef structure in Bahrain is almost flat but does have a gentle 

slope (<2 m), all transects were conducted on the bottom flat of the reef at a depth of ~6-7 m in BH-

TB and ~10 m in BH-OP. At each site, six replicate transect lines were established running parallel 

where possible along the reef flat, with a spacing of 5 m between transects (Table 4.2.2). In order to 

quantify reef rugosity, substrate composition and gross carbonate production and erosion to 

collectively determine the net carbonate budgets (kg CaCO3 m-2 y-1 hereafter expressed as G), the 

international standarised census-based ReefBudget methodology was used (Perry et al., 2012). The 

ReefBudget methodology was originally designed for the Caribbean region but a slightly modified 

version of the methodology described in Perry et al., (2012) was used for this study. The 

modifications made are mainly using different growth rates for primary producers and the number of 

transects / replicates conducted which was mainly due to time constraints. Table 4.2.2 outlines the 

various carbonate budget components measured and the number of replicates at each study site. 

Benthic composition and cover was measured following the integrated method outlined in Perry et 

al., (2012) whereby benthic cover and surface rugosity data were collected using a modified version 

of the standard linear intercept methodology where benthic cover was recorded along every 1 cm 

increment of the tape. Rugosity was calculated from the total surface distance for each linear 1m of 

reef.  
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Table 4.2.2. Details of carbonate budget components and number of replicates at each study 

site in Bahrain, Arabian Gulf. 

Carbonate Budget 

Component 
Variable 

Number of 

transects 

Length of transect 

(m) 

Carbonate production rate 

Benthic composition 

assessment 
6 10 

Rugosity 6 10 

Carbonate producers 6 10 

Carbonate erosion rate 

Echinoids (Urchins) 6 10 

Scaridae (Parrotfish) 3 30 

Bioeroding sponges 

(Clionidae) 
6 10 

 

Carbonate Producers 

-  Primary Carbonate Producers: Scleractinian corals were identified to genus level e.g. 

Porites spp.  

-  Secondary Carbonate Producers: Crustose coralline algae (CCA) was recorded as CCA 

throughout the benthic cover measurement however, other secondary carbonate producers 

such as bryozoans, foraminifera and serpulids were recorded as other calcareous encrusters 

(OCE). In order to quantify secondary carbonate producers, six PVC pipes were deployed for 

a period of one-year at each study site measuring 35 cm x 16 cm (length x circumference of 

the pipe; Figure 4.2.2). Following the one-year period, pipes were photographed underwater, 

placed in a plastic bag secured with cable tiles over the upper part of the pipe for removal. 

Once in the lab, pipes were examined and photographed in detail following which they were 

placed in 10% sodium hypochlorite (bleach) for 36 hours. Once removed from the bleach, 

the pipes were left to dry after which, they were weighed three times. The pipes were then 

soaked in 10% HCl for another 36 hours. Once all the calcium carbonate was dissolved, the 
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pipes were taken out and weighted for a second time (in replicates of three). This allowed for 

a weight per unit area to be derived.   

 

Figure 4.2.2. CaCO3 production by secondary carbonate producers over a one-year period on 

PVC pipes deployed at BH-TB (Fasht Al Adhm). 

  

September 2017 September 2018 (Exposed Side) September 2018 (Cryptic Side) 



Chapter 4 | Reef Carbonate Budgets 

	 117	

Carbonate Eroders 

-  Echinoids: The area surveyed along each of the six transects was 1 m on either side of the 

10 m transect line covering a total of 20 sq m per transect (10 m length x 2 m width). The 

number of individuals along each transect were counted, identified to species level and 

recorded in the following size class: 0-20 mm, 21-40 mm, 41-60 mm, 61-80 mm, 81-100 

mm. 

-  Scaridae: The area surveyed along each of the three transects was 4 m in width of the 30 m 

transect line covering a total of 120 sq m per transect (30 m length x 4 m width). The number 

of individuals encountered along each transect were counted, identified to species level and 

recorded in the following size class: 5-10 cm, 15-24 cm, 25-34 cm 35-44 cm and >45 cm. 

-  Bioeroding sponge: The area surveyed along each of the six transects was 0.5 m width of 

the 10 m transect line covering a total of 10 sq m per transect (10 m length x 1 m width). The 

area of individual bioeroding sponge colonies with visual papillae were estimated using a 

transparent sheet with a printed 1x1 cm grid along the transect, however identification to 

species level was difficult as there is no bio-eroding sponge guide available for the AG. In 

order to confirm that the sponges recorded were bioeroding, a hammer and chisel were used 

to verify boring activity. 
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4.2.2.3 | Reef Carbonate Budget Calculations 

Carbonate Producers 

- Primary Carbonate Producers: 

In order to calculate carbonate production rates (G), coral colonies were identified to genus level 

whilst both colony size (calculated based on linear coverage by the transect tape in this study) and 

morphology were noted. To date, there are no published growth rates or skeletal densities for corals 

in the AG with the exception of two species (Table 4.2.3), therefore, for the purpose of this study, 

general growth rates for coral genus from published literature were used (Table 4.2.3). The data was 

then inserted in open source datasheets that have been set up with standardized Reefbudget 

equations that automatically calculate the carbonate production rates for each transect. Datasheets 

can be downloaded for use through: https://geography.exeter.ac.uk/reefbudget/caribbean/. The 

primary carbonate production rates were calculated based on the following equation (Perry et al., 

2012): 

Carbonate production rate = Rz * ((Xi / 100) x ((Di * Gi * 10,000)/1000)) 

where,  Xi = mean percent cover of the ith species;  

Di = density (g cm-3) of the ith species 

Gi = growth rate (cm.year-1) of the ith species 

Rz = rugosity for the zone (or transect) 

- Secondary Carbonate Producers:  

To calculate secondary carbonate production, the weight per unit area previously derived through 

the one-year experiment was inserted in the Reefbudget calculation sheet in the growth rates column 

thereby automatically including it in the overall production budget calculation.  
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Table 4.2.3. Skeletal densities and linear extension rates of corals (referred to as growth rates) used in 

the Bahrain reef budget study. 

Coral Genera 
/ Species 

Morphology 
Skeletal 
Density 
(g/cm3) 

Growth rate 
(cm/yr) 

Location Source 

Galaxea 
fascicularis 

columnar, 
encrusting, 

massive 
1.9 0.9 China (Shi et al., 2009) 

Dipsastrea 
spp. (formely 
Favia spp.) 

encrusting, 
massive 

1.4 0.6 
Marshall 

Islands; China 

(Highsmith, 1979; 
Harriott, 1999; Shi et al., 

2009) 

Favites spp. 
encrusting, 

massive 
1.5 1.6 GBR (Browne, 2012) 

Leptoseries 
gardineri 

encrusting 1.7 1.7 Cocos Island 
(Plucer-Rosario & 

Randall, 1987) 

Millipora spp. 
encrusting, 

plating 
2.3 1.5 

Marshall 
Islands; Egypt 

(Odum & Odum, 1955; 
Attalla et al., 2011) 

Montipora spp. encrusting 1.2 1.6 Cocos Island 
(Plucer-Rosario & 

Randall, 1987) 

Platygyra spp. 
encrusting, 

massive 
2.3 0.5 UAE (Howells et al., 2018) 

Pocillopora 
spp. 

submassive 1.4 3.5 

Lab based – 
Jamaica; Field 

based -
Maldives; 
Marshall 
Islands 

(Buddemeier et al., 1974; 
Davies, 1989; Morgan & 

Kench, 2012) 

Porites spp. massive 1.4 1.3 Mexico 
(Elizalde-Rendón et al., 

2010) 

Psammocora 
stellata 

encrusting, 
massive, 
plating 

1.4 1.8 

Marshall 
Islands; Costa 

Rica; 
Australia 

(Buddemeier et al., 1974; 
Guzmán & Cortés, 1989; 
Roberts & Harriott, 2003) 
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Carbonate Eroders 

-  Echinoids: Total area surveyed per transect was 20 sq m. The number of individuals were 

counted, identified to species level and recorded in the following size class: 0-20 mm, 21-40 

mm, 41-60 mm, 61-80 mm, 81-100 mm. Data was then inputted into the open source 

datasheets downloaded from:	https://geography.exeter.ac.uk/reefbudget/caribbean/. 

Bioerosion rate for echinoids was calculated based on the following equation: 

Bioerosion rate for Echinometra urchins (g/urchin/day) = 0.0007 * x1.7309  (where x is the size class 

of the urchin in millimetres) (Perry et al., 2012) 

 

-  Scaridae: Biomass of parrotfish was calculated using published species-specific length-

weight relationships as per the rates outlined in the Reefbudget datasheets which can be 

downloaded from:	https://geography.exeter.ac.uk/reefbudget/caribbean/. 

Below outlines the basic equation used for the calculation of parrotfish bite rate. For more 

information on conversion into bioerosion rate and in depth detail of this method, please refer to 

Perry et al. (2012). 

Bite rate (h-1) of Scarus spp. = CSc ((3329 – (3.00 x FL) – O) 

where, FL = fork length (cm), 

Scarus species offset = O 

CSc = weighting factor for Scarus life phases; 0.85 for terminal phase (TP) and 1 for initial phase 

(IP) and juveniles. 

 

-  Bioeroding Sponge: 

To determine bioerosion rates by macroborers, the area covered by individual eroding sponge 

colonies was quantified within a 1 m2 covering an area of 10 m2 per transect (n=6). The area 
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occupied by bio-eroding sponge with visible papillae was measured using a 1x1 cm grid printed on a 

transparent sheet.  

Percentage of bioeroding sponge surface area = a/b 

whereby: a = surface area of sponge tissue (cm2) and b = surface area of belt transect (cm2) 

Data collected on bioeroding sponge surface size was entered directly into the open access 

Reefbudget datasheets accessible through: https://geography.exeter.ac.uk/reefbudget/caribbean/.  

Bioeroding sponge bioerosion rates were derived from Perry et al. (2012). Globally not much work 

has been done on internal microbioerosion rates of coral substrate and hence for this study the rates 

were taken as outlined in Perry et al. (2012).  

4.2.2.4 | Data Analysis 

Data analysis was conducted using the software “R” and “RStudio” version 3.5.1 (R, 2018). R 

statistical packages such as ggplot (Hothorn et al., 2008) and tidyverse (Wickham et al., 2019) were 

used for plotting maps, processing data and statistical analysis. Generalised linear models (GLMs) 

were used to test the effects of pre- and post-bleaching events on the percent cover of carbonate 

producers (i.e. hard coral cover and CCA), rugosity, and density of eroders (i.e. Scaridae and 

echinoids) at both sites. Likelihood ratio tests (LRT) were conducted to analyse the deviance 

between null and alternative models to determine the effect of the interaction between bleaching 

events and sites on the observations using the ANOVA function. The interaction term was included 

in the model if LRT was found to be significant. Post hoc comparison tests were implemented using 

the glht functions. Similarly, GLMs were used to test for significant change in the gross carbonate 

production, gross carbonate erosion and net carbonate production. In addition, ±SE is stated 

throughout. 
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4.2.3 | RESULTS 

4.2.3.1 | Site Characterization & Carbonate Budgetary State 

Carbonate Producers 

Hard coral cover declined from 13.6 ± 6.9% pre-bleaching to 1.4 ± 0.6% post-bleaching at BH-TB 

whilst BH-OP maintained its coral cover, however no significant difference was observed at either 

site (Figure 4.2.3 and 4.2.4a). Dominant hard corals recorded included Galaxea sp., Favia sp., 

Montipora sp., Porites sp. and Pocillipora sp. all of which were either massive, sub-massive or 

encrusting with no branching corals observed at any of the study sites. CCA cover was extremely 

high in BH-TB pre- bleaching (mean = 42.2 ± 12.9%), however, this declined significantly to 29.0 ± 

10.7% (GLM, z = -2.7, p < 0.05) post- bleaching. CCA was also observed to decline in BH-OP post- 

bleaching by 8.4 ± 10.7% (pre-bleaching mean= 10.1 ± 7.0%; post- bleaching mean = 1.73 ± 0.4%; 

Figure 4.2.4b). In addition, reef rugosity decreased by 5.4% (0.9 ± 0.02 to 0.9 ±0.01 post-bleaching) 

in BH-OP post- bleaching whereby in BH-TB a negligible decrease was recorded. Figure 4.2.5 

illustrates the change in benthic community composition of the reefs both pre and post bleaching 

reflecting the change in structure following the 2017 bleaching event. It is important to note that in 

both cases, pre- and post- bleaching, the primary carbonate producers were noted to be massive and 

sub-massive coral colonies. No branching coral colonies were observed throughout the survey 

period at both study sites. 
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Figure 4.2.3.  Shifts in reef structural dynamics (2017-2018) pre and post the 2017 bleaching (a) Fasht 

Al Adhm (BH-TB) and (b) Reef Bul Thamah (BH-OP). 

 

Carbonate Eroders 

Echinoid densities were observed to be higher pre-bleaching (25.0 ± 6.4 individuals per 20 m2) 

with a significant reduction by 63.5 ± 14.9 % post-bleaching at BH-TB (GLM, z = 3.6, p <0.05) 

(Figure 4.2.4c), whilst no parrotfish were observed both pre- and post-bleaching (Figure 4.2.4d). 

On the contrary, no echinoids were recorded in BH-OP both pre- and post-bleaching; however, 

parrotfish were recorded (17.0 ± 3.8 individuals per 120 m2) in BH-OP pre-bleaching whilst 

none were recorded post-bleaching (Figure 4.2.4d). Echinometra mathei (short spined urchin) 

was the only species of echinoids recorded along the study transects at BH-TB throughout the 

study period whereas in BH-OP no echinoids were observed. Despite the decline recorded in the 

number of echinoids in 2018, the size classes of echinoids recorded post bleaching was seen to 

be higher (Figure 4.2.6). 
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Figure 4.2.4. Mean percentage cover of carbonate producers in 2017 and 2018: (a) Hard corals (n=6) 

and (b) CCA = Crustose Coralline Algae (n=6); Mean density (count per unit m2) of carbonate eroders: 

(c) Echinoids (n=6; area=20m2 per transect; BH-TB) and (d) Parrotfish (n=3; area=120m2 per transect) 

at both study sites in Bahrain. 
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Figure 4.2.5.  Mean percentage cover (%) of the reef benthic community structure pre (2017) 

and post (2018) bleaching at both study sites (n=6). 

 

Figure 4.2.6.  Total abundance of echinoids recorded based on size class pre and post 

bleaching at both study sites (n=6).   



Chapter 4 | Reef Carbonate Budgets 

	 126	

In 2017, 100% of the parrotfish recorded were scrapers, most of which were in their initial phase of 

life (Figure 4.2.7) whilst in 2018, despite the decline observed in parrotfish abundance, 66.7% were 

scrapers whilst the remaining 33.3% were excavators all of whom were in their terminal phase 

(Figure 4.2.7). Species observed were restricted to three species (Chlorurus sordidus, Scarus 

ghobban and Scarus persicus). 

 

 

Figure 4.2.7. Total abundance of Scaridae recorded in 2017 and 2018 based on size class (IP = 

initial phase / juveniles; TP = terminal phase / adults) pre and post bleaching at both study 

sites (n=6). 

4.2.3.2 | Carbonate Budgetary State – Pre- and Post Bleaching (2017-2018) 

Gross carbonate production rates decreased in both study sites with BH-TB showing a decrease 

from 2.8 ± 1.4 G pre-bleaching to 0.2 ± 0.1 G post-bleaching (Figure 4.2.8a). Similarly, BH-OP 

experienced a decline in gross carbonate production from 2.7 ± 0.7 G to 1.7 ± 0.2 G pre to post-

bleaching respectively (Figure 4.2.8a). In terms of gross carbonate erosion, BH-TB had a higher rate 
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of gross erosion amounting to 1.0 ± 0.4 G pre-bleaching which was seen to significantly decrease by 

50% (0.5 ± 0.0001 G) post bleaching (GLM, z = 0.03, p < 0.05) (Figure 4.2.8b). The majority of 

erosion at this site is dominated by echinoids followed by bioeroding sponges, whilst in BH-OP, 

although erosion was dominated by parrotfish with some contribution from bioeroding sponge, 

parrotfish erosion is observed to be minimal (Table 4.2.4). BH-OP witnessed a negligible decrease 

in gross carbonate erosion from 0.1 ± 0.03 G pre-bleaching to 0.04 ± 0.04 G post-bleaching (Figure 

4.2.8b). 

 

Table 4.2.4. Erosion rates (kg CaCO3 m-2 y-1 expressed as G) by major bio-eroders at study 

sites (2017-2018).  

 BH-TB BH-OP 

2017 2018 2017 2018 

Echinoids 1.0 ± 0.2 0.5 ± 0.2 0 0 

Parrotfish 0 0 0.1 ± 0.02 0.04 ± 0.04 

Bio-eroding 

Sponge 

0.002 ± 0.0004 0.003 ± 0.0001 0 0.002 ± 0.0001 

 

Overall, major decreases in the net carbonate production rates were recorded on Bahraini reefs. BH-

TB showed a steep decline in net carbonate production rate following the 2017 bleaching (pre = 1.8 

± 1.8; post = -0.3 ± 0.2 G) indicating a shift from a positive budget state to a negative budget state 

(Figure 4.2.8c). BH-OP also demonstrated a major decline in net carbonate production from 2.7 ± 

0.7 to 1.7 ± 0.4 G but remains in a low positive budgetary state. 
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Figure 4.2.8. Reef carbonate budget rates (kg CaCO3 m-2 y-1 expressed as G; 2017-2018) across 

study sites pre- and post- the 2017 bleaching illustrating (a) Gross Carbonate Production; (b) 

Gross Carbonate Erosion; (c) Reef Growth in the form of Net Carbonate Production.  

4.2.4 | DISCUSSION 

This study aimed to characterise the benthic composition of reefs in Bahrain in order to quantify the 

rate of carbonate production and erosion whilst assessing the change in their budgetary state pre and 

post the 2017 severe bleaching. The following discussion presents the inference of the obtained 

results and the implication of bleaching on the reef structural integrity on Bahraini reefs. 

4.2.4.1 | Site Characterisation & Carbonate Budgetary State 

Hard coral (primary reef producers) live cover was observed to drastically decline in BH-TB 

following the 2017 severe bleaching, heavily impacting the accretional health of this reef. In 2012, it 

was reported that the live coral coverage in this site averaged 9.8% (Burt et al., 2013). Our results 

from 2017 indicated that this reef was recovering between 2010-2017, where coral cover had 

reached 13.6 ± 6.9% despite facing two bleaching events in that duration. Unfortunately, following 

the 2017 bleaching event, coral cover decreased to 1.4 ± 0.6% at this site. One of the factors that 
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could have contributed towards this steep decline could be the depth of the reef (<7 m). The 

recovery witnessed prior to the 2017-bleaching event creates a positive outlook for the post 2017 

bleaching period as temporal data indicates the reef’s ability for recovery despite encountering 

multiple bleaching events in previous years (e.g. 1998 and 2010; see Chapter 2 for further details). 

Therefore, monitoring is crucial for the carbonate budgets of these sites to detect the rate of recovery 

in the coming years. On the contrary, BH-OP which is an offshore and deeper site (>10 m) saw a 2% 

increase in coral cover reaching 14.8 ± 4.1% in 2018, maintaining its coral cover, which was 

reported to be 16.3% in 2012 (Burt et al., 2013). It is important to note that reefs in Bahrain are 

known to be impacted by various anthropogenic activities such as reclamation and dredging which 

has contributed significantly towards diminishing coral cover (Burt et al., 2013; Naser, 2012). 

Interestingly, CCA (secondary reef producers) percentage cover was extremely high in BH-TB pre-

bleaching (mean = 42.2 ± 12.9%), which could be due to the presence of high rubble cover caused 

by previous dredging activities in the area (Vousden, 1988). In addition to being an important 

carbonate producer, CCA plays an important role in binding the reef together through colonising 

reef substrate thereby contributing extensively towards its cementation and stability (Fujita et al., 

2009; Langer, 2008; Perry & Hepburn, 2008; Rasser & Riegl, 2002). This in turn, promotes 

accretion, enhances larval recruitment of various organisms and maintains wave resistance reef 

fronts (Rasser & Riegl, 2002; Mallela & Perry, 2007). During the field surveys in April 2017, 

extensive rubble binding was witnessed following what was suspected to be a dredging event (c. 10 

years), this would also explain the rise in coral cover between the period 2010 and 2017. 

 

Carbonate Eroders & Bioerosion 

Erosion rates in Bahrain both pre and post bleaching (0.04-1.9 and 0.04-0.5 G respectively) are 

generally seen to be comparable with other regions (e.g. Caribbean = 1.0-2.8 G (Perry et al., 2012) 
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and the Red Sea = 1.9-2.9 G (Roik et al., 2017)). Erosion rates by echinoids quantified in this study 

for Bahrain fall below previous recorded rates (0.9-1.4 g urchin -1 d- 1) for the region (Bak, 1994b). 

This could be because erosion in general was observed to be on the lower scale. Lastly, although 

parrotfish were observed in BH-OP pre-bleaching, they were observed in low numbers, whilst none 

were found in BH-TB. This could be attributed to extensive overfishing activities at both sites 

(Morgan, 2006). Despite BH-OP being a marine national park, there is no law enforcement or patrol 

in the area. Erosion rates in Bahrain caused by bio-eroding sponges were noted to be almost 

negligible (0.002-0.003 G). Despite the low contribution, it is considered within the reported ranges 

when compared to other studies globally (Brazil = 0.2–3.0 G; Reis & Leão, 2000), Bonaire 

(Caribbean) = 0.01-0.1 G (Perry et al., 2012) and Gulf of Aqaba (Red Sea) = 0.3 G (Zundelevich et 

al., 2007). Bioerosion was higher in BH-TB, this could possibly be attributed to turbidity at the site 

which is likely to affect erosion rates which is known to be influenced by various environmental 

parameters such as depth and turbidity (Mallela, 2007; Perry & Hepburn, 2008).  

