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clinical predictive modelling 
of post‑surgical recovery 
in individuals with cervical 
radiculopathy: a machine learning 
approach
Bernard X. W. Liew1*, Anneli peolsson2, David Rugamer3,4, Johanna Wibault2,5, 
Hakan Löfgren6,7, Asa Dedering8,9, peter Zsigmond10 & Deborah falla11

prognostic models play an important role in the clinical management of cervical radiculopathy (cR). 
no study has compared the performance of modern machine learning techniques, against more 
traditional stepwise regression techniques, when developing prognostic models in individuals with 
CR. We analysed a prospective cohort dataset of 201 individuals with CR. Four modelling techniques 
(stepwise regression, least absolute shrinkage and selection operator [LASSo], boosting, and 
multivariate adaptive regression splines [MuARS]) were each used to form a prognostic model for each 
of four outcomes obtained at a 12 month follow-up (disability—neck disability index [NDI]), quality 
of life (EQ5D), present neck pain intensity, and present arm pain intensity). For all four outcomes, 
the differences in mean performance between all four models were small (difference of NDI < 1 
point; EQ5D < 0.1 point; neck and arm pain < 2 points). Given that the predictive accuracy of all four 
modelling methods were clinically similar, the optimal modelling method may be selected based on 
the parsimony of predictors. Some of the most parsimonious models were achieved using MuARS, a 
non‑linear technique. Modern machine learning methods may be used to probe relationships along 
different regions of the predictor space.

Cervical radiculopathy (CR) is a prevalent disorder, and together with neck pain, ranks fourth in the burden 
of disease within the United  States1,2. The natural history of CR is typically  favourable2, and many patients can 
be initially treated  conservatively3. However, those who fail to improve may be managed  surgically4. Clinical 
prediction of outcomes in CR is paramount to facilitating optimal clinical decision making, managing patient 
expectations, and prioritising clinical efforts to individuals most at risk of poor  recovery5.

Prognostic models play an important role not only in the clinical prediction of future health outcomes, but 
also identifying the most influential predictors that could inform either clinical management or lead to the 
development of novel therapeutic  interventions6. Compared to other musculoskeletal disorders such as low 
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back pain (LBP) and idiopathic neck pain (NP)7–9, there is comparatively fewer prognostic studies in the area of 
 CR10,11. Current prognostic studies in CR have focused largely either on self-reported  predictors11,12, or on objec-
tive physical  measures13. Developing a prognostic model with both self-reported and physical measures could 
easily result in a model where the number of predictors exceed sample size and in this case, the model cannot be 
estimated with traditional fitting methods (e.g. maximum likelihood for simple regression) without additional 
penalisation as the corresponding algorithm for parameter estimation suffers from identifiability issues.

A typical statistical modelling strategy used when there are a large numbers of predictors is to first reduce the 
predictor subspace by conducting multiple univariate analysis, than enter the remaining predictors into a stepwise 
regression  procedure14. There have been strong arguments against the traditional use of p-values in stepwise 
regression as a predictor selection technique. First, the regression coefficients are biased high in absolute value 
after model  selection15. Second, the resulting p-values are based on invalid distribution assumptions and may 
yield overoptimistic prediction  results15. Biased regression coefficients will result in the ensuing model having 
variable predictive performances when applied to different datasets.

Ideally, statistical methods that simultaneously perform predictor selection and penalized model fitting 
should be used when developing prognostic models with high numbers of predictors – such as the least absolute 
shrinkage and selection operator (LASSO)16,  boosting17, and multivariate adaptive regression splines (MuARS)18. 
Increasingly, researchers are turning towards such machine learning techniques with built-in predictor selection 
functionality for developing accurate and parsimonious models (i.e. as few predictors as possible to achieve the 
best predictive accuracy)19–21. However, machine learning techniques for prognostic modelling has not been 
routinely used thus far in musculoskeletal pain research including CR. Whether more advance machine learn-
ing techniques offer superior performance over traditional statistical methods in the prediction of outcomes in 
individuals with CR is therefore unknown.

The primary aim of the present study is to compare the overall accuracy and the variability of prediction 
performance when developing parsimonious prognostic models of long-term recovery in individuals with CR 
across four domains of health: neck pain intensity, arm pain intensity, disability, and quality of life. The primary 
hypothesis was that traditional stepwise regression would result in the least accurate and greatest variability in 
predictive performance compared to techniques which perform automatic predictor selection (LASSO, boost-
ing, and MuARS). The secondary aim of the study was to identify the most important predictors (i.e. predictors 
retained after variable selection) of recovery in individuals with CR post-surgery across the four mentioned 
health domains.

Results
Descriptive characteristics of participants with complete data, included participants with missing data, and 
excluded participants with missing data are included in Table 1.

The difference in mean accuracy of performance between models for the outcomes of neck disability index 
(NDI) (F = 5.371, p = 0.001), EuroQol five dimensions self-report (EQ5D) (F = 35.488, p < 0.001), and neck pain 

Table 1.  Participant and pain characteristics of study cohort.. Complete individuals with complete data, 
Missing_exclude individuals with missing data and excluded from analysis, Missing_include individuals with 
missing data and included in analysis, NDI neck disability index, Vas_neck(arm)_now_12m current neck (arm) 
pain intensity at 12mth follow up, Vas_neck(arm)_now baseline current neck (arm) pain intensity at baseline.

Variables Complete (n = 71) Missing_exclude (n = 8) Missing_include (n = 122) Total (n = 201) P value

Group 0.787

Standard 33 (46.5%) 4 (50.0%) 63 (51.6%) 100 (49.8%)

Structured 38 (53.5%) 4 (50.0%) 59 (48.4%) 101 (50.2%)

Sex 0.570

Male 37 (52.1%) 5 (71.4%) 61 (50