4.2.4.2 | Carbonate Budgetary State – Pre- and Post Bleaching (2017-2018) 

Thermal anomalies are known to reduce calcification rates in corals (De’ath et al., 2009) and 

therefore reef accretion. This is witnessed in previous studies such as in the Seychelles, which 

utilised a 20 year dataset and reported a 62.5% difference in reef accretional rates post-bleaching  (-

1.5 G; erosive state) compared to pre-bleaching (~4 G; positive state; Januchowski-Hartley et al., 

2017). The results from this study show a similar trend, highlighting a decrease in the Bahraini reef 

budget by 114.5% at BH-TB (pre = 1.8 ± 1.8; post = -0.3 ± 0.2 G) and by 36.3 % at BH-OP (2.7 ± 

0.7 to 1.7 ± 0.4 G). It is important to note that in this study, there might have been an over-

estimation of coral growth rates, since rates used for the ReefBudget calculation were not site 

specific due to unavailable published literature on coral growth rates in the AG with the exception of 
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two species (Platygyra daedalea and Cyphastrea microphthalma; Howells et al., 2018) . For the 

purpose of this study, growth rates from different bioregions were used for estimating the carbonate 

production rates. Similarly CCA and other secondary producers growth rates could be overestimated 

as utilizing different experimental substrates could yield different results (Mallela et al., 2017). To 

our knowledge, to date, no study has been conducted to quantify carbonate budgets of reefs in 

Bahrain or the AG making this the first attempt. In general, Bahraini reef accretion rates (including 

pre and post bleaching; range between -0.3 to 2.7 G) were seen to be in the lower scale of accretion, 

most similar to the Caribbean (e.g. Jamaica = 1.1; Land, 1979 and Barbados = 4.5 G; Scoffin et al., 

1980). Both sites retained low gross erosion rates accompanying low gross production rates.  

In conclusion, reefs in the AG are unique, particularly in relation to the capability of corals to 

sustain themselves in such extreme environmental conditions with seasonal temperature 

fluctuations. However, SST warming events, which are projected to increase in frequency and 

intensity with climate change, are jeopardizing the resilience of these reefs. Based on these trends, 

suppressed budgetary states are predicted for reefs in the AG. This, along with associated IPCC 

projected sea level rise, will limit the capacity of Bahraini reefs to perform their natural breakwater 

function and therefore may threaten island stability. 
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4.3 | STATUS & TREND OF REEF CARBONATE BUDGETS IN THE PROTECTED AREA OF 

CURIEUSE ISLAND, SEYCHELLES 

ABSTRACT 

Coral reefs rely on their structural complexity, which underpins their ecological functioning. Reefs 

in the Seychelles (Western Indian Ocean) were severely impacted by the thermal anomalies 

experienced in 2015-2016, which triggered intense bleaching globally. In this study, accretional 

health of reef sites are assessed around Curieuse Island post-2016 bleaching, including change in 

carbonate producer and eroder composition, their geomorphic state and a comparison of the reefs 

budgetary state is made to those reported prior to the 2016 event. Live coral cover was observed to 

decline by 51% overall between 2017-2018 resulting in a decrease in the mean net carbonate 

production from 5.8 ± 0.6 to 0.8 ± 1.3 kg CaCO3 m2 yr-1 between 2017 – 2018, with the main 

contributors to gross carbonate production being stress-tolerant coral taxa (e.g. Porites spp.), with 

minimal contribution from the branching Acropora spp. When compared to rates reported prior to 

the 2016 event, the budgetary state of these reefs are observed to be shifting into a negative state. 

The current trajectories indicate a steady decline with low rates of recovery similar to those 

observed on the majority of reefs worldwide. The study highlights a rapid shift into an erosive state, 

threatening structural integrity and ability to cope with rising sea levels in light of global warming.  

	
4.3.1 | INTRODUCTION 

Coral reefs are undeniably valuable worldwide from an ecological and economical aspect, benefiting 

approximately one billion people through their ecosystem services ranging from coastal protection 

to food security and the provision of livelihoods (Spalding et al., 2017). Some of these services 

include benefiting ~200 million people who live below 10 m elevation and within 50 km of reefs as 
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these coral reefs dissipate 97% of the energy that would otherwise hit shorelines (Ferrario et al., 

2014; Woodhead et al., 2019). In addition to reefs contributing towards generating income through 

reef tourism, estimated to be worth ca. US $35.8 billion dollars per annum globally, reefs also 

contribute towards reducing annual expected damages from storms across reef coastlines, by more 

than $4 billion (Woodhead et al., 2019). Despite their high ecological and economic value, coral 

reefs worldwide are highly threatened and are witnessing a sharp and serious decline with an 

estimate of 30% of reefs already lost or severely damaged whilst predictions estimate that 60% of 

reefs will be lost by 2030 (Wilkinson, 2000; Hughes et al., 2003). Coral reefs have been identified 

as the most vulnerable biome to the climate emergency according to probability estimates (with very 

high confidence) in the ‘Ocean and Cryosphere in a Changing Climate’ IPCC special report (IPCC, 

2019).	Ocean warming, a byproduct of global warming, is considered as the most significant threat 

to coral reefs, as elevated sea temperatures are associated with coral bleaching events which impact 

coral mortality depending on their intensity and frequency thereby hindering reefs long-term ability 

to survive (Hoegh-Guldberg, 1999; Donner et al., 2005).  

The severity and intensity of the recent global 2015-2016 El Niño-induced coral bleaching event has 

impacted reefs worldwide in a manner comparable to that observed following the 1997-1998 

bleaching event on both spatial and magnitude scale (Hughes et al., 2018a). Both events have 

severely impacted coral mortality and recovery rates on the majority of reefs worldwide (Ampou et 

al., 2017; Hughes et al., 2017a, 2018b; Monroe et al., 2018); compromising their structural integrity 

due to the decrease in coral cover and changing species composition (Januchowski-Hartley et al., 

2017; Perry & Morgan, 2017; Lange & Perry, 2019). The recovery trajectories of reefs following a 

bleaching event is said to vary and is influenced by various factors including the degree of reef 

resilience and local anthropogenic stresses (Graham et al., 2015; Courtney et al., 2018). 
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Coral reefs’ three-dimensional framework is constructed from a calcium carbonate (CaCO3) skeleton 

produced by primary carbonate reef builders (e.g. hermatypic corals) and bound together by 

secondary carbonate producers (e.g. coralline algae; Perry et al., 2008). The ability of coral reefs to 

sustain their 3-D structural integrity is reliant on a delicate balance between the rate of carbonate 

production and erosion (removal), whereby reefs are said to be in a positive state if their carbonate 

production is higher than their erosion and are in a negative state vice-versa (Perry et al., 2012). The 

consequence of declining reef carbonate production threatens reef accretion thus impacting the 

capacity of coral reefs to cope with sea level rise (SLR) (Perry et al., 2018a). The question remains 

as to whether impacted reefs can recover from intense bleaching events and re-establish their 

vertical growth potential, and if so, what is the time frame required for such recovery? Few studies 

have quantified changes in reef carbonate production post-bleaching (Januchowski-Hartley et al., 

2017; Perry & Morgan, 2017; Ryan et al., 2019) whilst even fewer examined the impacts on reefs’ 

geomorphic state following severe bleaching events (Lange & Perry, 2019). 

In 1994, the Seychelles (Western Indian Ocean) was documented to harbour reefs characterised by 

their high structural complexity and rich live branching and massive coral cover (Graham et al., 

2006). Unfortunately, reefs in the inner Seychelles were reported to have suffered >90% coral cover 

loss as a result of the 1998 bleaching event (Goreau et al., 2000; Sheppard, 2003) leading to the 

collapse of their structural complexity with reports of slow recovery rates (Graham et al., 2015). 

Januchowski-Hartley et al. (2017) assessed reef carbonate budgets in the Seychelles using a twenty-

year dataset (1994 – 2014). Results indicated that the overall average net carbonate budget has 

declined from ~4 kg CaCO3 m-2 y-1 (pre-bleaching) to -1.5 kg CaCO3 m-2 y-1 (post-bleaching), which 

illustrates the extent of damage on these reefs. Even though some reefs have recovered post-

bleaching, little evidence is available that indicates reefs will return to a net positive budget state in 

the future. In 2016, the Seychelles like many parts of the world, experienced a prolonged heat wave 
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where cumulative heat stress on the reefs exceeded 10 Degree Heating Weeks (DHW), highly 

impacting coral mortality (Gardner et al., 2018). 

Januchowski-Hartley et al. (2017) is the first study on carbonate budgets in the Seychelles whereby 

their study tracked change in reef carbonate budgets over time through modeling with their last 

sampling point ending in 2014. Therefore, this research aims to (1) quantify reef carbonate 

production and erosion rate of reefs in the Seychelles following the 2015-2016 bleaching event; (2) 

examine the change in geomorphic state of reefs and; (3) compare the quantified budget post-

bleaching to that reported in the previous study conducted in order to determine the magnitude of 

change and trajectory of these reefs. 

4.3.2 | MATERIALS & METHODS 

4.3.2.1 | Site descriptions  

Two fringing carbonaceous reef sites within Curieuse Marine National Park (CMNP) in the 

Seychelles (Figure 4.3.1) were investigated in April 2017 & 2018. Reefs from both turbid (Praslin 

Island; 4°18′35″S 55°43′28″E) and relatively clear-water (herein referred to as optimal - East Bay; 

4°16′55″S 55°44′32″E) sites were selected with sampling occurring at approximately 10 m (see 

Table 4.3.1 for environmental characteristics of sites).   
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Figure 4.3.1. Location of Study Sites – (a) Location of Seychelles; (b) Map of the main islands 

of the Seychelles and; (c) Location of selected study sites within the Seychelles [Site codes: East 

Bay (SY-OP) and Praslin (SY-TB)]. 
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Table 4.3.1. Site description and characterisation of study sites within Curieuse Marine National Park, Seychelles.  

Site Site 
Code 

Depth 
(m) 

Temp. 
(°C) 

Salinity 
(ppt) 

Sedimentation rates 
(g cm-2 d-1 ± SE)** 

Light 
attenuation (Kd 
PAR; m-1)*** 

Site Description 

Praslin (Turbid) SY-TB 5-10 

25-29 ~35 

0.03±0.01 0.2-0.4 

This reef is located ~1.5 
km southwest Curieuse 
Island and is subjected to 
large sediment load since it 
is located closer to Praslin 
island, which has intensive 
tourist marine activities. 

East Bay 
(Optimal)* SY-OP 5-12 0.04±0.01 0.1-0.2 

This reef is located ~1.5 
km southeast Curieuse 
Island and is considered 
one of the least impacted 
sites with minimum 
anthropogenic impacts. 
Carbonate fringing reefs 
with minimal tourist 
activity. 

 
* Clear water in this study is referred to as optimal, so in this case site East Bay is considered to be an optimal site. 

** Sedimentation rates were measured at 10m depth across all sites using sediment traps, however, due to expedition time constraints the traps 

were only deployed for a total of 4 days. 

*** Light attenuation coefficients (Kd (PAR), m-1) for each site was obtained from Gardner et al., (2018)	
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4.3.2.2 | Quantifying the Carbonate Budgetary State 

Quantitative data such as benthic composition, rugosity, carbonate producers and eroders were 

obtained through surveying field transects as outlined in Table S3.1 (see Supplementary Material; 

S3) along each reef site as per the standardised methodology for collecting budgetary data 

ReefBudget (Perry et al., 2012, 2018b). Data collected was used to calculate CaCO3 production and 

erosion rates (kg CaCO3 m-2 y-1 hereafter expressed as G whilst ± represents the SE of all values 

stated). It is important to note that slight modifications were made to the ReefBudget methodology, 

which was originally designed for Caribbean reefs (Perry et al., 2012) and then developed for the 

Indo-Pacific reefs (Perry et al., 2018b). Details of these modifications are given and explained in the 

supplementary material section S3.1.  

4.3.2.3 | Data analysis 

Data analysis was done using the software “R” and “RStudio” version 3.5.1 whereby different R 

statistical packages were used such as ggplot and tidyverse for plotting maps, processing data and 

statistical analysis (Hothorn et al., 2008; R, 2018). In addition, the analysis of variance (ANOVA) 

was used to test for differences in gross carbonate production, gross carbonate erosion and net 

production between and within sites across years (2017-2018). Furthermore, to test for differences in 

carbonate production rates between branching and massive corals at each site, ANOVA was 

conducted. 
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4.3.3 | RESULTS 

4.3.3.1 | Site Characterization  & Carbonate Budgetary State 

Carbonate Producers 

Live coral cover at both sites SY-OP and SY-TB declined by 43.4% and 58.3% respectively 

between April 2017 and April 2018 (Figure 4.3.2a). On the contrary, CCA cover increased at both 

sites from none observed in 2017 to 22.7 ± 6.1% in SY-OP and 21.7 ± 2.1% in SY-TB (Figure 

4.3.2b). In addition, rugosity was noted to decrease by 3.9 ± 0.2% and 3.8 ± 0.2% in SY-OP and 

SY-TB respectively. Carbonate production rates by primary carbonate producers also decreased at 

both sites between 2017-2018 (Table 4.3.2) whilst production by secondary carbonate producers 

was noted to have a minimal contribution in 2018 whereas in 2017 no contribution was observed to 

carbonate production (Table 4.3.2). 

 

Figure 4.3.2. Mean percentage cover of carbonate producers between 2017-2018 (a) Hard 

coral cover (n=6) and (b) CCA = Crustose Coralline Algae (n=6).  
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Table 4.3.2. Carbonate production rates (kg CaCO3 m-2 y-1 expressed as G) by primary and 

secondary producers in 2017 and 2018 at the study sites in the Seychelles (n=6; G±SE). 

 
SY-OP SY-TB 

2017 2018 2017 2018 

Primary 

Production 
3.9 ± 0.9 2.6 ± 0.2 2.6 ± 1.2 1.1± 0.3 

Secondary 

Production 
0 ± 0 0.1 ± 0.3 0 ± 0 0.1 ± 0.01 

 

Carbonate Eroders 

Echinoid densities were observed to remain fairly stable at SY-OP (2017 = 0.02 ± 0.1; 2018 = 0.1 ± 

0.1 individuals per 20 m2) and SY-TB (2017 = 0.2 ± 0.1; 2018 = 0.1 ± 0.1 individuals per 20 m2) in 

both years (Figure 4.3.3a). Similarly, Scaridae densities remained stable at both SY-OP (2017 = 0.02 

± 0.01; 2018 = 0.04 ± 0.01 individuals per 120 m2) and SY-TB (2017 = 0.02 ± 0.01; 2018 = 0.04 ± 

0.01 individuals per 120 m2) between 2017-2018 (Figure 4.3.3b). Species of echinoids noted along 

the transects at both sites were restricted to three, mainly: Echinometra mathei, Diadema setosum 

and Echniothrix sp. size classes of echinoids were at the higher range (81-100 mm) in both years at 

both study sites (Figure 4.3.4).  

In 2017, excavator Scaridae were recorded in abundance at both sites (SY-OP = 65% and SY-TB = 

83%) whilst the remaining were scrapers most of which were in their terminal phase of life (Figure 

4.3.5). In 2018, the contrary was observed in SY-TB whereby, 57% were scrapers whilst the 

remaining 43% were excavators while in SY- OP, excavators fairly maintained their position (64%; 

Figure 4.3.5). Seven species of Scaridae were recorded in this study (Cetoscarus biocolor, 

Chlorurus sordidus, Chlorurus bleekeri, Scarus ghobban, Scarus niger, Scarus oviceps and Scarus 
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flavipectoralis). Most of the Scaridae recorded were observed to be in the terminal phase in 2017 at 

both sites however, in 2018, Scaridae were recorded in a variety of size class and in both the initial 

and terminal phase (Figure 4.3.5). 

 

 

Figure 4.3.3. Mean density (count per unit m2) of carbonate eroders (2018): (a) Echinoids 

(n=6; area=20m2 per transect) and (b) Scaridae (n=6; area=120m2 per transect) at both study 

sites. 
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Figure 4.3.4. Total abundance of echinoids (2017-2018) recorded based on size class at both 

study sites (n=6). 

 

Figure 4.3.5. Total abundance of Scaridae (2017-2018) recorded based on size class (IP = 

initial phase / juveniles; TP = terminal phase / adults) pre and post bleaching at both study 

sites (n=6).  
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4.3.3.2 | Carbonate Budgets 

Gross carbonate production rates decreased in both study sites with SY-OP showing a decrease from 

3.9 ± 0.9 G in 2017 to 2.6 ± 1.2 G in 2018 (Figure 4.3.6). Similarly, SY-TB reported a decline in 

gross carbonate production from 2.6 ± 0.3 G in 2017 to 1.2 ± 0.3 G in 2018 (Figure 4.3.6). There 

was a significant difference in gross carbonate production rates between sites in 2018 (F(1,10) = 14.9, 

p<0.05) but not in 2017 (F(1,10) = 0.7, p>0.05). Gross carbonate erosion at SY-TB was observed to 

have minimal change between 2017-2018 (2017 = 1.2 ± 0.7 G; 2018 = 1.7 ± 1.0 G), this was also 

observed in SY-OP (2017 = 0.2 ± 0.1; 2018 = 0.4 ± 0.2 G) although between the two sites, SY-TB 

had a higher rate of erosion (Figure 4.3.6). The majority of erosion at SY-OP is shared equally 

between echinoids and Scaridae with negligible erosion done by bioeroding sponges, whilst in SY-

TB, erosion was mostly by Scaridae with some contribution from echinoids (Table 4.3.3). In 

general, bioerosion from echinoids and Scaridae is considered to be minimal at both sites (Table 

4.3.3) whilst bioerosion caused by bio-eroding sponge is considered to be negligible (Table 4.3.3). 

Overall, major decreases in the net carbonate production rates were recorded on both reefs as a 

result of a decrease in live hard coral cover. SY-OP demonstrated a major but non-significant 

decline (F(1,10) = 2.8, p>0.05) in net carbonate production from 3.6 ± 0.8 to 1.4 ± 1.5 G, despite this, 

it remains in a low positive budgetary state (Figure 4.3.6). However, SY-TB showed a steep decline 

(although not statistically significant; F(1,10) = 1.2, p>0.05) in net carbonate production rate within a 

one-year period (2017 = 2.2 ± 0.3; post = -0.6 ± 1.1 G) indicating a shift from a positive budget state 

to a negative budget state (Figure 4.3.6). Net carbonate production was observed to be significantly 

different between sites in 2017 (F(1,10) = 6.5, p<0.05) but not in 2018 (F(1,10) = 1.6, p>0.05) as SY-OP 

dips into the lower scale of net reef budgets. 
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Figure 4.3.6. Reef carbonate budget rates (kg CaCO3 m-2 y-1 expressed as G; 2017-2018) across 

study sites illustrating Gross Carbonate Production; Gross Carbonate Erosion and Reef 

Growth in the form of Net Carbonate Production.  

 

Table 4.3.3. Erosion rates (kg CaCO3 m-2 y-1 expressed as G) by major bio-eroders at study 

sites (n=6; G±SE) 

 
SY-OP SY-TB 

2017 2018 2017 2018 

Echinoids 0.1 ± 0.2 0.2 ± 0.3 0.3 ± 0.2 0.2 ± 0.3 

Scaridae 0.1 ± 0.1 0.2 ± 0.3 0.9 ± 2.0 1. 5 ± 2.5 

Bio-eroding 

Sponge 
0.03 ± 0.04 0.01 ± 0 0 ± 0 0.01 ± 0 

  



Chapter 4 | Reef Carbonate Budgets 

	 145	

4.3.3.3 | Change in Geomorphic State of Reefs  

In 2017, massive corals were observed to be the dominate corals in both SY-OP (26.0 ± 5.4%) and 

SY-TB (13.5 ± 6.3%) followed by branching corals in SY-OP (1.6 ± 1.2%) and encrusting corals in 

SY-TB (2.3 ± 1.4%; Figure 4.3.7). In 2018, massive corals continued to be the dominated coral 

morphotype in the site SY-TB (6.9± 2.4%) despite their decrease in comparison to the previous 

year. The percentage cover of branching corals decreased in SY-TB by 88.9% (2017 = 1.8 ± 1.6%; 

2018 = 0.2 ± 0.2%) whilst it increased by 50% (2017 = 1.6 ± 1.2%; 2018 = 2.4 ± 1.1%) in SY-OP 

(Figure 4.3.7). Overall, the majority of carbonate production by primary carbonate producers was 

observed to done by massive stress-tolerant corals with contributions in 2017 of 3.6 ± 0.8 G at SY-

OP and 2.2 ± 1.1 G at SY-TB (Figure 4.3.8). This was noted to decline in 2018 to 2.1 ± 0.2 G at SY-

OP and 1.0 ± 0.3 G at SY-TB (Figure 4.3.8). Branching corals were seen to be the second 

contributors to carbonate production at both sites and years (Figure 4.3.8). When compared, there 

was no significant differences in the contribution of carbonate production between massive and 

branching corals in 2017 at SY-TB (F(1,10) = 3.0, p>0.05), however, with the general declines in 

production, a significant difference was detected indicating that massive corals were beginning to 

significantly outcompete branching corals in carbonate production by 2018 (F(1,10) = 10.6, p<0.05). 

On the other hand, massive corals were seen to significantly produce more carbonate in comparison 

to branching corals at SY-OP in both years (2017 = F(1,10) = 17.0, p<0.05; 2018 = F(1,10) = 10.6, 

p<0.05). In general, results indicate that massive corals contribute significantly (SY-OP = F(1,22) = 

30.2, p<0.05; SY-TB = F(1,22) = 6.5, p<0.05) to carbonate production by primary carbonate 

producers at both sites.  
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Figure 4.3.7. Mean percentage cover of primary carbonate producers (2017-2018) growth 

forms at the study sites (n=6). 

 

Figure 4.3.8. Carbonate Production Rates (kg CaCO3 m-2 y-1 expressed as G; 2017-2018) by the 

different coral morphological groups at the study sites (n=6).   
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4.3.3.4 | Change in Reef Carbonate Budget (2014-2018) pre and post – 2016 bleaching 

When comparing the results derived from this study to that of the published paper, results indicate 

that within the 4 year period (2014 - 2018), the reef carbonate budgets in the Seychelles continue to 

maintain a low budget state with some reefs falling into a negative budgetary state (SY-TB = -0.6 ± 

1.1 G) whilst others remain in a low positive budgetary state (SY-OP = 1.4 ± 1.5 G) with the 

trajectories indicating a steady decline with low rates of recovery. 

4.3.4 | DISCUSSION 

This study aimed to quantifying the reef carbonate production and erosion rate of reefs in the 

Seychelles following the 2015-2016 bleaching event and how that has impacted the geomorphic 

state of reefs. The quantified budget post-bleaching was also compared to that reported by 

Januchowski-Hartley et al., (2017) in order to determine the magnitude of change and trajectory of 

these reefs in the four year period between 2014-2018. 

4.3.4.1 | Carbonate Budgetary State 

Carbonate Producers & Production 

Hard live coral (primary reef producers) cover was observed to drastically decline in both sites SY-

OP and SY-TB, heavily impacting the accretional health of these reefs. In 2016, prior to the 

bleaching event, it was reported that the live coral coverage at these sites were witnessing a steady 

increase from 35 ± 5% to 49 ± 9% in SY-OP and 30 ± 2% to 42 ± 7% in SY-TB during the seven 

year period between 2009-2016 (Gardner et al., 2018). However, the 2016 bleaching event has 

resulted in a decline from 49 ± 9% to 22 ± 2% in SY-OP and 42 ± 7% to 13 ± 3% in SY-TB 

(Gardner et al., 2018). Results obtained in 2018 from this study indicate that this reef is continuing 

to decline, where coral cover had reached 15.5 ± 1.6% in SY-OP and 7.6 ± 2.1%. This decline in 
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primary reef producers has naturally resulted in the decline of the gross carbonate production rate at 

both of the study sites. 

Interestingly, CCA (secondary reef producers) percentage cover was observed to increase at both 

sites which could be due to the presence of rubble on the reefs, whereas 12 months on from the 

bleaching event, CCA was not observed at either of the sites. In addition to being an important 

carbonate producer, CCA is known for its important binding role which contributes extensively 

towards cementation and stabilizing reefs through creating suitable substrate for colonization (Fujita 

et al., 2009; Langer, 2008; Perry & Hepburn, 2008; Rasser & Riegl, 2002). This in turn contributes 

towards enhancing larval recruitment of various organisms and maintaining wave resistance reef 

fronts thereby promoting accretion (Rasser & Riegl, 2002; Mallela & Perry, 2007). The appearance 

of CCA on the reefs is a positive indicator for the reefs ability for recovery despite encountering 

bleaching events in previous years especially seeing that previous studies have reported steady 

recovery prior to the 2016 bleaching (see Chapter 3).  

 

Carbonate Eroders & Bioerosion 

Overall erosion rates at both sites are considered to be on the lower scale, however, SY-TB is 

observed to have a higher erosion rate in comparison to SY-OP (2018 = 1.7 ±1.0 G and 0.4 ±0.2 G 

respectively). This could be attributed to the turbid nature of the site which is likely to affect erosion 

rates, as erosion is known to be influenced by various environmental parameters such as depth and 

turbidity (Mallela, 2007; Perry & Hepburn, 2008). These rates are comparable to those quantified 

for the Seychelles for the period 1994-2008 (mean = 1.9 ± 0.1 G; Januchowski-Hartley et al., 2017). 

Densities of both echinoids and Scaridae remain stable between 2017 and 2018 with echinoids 

maintaining their upper scale size class (80-100 mm) whilst Scaridae expanding in size class 

between 11-20 cm and 31-40 cm ranging between their initial and terminal life stages. The majority 
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of the Scaridae were seen to be in their terminal stage which links with the observation that the 

majority of the Scaridae were classified as excavators considering the species recorded and their 

large biomass. This indicates that Scaridae inhibit a safe environment to maintain their population 

which is unsurprising since the reefs are located with a marine national park whereby the laws 

prohibit fishing activities (Clifton et al., 2019). Overall erosion rates by bioeroding sponges were 

noted to be low (0.03-0.01 G). Despite the low contribution, it is considered within the reported 

ranges when compared to other studies globally e.g. Bonaire (Caribbean) = 0.01-0.1 G ( Perry et al., 

2012). 

4.3.4.2 | Change in Geomorphic State 

It comes as no surprise that the majority of the carbonate production rate is contributed by stress 

tolerant massive corals following the bleaching event (Ryan et al., 2019) as results have indicated 

that massive corals were dominant at both reefs throughout the period 2017 and 2018. Contributions 

from branching corals is considered minimal due to their low abundance in 2017 (SY-OP =1.6 ± 

1.2% and SY-TB = 1.8 ± 1.6%), following the 2016 bleaching event, it is alarming that in 2018 

Acropora spp. was observed to be in low abundance at SY-TB given that its loss is likely to impact 

reef capacity to track projected rates of sea-level rise since this will hinder the vertical extension 

growth of the reef (Perry et al., 2015a). Branching corals were observed to increase in abundance at 

SY-OP in 2018 indicating possible recovery especially that this particular coral morphotype is 

known to be opportunistic and fast growing (Alvarez-Filip et al., 2013; Anderson et al., 2017). 

However, its recovery could be limited especially if subjected to further disturbance events (Burt et 

al., 2011; Pratchett et al., 2017; Lange & Perry, 2019). Furthermore, the overall decline in the 

rugosity at both reefs is likely attributed towards the decline in branching corals (Alvarez-Filip et 

al., 2009). 
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4.3.5.3 | Change in Reef Carbonate Budgets over Time 

Reef accretion is known to be compromised due to bleaching events caused by thermal anomalies 

resulting in high coral mortality rates which in turn reduce calcification rates in coral (De’ath et al., 

2009). This is evidently observed in the Seychelles, whereby an assessment of a 20 year dataset 

illustrated a 62.5% difference in reef accretional rates post-bleaching (-1.5 G = erosive state) 

compared to pre-bleaching (~4 G = positive state) (Januchowski-Hartley et al., 2017). Results from 

this study indicate that within the 4-year period (2014-2018), reef carbonate budgets in the 

Seychelles continue to remain in a low budgetary state. Some reefs were seen dipping into an 

erosive negative budgetary state (SY-TB = -0.6 ± 1.1 G) whilst others are in a critically low but 

positive budgetary state (SY-OP = 1.4 ± 1.5 G), whereby any further impacts could tip the scale 

moving them into a negative state. The current trajectories indicate a steady decline with low rates 

of recovery similar to those seen in other places following the 2016 bleaching event (Perry & 

Morgan, 2017; Lange & Perry, 2019). 

In conclusion, even though these reefs have demonstrated their capability to recover previously 

whereby live coral cover witnessed an increase between 2009-2016, one intense bleaching event 

was able to drastically decrease coral cover by half jeopardizing these reefs’ accretion rates and thus 

their structural integrity. With thermal anomalies expected to increase in frequency and intensity in 

the near future, the question remains whether these reefs will be able to keep up with SLR and 

maintain the stability of the islands that they surround.  
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4.4 | INTERANNUAL VARIABILITY OF REEF CARBONATE BUDGETS IN THE WAKATOBI 

MARINE NATIONAL PARK (WMNP), INDONESIA 

ABSTRACT 

Calcium carbonate skeletons of hermatypic corals contribute towards reef formation and its 3-D 

framework, which drives the ecological functioning of coral reefs. However, combined global and 

local stressors, such as bleaching caused by rising temperatures, ocean acidification, overfishing and 

pollution have heavily impacted reefs worldwide. This has caused major declines in live coral cover 

with impacts on calcification rates and structural framework integrity. The ability of reefs to 

maintain their framework is associated with their ability to track sea level rise and hence, it is 

important to assess changes in the budgetary state of reefs. Carbonate budgets are measured by the 

balance between CaCO3 production and erosion. Utilising the standarised ReefBudget methodology, 

this study aims to assess the temporal changes in net reef carbonate accretion at two time points 

(2012 and 2018) at four reef sites with different environmental conditions in the Wakatobi Marine 

National Park, Indonesia. Results indicate a 76.5% decline in total net carbonate production across 

the study sites from 36.9 kg CaCO3 m-2 y-1 in 2012 to 9.9 kg CaCO3 m-2 y-1 in 2018. Interestingly, 

the only site to maintain its net carbonate accretion rate is the highly turbid site. In addition, results 

of this study provide insights into the role of coral morphological groups in relation to reef 

carbonate production, indicating that change in the community composition of primary carbonate 

producers may be driving a shift in coral assemblages, thereby implicating calcification rates by 

different coral genera and their associated morphotypes. 
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4.4.1 | INTRODUCTION 

Coral reefs are experiencing rapid change on a global scale as a result of climate-induced 

disturbances (e.g. ocean warming and acidification; Anthony et al., 2008; Hughes et al., 2017), 

coupled with local pressures such as overfishing and declining water quality due to nutrient runoffs 

and excessive sedimentation (Hughes et al., 2003; Hoegh-Guldberg, 2011; de Bakker et al., 2019). 

These changes include loss of coral cover, which has implicated the 3-D framework of reefs through 

shifts from competitive corals (i.e. fast growing, branching e.g. Caribbean Acropora spp.) to weedy 

opportunistic and stress tolerant corals (i.e. low growing, thermally tolerant e.g. Caribbean Porites 

spp. and Siderastrea spp.; Baumann et al., 2016), thereby compromising their structural integrity 

(Perry & Morgan, 2017). In addition, changes in the functionality of reef associated fish have been 

documented with links associating coral cover decline to fish diversity decline thereby impacting 

various functional groups e.g. obligate corallivores (Chaetodon sp.) associated with tabulate 

Acropora spp. (Pratchett et al., 2011). Moreover, many reefs have been reported to witness shifts in 

their coral and associated species community composition e.g. shifts towards sponge dominated 

reefs (Bell et al., 2013) and shifts towards massive stress tolerant reefs (Ryan et al., 2019).  

The ecological functioning of coral reefs is dependent on continuous accumulation of calcium 

carbonate (Graham & Nash, 2013; Kennedy et al., 2013; Yanovski et al., 2017; Perry et al., 2018a) 

which is necessary for reefs to maintain their complex structural framework. Carbonate budgets 

measure the balance between CaCO3 production and erosion and provide a net figure, which informs 

whether a reef is in a positive or negative budgetary state. This information is particularly important 

when determining the vulnerability of particular reefs in relation to their ability to track sea level 

rise. Hence, current research is focused on understanding the magnitude of change in reef carbonate 

budgets whether it is through time, between regions or following disturbances. 
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The Coral Triangle, an area in the Indo-Pacific which covers provinces in Indonesia, Malaysia, the 

Philippines, East Timor, Papua New Guinea, and the Solomon Island, is considered the epicenter of 

global marine diversity (Sanciangco et al., 2013). It hosts the highest diversity of hermatypic (reef 

building) corals (92%) on the planet (Veron, 2000) whilst harbouring 76% of the world’s total 

species complement (Veron et al., 2009). Despite the uniqueness of this area, reefs are not immune 

to global and local threats with reports suggesting that Indo-Pacific reefs are disappearing at a rate 

of 1% per year (Bruno & Selig, 2007). Over 80% of reefs are considered at risk from anthropogenic 

pressures in Southeast Asia (Burke et al., 2002) whilst current projections suggest that thermal 

anomalies are expected to drive coral decline in the Coral Triangle (McManus et al., 2019). 

Change in reef benthic community structure is commonly reported when live coral cover (primary 

carbonate producers) declines and coral-dominant reefs shift towards organisms such as macroalgae, 

sponge and soft corals (Maliao et al., 2008; Norström et al., 2009). It is also important to consider 

shifting coral assemblages (e.g. from branching to massive) when investigating carbonate 

production on reefs, as this could indicate a decrease in calcification and reef complexity, which is 

independent of total coral abundance (Alvarez-Filip et al., 2013). This is because, rapid growth of 

branching corals such as Acropora spp. are responsible for the majority of calcification and 

structural complexity due to their rapid growth (Lizard Island, GBR = ~7.31 cm yr-1; Anderson et 

al., 2017) and large forms, hence, complimenting reef vertical growth. Thus, they are considered an 

important functional group in terms of reef accretion as they contribute towards enabling reefs to 

track sea level rise (SLR) (Alvarez-Filip et al., 2013; Roff, 2020) and their loss exacerbates reef 

framework decline. Nevertheless, massive stress tolerant corals have been reported to be able to 

maintain positive carbonate production on reefs e.g. reefs in the Maldives (Ryan et al., 2019) despite 

their comparative lack of vertical growth extension. 
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In addition, reef calcification is also influenced by the variability in environmental factors such as 

temperature (Glynn, 1977; Lough & Barnes, 2000), light availability (Falkowski et al., 1984; 

Suggett et al., 2013), turbidity (Kendall et al., 1985), sedimentation (Rogers, 1990), carbonate 

saturation state (Gattuso et al., 1998; Silverman et al., 2007) wave exposure and depth (Miller, 

1995; Morgan et al., 2016). In 2012, Franco (2014) made the first attempt at quantifying the 

carbonate budgets on four reefs that experience	a	 range	of	 reef	 conditions within the Wakatobi 

Marine National Park, Indonesia with results indicating that reefs in this region were in a positive 

budgetary state with reef budgets ranging between 16.6 and 3.8 kg CaCO3 m-2 y-1. Therefore the aim 

of this study is to assess the temporal change in net reef carbonate production since 2012 at these 

four selected sites.   

4.4.2 | MATERIALS & METHODS 

4.4.2.1 | Site descriptions  

The Wakatobi Marine National Park (hereafter referred to as Wakatobi) is located in South-East 

Sulawesi, Indonesia and encompasses four main islands: Wangi-Wangi, Kaledupa, Tomia and 

Binongko. These four islands together with other smaller islands and their surrounding waters 

covering 3.4 million acres of islands and waters comprise the Tukang Besi Archipelago (UNESCO, 

2012). In 1996, the Wakatobi was declared a national park and was designated as a UNESCO 

Biosphere Reserve in 2012 due to its extremely high marine biodiversity that includes over 396 

species of coral and 590 species of fish (Pet-Soede & Erdmann, 2003; UNESCO, 2012). In addition, 

it is the second largest marine national park in Indonesia and is located in the Coral Triangle 

(Hoeksema, 2007; Powell et al., 2010). Covering ~ 50,000 hectares of coral reefs (Clifton et al., 

2010) which provides food and income to approximately 103,450 inhabitants spread across 64 

villages (UNESCO, 2012) reflects the heavy local dependence on  Wakatobi reefs for survival. This 

reliance, coupled with a history of poor resource management within the Wakatobi (Cullen-
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Unsworth, 2010), and regional/global pressures has resulted in declines in both coral cover and fish 

abundance (Gouraguine et al., 2019). Reef degradation is reported to be patchy (Powell et al., 2010) 

with some reefs severely degraded whilst others are in 'good' condition (Marlow et al., 2019), 

making this area highly suitable to assess the variability in reef carbonate budgets. Four sites that 

experience a range of reef conditions within the Wakatobi (Table 4.4.1) were selected for this study 

namely: Ridge 1 (R1; outer exposed reefs), Buoy 3 (B3; inner fringing reef wall), Pak Kasims (PK; 

inner reef slopes) and Sampela 1 (S1; turbid lagoon reefs) (Figure 4.4.1). 
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Table 4.4.1. Environmental characteristics of the selected study sites in the Wakatobi Marine National Park, Indonesia.  

Site  Site 
Code  Coordinates Temp.  

(°C)  
Salinity 

(ppt)  
Sedimentation rates 

(mg cm -2 d -1)* 

Light 
attenuation (K d 

PAR)** 
Impacts  

Ridge 1 R1 05o26.565 S 
123o45.138 E 26-30 32-34 2.6 ± 1.0 0.02 

R1 is located ~1 km northwest Hoga Island and 
runs north to south. Its crest is between 4-10 m 
wide with a depth of 5-10m. Its slope runs on 
either side of the crest at ~70 o to over 100m on 
the outer slope and slightly shallower on the 
inner slope (Powell et al., 2010). R1 is 
considered one of the least impacted sites 
within the area with some artisanal line fishing 
occurring. 

Buoy 3 B3 05o28.40S 
123o45.45 E 26-30 32-34 4.3 ± 1.8 0.25 

B3 is a fringing reef located ~150m off the 
west of Hoga island. Its reef flat and reef crest 
are at a depth of 1-6 m. The reef slope is 
characterised by walls, overhangs and caves 
which descends to a depth of ~60m where it 
levels out into sandy habitat (Powell et al., 
2010). 

Pak Kasims PK 05o 27.569 S 
123o45.179 E 26-30 32-34 2.0 ± 0.8 0.01 

PK is located 500m north of B3 along the same 
fringing reef. Its reef crest is located ~200m 
further offshore than B3 with its reef slope 
descending at an angle of 40-70 o leading to 
gently sloping sand flats at ~50m (Powell et al., 
2010). 

Sampela 1 S1 05o29.6 S 
123o45.26 E 26-30 32-34 6.3 ± 2.7 0.01 

S1 is located ~1.5 southwest of Hoga Island. Its 
reef flat occurs at 2-4m with a crest at 1-3m 
and a slope that descends at 45 o to ~14m where 
it levels off into sand flats (Powell et al., 2010). 
The site is adjacent to the Bajo village of Sama 
Bahari and is subjected to large sediment load 
and various anthropogenic activities, thus 
heavily impacted. 

*Sedimentation rates collected by Operation Wallacea between 2006-2011 (mean values are reported here along with ±SD and taken from Franco, 2014). 
**Light intensity was measured using hobo loggers that were deployed at two measurements 5 and 10m at all sites and then calibrated following the methods outlined in Long et 
al., (2012) to calculate photosynthetically active radiation (PAR).	
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Figure 4.4.1. Location of Study Sites – (a) Location of Indonesia; (b) Map of the Wakatobi 

Marine National Park (Wakatobi), South Sulawesi and; (c) Location of selected study sites 

around Hoga Island, Wakatobi. 
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4.4.2.2 | Quantifying the Carbonate Budgetary State 

To assess calcium carbonate production and erosion rates on the selected reefs, quantitative data 

such as benthic composition, rugosity, carbonate producers and eroders was collected using the 

ReefBudget methodology. This method was originally designed for the Caribbean (Perry et al., 

2012) and then developed specifically for Indo-Pacific reefs (Perry et al., 2018b). The data collected 

via benthic transects (Table S3.3;	 Supplementary	 Material) was then used to calculate CaCO3 

production and erosion rates (kg CaCO3 m-2 y-1 hereafter expressed as G whilst ± represents the SE 

of all values stated) through utilizing a series of equations specific for carbonate producers and 

eroders as outlined and explained in the ReefBudget toolkit (Perry et al., 2018b). The ReefBudget 

methodology for data collection in this study was followed in full with the exception of bioeroding 

sponge data and that transects were recorded at three depths rather than one depth (5, 10 and 15 m – 

2 transects at each = 6 transects in total). Details of these modifications are given in section S3.2 of 

the supplementary material along with a brief explanation. The modification was necessary in this 

study to ensure that the data was comparable to that collected by Franco, (2014). Benthic 

composition was measured following the integrated method outlined in Perry et al., (2012, 2018b). 

Budget data collected in 2012 which was used for the purpose of this study, is restricted to the 

budget rates (gross carbonate production, gross carbonate erosion and net carbonate production). 

Unfortunately, data collected in 2012 could not be obtained for comparison in terms of primary and 

secondary carbonate producers in addition to densities of major eroders. 

4.4.2.3 | Data analysis 

The software “R” and “RStudio” version 3.5.1 was used for data analysis, accompanied by various 

data processing and statistical packages including ggplot and tidyverse for plotting maps (Hothorn et 

al., 2008; Wickham, 2009; R, 2018). It was impossible to test for statistical differences in the 
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percentage cover change of primary and secondary carbonate producers in addition to major eroders 

between sites over time since raw data (individual data points) could not be obtained for 2012. 

However, the analysis of variance (ANOVA) was used to test for differences in the gross carbonate 

production, erosion and net production between sites over time. In addition, ±SE is stated 

throughout. 

4.4.3 | RESULTS 

4.4.3.1 | Carbonate Production 

In 2012, all reefs surveyed were in a positive carbonate budgetary state, and the analysis from 2018 

reported that these reefs have maintained this positive state. However, a reduction in their gross 

carbonate production rates was observed at all sites with the exception of S1 (Figure 4.4.2). 

Carbonate production rates significantly decreased by 77.7% at R1 (2012 = 16.6 ± 0.63; 2018 = 3.7 

± 0.5 G; F(1,6) = 150.0, p<0.05), 79.8% at B3 (2012 = 14.9 ± 4.5; 2018 = 3.0 ± 0.9 G; F(1,7) = 14.2, 

p<0.05) and 80.7% at PK (2012 = 11.9 ± 0.4; 2018 = 2.3 ± 0.4 G; F(1,7) = 205.1, p<0.05) while S1 

witnessed a 50% decrease (2012 = 3.8 ± 0.7; 2018 = 1.9 ± 0.3 G; F(1,7) = 9.6, p<0.05; Figure 4.4.2). 

In terms of primary carbonate producers, in 2018, B3 (35.5 ± 6.1%) had the highest percentage of 

hard corals followed by R1 (29.9 ± 5.5%) and PK (15.6 ± 2.7%) with S1 (13.6 ± 1.9%) having the 

lowest. This pattern is also observed with secondary carbonate producers whereby B3 (6.2 ± 2.0%) 

had the highest percentage of CCA followed by R1 (5.0 ± 3.1%) and PK (2.6 ± 2.2%) whilst no 

CCA was observed at S1. 
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Figure 4.4.2. Comparison of gross carbonate production rates (kg CaCO3 m-2 y-1 expressed as 

G) across the four study sites between the period 2012-2018 (n=6; G±SE); B3 = F(1,7) = 14.2, 

p<0.05; PK = F(1,7) = 205.1, p<0.05; R1 = F(1,6) = 150.0, p<0.05; S1 = F(1,7) = 9.6, p<0.05. 

 

In 2018, massive corals dominated all the study sites (Figure 4.4.3) with massive Porites spp. 

leading in each of B3 (6.6 ± 2.6%), PK (5.1 ± 1.4%) and R1 (9.9 ± 2.3%) whilst in S1 other massive 

corals were dominant (5.8 ± 1.3%) e.g. Galaxea spp., Diploastrea spp. and Favites spp. Branching 

Acropora spp. were highest at PK (3.3 ± 1.5%) followed by B3 (1.9 ± 0.8%) and R1 (0.5 ± 0.5%) 

whilst S1 had the lowest cover (0.2 ± 0.2%). In addition, other branching corals of different generas 

(e.g Montipora spp. and Tubinaria spp.) were dominant in both B3 (4.1 ± 2.1%) and R1 (3.9 ± 

1.5%) (Figure 4.4.3).   
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Figure 4.4.3. Mean percentage cover of primary carbonate producers in 2018 based on their 

morphological groups across the study sites (n=6). 

 

Figure 4.4.4. Carbonate production rates (kg CaCO3 m-2 y-1 expressed as G) in 2018 by the 

different coral morphological groups at the study sites (n=6).  
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Despite the dominance of massive corals, carbonate production rates were highest by branching 

corals at B3 (1.1 ± 0.4 G; F(1,10) = 0.2, p>0.05) and PK (1.0 ± 0.2 G; F(1,10) = 9.3, p<0.05; Figure 

4.4.4). Surprisingly, massive corals (2.5 ± 0.6 G) contribute to carbonate production significantly 

more than branching corals (0.6 ± 0.2G) at R1 (F(1,10) = 10.1, p<0.05), whilst at S1 both massive (0.7 

± 0.2 G) and branching corals (0.8 ± 0.2 G) contribute similarly to carbonate production (Figure 

4.4.4). Encrusting corals such as Leptoseris spp. and Pachyseris spp. were the third leading 

contributors towards carbonate production across all reefs (Figure 4.4.4). 

4.4.3.2 | Carbonate Erosion 

In 2012, erosion was strongly influenced by Scaridae across all sites with the highest erosion 

occurring at PK and the lowest at R1 (Table 4.4.2). Although erosion rates by echinoids in 2012 are 

considered negligible across all sites, in 2018, almost no erosion is observed due to echinoid activity 

on these reefs (Table 4.4.2). Unfortunately, it was not possible to obtain bioeroding sponge data 

from Franco (2014) and therefore it is not possible to conduct a temporal comparison, however, data 

collected in 2018 illustrates that erosion by bioeroding sponge is minimal across all sites (Table 

4.4.2).  

Table 4.4.2. Erosion rates (kg CaCO3 m-2 y-1 expressed as G) by major bio-eroders at study 

sites (n=6; G±SE) 

 
B3 PK R1 S1 

2012 2018 2012 2018 2012 2018 2012 2018 

Echinoids 0.04±0.01 0 ± 0 0.1±0.1 0.01±0.01 0.02±0.01 0 ± 0 0.15±0.1 0.03±0.01 

Scaridae 3.0±1.4 0.03±0.01 3.8±0.2 0.1±0.04 0.7±0.2 0.3±0.2 2.0±0.1 0.09±0.03 

Bioeroding 

Sponge 
NA* 0.1±0.03 NA 0.1±0.1 NA 0.1±0.04 NA 0.1±0.1 

*NA=Not Available 
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Echinoid densities were observed to be low across all sites (B3 = 0.03 ± 0.01; PK = 0.02 ± 0.01; R1 

= 0.03 ± 0.02; S1 = 0.03 ± 0.01 individuals per 20 m2). Scaridae abundance was noted to be ~2 

individuals per 120 m2 across all sites with density records of 0.01 ± 0.002, 0.02 ± 0.003, 0.02 ± 

0.01 and 0.01 ± 0.002 individuals per 120 m2 at B3, PK, R1 and S1 respectively. Species of 

echinoids on transects at both sites were restricted to three, mainly: Echinometra lucunter, Diadema 

spp. and Echniothrix spp. Echinoids were largest at S1 (81-100 mm) whilst both PK and R1 had the 

smallest echinoids in size (0-20 mm; Figure 4.4.5).  

The majority of Scaridae across the study sites were recorded to be scrapers (B3 = 57%; PK = 65%; 

R1 = 59%; S1 = 78%) most of which were in their terminal life phase (Figure 4.4.6). Excavator 

Scaridae were recorded to be the highest at B3 = 43% and R1 = 41% with S1 having the lowest 

number (21%) (Figure 4.4.6). Twelve species of Scaridae were recorded in this study: 

Bolbometopon muricatum, Sparisoma griseorubrum, Chlorurus sordidus, Chlorurus bleekeri, 

Scarus ghobban, Scarus niger, Scarus frenatus, Scarus globiceps, Scarus dimidiatus, Scarus 

psittacus, Scarus oviceps and Scarus flavipectoralis.  
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Figure 4.4.5. Total abundance of echinoids recorded in 2018 based on size class across study 

sites (n=6; area=20m2 per transect). 

 

Figure 4.4.6. Total abundance of Scaridae in 2018 based on size class (IP = initial phase / 

juveniles; TP = terminal phase / adults) across study sites (n=6; area=120m2 per transect).  
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Figure 4.4.7. Comparison of gross carbonate erosion rates (kg CaCO3 m-2 y-1 expressed as G) 

across the four study sites between the period 2012-2018 (n=6; G±SE). 

 

In 2012, gross carbonate erosion was the lowest at R1 (0.7 ± 0.2 G) and the highest at PK (3.9 ± 0.1 

G) followed by B3 (3.0 ± 1.4 G) and S1 (2.0 ± 0.1 G; Figure 4.4.7). On the contrary, in 2018, R1 

had the highest rate (0.5 ± 0.3 G) of erosion amongst the four sites although the rate remains similar 

to that recorded six years ago whilst B3 had the lowest (0.1 ± 0.04 G) witnessing a 97% decrease in 

erosion rates. Nevertheless, overall all sites have witnessed an insignificant decrease in the gross 

carbonate erosion rates between the period 2012-2018 (R1 = F(1,6) = 0.8, p>0.05; B3 = F(1,7) = 1.2, 

p>0.05; PK = F(1,7) = 3.5, p>0.05; Sampela = F(1,7) = 0.8, p>0.05; Figure 4.4.7). 
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4.4.3.3 | Carbonate Budgetary State 

Over the period 2012-2018, reefs across all study sites have successfully maintained their positive 

budgetary state, despite the decline in net carbonate production between time points (Figure 4.4.8). 

R1 was observed to have the highest net carbonate production rate (2012 = 15.9 ± 0.5; 2018 = 3.3 ± 

0.3 G), followed by B3 (2012 = 11.9 ± 4.4; 2018 = 2.9 ± 0.8 G) and PK (2012 = 7.4 ± 0.4; 2018 = 

2.0 ± 0.3 G) whilst interestingly; S1 maintained its net production rate (2012 = 1.7 ± 0.8; 2018 = 1.7 

± 0.2 G; Figure 4.4.8). In addition, all reefs maintained their rank (with R1 leading and S1 the 

lowest) throughout the six-year period (2012-2018; Figure 4.4.8). However, R1’s net production rate 

has witnessed a decline by 79.2% (F(1,6) = 4.4, p>0.05) whilst B3 (F(1,7) = 8.4, p<0.05) and PK (F(1,7) 

= 12.7, p<0.05) also suffered a decrease by 75.6% and 73% respectively.  

 

Figure 4.4.8. Reef carbonate budget rates (kg CaCO3 m-2 y-1 expressed as G) across study sites 

illustrating Gross Carbonate Production; Gross Carbonate Erosion and Reef Growth in the form of 

Net Carbonate Production for the period 2012-2018 (n=6; G±SE). 
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4.4.4 | DISCUSSION 

This study examined the temporal change in net carbonate accretion on reefs in the Wakatobi at two 

time points (2012 and 2018), six years apart. The decline in net carbonate production recorded 

(>75% on the majority of these reefs) could be attributed to the decrease in hard coral cover 

(primary carbonate producers) over time. Although data collected in 2012 could not be presented in 

this study, a decreasing trend in hard coral cover has been reported in previous studies on these 

specific reefs, e.g studies reported hard coral cover in PK as 50% (Hennige et al., 2008) decreasing 

to 27% (Powell et al., 2010), which has further decreased to 15.5% as per data collected in 2018 for 

this study (also see Chapter 3). This was also observed to be the case in B3 which was reported to 

have 51% hard coral cover (Powell et al., 2010) whereas this study has revealed that the cover has 

dropped to 35%. Overall, a decline of 69.3% in hard coral was documented over a 11-year period 

(2002-2012) on a total of six reefs surveyed in the Wakatobi (Gouraguine et al., 2019). This decline 

is driven by a number of different factors such as physical destruction of coral cover through the use 

of destructive fishing practices (e.g. dynamite fishing; Clifton et al., 2010), bleaching events and 

coral disease (Haapkylä et al., 2009). Interestingly, although S1 witnessed a sharp decline in 

previous years from 31.7% (Hennige et al., 2008) to 13% (Powell et al., 2010) attributed to 

destructive fishing practices (Clifton et al., 2010); it has maintained its coral cover over the last eight 

years (13.3% in 2018). This could be due to the adaptive mechanisms of corals in such extreme 

conditions to high turbid environments which includes responses to temporal fluctuations in the 

environment (Anthony & Larcombe, 2000). Moreover, recent models suggest that extreme 

environmental conditions, characteristic of reefs with fluctuating turbidity, light, and temperature, 

may acclimate corals to the thermal anomalies associated with bleaching (Hughes et al., 2017a), 

thereby, enabling them to build resilience. 

Furthermore, the variation in environmental conditions and levels of anthropogenic impact across 

the study sites could contribute towards primary carbonate producers (hard corals) being the highest 

at B3, followed by R1, PK and lowest at S1, this pattern was also observed in CCA (secondary 
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carbonate producer). Since light availability, temperature and turbidity influences coral diversity and 

abundance (Hennige et al., 2011) which is reported to decrease from optimal (clear water) to 

marginal (considered more “turbid”) environments (Bak & Meesters, 2000; Vermeij & Bak, 2002; 

Schleyer & Celliers, 2003; Hennige et al., 2011), this pattern is observed on the study sites and is 

consistent with previous studies. In addition, CCA is known to have an inverse relationship with 

sediment whereby reefs with high sedimentation rates have lower recruitment of CCA-specialised 

organisms thereby impacting reef calcification (Fabricius & De’ath, 2001; Mallela, 2013) and as 

such reef carbonate production. This is also in line with the results from this study whereby no CCA 

was observed at S1 whilst the highest cover was observed to occur at the reef with optimal 

environmental conditions amongst the four sites declining in cover as the conditions become more 

marginal between the sites.  

Surprisingly, even though the highest cover of primary carbonate producers was recorded at B3, the 

highest carbonate production rate was observed to be at R1 followed by B3. This was observed in 

both years (2012 and 2018) and could be attributed to the high contribution of carbonate production 

by massive corals which dominates the R1 site while branching corals dominate B3 (although not 

significantly) as indicated by the results of this study. However, carbonate production on reefs is 

independent of total coral abundance, whereby change in coral community calcification and reef 

complexity could be in response to shifting coral assemblages (branching to massive; Alvarez-Filip 

et al., 2013). In addition, although branching corals are major contributors towards the vertical 

expansion especially due to their rapid growth rates, hermatypic corals are reported to exhibit 

extensive plasticity (Todd, 2008). For example, each morphotype within the massive Porites lobata 

colonies differ in physiological responses to environmental conditions thereby harbouring 15-33% 

faster annual growth rates in comparison to other coral morphological groups (e.g. columnar and 

free-living) thereby contributing towards reef structure (Tortolero-Langarica et al., 2016). Morpho-

plasticity in colony structure is an adaptive strategy used by coral species to benefit from changes in 

their environment (Foster, 1979; Muko et al., 2000; Smith et al., 2007; Forsman et al., 2009; 

Tortolero-Langarica et al., 2016). This plasticity and morphological variation contributes towards 
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reef structure and complexity while strengthening species survival (Spalding et al., 2001; Alvarez-

Filip et al., 2009). In addition, massive corals have been reported to be able to maintain positive 

carbonate production on reefs (Ryan et al., 2019) despite their lack of vertical growth extension, this 

is noted at S1 whereby branching corals are less than 1% and is mainly dominanted by massive 

corals. Therefore, exploring carbonate production in relation to the variation in morphological 

groups could provide new insights into the functionality of reef builders and redefine major 

contributors towards carbonate production. 

On the other hand, in 2018, erosion across all sites were observed to be low in general, this could be 

attributed to low densities of macro-eroders especially echinoids and Scaridae populations across all 

sites. However, over the six-year period (2012-2018), there is a clear decline in erosion rates at all 

the sites with the exception of R1. This site maintains erosion rates over time despite it having the 

lowest erosion rate in 2012, whereas in 2018, it is the highest in comparison to the other sites. This 

could be due to minimal change in the eroder populations at R1 overtime; uncertainties remain since 

temporal data on eroder populations could not be obtained for comparison. However, B3 witnessed 

a 97% decrease in its erosion rates over time, this was also observed at PK and S1 all of which 

indicates a change in their eroder population. In terms of the overall budget, S1 was the only site 

that managed to maintain its net carbonate production rate whilst the remaining reefs witnessed a 

drastic sharp decline, which is associated mainly with the decline in their gross production rate. In 

terms of S1, although its gross production rate had decreased by 50%, its erosion rate has also 

declined thereby enabling the reef to maintain its budgetary state. This also indicates that reefs in 

turbid environments maybe able to sustain themselves through a combination of adaptive 

mechanisms, such as their responses to temporal environmental fluctuations (Anthony & Larcombe, 

2000), ability to acclimatize to thermal disturbances (Hughes et al., 2017a) and the dominance of 

massive stress tolerant corals which have been observed to contribute towards maintaining a positive 
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budgetary state (Ryan et al., 2019). This combined, as well as, the limited erosion experienced on 

these reefs contribute towards making them more robust and resilient to change. 

In conclusion, overall budgetary states across all reefs remain positive, although the sharp decline in 

net carbonate production across all sites from the period 2012 through to 2018 is alarming. This 

indicates rapid change in the functional performance of these reefs, which highlight spatial and 

temporal variations in their reef framework formation and growth. The results of this study presents 

new insights as to the role of various coral morphological groups in relation to reef carbonate 

production and indicates that perhaps a shift in coral assemblages is driving a change in the 

community composition of primary carbonate producers.  
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4.5 | CONCLUSION: REEF CARBONATE BUDGETS ACROSS BIOREGIONS 

It is without doubt that this study on reef carbonate budgets has provided valuable insights as to the 

current accretional health of reefs in the three selected bioregions: AG, WIO and CIP (Figure 4.5.1). 

These reefs offer a unique opportunity to examine carbonate budgets from diverse environmental 

and species richness spectrums within a given time period. On a global level, results have indicated 

that reefs that exist in extreme environmental conditions, such as those in Bahrain (AG), where reefs 

are exposed to high temperatures that reach 36°C, have either dipped into a negative budgetary state 

(BH-TB = -0.3 ± 0.2 G) or maintain a low positive budgetary state (BH-OP = 1.7 ± 0.4 G). This is 

also observed in the Seychelles (WIO), which has encountered multiple disturbances i.e. extreme 

bleaching events over the last few years resulting in a total net carbonate budget of 1.6 G, similar to 

that of Bahraini reefs. However, in Indonesia (CIP), although the Coral Triangle has been reported 

to experience multiple thermal anomalies, the intensity and duration of these events remains much 

lower than the other two locations (see Chapter 2). This is also reflected in the carbonate budgets 

whereby all reefs explored maintain a positive budgetary state ranging between 1.7 and 3.3 G. 

Nevertheless, the temporal comparison has shown that despite the minimal net positive state, these 

reefs have experienced an alarming decline over the last few years that should not be ignored. 

Results obtained from the hottest sea could provide insights as to the future of global reefs since 

reefs in the AG currently survive in temperatures similar to those projected (1.5-2◦C above pre-

industrial levels) to occur globally by 2100 (IPCC, 2014b). Although temperatures in the Seychelles 

are milder than those in Bahrain, the disturbances faced have put the reefs in a vulnerable position. 

The question remains as to whether these reefs will adapt and become resilient through shifting their 

coral assemblages and communities towards massive stress tolerant corals and still achieve/maintain 

a positive budgetary state like some of the reefs in Bahrain? What are the implications of this in the 
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face of SLR? How will reefs in the Wakatobi adapt to their changing environment and how will that 

impact their budgets? Would the change in their budgets also mean that their species richness index 

will be affected and by how much? These are questions that should be prioritized and explored in 

future carbonate reef budget studies. 

 

Figure 4.5.1. Overall carbonate budget rates of reefs in 2018 across sites: (a) Bahrain, (b) 

Seychelles and; (c) Indonesia. 
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5 | SYMBIODINIACEAE DIVERSITY ACROSS THERMAL REGIMES AND LATITUDINAL 

GRADIENTS 

 

ABSTRACT 

Reef-building corals are under serious threat from ocean warming, which directly impacts their 

symbiotic partnership with dinoflagellates from the family Symbiodiniaceae; a relationship that 

is integral for the survival of coral reefs. Symbiodiniaceae species vary in their levels of 

tolerance to heat and light, with some reported to enhance a coral’s thermal tolerance. This study 

examines the composition and diversity of Symbiodiniaceae species across different thermal 

regimes and latitudinal gradients in three bioregions: Bahrain (Arabian Gulf), the Seychelles 

(Western Indian Ocean) and Indonesia (Central Indo-Pacific). Results acquired through next 

generation sequencing (NGS) targeting the ITS2 rDNA region, have identified the presence of 

three main genera: Cladocopium (dominant across all sites), Durusdinium, and Symbiodinium. 

Biogeographical patterns revealed that Symbiodiniaceae diversity and richness is lower in higher 

latitude reefs compared to those in the lower latitude. Shifts in Symbiodiniaceae community 

composition from prevalent thermally sensitive symbionts types in the low thermal regime reefs 

(thermal stress = ≤ 4°C-DHW) to thermally tolerant types in the high thermal regime reefs 

(thermal stress = >4°C-DHW) were also noted. Results include the first reporting of ITS2 types 

present in Bahrain, along with a novel observation of the presence of ITS2 type C3-Gulf in the 

Seychelles. Overall, Symbiodiniaceae species diversity, distribution, and community 

composition are influenced by multiple variables, including environmental factors, thermal 

regimes, and latitudinal gradients.  
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5.1 | INTRODUCTION 

Corals host a complex composition of microbes including microalgae, bacteria, viruses, fungi 

and archaea in their mucus layer, skeleton, and tissues (Blackall et al., 2015). This collective 

diverse and dynamic group of microbial communities is referred to as the coral holobiont 

(Rohwer et al., 2002; Blackall et al., 2015; Thompson et al., 2015). These microorganisms 

provide their host with benefits via various mechanisms, including photosynthesis, nitrogen 

fixation, the provision of nutrients and infection prevention, all of which contributes towards 

coral health (Trench, 1979; Rohwer et al., 2002; Rosenberg et al., 2007). These symbiont 

microbial populations may reach densities of several million or more per square centimeter of 

host tissue (LaJeunesse, 2002). The coral holobiont functions as a dynamic system whereby 

external environmental conditions determines its members (Shashar et al., 1993; Tanner, 1996; 

Thompson et al., 2015; Roik et al., 2016). Therefore, any change in environmental conditions 

will change the relative abundance of microbial species to facilitate the coral holobiont to adapt 

to the new condition (Reshef et al., 2006).  

The mutualistic association between hermatypic corals (reef-building) and endosymbiont 

dinoflagellates (commonly known as zooxanthellae) in the family Symbiodiniaceae is said to 

underpin the survival of coral reefs (Hume et al., 2015; Rouzé et al., 2017; LaJeunesse et al., 

2018). The Symbiodiniaceae species inhabits the vacuoles (known as symbiosome) which are 

present within the endodermic layer of the coral polyp tissue (Trench, 1979). Corals are supplied 

by photosynthetic products such as sugars, fatty and amino acids, carbohydrates, and small 

peptides from the Symbiodiniaceae species who contribute towards nutritional provision 

(Trench, 1979; Papina et al., 2003; Morris et al., 2019). This energy supply from the 

Symbiodiniaceae species is related to the amount of energy available for coral calcification 

(Jones & Berkelmans, 2010). In return, the Symbiodiniaceae species receives crucial plant 
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nutrients such as ammonia and phosphate from the coral’s waste metabolism (Furla et al., 2000; 

Al-Hammady, 2013). 

The last twenty years of molecular technique advancements has revealed an array of 

Symbiodiniaceae species diversity hosted within cnidarians and invertebrate populations (Rowan 

& Powers, 1991; LaJeunesse, 2001, 2002; Pochon et al., 2001; Coffroth & Santos, 2005; 

Sampayo et al., 2009; Hill et al., 2011). Subsequently, recent phylogenetic reconstructions have 

revealed nine widely recognized divergent phylogenetic lineages of Symbiodiniaceae species 

referred to as “clades” (A-I) which, based on the 18S rDNA and internal transcribed spacer 

regions (ITS) analyses (Rowan & Powers, 1991; LaJeunesse, 2001, 2002; Pochon et al., 2006; 

Pochon & Gates, 2010; Hill et al., 2011; Yang et al., 2012; Rouzé et al., 2017), are further 

divided into sub-clades or types (Rowan & Knowlton, 1995). Over the years, several new 

species of Symbiodiniaceae (currently 22) have been formally described, classified and named 

(Table 5.1; Trench & Blank, 1987; Jeong et al., 2014; LaJeunesse et al., 2014, 2015, 2018; 

Hume et al., 2015; Parkinson et al., 2015; Ramsby et al., 2017). Studies have revealed that 

Symbiodiniaceae fulfill the prerequisites of the multiple species concept which requires its 

species (clades and/or sub-clades – hereafter referred to as types) to exhibit distinct genetic, 

physiological, and ecological variation (Lajeunesse et al., 2012; LaJeunesse et al., 2018).  

Symbiodiniaceae types vary in their levels of tolerance to heat and light (Stat et al., 2006; 

Hennige et al., 2011; Silverstein et al., 2012). Coral-Symbiodiniaceae species associations have 

been seen to include mono or multi-clade associations (Fabina et al., 2012; Silverstein et al., 

2012; Rouzé et al., 2017), with their type and ecological dominance influenced by regional and 

local environmental factors (Baker, 2003; Ziegler et al., 2017). Corals are seen to be most 

commonly associated with Symbiodiniaceae in type A-D (LaJeunesse, 2001), rarely with F and 

G (Ramsby et al., 2017). During favourable environmental conditions the host and its associated 

symbiosis function in harmony. However, this symbiotic relationship is sensitive to 
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environmental change and can breakdown when subjected to various stressors caused by natural 

and/or anthropogenic sources, all of which is determined based on the stress tolerance of either 

partner (Yang et al., 2012; Rouzé et al., 2017). Coral bleaching refers to the partial or complete 

loss of the Symbiodiniaceae species from coral tissues, which occurs when corals are under 

severe stress from elevated temperatures, thereby exceeding their thermal tolerance levels 

(Hoegh-Guldberg, 1999; Donner et al., 2005; Hoegh-Guldberg et al., 2007). An increase by one 

or two degrees Celsius is enough for corals to expel their associated Symbiodiniaceae (Lesser, 

2007; Desalvo et al., 2008; Ricaurte et al., 2016). This phenomena can be reversed with no 

major consequences to the coral, depending on the length of exposure and severity of 

temperature elevation (Baker et al., 2008).  

  



Chapter 5 | Symbiodiniaceae Diversity 

	 179	

Table 5.1. Symbiodiniaceae genera, assigned clades and species (*lacks ITS alphanumeric 

designation-could be a different/new species) 

Clade/Type Species Source 

A Symbiodinium sp. LaJeunesse et al., 2018 

A* Symbiodinium natans Hansen & Daugbjerg, 2009 

A1/A1.1 Symbiodinium microadriaticum Lee et al., 2015 

A2 Symbiodinium pilosum Lee et al., 2015 

A3/A3Pacific/A3a/ 

A3x/A6  
Symbiodinium tridacnidorum Lee et al., 2015 

A4 Symbiodinium linuchae Trench & Thinh, 1995 

A13/A1.1 Symbiodinium necroappetens LaJeunesse et al., 2015 

B Breviolum sp. LaJeunesse et al., 2018 

B* Breviolum aenigmaticum Parkinson et al., 2015 

B1 Breviolum antillogorgium Parkinson et al., 2015 

B1 Breviolum minutum Lajeunesse et al., 2012 

B1 Breviolum pseudominutum Parkinson et al., 2015 

B2 Breviolum psygmophilum Lajeunesse et al., 2012 

B7 Breviolum endomadracis Parkinson et al., 2015 

C Cladocopium sp. LaJeunesse et al., 2018 

C1 Cladocopium goreaui Davies et al., 2018 

C3-Gulf Cladocopium thermophilum Hume et al., 2015 

D Durusdinium sp. LaJeunesse et al., 2018 

D1 Durusdinium glynnii Wham et al., 2017 

D1a Durusdinium trenchii Davies et al., 2018 

D15 Durusdinium boreum LaJeunesse et al., 2014 

D8/D12-13/D13 Durusdinium eurythalpos LaJeunesse et al., 2014 

E1 Effrenium voratum Jeong et al., 2014 

F1 Fugacium kawagutii Trench, 2000 

G/G3/G3.3 Gerakladium sp. LaJeunesse et al., 2018 

G* Gerakladium spongiolum Ramsby et al., 2017 

G* Gerakladium endoclionum Ramsby et al., 2017 
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Bleaching has been proposed to be a survival mechanism used by corals to overcome severe 

stress through dynamic modification of their Symbiodiniaceae species community composition; 

a concept termed the “Adaptive Bleaching Hypothesis” (Buddemeier & Fautin, 1993). This is 

done by either switching their Symbiodiniaceae type with those more resistant and present in the 

surrounding environment, or through shuffling the pre-existing types with those more resistant 

(Rowan & Powers, 1991; Baker et al., 2004; Rouzé et al., 2017). For example, in a study on a 

common Indo-Pacific branching coral species (Acropora millepora), it was found that switching 

to thermally tolerant Symbiodiniaceae species type D increased the coral’s thermal tolerance 

between 1.0-1.5°C (Berkelmans & Van Oppen, 2006). However, this ability to switch to 

thermally tolerant symbionts comes with a cost or trade off. Previous studies have indicated that 

accretion rates of reef-building corals are likely to be significantly compromised due to the 

process of symbiont shuffling to more thermally tolerant types caused by thermal stress before 

bleaching coupled by the bleaching stress (Little et al., 2004; Mieog et al., 2009; Jones & 

Berkelmans, 2010). Moreover, it has been suggested that coral calcification rates are affected in 

hosts harbouring thermally tolerant symbiont when compared to those with a thermally sensitive 

type (Jones & Berkelmans, 2010; Pettay et al., 2015) showcasing a cost-benefit relationship 

between corals and their symbionts. Therefore, it is necessary to understand the various 

associations between the assemblages of Symbiodiniaceae species and host in different 

environmental conditions as this could provide important insights as to how this relationship 

affects future reef accretion rates in the face of predicted global environmental change and sea 

level rise. This study examines the composition and diversity of Symbiodiniaceae species across 

different thermal regimes and latitudinal gradients in three bioregions, namely: Bahrain (Arabian 

Gulf / AG), the Seychelles (Western Indian Ocean / WIO) and Indonesia (Central Indo-Pacific / 

CIP).  
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5.2 | METHODOLOGY 

5.2.1 | Site Selection & Description  

Six study sites located in three bioregions (i.e. two in each): Bahrain (AG), the Seychelles (WIO) 

and Indonesia (CIP) were selected (Figure 5.1). Considering the latitudinal differences in these 

bioregions, the sites have been characterized into three thermal regions based on data derived 

from Chapter 2 (Table 5.2). Reefs from both turbid and clear-water (herein referred to as 

optimal) sites were chosen to represent different environmental gradients (Table 5.3). Reefs in 

Bahrain endure extreme SST temperatures ranging between 16-35°C whilst reefs in the 

Seychelles and Indonesia experience fairly narrow SST differences ranging between 24-29°C 

(Hume et al., 2013; Rowley et al., 2015); with El Niño events occurring irregularly at intervals 

of 3.5 to 5.5 years (Charles et al., 1997). This difference in thermal regime is said to influence 

the variations in diversity and richness of coral species in Bahrain and Indonesia (Coles, 2003). 
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Figure 5.1. Location of Study Sites – (a) Location of Bahrain (Arabian Gulf), the Seychelles 

(Western Indian Ocean) and Indonesia (Central Indo-Pacific); (b) Location of study sites 

within Bahrain; (c) Location of study sites within Curieuse Marine National Park, 

Seychelles; (d) Location of study sites within the Wakatobi Marine National Park, 

Indonesia. 
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Table 5.2. Characterization of thermal regime in each of the bioregions (refer to Chapter 2 for equations used to derive the 

data displayed below; brief definitions of the variables are outlined below the table). All values are temperature in °C with the 

exception of DHW which is in °C-weeks. 

Thermal 
Regime* Study Site Min.	

SST 
Max.	
SST 

Annual	
Mean	 

Min.	
Climatology		

Max.	
Climatology	 

Seasonal	
Range	 

Bleaching	
Threshold	 

Max	
DHW 

Mean	
DHW 

High 

Reef Bul Thamah 
(Bahrain) 16.5 36.2 26.2 19.1 33.1 14 34.1 18.2 4.8 

Fasht Al Adhm 
(Bahrain) 15.5 37 26 17.9 33.5 15.6 34.5 20.8 4.7 

Moderate 

Ridge 
(Indonesia) 24.5	 32.7	 28.5	 26.5	 29.7	 3.2	 30.7	 6.1	 2.2	

Sampela 
(Indonesia) 24.6	 33.5	 28.4	 26.6	 29.9	 3.3	 30.9	 14.7	 3.7	

Low 

East Bay 
(Seychelles) 23.4	 32.2	 28	 25.8	 30.1	 4.2	 31.1	 6.5	 1.7	

Praslin 2 
(Seychelles) 23.3 31.9 28 25.7 30 4.3 31.1 5.6 1.6 

 
*Thermal regimes have been assigned based on the combination of the maximum SST, Bleaching threshold and DHW expressed on the reefs. 
Climatology the long-term mean of SST conditions over time. 
Seasonal Range the difference between the minimum and maximum SST over time. 
Bleaching threshold is the value where SST have exceeded maximum long-term mean by 1°C. 
Degree Heating Week (DHW) is defined as of accumulated daily hotspots over 12 consecutive weeks when the thermal stress anomaly is ≥1°C. 
DHW values of ≥4°C and <8°C-weeks, corresponds to delineation between coral bleaching and mortality levels (*unit=°C-weeks) 
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Table 5.3. Environmental characteristics of the selected study sites.  

Site Site Code 
Depth 

(m) 
Temp. 
(°C) 

Salinity 
(ppt) 

Sedimentation rates 
(g cm-2 d-1)** 

Light 
attenuation 

(Kd PAR)*** 
Distance Impacts 

Bahrain (AG) 
Fasht Al 
Adhm 

(Turbid) 
BH-TB 5-7 

16-35 42-44 

0.23±0.04 0.02 
~11 km east 
of the main 
island. 

Heavily impacted due to various anthropogenic 
activities mainly reclamation and dredging. 

Reef Bul 
Thamah 

(Optimal)* 
BH-OP 10-12 0.19±0.04 0.04 

~80 km 
northeast of 
the main 
island. 

Although located within a Marine Protected 
National Park (MPA), the site is subjected to 
illegal fishing and destructive fishing practices. 

Seychelles (WIO) - Curieuse National Park 

Praslin 
(Turbid) 

SY-TB 5-10 

25-29 ~35 

0.03±0.01 0.2-0.4 

~1.5 km 
southwest 
Curieuse 
Island 

Site is subjected to large sediment load since it is 
located closer to Praline island, which has 
intensive tourist marine activities. 

East Bay 
(Optimal)* SY-OP 5-12 0.04±0.01 0.1-0.2 

~1.5 km 
southeast 
Curieuse 
Island 

One of the least impacted sites with minimum 
anthropogenic impacts. Carbonate fringing reefs 
with minimal tourist activity. 

Indonesia (CIP) – Wakatobi Marine National Park, South East Sulawesi 

Sampela 
(Turbid) 

IN-TB 3-10 

26-30 32-34 

6.3±2.7 0.01 
~1.5 
southwest 
Hoga Island 

Site is adjacent to the Bajo village of Sama Bahari 
and is subjected to large sediment load and various 
anthropogenic activities, thus heavily impacted. 

Ridge 
(Optimal)* IN-OP 5-20 2.6±1.0 0.02 

~1 km 
northwest 
Hoga Island 

One of the least impacted sites within the area with 
some artisanal line fishing occurring. 

* Optimal in this study is referred to as clear waters. 
** Bahrain: Due to time restrictions, sedimentation rates (g cm-2 d-1) were measured at 10m depth using sediment traps (n=6). Traps were deployed for a period of three days at 
each of the study sites in May 2018; Seychelles: Sedimentation rates (g cm-2 d-1) were measured at 10m depth using sediment traps, however, due to expedition time constraints 
the traps were only deployed for a total of 4 days in April 2018; Indonesia: Sedimentation rates (mg cm-2 d-1) collected by Operation Wallacea between 2006-2011 (mean values 
are reported here along with ±SD and taken from Franco, 2014). 
*** Bahrain & Indonesia: Light intensity was measured using hobo loggers that were deployed at two measurements 3 and 7m in Bahrain and 5 and 10m in Indonesia, then 
calibrated following the methods outlined in (Long et al., 2012) to calculate photosynthetically active radiation (PAR). Seychelles: Light attenuation coefficients (Kd (PAR), m-1) 
for each site was obtained from Gardner et al., (2018). 
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5.2.2 | Sample Collection 

Coral fragments of ~2 cm from selected coral species (Table 5.4) were collected over a two-year 

period (2017-2018) from Bahrain and the Seychelles; Indonesian samples were only collected in 

2017. Coral fragments came from different colonies with sampling depth between 5-10 m at each 

site; various numbers of replicates were collected based on availability at site (Table 5.4). To attain 

more site-specific representation, coral samples were collected randomly whilst ensuring a 

minimum of 1 m distance between sample colonies thereby randomizing host genetic effects and 

micro-environments. The coral fragments were preserved in RNAlater at room temperature and/ 3-

6°C (in fridge) upon collection on the field and on ice during transit. Once samples arrived at the 

University of Essex they were then stored at -20°C. 

Table 5.4. List of coral specimens along with total number of individual replicates (n).  

Bahrain (AG)* 

(April 2017 & 2018) 

Seychelles  (WIO) 

(May 2017 & 2018) 

Indonesia (CIP) 

(July 2017) 

Porites lutea (n=16) Porites lutea (n=19) Porites lutea (n=9) 

Dipsastraea speciosa (n=2) Dipsastraea speciosa (n=17) Dipsastraea speciosa (n=10) 

Platygra daedalea (n=11) Favites pentagona (n=17) Favites pentagona (n=10) 

Cyphastrea microphtalma (n=10) Acropora muricata (n=13) Acropora muricata (n=10) 

Tubinaria peltata (n=3) Acropora gemmifera (n=8) Acropora gemmifera (n=10) 

 Pavona cactus (n=4) Pocillopora verrucosa (n=9) 

  Pocilliopora damicornis (n=5) 

*NB: Samples were collected following the mass bleaching in Bahrain in 2017 which impacted the study reefs severely, 

making it very difficult to find live coral with signs of Symbiodiniaceae species presence for sampling. In 2018, samples 

were collected for P. lutea, P. daedalea and C. microphtalma from Bahraini reefs. 
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5.2.3 | Molecular Analysis 

DNA was extracted from the collected coral tissue of each sampled species (Table 5.4) using Qiagen 

DNeasy Blood & Tissue Kit following the manufacturer’s instructions with minor modifications 

(see Supplementary Material; S4.1). Symbiodiniaceae communities were characterized using a 

Nextera XT dual-indexing strategy, which involved PCR amplification of a phylogenetic marker 

gene, followed by a secondary short-cycle PCR amplification in which dual Nextera indices are 

added to the amplicon for multiplexing of samples. The ITS rRNA gene was targeted (~234-266 bp 

region) with Symbiodiniaceae specific primers SYM_VAR_5.8S2: (5'- 

GAATTGCAGAACTCCGTGAACC-3) and SYM_VAR_REV: (5’- 

CGGGTTCWCTTGTYTGACTTCATGC-3; Hume et al., 2018) both of which were modified to 

contain Illumina specific overhang sequences. The ITS rRNA gene was amplified in 25 µl reactions 

with 12.5 µl of appTAQ Polymerase (Appleton Woods LTD.), 1 µl of each primer (10 µM), 2 µl of 

Bovine Serum Albumin (BSA; 0.8 mg per reaction; Sigma Aldrich Co.), 6.5 µl of PCR water and 2 

µl of template DNA. The PCR protocol included an initial denaturation step at 95°C for 3 minutes, 

followed by 35 cycles of 95°C for 30 seconds, 58°C for 30 seconds and 72°C for 30 seconds. After a 

final extension step of 72°C for 5 minutes, PCR products were held at 4°C. PCR products were 

purified using Agencourt AMPure XP PCR Purification beads (Beckman Coulter Ltd, High 

Wycombe, UK) following Illumina’s “16S Metagenomic Sequencing Library Preparation” Protocol 

(https://bit.ly/1Ns4tAD).  

The index PCR was carried out in 25 µl reactions with 12.5 µl of appTAQ Polymerase (Appleton 

Woods LTD.), 2.5 µl each of sample specific Series A & B Nextera XT index (Illumina), 5 µl of 

PCR water (Bioline Reagents Ltd, UK) and 2.5 µl of purified PCR product. PCR was conducted 

with an initial denaturation at 95°C for 3 minutes, followed by 8 cycles of 95°C for 30 seconds, 
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55°C for 30 seconds and 72°C for 30 seconds. A final extension step was included at 72°C for 5 

minutes, after which PCR products were held at 4°C. PCR products were purified using Agencourt 

AMPure XP PCR Purification beads (Beckman Coulter Ltd, High Wycombe, UK) and quantified on 

a POLARstar Omega (BMG LABTECH GmbH, Germany) plate reader using the PicoGreen® 

dsDNA assay. PCR products were then pooled in equimolar concentrations. The size and 

concentration of the resulting pool was checked twice, once using a NEBNext® Library Quant Kit 

following the manufacturer’s protocol (https://bit.ly/2Z0kmjf) on the BioRAD - CFXConnect Real 

Time System (96 well plate); and the second using the PicoGreen® dsDNA assay on a NanoDrop 

3300 Fluorospectrometer following the manufacturer’s protocol (https://bit.ly/2YY8iz5) to validate 

the concentration levels prior to sequencing. Next Generation Sequencing (NGS) was carried out on 

an Illumina HiSeq 2500 on rapid-run mode, producing 2 x 301 bp sequences, at the University of 

Essex, UK.  

5.2.4 | Bioinformatic Analysis  

The generated NGS ITS raw sequence amplicon libraries were processed using the SymPortal 

analytical framework (https://symportal.org - described in Hume et al., 2019). Sequencing data was 

submitted to the SymPortal database for quality control (including the removal of non-

Symbiodiniaceae sequences) and analysis. Symbiodiniaceae genera were identified as part of the 

SymPortal analysis, which is conducted within a framework supported by a database containing 

sequencing data of each genus acquired from all previous run analyses cataloged within that 

database. The SymPortal database utilizes the sequence data submitted to it by global researchers to 

improve its ability to identify Symbiodiniaceae genotype-representative ITS2 type profiles 

(hereafter referred to as ITS2 types) based on their presence and abundance in the samples and 

within the database. Unique combinations of intragenomic variations in sequences, commonly 
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referred to as defining intragenomic [sequence] variants (DIVs), are used for profile characterization 

considering both sequence abundances and identities whereby sets of sequences found to re-occur in 

multiple samples are searched for algorithmically (Howells et al., 2020). For more details regarding 

the SymPortal pipeline, quality control and algorithms used for ITS2 profile identification refer to 

Hume et al. (2019) and/or the accompanying GitHub site 

(https://github.com/didillysquat/SymPortal_framework ; Hume et al., 2020). 

5.2.5 | Data and Statistical Analysis  

Symbiodiniaceae genera were analysed using the output dataset derived from the SymPortal analysis 

to examine the symbiont community composition in different host species across bioregions. All of 

which was conducted using R (R Development Core Team, 2016); all plots were created using the 

ggplot function in the “tidyverse” package in R (Wickham et al., 2019). ITS2 type abundance, 

relative abundance, species richness, and Shannon’s (H’) and Simpson’s (1-D) diversity indices 

(which account for both abundance and evenness) were calculated using the “vegan” package in R 

(Oksanen et al., 2018). Analysis of variance (ANOVA) was used to test for significant difference in 

the diversity indices amongst bioregions and corals host species. 

Principal coordinate analysis (PCA) was used to further analyse the variation in the ITS2 sequence 

abundance by utilising the between profiles distances and between sample distances matrices 

produced by SymPortal. These matrices were generated by calculating the average distance-to-

centroid values for genus-separated distances (Cladocopium and Durusdinium; formerly, clade C 

and clade D respectively) using the UniFrac derived matrices. The distance matrices were calculated 

by SymPortal using a square root transformation, which is commonly used to increase the weight of 

lesser abundant sequences during analysis. 
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To further examine the potential drivers of the symbiont communities, variance partitioning in four 

cross factors were analysed: coral host species, bioregion/site, thermal regime, and latitude. This 

was done using a permutational multivariate analysis of variance (PERMANOVA) to test for 

differences in Symbiodiniaceae community composition across bioregions within each coral host 

species (considered as a nested factor). The PERMANOVA models were performed using the 

adonis method from the “vegan” package in R (Oksanen et al., 2018). 

5.3 | RESULTS 

5.3.1 | Symbiodiniaceae Diversity & Abundance Across Bioregions 

The amplicon sequencing produced a total of 5,622,444 unique sequences of which 3,551,814 were 

assigned as ITS2 types which identified three genera: Cladocopium, Durusdinium and 

Symbiodinium (Figure 5.2). Regardless of site/bioregion, the genus Cladocopium (corresponding 

clade C) is the most abundant endosymbiont accounting for 86.3% of sequences retained, followed 

by Durusdinium (corresponding clade D; 13.5%), whilst Symbiodinium (corresponding clade A) was 

observed to be the least abundant (0.2%) and detected only in one bioregion (AG). Cladocopium is 

present in all eleven-sampled host species whilst Durusdinium and Symbiodinium are present in 

seven and one host species, respectively (Figure 5.2; see Table 5.4 for full list of coral host species). 

Relative abundance of Symbiodiniaceae genera associations with coral host species was observed to 

differ depending on bioregions, whereby, all sampled colonies from the thermally extreme Bahrain 

(AG) were associated fully with Cladocopium (100%), with the exception of Platygra daedalea 

which was observed to have multiple associations: Cladocopium (65%), Durusdinium (32%) and 

Symbiodinium (4%; Figure 5.2). On the contrary, most coral colonies in the Seychelles (WIO) and 

Indonesia (CIP) were observed to be associated with more than one Symbiodiniaceae genera 
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depending on the coral host species. In the Seychelles, both Favites pentagona and Pavona cactus 

are associated with solely Cladocopium (100%) whereas the remaining colony hosts co-occurred 

with Cladocopium and Durusdinium (Figure 5.2). In Indonesia, F. pentagona retains a similar 

pattern of single association along with Porites lutea (Cladocopium; 100%), whereas the remaining 

colonies had co-occurrences of Cladocopium and Durusdinium (Figure 5.2). Interestingly, in the 

Seychelles, Durusdinium is more dominant (81%) in the coral host Acropora (A. muricata and A. 

gemmifera) whilst Cladocopium (19%) is much lower in abundance. However, in Indonesia, the 

opposite is observed with Cladocopium (99.98%) being the dominant endosymbiont in the coral 

host A. muricata whilst Durusdinium is observed to be in limited abundance (0.02%); A. gemmifera 

is associated with only Cladocopium (100%; Figure 5.2). In addition, the genus Pocilliopora 

associated with Cladocopium and Durusdinium (Figure 5.2). Symbiodinium was only detected in 

Bahrain (relative abundance = 0.2%) and in one coral host species (P. daedalea) and was absent in 

other host species, whether in Bahrain or other regions. Unfortunately, samples could not be 

acquired from the Seychelles and Indonesia for this species; hence no comparisons are made (Figure 

5.2).  
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Figure 5.2. The relative abundance (>0.1% of total community) of ITS2 types of 

Symbiodiniaceae genera (clades) within each coral genus (host) at sites within Bahrain 

(Arabian Gulf), Seychelles (Western Indian Ocean) and Indonesia (Central Indo-Pacific). 

Individual colonies were sampled in both 2017 and 2018 for Bahrain and the Seychelles whilst 

Indonesian colonies were sampled in 2017 only. 

In Bahrain, ITS2 type richness was observed to be highest in P. lutea and P. daedalea (Figure 5.3a). 

Shannon’s (H’) and Simpson’s (1-D) diversity indices were noted to be highest in P. lutea (H’ = 1.2; 

1-D = 0.7) followed by P. daedalea (H’ = 1.1; 1-D = 0.6), whilst only one ITS2 type was detected in 

D. speciosa and Tubinaria peltata (Figure 5.3b). In the Seychelles, P. lutea, D. speciosa and 

Acropora (A. muricata and A. gemmifera) had the richest ITS2 types, with Indonesia following a 

similar trend with D. speciosa, P. lutea and A. muricata acting as a hub for richness (Figure 5.3a). In 

the Seychelles, A. muricata had the highest diversity (H’ = 1.3; 1-D = 0.7), followed by D. speciosa 

(H’ = 1.2; 1-D = 0.6; Figure 5.3b). Acropora gemmifera was observed to host half the diversity (H’ 

= 0.6; 1-D = 0.3) of A. muricata, despite belonging to the same genus; whilst F. pentagona and P. 

cactus only hosted one ITS2 type (Figure 5.3b). In Indonesia P. lutea had the highest diversity (H’ = 
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1.2; 1-D = 0.7), followed by A. muricata (H’ = 0.8; 1-D = 0.4), whilst the least diversity was 

detected in F. pentagona (H’ = 0.1; 1-D = 0.1; Figure 5.3b). 

 

Out of the three bioregions, P. lutea in the Seychelles was observed to host half the diversity of 

ITS2 types than P. lutea in Indonesia and Bahrain (Figure 5.3b). Similar to the pattern noted 

previously with diversity indices in the Acropora species, the diversity of ITS2 types in A. muricata 

in both the Seychelles and Indonesia are 50% higher than in A. gemmifera, despite belonging to the 

same genus (Figure 5.3b). In addition, ITS2 types are highly diverse in the host coral D. speciosa in 

the Seychelles, whereas, in Bahrain, no diversity was observed, and in Indonesia the diversity of the 

ITS2 types were approximately 40% lower than that in the Seychelles (Figure 5.3b). Lastly, the 

ITS2 types hosted in P. verrucosa (H’ = 0.9; 1-D = 0.5) were 60% more diverse than P. damicornis 

(H’ = 0.3; 1-D = 0.2) in Indonesia (Figure 5.3b). In general, no significant variation in the diversity 

of ITS types was observed across bioregions (ANOVA: F 2,17 = 0.02, p = 0.98) or coral host species 

(ANOVA = F 10, 17 = 1.67, p=0.26).  
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Figure 5.3. (a) Richness of coral associated-Symbiodiniaceae ITS2 types across all sites in 

Bahrain, Seychelles and Indonesia. (b) Shannon’s Diversity Index (H’) of coral associated-

Symbiodiniaceae ITS2 types across all sites (NA = no samples acquired from respective sites). 

Individual colonies were sampled in both 2017 and 2018 for Bahrain and the Seychelles whilst 

Indonesian coral colonies were sampled in 2017 only.   
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5.3.2 | Community Composition and Biogeographical Patterns of Symbiodiniaceae  

Overall, 50 different Symbiodiniaceae ITS2 types were identified and associated with eleven coral 

host species in the three selected bioregions. Cladocopium (clade C) dominated all the associations 

in Bahrain, Seychelles, and Indonesia. The abundance of ITS2 types varied amongst host species 

and sites where the maximum number of associations in a host species was observed to be 9 (e.g. P. 

lutea in the Seychelles) and the lowest was 1 (e.g. D. speciosa in Bahrain; Figure 5.4). It is 

important to note that many of the associations detected were infrequent, occurring once or twice 

within a host; hence, it is only possible to see the more abundant ITS2 types in Figure 5.4.  

In Bahrain, site-specific unique associations of ITS2 type C3-Gulf (Cladocopium thermophilum) 

were found in all coral hosts that exist in this thermal extreme bioregion (Figure 5.4). This 

association with ITS2 type C3-Gulf is influenced by thermal regime, individual site, and latitudinal 

transect (Figure 5.6a; Table 5.5). In total, 15 ITS2 types (the lowest in abundance amongst the three 

bioregions) make up the community composition of Symbiodiniaceae associations in Bahrain, based 

on the sampled coral hosts; with P. lutea hosting the most abundant assocations (7 out of 15), 

followed by P. daedalea (6 out of 15), and C. microphtalma (4 out of 15; Figure 5.4). Both D. 

speciosa and T. peltata hosted only 1 ITS2 type. Overall, the community in Bahrain is 

predominantly made up of the C3-Gulf (Cladocopium thermophilum) type followed by C15, D1 

(Durusdinium glynnii), and D5.  

Since Indonesia is located in the coral triangle, epicenter of marine biodiversity, it is unsurprising 

that it also harbours the most diverse community composition of Symbiodiniaceae ITS2 types (19 

types) amongst the three study bioregions with both A. muricata and D. speciosa hosting the most 

abundant number of ITS2 types (n=6). Differences in community composition between both 
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Acropora species were also noted whereby A. gemmifera was observed to have a community 

composition that is low in species abundance, being associated with only two ITS2 types belonging 

to the Cladocopium group (Figure 5.4).  

This pattern where A. gemmifera associates with lower species abundance than A. muricata is also 

observed in the Seychelles; in addition, the community composition of Symbiodiniaceae ITS2 types 

is also diverse and abundant in the Seychelles with an overall total of 18 ITS2 types associated 

across sampled host species. Porites lutea and D. speciosa have rich and abundant community 

compositions with 9 ITS2 type assocations with both Cladocopium and Durusdinium, making the 

community richer in abundance than that observed in Indonesia (Figure 5.4). In addition, D. 

speciosa was noted to host the unique ITS2 type C3-Gulf despite its low contribution (0.1%) 

amongst its nine ITS2 type symbionts (S4.2). Nevertheless, communities within host specific corals 

such as P. cactus and F. pentagona are observed to associate with only one ITS2 type (Figure 5.4).  

Overall, there seems to be a shift to lower diversity of ITS2 types (e.g. in P. lutea and D. speciosa) 

from sites with lower thermal regimes towards high thermal extremes (Figure 5.4). In Indonesia, 

community composition is dominated by C15, C21, C3 and D4 whilst the Seychelles is dominated 

by C3, C1 and C15 with notable contribution from D1 (Durusdinium glynnii; Figure 5.4; S4.2). 

Overall, coral host species is observed to be a strong driver of Symbiodiniaceae communities 

(Figure 5.6), however, other drivers with significant roles include thermal regime and latitudinal 

transects (Table 5.5). Moreover, some coral species, for example, P. lutea in the Seychelles and 

Indonesia is noted to have very different ITS types which suggests that bioregions/sites is also a 

potential strong driver since there is minimal difference between these two bioregion’s thermal 

regimes and latitudinal position. In comparison to other Symbiodiniaceae genera, diversity in the 

genus Cladocopium is noted to be large (Figure 5.5), despite the many unidentified genotypes, 
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which infers that there are more new Symbiodiniaceae species than currently described in 

LaJeunesse et al. (2018). 

 

Figure 5.4. The relative abundance of ITS2 types within each coral genus (host) at sites within 

the three bioregions. Individual colonies were sampled in both 2017 and 2018 for Bahrain and 

the Seychelles whilst Indonesian colonies were sampled in 2017 only.  
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Figure 5.5. Principal coordinate analysis (PCA) of Symbiodiniaceae ITS2 profiles across bioregions: (a) 

Cladocopium (clade C); (b) Durusdinium (clade D). Percentages on each axis indicate the amount of 

variation explained by each axis (UniFrac distance matrix).  

 

Figure 5.6. Principal coordinate analysis (PCA) plots of Symbiodiniaceae community composition 

highlighting coral host and bioregions: Bahrain (Arabian Gulf), Seychelles (Western Indian Ocean), 

Indonesia (Central Indo-Pacific); (a) Cladocopium (clade C); (b) Durusdinium (clade D), utilising a 

UniFrac distance matrix; Adonis p values indicate significant results of PERMANOVA tests outlined in 

Table 5.5.   
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Table 5.5. Results of PERMANOVA on PCA of Symbiodiniaceae communities between coral species by 

thermal regime, individual site, and latitudinal transect. Significant p-values (p<0.05) are marked in 

(*), (p<0.001) are marked in (**) and (p<0) are marked in (***). 

Model PERMANOVA p-value 
Cladocopium (clade C) 

Between coral host species F 10,116 = 4127.8, R2 = 0.99, P = 9.999e-05 *** 
Coral host species* thermal regime F 10,116 = 2261.17, R2 = 0.99, P = 0.001 ** 
Coral host species* individual site F 10,116 = 4459.5, R2 = 0.99, P = 0.001 ** 

Coral host species* latitude F 10,116 = 1209.3, R2 = 0.99, P = 0.04* 
Durusdinium (clade D) 

Between coral host species F 6,38  = 478.2, R2 = 0.99, P = 3e-04 *** 
Coral host species* thermal regime F 6,38  = 511.5, R2 = 0.99, P = 0.001 ** 
Coral host species* individual site F 6,38  = 466.1, R2 = 0.99, P = 0.01 * 

Coral host species* latitude F 6,38  = 1009.5, R2 = 0.99, P = 0.0002 *** 
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5.4 | DISCUSSION 

This study investigates the diversity and distribution of coral-Symbiodiniaceae associations of 

different coral host species, bioregions, thermal regimes, and latitudinal gradients using next-

generation sequencing.  

5.4.1 | Symbiodiniaceae Diversity & Abundance Across Bioregions 

Overall, three distinct genera (i.e. Cladocopdium, Durusdinium, and Symbiodinium) of coral-

Symbiodiniaceae associations were found regardless of site. In general, Cladocopdium (clade C) 

was the most dominant whilst Durusdinium (clade D) was observed to co-occur across the three 

bioregions. Prevalence of Cladocopdium is observed to be a common feature of Symbiodiniaceae 

communities in the Arabian Gulf (Ziegler et al., 2017; Howells et al., 2020), Central Indo-Pacific 

(LaJeunesse, 2005; Thomas et al., 2014), and Western Indian Ocean (Gardner et al., 2018; Leveque 

et al., 2019).  

Previous studies have documented the occurrence of Cladocopium goreaui (C1) and ITS2 type C3 

worldwide; both of which are considered to be a generalist type (Lajeunesse et al., 2004; 

Lajeunesse, 2005; Wham et al., 2014; Leveque et al., 2019). Results presented here reflect previous 

studies that record C3 dominance within the bioregions of the site-specific reefs, with reports of a 

dramatic shift in C3 prevalence depending on the reefs’ latitudinal position whereby the usually 

common (on low latitude reefs) C3 was reported to be extremely rare or absent on high-latitude 

reefs (Lajeunesse et al., 2004). The results presented here support this previous observation as they 

indicate a shift from the common C3 generalist genotypes (e.g. C3/C115, C3z/C3-C115, C3/C34-

C115) observed in the Seychelles and/or Indonesia sites to a more specialised differentiated 

monophyletic lineage, referred to as C3-Gulf (Cladocopium thermophilum; Hume et al., 2015) in 
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Bahrain. The ITS2 C3-Gulf type has been reported to increase the host coral’s tolerance to the 

thermal extremes (~36°C) the reefs are exposed to (D’Angelo et al., 2015). Extreme thermal regime 

also explains why all coral host species in Bahrain except P. daedalea were only associated with 

ITS2 C3-Gulf types. Our data is the first to confirm and report the presence of Cladocopium 

thermophilum in Bahrain. In addition, results from this study showcase that the proportion of the 

common generalist Cladocopium (C3) is observed to decrease by 50% in the Seychelles when 

compared to Indonesia. This could be because symbiont representatives from the Cladocopium 

group are considered to be thermally sensitive; Cladocopium is usually the dominant type when 

water temperatures are below the bleaching threshold (Smith et al., 2017). This sensitivity to 

temperature change would also explain the decrease in the proportion of Cladocopium types in the 

Seychelles despite their dominance since water temperatures there experience notably warmer and 

longer episodes, that induce bleaching (DHW=7◦C-weeks in 2016), than in Indonesia (DHW=5◦C-

weeks in 2016). Durusidinum glynnii (D1) was associated with coral host species in Bahrain and the 

Seychelles. Durusidinum symbionts are generally considered stress/thermally tolerant (Stat et al., 

2013); this lineage is observed to contribute notably to the abundance and richness of ITS2 types in 

the Seychelles. Furthermore, Durusidinum trenchii is often associated with recently bleached and/or 

recovering corals (Baker, 2001; Baker et al., 2004) which can be replaced or outcompeted through 

the process of “shuffling” following recovery (Thornhill et al., 2006; Baumann et al., 2018). This 

association in warmer thermal regimes could be a result of the recent site specific bleaching event 

which occurred in the Seychelles in 2016 (Gardner et al., 2018) and is reported in other regions 

(Kemp et al., 2014; Smith et al., 2017). Hosting these stress tolerant symbionts can increase the 

coral’s thermal tolerance by 1.0-2.0°C (Stat & Gates, 2011) when compared to the common 

Cladocopdium generalist (C3 type), which is more thermally sensitive (Berkelmans & Van Oppen, 

2006). However, this enhanced resilience caused by representatives from the Durusidinum type 
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comes at an energetic cost to the coral host, impacting their growth and accretion rate (Baker, 2001; 

LaJeunesse et al., 2009; Pettay et al., 2015).  

Furthermore, the genus Symbiodinium (clade A) was observed to occur in the high latitude sites (i.e. 

Bahrain) which mirrors previous reports that it occurs mostly at higher latitude reefs (Savage et al., 

2002; Baker, 2003; Leveque et al., 2019). Symbiodinium associates are characterized as high 

temperature specialists with high irradiance (LaJeunesse, 2002). Previous studies have demonstrated 

that numerous Symbiodinium associates are tolerant to high light and temperature whilst being 

facilitated by enhanced photo-acclimation and photo-protective pathways (Robison & Warner, 2006; 

Reynolds et al., 2008; Takahashi et al., 2009; Kemp et al., 2014). Therefore, it comes to no surprise 

that this group was detected in P. daedalea (a common thermal stress tolerant coral in the AG; Kirk 

et al., 2018) in Bahrain which, amongst the coral species, had the most diverse and richest symbiont 

association (C = 65%, D = 32% and A = 4%). 

Out of the three bioregions, Indonesia had the richest and most abundant ITS2 types. Located in the 

coral triangle, Indonesia is not only the epicenter of coral diversity, it is also considered the center of 

Symbiodiniaceae ITS2 genotype diversity (LaJeunesse et al., 2012; Chen et al., 2019), hence results 

are in line with previous observations. Indonesian corals host a mixture of Cladocopium types, some 

of which are thermally sensitive generalists (e.g. C3) whilst others are more thermally tolerant (e.g. 

C15; Pochon et al., 2004). Moreover, observations of symbiont types within P. verrucosa and P. 

damicornis in Indonesia support those made by others whereby C1 is the most prevalent ITS2 type 

(Lajeunesse et al., 2004; Yang et al., 2012). Although previous studies reported the detection of C1c 

within Pocillipora sp. in the Pacific, we detected ITS2 C1d type. In addition, it remains unclear as to 

why Symbiodiniaceae assemblages differ in diversity between A. muricata and A. gemmifera despite 

belonging to the same genus and being collected from the same site/bioregion and thermal regime; a 
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suggestion maybe that this is related to heritability and the symbionts were horizontally (acquired 

from the environment) or vertically (passed on maternally) transferred (Quigley et al., 2017). 

Overall, diversity of ITS2 types varied between the same coral host species across bioregions; for 

example P. lutea in the Seychelles was observed to host half the diversity of ITS2 types found in 

Bahrain and Indonesia. This was also noted in D. speciosa, which hosted the highest diversity of 

symbionts in the Seychelles in contrast to Bahrain, which hosted just one ITS2 type; in Indonesia, its 

symbiont community was 40% lower than the Seychelles. This is probably because, although the 

identity of coral host species may contribute immensely towards determining Symbiodiniaceae 

diversity and distribution, previous studies report environmental factors to have a greater influence 

on diversity and distribution (Tonk et al., 2013; Baumann et al., 2018; Wang et al., 2019) which is 

evident in our data lending support to this theory. 

5.4.2 | Community Composition and Biogeographical Patterns of Symbiodiniaceae  

Biogeographical patterns are evident in the distribution and community composition of 

Symbiodiniaceae species worldwide, influenced and driven by the difference in latitude and thermal 

regimes. Overall, a shift is clearly observed in the diversity and abundance of ITS2 types from high 

to low; when comparing symbionts in low latitude/thermal regime reefs (e.g. Indonesia) to high 

latitude/thermal regime reefs (e.g. Bahrain). This pattern supports previous studies on this topic 

(Chen et al., 2019). In addition, Symbiodiniaceae community composition in Bahrain was relatively 

even, with C3-Gulf dominating across all species, whereas in Indonesia and the Seychelles 

compositionally distinct and variable Symbiodiniaceae communities were observed amongst coral 

species. This is likely driven by the difference in thermal regimes and geographical distances. Chen 

et al. (2019) have recently suggested that geographical distance could limit the spread of 
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Symbiodiniaceae species since evidence indicates that they have an in situ life span of 

approximately seven days (Nitschke, 2015). Their short life-span and ability to swim short distances 

(3-10 m/day; Fitt & Trench, 1983), depending on sea currents for their dispersal (Wirshing et al., 

2013; Thornhill et al., 2017; Chen et al., 2019), could offer a hypothesis as to why Symbiodiniaceae 

diversity and richness is lower in higher latitude reefs compared to those in low latitude reefs (Chen 

et al., 2019). These factors (i.e. currents, geographical distance, short-life span) could limit the 

spread of Symbiodiniaceae species from the epicentre of genotype diversity to other bioregions. In 

addition, other limiting factors such as environmental stressors (e.g. extreme thermal regimes and 

high salinity levels in the AG) have also been suggested to limit Symbiodiniaceae diversity and 

distribution (D’Angelo et al., 2015; Ziegler et al., 2017) whilst dictating the symbiont type hosted 

(Smith et al., 2017).  

Symbiodiniaceae community composition in the Seychelles comprises largely of thermally tolerant 

symbionts, despite the prevalence of Cladocopium (thermally sensitive). The thermally tolerant 

Durusdinium symbiont contributes notably to the community composition. In addition, ITS2 type 

C3-Gulf in D. speciosa, was noted to be present despite its low abundance in the community (0.1%). 

This is the first observation (to our knowledge) confirming the presence of this ITS2 type C3-Gulf  

(also referred to as Cladocopium thermophilum) outside the three known niche regions (the AG, the 

Gulf of Oman and the Red Sea; Hume et al., 2016). Suggestions have been made that the Gulf of 

Oman could play a role in facilitating the adaptation of corals in the Indian Ocean to rising 

temperatures in light of a warming planet through providing a potential source of these 

thermotolerant symbionts (D’Angelo et al., 2015). Furthermore, evidence suggests that 

Symbiodiniaceae species composition in Bahrain tends to shift from thermal sensitive ITS2 types 

(e.g. common generalist Cladocopium) to thermally tolerant types (e.g. Durusdinium) as a 
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mechanism to adapt and acclimatise to long term exposure to elevated temperatures (Berkelmans & 

Van Oppen, 2006; Palumbi et al., 2014; Wang et al., 2019). Cladocopium thermophilum is said to 

be cryptically distributed outside its niche areas (the AG, the Gulf of Oman and the Red Sea) since it 

is a member of the highly diverse and ancient Symbiodiniaceae group (Hume et al., 2016). The 

group can be traced back to the Mesozoic Era (~160 mya) which is suspected to be the earliest 

known diversification period of this family (LaJeunesse et al., 2018). The observations made 

regarding the presence of this highly specialised coral symbionts in Bahrain supports previously 

reported phylogeographic evidence which indicated that this symbiont is a member of a sub-

population of an ancestral taxanomic group that is stress-tolerate which harbours high genetic 

diversity that is present at hardly detectable levels outside the AG (Hume et al., 2016). Therefore, 

the findings and observations made across the three bioregions especially the novel detected of C3-

Gulf in the Seychelles suggests that perhaps, hermatypic corals outside the three niche areas 

cryptically harbour specialised stress tolerant symbionts which shall evolve to detectable levels as 

the oceans get warmer worldwide enabling coral reefs to adapt to rising SST. 

5.5 | CONCLUSION 

In conclusion, biogeographical patterns of Symbiodiniaceae species diversity, distribution, and 

community composition are affected by a number of variables including environmental factors, 

thermal regimes, and latitudinal gradients. Our results provide the first analysis of ITS2 types 

present in Bahrain (the world’s hottest reefs) and a novel observation of ITS2 type C3-Gulf in the 

Seychelles. In addition, results from Indonesia indicate that lower latitude reefs with low thermal 

regimes harbour diverse and abundant ITS2 types across species. These observations of diverse and 

abundant ITS2 types in Indonesia support previously reported observations, contributing towards a 
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coherent and in depth understanding of Symbiodiniaceae communities and factors that influence 

them. Overall, this study further supports scientific understanding of coral-Symbiodiniaceae 

associations in light of a rapidly changing climate. 
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6. GENERAL DISCUSSION 

6.1 | SUMMARY OF KEY FINDINGS  

The overall aim of this thesis was to assess reef accretional health and explore Symbiodiniaceae 

diversity of site-specific reefs in Bahrain (Arabian Gulf; AG), the Seychelles (Western Indian 

Ocean; WIO) and Indonesia (Central Indo-Pacific; CIP). In order to begin assessing the accretional 

health of these reefs, it was important to establish and define the environmental conditions that 

inhibit these selected reefs especially when comparing Bahrain in the AG to the other two 

bioregions. When it is stated that reefs in higher latitudes (in this thesis the AG) experience extreme 

thermal stress, the question arises, how extreme is extreme? It is standard practice to report thermal 

stress using specific measures such as DHW1. Since ocean warming is one of the biggest threats to 

coral reefs worldwide, it was necessary to examine and compare the thermal stress history of the 

selected reefs in the three bioregions to quantify these measurements (Chapter 2). To do this, I 

explored the thermal history of these reefs through deriving SST data from the CoRTAD satellite for 

the period 1982-2017 (35 years). Results illustrated that thermal stress anomalies were observed to 

increase over time in all three bioregions whilst confirming that reefs in high latitudes (i.e. the AG) 

experienced high and intense temperature disturbances (mean = ≥4°C-DHW) in comparison to those 

in the lower latitudes (i.e. Seychelles and Indonesia), which experienced low intensity increase in 

temperatures (<4°C-DHW) but at a higher frequency (Figure 6.1). Following this, it was necessary 

to determine the current status and trends of reefs in these bioregions in addition to our site-specific 

reefs. Conducting a systematic review of the available published literature to identify data points 

that report percentage cover of live hard coral between 1985-2018, has allowed the tracking of 

																																																								
1 Degree Heating Week (DHW) is defined as of accumulated daily hotspots over 12 consecutive weeks when the 
thermal stress anomaly is ≥1°C. DHW values of ≥4°C and <8°C-weeks, corresponds to delineation between coral 
bleaching and mortality levels (*unit=°C-weeks). 
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temporal change of primary reef carbonate producers (i.e. hard corals) in reefs across the three 

bioregions. This was an interesting exercise as it strongly highlighted the extent of damage caused 

on these reefs as a consequence of intense thermal stress, which triggers bleaching. Overall trends 

illustrated non-linear fluctuations in coral cover over time with reefs experiencing an increasing 

trend at certain periods followed by declines across all bioregions (Chapter 3). The declines in both 

the AG and the Seychelles can be linked to major bleaching events (i.e. 1998 and 2016) whilst the 

decline in Indonesia can be attributed to anthropogenic impacts. In addition, recovery rates of reefs 

in these regions were estimated at 0.9, 1.2 and 2.0 % per year on reefs in the AG, the Seychelles 

(WIO) and Wakatobi, Indonesia (CIP) respectively. Interestingly, the recovery rate of reefs in 

Indonesia is double the rate of reefs in Bahrain. It is unsurprising though considering that we are 

comparing reefs in the hottest sea on the planet to those living in what is deemed as “optimal” reef 

thermal conditions. Nevertheless, the uniqueness of reefs in the AG is very striking especially when 

we take a closer look at the status and trend in live coral cover on all our site-specific reefs across all 

bioregions. All of our reef sites demonstrate a continuous decline especially when we compare the 

first data point that documents their coral cover to the last one, whether this decline is caused by 

bleaching events or anthropogenic impacts. However, there is one exception that is noteworthy - 

Reef Bul Thamah in Bahrain was able to maintain its coral cover over time despite numerous 

disturbances, thus, revealing a potential future refugia reef due to its high resilience to 

environmental change.  

Now that the basic understanding of the reefs’ history was explored, I proceeded towards assessing 

the accretional health of reefs through quantifying their carbonate budgets utilising the standardised 

ReefBudget methodology (Chapter 4). Initially, the aim was to compare the reef budgets across 

bioregions however, throughout the budget quantification period for each study site, at a closer 
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examination, the data was uncovering very interesting outputs that presented different local reef 

stories. From this, a decision was made to present the carbonate budget chapter as a paper series, as 

it is important for local details not to be lost or overshadowed when global comparisons are made. 

The overall results that present the 2018 reef carbonate budgetary state of these site specific reefs 

indicated that some reefs in the thermal extreme (Bahrain), have either dipped into a negative 

budgetary state (-0.3 ± 0.1 G) or maintained a low positive budgetary state (1.9 ± 0.2 G). 

Interestingly, reefs in the Seychelles had a total net reef carbonate budget of 1.6 G, similar to that of 

Bahraini reefs. On the other hand, Indonesian reefs maintained a positive budgetary state, with a 

total net carbonate production budget ranging between 1.7 ± 0.2 G and 3.3 ± 0.3 G (Figure 6.1). 

These results highlight three main observations: 

- The systematic review illustrated higher coral cover in Indonesia than Bahrain and the 

Seychelles. The percentage cover of primary carbonate producers (i.e. hard corals) 

influences reef budgets. Since coral cover was observed to be higher in general in Indonesia 

than the other two bioregions, it is no surprise that reefs in Indonesia had higher net 

carbonate budgets than Bahrain and the Seychelles. 

- Interestingly, the lower range of the net carbonate budget in Indonesia represents reefs with 

marginal conditions (i.e. turbid), which is comparable to the reefs in Bahrain and the 

Seychelles. This perhaps suggests that reefs experiencing harsher conditions may be able to 

sustain themselves through developing resilience to change. Another observation is that 

these marginal reefs in Indonesia seem to have low bioerosion rates, which could also be a 

contributing factor towards them maintaining a positive budgetary state despite the low 

carbonate production rate. 

- On the other hand, the higher range of the Indonesian net carbonate reef budgets is double 

the reef budget of those in Bahrain and the Seychelles. 
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When we consider that coral growth rates are influenced by their associated symbiont, the above 

observations indicate complex yet strong links between reef accretional health and associated coral-

symbionts. Previous research has demonstrated that thermally tolerant symbionts reduce the growth 

rates of their coral host. Therefore, in an environment such as the AG, which is subjected to 

dramatic swings in temperatures (5-6°C) higher than the majority of reef systems in other parts of 

the globe, the ability of primary carbonate producers (i.e. corals) to survive in these environments 

will depend on a certain trade-off with their symbionts, hence creating a cost-benefit deal. This 

presents the question of whether the association with thermally tolerant symbionts enables long-term 

survival but limits reef development. Currently, there are no published growth rates for corals in the 

AG, with the exception of two species (Platygyra daedalea and Cyphastrea microphthalma; 

Howells et al., 2018). However, due to the nature of the reefs and assuming the hypothesis that 

thermally tolerant symbionts decrease the rate in coral growth; coral growth rates in the AG would 

naturally be lower than other bioregions. This hypothesis would support our results that indicate 

higher reef carbonate budgets on reefs in Indonesia as a consequence of faster coral growth rates 

that results in double the recovery rate of coral cover on these reefs in comparison to those in 

Bahrain. Since measuring coral growth rates in the three bioregions was not feasible as part of this 

thesis, we did take things further by examining the composition and diversity of Symbiodiniaceae 

species across the three bioregions. This was done through next-generation sequencing with results 

including the first reporting of the unique associations with ITS2 type profile (C3-Gulf) of the 

thermo-tolerant species Cladocopium thermophilum in Bahrain, along with a novel observation of 

the presence of this ITS2 type C3-Gulf in the Seychelles. In addition, results showcased that the 

community composition of Symbiodiniaceae in Indonesia was very diverse and was mainly 

associated with symbionts that were generalists or opportunistic such as C1 which is linked to 

enhance growth rates (Little et al., 2004) thereby impacting accretion rates. This contributes to 
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supporting the hypothesis that thermally tolerant symbionts decrease coral growth rates and aid in 

providing an answer to the question, whether certain symbiont associations enable long-term 

survival of reefs but limits their development. However, this gives rise to another question, if 

thermally symbiont association enable long-term survival of these reefs in light of ocean warming, 

but limits their development, how will these reefs keep up in the face of another challenge facing 

reefs – sea level rise (SLR)? 
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Figure 6.1. Summary of Overall Findings 	
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6.2 | LIMITATIONS 

Similar to any other piece of scientific research, this study has faced numerous challenges and 

limitations. For example, tools such as systematic reviews and/or meta-analysis are useful in 

enabling quantitative assessments to estimate the rates of ecological change (in this context, change 

in coral cover) in different habitats. This also allows the detection of temporal and spatial trends that 

track this change. However, results derived from these tools are sensitive to data availability and so 

the accuracy of the calculated rates of change is dependent and influenced by sample size and sites. 

This was apparent during the data collection process as many large gaps between the data points 

were identified within each of the three bioregions. Examples include lack or limited data between 

1987-1999 in the AG and no documented data prior to 2001 in the Wakatobi, Indonesia. 

Nevertheless, it is felt that the calculated rates are a fair representation of what is currently known 

and serves as a preliminary insight to allow for possible projections of the future of these reefs. In 

terms of using remote sensing, the main limitation faced was using data with large spatial resolution 

making it difficult to accurately estimate the site-specific values related to thermal history, this was 

evident with data from the Seychelles. It is important to note that in this study, there might have 

been an over-estimation of coral growth rates, since rates used for the ReefBudget calculation were 

not site specific due to unavailable published literature on coral growth rates in the AG with the 

exception of two species (Platygyra daedalea and Cyphastrea microphthalma). This also applies to 

the ReefBudget calculation of reefs in the Seychelles, and so for the purpose of this study, growth 

rates from different bioregions were used for estimating the carbonate production rates for these two 

regions. Although the Indonesian carbonate budgets were calculated using regional specific rates in 

terms of gross carbonate production, limitations were encountered using the adopted rubble 

assessment method to calculate the erosion rate of bioeroding sponge. Since it was difficult to 
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determine how much of the erosion was done solely by bioeroding sponge without the contribution 

of other bioeroders (e.g. bivalves), this could have lead to an under/overestimation of the actual 

erosion rates. Nevertheless, despite these limitations and challenges, to our knowledge, this is the 

first attempt at quantifying reef carbonate budgets in the AG providing an important baseline for 

future studies. Similar challenges were also encountered in the studies conducted prior to our study, 

which marks the second in both the Seychelles and the Wakatobi, Indonesia. Further challenges 

were encountered in collecting the appropriate replicates of samples for the genetics work as in 

some bioregions our sampling periods were right after the bleaching events. This made acquiring 

samples very difficult due to limited availability of our initial target species (e.g. no Acropora sp. 

was found in Bahrain during the survey periods). Further challenges were faced throughout the 

library preparation phase in the lab, which required intense and frequent troubleshooting. Lastly, 

time constraints during fieldwork meant that the collection of environmental data (e.g. light 

attenuation, sedimentation rates etc.) was very limited and does not reflect the state of the reefs 

during seasonal changes and over a longer period of time. 

6.3 | KEY MESSAGES & FUTURE DIRECTION OF RESEARCH 

This thesis focused on providing the baseline data necessary to understand the current ecological 

state of the site-specific reefs in the three selected bioregions (Figure 6.1). This was done through 

quantifying their reef carbonate budgets, investigating their thermal history and how that linked to 

coral cover change over time resulting in their current status. Latitudinal positions drive thermal 

regimes, which in turn plays a large role in driving reef carbonate budgets and coral symbiont 

communities. As a member of a sub-population of an ancestral taxonomic group that is stress-

tolerant and based on recent evidence (Hume et al., 2016) suggesting that Cladocopium 

thermophilum maybe cryptically distributed outside its niche areas (the AG, the Gulf of Oman and 
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the Red Sea), these specialised stress tolerant symbionts which are currently in levels that are hard to 

detect outside the AG will soon become prevalent as SST continues to rise. It is already known that 

coral symbionts undergo the process of shuffling when the coral encounters stress and expels its 

symbiont during bleaching events. This indicates that perhaps these coral symbionts could adopt 

another method to aid their hosts in adapting to climatic changes through the process of switching 

on their stress tolerant mode from “cryptic to visible/activated”. This train of thought stems from the 

pattern observed in the differences across coral symbiont community composition which witnesses a 

shift from the high diversity but thermally sensitive symbionts in lower thermal regimes to low 

diversity but thermally specialised symbionts in high thermal regimes. It is known that calcification 

rates are impacted when corals host thermo-tolerant species, which is evident when considering the 

reef carbonate budgets of both Bahrain and the Seychelles that were much lower than Indonesia. 

When investigated, their coral symbiont community consisted of a larger composition of stress 

tolerant symbionts than Indonesia, which can be linked to the severe bleaching events experienced 

on those reefs in recent years. Although, carbonate budgets are impacted by bleaching events (mean 

= ≥4°C-DHW) causing shifts in the coral symbiont communities which may impact calcification 

rates, other factors which are part of the reef ecology also influence the carbonate budgets. This 

includes carbonate producers (e.g. corals and CCA) and bioeroder populations (e.g. urchins, 

parrotfish and bioeroding sponges), which are in turn influenced by environmental conditions and 

anthropogenic pressures. For example, if primary carbonate producers (i.e. corals) continue to 

decline due to continuous intense bleaching events but erosion remains low, then this might mean 

that reefs could potentially have an opportunity to maintain themselves. Opportunities include the 

recruitment of juveniles however, if the site experiences heavy sedimentation (coral spats require 

hard substrates to attach to and do not do well in sediment surfaces or soft substrates) or erosion rate 

exceeds carbonate production rate then reefs will continue to experience impacts that hinder 
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accretion disabling them from keeping pace with SLR. In general, within all three bioregions the 

mean coral cover on a regional level was over 10%, which is the threshold for reefs to keep up with 

SLR. If reefs are able to keep their coral cover at or above 10% whilst stress tolerant coral 

symbionts become prevalent at reefs worldwide in light of rising sea temperatures then, reefs may 

have the opportunity to adapt and survive through this era of Anthropocene. I believe that coral reefs 

will evolve in an image that is not familiar to us as they begin to adopt their new structure. Since 

coral reefs date back ~500 million years (Dorf, 1960) and survived the climatic changes witnessed 

across time including the late Cambrian period and the Paleozoic era, their evolutionary traits are 

not to be underestimated. Hence, reefs in Bahrain, which exist in the hottest sea on the planet, 

provide an excellent opportunity to explore the possibility of how coral reefs around the world might 

cope with the climatic changes experienced worldwide. 

Future work should explore modeling carbonate budget rates based on our current findings to 

examine the future of our site-specific reefs under the projected SLR scenarios coupled with the 

predictions of more frequent and intense bleaching events across the three bioregions. These models 

will provide insights as to the future of these reefs and aid reef managers in creating resilient reefs. It 

would also be interesting to continue investigating the genetic aspect of the coral-symbiont 

association expanding the comparison beyond the Symbiodiniaceae communities to the entire coral 

microbiome (which includes bacteria, viruses, fungi). This might provide important outlooks into 

how the AG coral microbiome has adapted to its extreme environment in comparison to the corals in 

other bioregions. Lastly, skeletal growth rates for corals in the AG and the Seychelles must be 

established to be able to provide accurate values for modeling future projections. 
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6.4 | CONCLUDING REMARKS 

To conclude, reefs in the three bioregions show an alarming decreasing trend in coral cover that in 

turn impacts reef accretion rates. Some reefs in the AG and the Seychelles are already dipping into a 

negative eroding state whilst others are maintaining a low positive budgetary state following major 

disturbances. This substantial reduction in reef accretion could result in ecological and economical 

consequences impacting reef ecology and the coastal communities that depend on them for their 

livelihoods. To mitigate these consequences, local monitoring should include periodic assessments 

of reef carbonate budgets to best inform local reef management. Results such as those included in 

this thesis could benefit decision makers through establishing informed policies. All of our study 

sites are within the vicinity of marine protected areas (MPAs) with the exception of Fasht Al Adhm 

in Bahrain. However, a declining trend is seen in all of our site-specific reefs highlighting the need 

to enhance reef resilience through increasing law enforcement in MPAs and regulating fishing 

activities and other anthropogenic impacts. Compromised reef structural frameworks as a 

consequence of declining coral cover and reduced reef accretion has been linked to declines in 

smaller bodied fish species and smaller size classes of larger fish, which has been suggested to cause 

reductions in fish yields in the long-term (Graham, 2014; Rogers et al., 2014). This in turn 

negatively impacts the socio-economic aspects of reefs and associated stakeholders. It is hence 

important to regulate fishing practices within MPAs to ensure the sustainability of the reefs. 

Decision makers can also benefit from utilising data from our research to create models that will aid 

these island nations in planning their adaptation strategies to track SLR that threaten the coasts and 

stability of these islands, along with their associated reef systems that offer protection from natural 

disasters such as storms. However, it is important to acknowledge as voiced by many researchers 

that without substantial reductions in atmospheric carbon emissions, even the best coral reef 
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management strategies will not prevent further coral mortalities. In addition, there is a need to 

recognize the clear difference between local and global stressors on reef sites worldwide to address 

them through embracing a holistic approach in reef conservation and management.  
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S1| EXPLORING THERMAL HISTORY OF A CORAL REEF WITH THE PACKAGE IN R 

Introduction & Rationale 

To date, efforts have been made to describe thermal patterns that induce coral stress and mortality in 

a global and/or regional context using remote sensing data (Purkis & Riegl, 2005; Selig et al., 2010; 

Hoegh-Guldberg et al., 2014; Pramanik, 2014; Claar et al., 2018). However, the process of 

extrapolating, summarising and visualising data is tedious and time consuming. Therefore, there is a 

need to develop tools that can easily aid in this process whilst being time efficient. With this in 

mind, here, we produced an R package called “THE” which provides a suite of functions to retrieve, 

summarise, and visualise the thermal history of coral reefs. This package is useful in coral reef 

conservation and management.  

Software/Package Availability 

The software is freely available through github (https://github.com/brisneve/THE) and is 

implemented in R. The package was written by Brisneve Edullantes (bedullantes@up.edu.ph) and 

reviewed by Reem AlMealla.  

Software Overview 

The THE (Thermal History Exploration) package:  

(1) Retrieves publicly available sea surface temperature (SST) datasets from CORTAD, Coral 

Watch, and Giovanni; 

(2) Calculates thermal history metrics such as climatology (long term monthly mean, minimum, and 

maximum SST; °C), SST Anomaly (SSTA; °C), Thermal Stress Anomaly (TSA; °C), and Degree 

Heating Weeks (DHW, °C-weeks);  

(3) Creates visualization plots that illustrate the thermal history of the chosen site-specific reefs.  
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Conclusion 

In order to develop a better understanding of the effect of climate change, particularly ocean 

warming, on coral bleaching and associated coral mortalities, advance tools are needed to process 

and visualise remotely sensed sea surface data in an efficient manner. To our knowledge, the THE 

package is the first exploration tool of its kind that is dedicated towards tracing the thermal history 

of coral reefs, which is fully implemented in R. Furthermore, the package presented here contributes 

towards the enhancement of coral reef management and conservation in response to the climate 

change.   
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S3| REEF CARBONATE BUDGETS  

S3.1 | SEYCHELLES - QUANTIFYING METHODOLOGY FORTH THE CARBONATE BUDGET 

Quantitative data such as benthic composition, rugosity, carbonate producers and eroders were 

obtained through surveying field transects as outlined in Table S4.1 along each reef site as per the 

standardised methodology for collecting budgetary data ReefBudget (Perry et al., 2012, 2018b). 

Data collected was used to calculate CaCO3 production and erosion rates (kg CaCO3 m-2 y-1 

hereafter expressed as G whilst ± represents the SE of all values stated). It is important to note that 

slight modifications were made to the ReefBudget methodology (in terms of growth rates used, & 

number of replicates (due to time constraints)), which was originally designed for Caribbean reefs 

(Perry et al., 2012) and then developed for the Indo-Pacific reefs (Perry et al., 2018b). Details of 

these modifications are given below along with a brief explanation. Benthic composition was 

measured following the integrated method outlined in Perry et al., (2012 and 2018b) whereby 

benthic cover and surface rugosity data were collected using a modified version of the standard 

linear intercept methodology where benthic cover was recorded along every 1 cm increment of the 

tape. Rugosity was calculated from the total surface distance for each linear 1m of reef.  

Table S3.1. Carbonate budget components and number of replicates at each study site in the 

Seychelles. 

Carbonate Budget 
Component 

Variable* 
Number of 
transects 

Length of transect 
(m) 

Carbonate production rate 

Benthic composition 
assessment 

6 10 

Rugosity 6 10 
Carbonate producers 6 10 

Carbonate erosion rate 

Echinoids (Urchins) 6 10 
Scaridae (Parrotfish) 6 30 
Bioeroding sponges 

(Clionidae) 
6 10 
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Carbonate Producers 

In order to calculate carbonate production rates, primary carbonate producers (coral colonies) 

recorded along the transects were identified to genus level (e.g. Porites spp) with their 

morphological growth form noted and to ensure comparability, growth rates were taken from the 

published literature as listed and used in Januchowski-Hartley et al., (2017) of which a summary is 

listed in Table S4.2. The data was then inserted in datasheets that have been set up with standardized 

ReefBudget equations that automatically calculate the carbonate production rates for each transect. 

Datasheets can be downloaded for use through: 

http://geography.exeter.ac.uk/reefbudget/indopacific/. To quantify secondary producers (e.g. 

crustose coralline algae (CCA)), six PVC pipes measuring 35 cm x 16 cm (length x circumference 

of the pipe) were deployed at each study site (~10m depth) and were retrieved following a one-year 

period as per the ReefBudget methodology (Perry et al., 2012). Prior to retrieval, all pipes were 

photographed underwater, placed in a plastic bag secured with cable ties over the upper part of the 

pipe. Once in the lab, pipes were examined and photographed in detail following which they were 

placed in 10% sodium hypochlorite (bleach) for 72 hours. Once removed from the bleach, the pipes 

were left to dry after which, they were weighed in replicates of three, following which they were 

soaked in 10% HCl for another 36 hours. Once all the calcium carbonate was dissolved, the pipes 

were taken out and weighted for a second time (in replicates of three), enabling a weight per unit 

area to be derived. The weight per unit area value was inserted in the ReefBudget carbonate 

production calculation sheet in the growth rates column thereby automatically included in the 

overall production budget calculation. 
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Table S3.2. Skeletal densities and growth rates / linear extension rate of corals derived from 

the supplementary material of Januchowski-Hartley et al., (2017) (±95%CI). 

Coral Genera / Species Morphology 
Skeletal Density 

(g/cm3) 
Growth rate (cm/yr) 

Acropora spp. branching 1.3 ± 0.2 4.2 ± 1.2 

Galaxea fascicularis encrusting, massive 1.9 ± 0.5 0.9 ± 0.2 

Goniatrea spp. massive 1.7 ±0.2 1.2 ± 0.2 

Diplostrea/Favia spp. encrusting, massive 1.4 ± 0.2 0.6 ± 0.2 

Favites spp. encrusting, massive 1.4 ± 0.2 0.6 ± 0.2 

Leptoseries spp. encrusting 1.7 ± 0.2 1.7 ± 0.2 

Lobophylia spp. massive 1.4 ± 0.3 1.5 ± 0.8 

Montipora spp. encrusting 1.2 ± 0.7 1.6 ± 0.3 

Platygyra spp.  encrusting, massive 1.5 ± 0.5 0.9 ± 0.1 

Pocillopora spp. submassive 1.4 ± 0.1 2.7 ± 0.7 

Porites spp. massive 1.4 ± 0.1 1.2 ± 0.2 

 

Carbonate Eroders 

For calculating carbonate erosion rates, species, density and size class measurements were recorded 

for grazers such as echinoids (n = 6; area = 20 m2 per transect) and Scaridae (n = 6; area = 120 m2 

per transect) along the transect area.  

-  Echinoids: The area surveyed along each of the six transects was 1 m on either side of the 

10 m transect line covering a total of 20 sq m per transect. The number of individuals along 

each transect were counted, identified to species level and recorded in the following size 

class: 0-20 mm, 21-40 mm, 41-60 mm, 61-80 mm, 81-100 mm. Data was then inputted into 

the datasheets downloaded from:	http://geography.exeter.ac.uk/reefbudget/indopacific/ 

-  Scaridae: The area surveyed along each of the three transect was 4 m in width of the 30 m 

transect line covering a total of 120 sq m per transect. The number of individuals 

encountered along each transect were counted, identified to species level and recorded in the 
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following size class: <10 cm, 10-20 cm, 21-30 cm, 31-40 cm and 41-50 cm. Biomass of 

Scaridae was calculated using published species-specific length-weight relationships as per 

the rates outlined in the ReefBudget datasheets which can be downloaded from:	

http://geography.exeter.ac.uk/reefbudget/indopacific/ 

-  Bioeroding sponge: The area surveyed along each of the six transects was 0.5 m width of 

the 10 m transect line covering a total of 10 sq m per transect. The area of individual 

bioeroding sponge colonies with visual papillae were estimated using a transparent sheet 

with a printed 1x1cm grid along the transect, however identification to species level was 

difficult as there is no bio-eroding sponge guide available for the WIO. In order to confirm 

that the sponges recorded were bioeroding, a hammer and chisel were used to verify boring 

activity. Due to the limitation in data availability globally on internal microbioerosion rates 

of coral substrate, for this study the rates were taken as outlined in Perry et al., (2012). Data 

from this study was then inserted into the datasheets, which are available, online for use:	

https://geography.exeter.ac.uk/reefbudget/caribbean/. 

S3.2 | INDONESIA - QUANTIFYING METHODOLOGY FORTH THE CARBONATE BUDGET 

In order to gather quantitative data such as benthic composition, rugosity, carbonate producers and 

eroders to assess calcium carbonate production and erosion on the selected reefs, ReefBudget, a 

census-based methodology was used. It was originally designed for the Caribbean (Perry et al., 

2012) and then developed specifically for Indo-Pacific reefs (Perry et al., 2018b). The data collected 

via transects (Table S4.3) was then used to calculate CaCO3 production and erosion rates (kg CaCO3 

m-2 y-1 hereafter expressed as G whilst ± represents the SE of all values stated) through utilizing a 

series of equations specific for carbonate producers and eroders as outlined and explained in the 

ReefBudget toolkit (Perry et al., 2018b). The ReefBudget methodology for data collection in this 
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study was followed in full with the exception of bioeroding sponge data and that transects were 

recorded at three depths (5, 10 and 15 m – 2 transects at each = 6 transects in total). Details of these 

modifications are given below along with a brief explanation. The modification was necessary in 

this study to ensure that the data was comparable to that collected by Franco, (2014). Benthic 

composition was measured following the integrated method outlined in (Perry et al., 2012, 2018b). 

Benthic cover data was collected using a modified version of the standard linear intercept 

methodology with benthic organisms recorded every 1 cm using video footage of the transect. 

Rugosity was calculated from the total surface distance for each linear 1m of reef using SCUBA and 

a 1.5 m flexi tape. Budget data collected in 2012 used for the purpose of this study, is restricted to 

the budget rates (gross carbonate production, gross carbonate erosion and net carbonate production). 

Data could not be obtained for comparison in terms of primary and secondary carbonate producers 

in addition to densities of major eroders. 
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Table S3.3. Details of carbonate budget components and number of replicates at each study 

site in the Wakatobi, Indonesia. 

Carbonate Budget 

Component 
Variable* 

Number of 

transects 

Length of transect 

(m) 

Carbonate production rate 

Benthic composition 

assessment 
6 10 

Rugosity 6 10 

Carbonate producers 6 10 

Carbonate erosion rate 

Echinoids (Urchins) 6 10 

Scaridae (Parrotfish) 10 30 

Bioeroding sponges 

(Clionidae) 

10 pieces of rubble collected from each 

transect 

 

Carbonate Producers 

In order to calculate carbonate production rates, primary carbonate producers (coral colonies) were 

recorded along the transects at three depths and identified to genus level (e.g., Porites spp.) with 

their morphological growth form noted. The data was then used in datasheets that have been set up 

with standardized Reefbudget equations, which automatically calculate the carbonate production rate 

for each transect. Datasheets can be downloaded for use through:	

http://geography.exeter.ac.uk/reefbudget/indopacific/. To quantify secondary producers (e.g. 

crustose coralline algae (CCA)), six PVC pipes measuring 35 cm x 16 cm (length x circumference 

of the pipe) were deployed at each study site (~10m depth) and were retrieved following a one-year 

period as per the ReefBudget methodology (Perry et al., 2012). Prior to retrieval, all pipes were 

photographed underwater, placed in a plastic bag secured with cable ties over the upper part of the 

pipe. Once in the lab, pipes were examined and photographed in detail following which they were 

placed in 10% sodium hypochlorite (bleach) for 36 hours. Once removed from the bleach, the pipes 

were left to dry after which, they were weighed in replicates of three, then they were soaked in 10% 
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HCl for another 36 hours. Once all the calcium carbonate was dissolved, the pipes were taken out 

and weighted for a second time (in replicates of three), this allowed for a weight per unit area to be 

derived. The weight per unit area value was inserted in the Reefbudget carbonate production 

calculation sheet in the growth rates column thereby automatically included in the overall 

production budget calculation. 

 

Carbonate Eroders 

For calculating carbonate erosion rates, species, density and size class measurements were recorded 

for grazers such as echinoids (n=6; area=20 m2 per transect) and Scaridae (n=10; area= 120 m2 per 

transect) along the transect area.  

-  Echinoids: The area surveyed along each of the six transects was 1 m on either side of the 

10 m transect line covering a total of 20 sq m per transect. The number of individuals along 

each transect were counted, identified to species level and assigned one of the following size 

class: 0-20 mm, 21-40 mm, 41-60 mm, 61-80 mm, 81-100 mm. Data was then inputted into 

the datasheets downloaded from:	http://geography.exeter.ac.uk/reefbudget/indopacific/ 

-  Scaridae: The area surveyed along each of the three transect was 4 m in width of the 30 m 

transect line covering a total of 120 sq m per transect. The number of individuals 

encountered along each transect were counted, identified to species level, assigned a life 

phase (juvenile, initial or terminal phase) and recorded in the following size class: <10 cm, 

10-20 cm, 21-30 cm, 31-40 cm and 41-50 cm. Biomass of parrotfish was calculated using 

published species-specific length-weight relationships as per the rates outlined in the 

ReefBudget datasheets which can be downloaded from:	

http://geography.exeter.ac.uk/reefbudget/indopacific/ 
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-  Bioeroding sponge: Macrobioerosion caused by bioeroding sponge was assessed following 

the same method used by Franco (2014) which is through direct rubble investigation. At each 

of the three depths (5, 10 and 15 m) ten rubble pieces were randomly collected within the 

transect areas. The collected rubble pieces were then cut in half for investigation. Macro-

invertebrates living within one half were removed for identification while the second half 

was photographed and borehole surface areas and percentages were assessed. Scaled images 

were analysed using the Image J tool while the total surface areas (cm2) of boreholes and 

rubble were used to calculate the total volume of carbonate removed (cm3) by macroborers. 

One of the limitations encountered using this rubble assessment method was that it was 

difficult to determine how much of the erosion was done solely by bioeroding sponge 

without the contribution of other bioeroders (e.g. bivalves). This could have lead to an 

overestimation of the actual rates of bio-eroding sponge erosion occurring at the study sites.  

S3.3 | RESULTS OF SECONDARY CARBONATE PRODUCTION RATES  

To quantify secondary carbonate producers (e.g. CCA, bryozoans, foraminifera and serpulids), six 

PVC pipes and six ceramic tiles (Figure S4.1) were deployed for a period of one-year (2017-2018) 

at each study site in Bahrain and Indonesia whereas in the Seychelles, only six PVC pipes were 

deployed. For the purpose of this study, only the results of the PVC pipes were used to ensure 

consistency with the ReefBudget methodology. However, results using both substrates are reported 

from this one-year experiment in Table S3.4.  
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Figure S3.1 Quantification experiment of carbonate production by secondary producers: (a) 

One of the PVC pipes deployed in Indonesia with signs of algal growth and CCA following a one-

month period; (b) One of the tiles deployed in Indonesia with signs of turf algal growth following a 

one-month period; (c) Close up of one of the PVC pipes deployed in Indonesia with CCA 

establishment following a one-month period. 
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Table S3.4. Carbonate Production Rates (kg CaCO3 m-2 y-1 expressed as G) by Secondary 

Carbonate Producers between 2017-2018 at each of the study sites across the three bioregions.  

Site PVC Pipes 
Ceramic Tiles 

(Cryptic side) 

Ceramic Tiles 

(Exposed side) 

Bahrain* 

Fasht Al Adhm 0.03 ± 3.2 0.02 ± 1.5 0.01 ± 0.5 

Reef Bul Thamah 0.01 NA NA 

Seychelles** 

East Bay 0.0001 ± 6.7 NA NA 

Praslin 0.00001 ± 2.7 NA NA 

Indonesia*** 

Ridge 0.1 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 

Sampela 0.03 ± 0.01 0.1 ± 5.7 0.02 ± 0.8 

 
*Bahrain: number of replicates n=6 (pipes) and n=5 (tiles) at 7m in Fasht Al Adhm and n = 1 (pipe) at 10 m, 

the remaining of the pipes and tiles were not found following the one-year period with signs of destructive 

fishing on the reefs that could have caused the tiles and pipes to be displaced. 

**Seychelles: number of replicates n=6 (pipes) at 10m at East Bay and n=6 (pipes) at 10m at Praslin. 

***Indonesia: number of replicates n=7 (pipes) and n=5 (tiles) at 10m in Sampela and n=7 (pipes) and n=7 

(tiles) at 10m in the Ridge. 
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S4 | SYMBIODINIACEAE DNA EXTRACTION PROTOCOL & RELATIVE ABUNDANCE OF ASSOCIATED 

ITS2 TYPES 

S4.1 | QIAGEN DNEASY BLOOD & TISSUE KIT – PROTOCOL METHOD MODIFICATION  

• Add 180 µl of ATL Buffer to a 1.5 ml micro-centrifuge tube. 

• Place coral tissue into the micro-centrifuge tube, grind coral tissue sample in the tube to mix 

with ATL Buffer. 

• Add 30 µl of proteinase K to the sample and vortex. 

• Incubate in thermomixer at 56°C overnight at 400 rpm. 

• Add 4 µl of RNAase A and leave to incubate at room temperature for 2 minutes 

• Add 200 µl of AL Buffer and vortex. 

• Add 200 µl of 100% ethanol, vortex and centrifuge. 

• Pipette mixture into spin column in 2 ml collection tube. Centrifuge at 8000 rpm for 1 min. 

Discard flow through and collection tube. 

• Place spin column into new 2 ml collection tube and add 500 µl of AW1 Buffer. Centrifuge 

at 8000 rpm for 1 minute. Discard flow through and collection tube. 

• Place spin column into new 2ml collection tube and add 500 µl of AW2 Buffer. Centrifuge 

for 3 minutes at 14000 rpm. Discard flow through and collection tube. 

• Transfer spin column to new 1.5 / 2 ml micro-centrifuge tube. 

• Elute the DNA by adding 70 µl AE Buffer to center of spin column membrane, incubate for 

5 mins at room temperature then centrifuge for 1 minute at 8000 rpm. 

• Pipette solution from the micro-centrifuge tube back into spin column, incubate for 5 mins at 

room temperature then centrifuge for 1 minute at 8000 rpm. 

• Discard of filter top and spin column. 

• DNA is now in the bottom of the 1.5 µl micro-centrifuge tube ready for use.  
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S4.2 | RELATIVE ABUNDANCE OF ITS2 TYPE PROFILES IN EACH CORAL HOST SPECIES AND 

BIOREGION 

Table S4.2. Relative abundance of ITS2 type profiles in each coral host species and bioregion. Row in red 

highlights the novel observation of C3-Gulf in the Seychelles. 

Species ITS2 Type Relative abundance (%) 

Bahrain (high latitude & thermal regime) 

Cyphastrea microphtalma 

C15h-C15k-C15q-C15p 0.7 

C3-C3bs-C3gulf-C3ef-C3c 82.15 

C3-C3gulf-C3c-C3aj 1.91 

C3/C3c-C3gulf 15.21 

Dipsastraea speciosa C3/C3c-C3gulf 100 

Platygra daedalea 

A1 3.63 

C3-C3u-C3gulf 56.1 

C3/C3c-C3gulf 7.4 

C3by 1.1 

D1-D2.2-D1m 0.2 

D5-D5a-D4-D5e-D4b-D4a 31.6 

Porites lutea 

C15 1.7 

C3-C3gulf-C3ar-C3as 29.8 

C3-C3gulf-C3c-C3ed 0.3 

C3/C3c-C3gulf 0.4 

C3/C3gulf 0.2 

C40f 0.6 

C17 28.9 

Tubinaria peltata C3-C3bs-C3gulf-C3ef-C3c	 100 

Seychelles (mid latitude & moderate thermal regime) 

Acropora gemmifera  

C15 0.03 

C1d/C1-C42.2-C1b-C3cg-C45c-
C115k 

11.4 

C3z/C3-C115 5.6 

D1-D2.2-D1m 82.9 

Acropora muricata 

C3/C115/C3u-C115a-C115e-
C21ab 

0.9 

C3z-C3-C3.10-C3an-C115-C3bq 16.9 

C3z/C3-C115 1.5 
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D1-D2.2-D1m 43.6 

D1-D2.2-D4-D1m-D1c 28.6 

D1-D4-D4c-D1c-D2 8.5 

Dipsastraea speciosa 

C1-C1c-C1b-C1al-C42.2 1.7 

C1/C1c 0.03 

C1/C1c-C1b 0.2 

C15-C15dl 1.8 

C3/C115/C3u-C115a-C115e-
C21ab 

70 

C3/C3gulf 0.1 

C3/C3u-C115 4.3 

D1-D2.2-D1m 9 

D1-D4-D4c-D1c-D2 21.8 

Favites pentagona C1b/C3-C1u 100 

Pavona cactus C1b/C3-C1u 100 

Porites lutea 

C15 3.8 

C15-C15ad-C15ai 86.2 

C15-C15az-C15m 0.2 

C15-C15dl 0.3 

C15/C116 8.4 

C15/C15h/C116 0.2 

C3z 0.3 

C3z/C3-C115 0.6 

D4r 0.2 

Indonesia (low latitude & thermal regime) 

Acropora gemmifera 
C21-C21ag-C3-C21af 11.3 

C40-C3-C115 88.7 

Acropora muricata 

C15-C15l-C15n-C15bb-C15.8 2.7 

C21 9.1 

C21-C21ag-C3-C21af 74.3 

C3 0.2 

C40-C3-C115 13.6 

D1/D4-D4c-D4f 0.02 

Dipsastraea speciosa 

C21 2.6 

C21-C21ag-C3-C21af 10.8 

C3/C115/C3u-C115a-C115e-
C21ab 

2.9 
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C40-C3-C115 83.2 

D1-D4-D4c-D4f-D3b-D1c 0.4 

D1/D4/D4c 0.07 

Favites pentagona C1/C42.2/C1b 2.8 

C40-C3-C115 97.2 

Pocilliopora damicornis 

C1d/C1-C42.2-C1b-C3cg-C45c-
C115k 

92 

C40/C3 4.1 

D1/D2d 3.9 

Pocillopora verrucosa 

C15h 0.9 

C1d/C1-C42.2-C1b-C3cg-C45c-
C115k 

64.9 

C42.2/C1-C1b-C1au 13.8 

D1/D2d 20.5 

Porites lutea 

C116a 0.7 

C15-C15bn-C15by 8.8 

C15-C15by-C15ai 50.4 

C15-C15l-C15n-C15bb-C15.8 13.6 

C15h/C15 26.5 
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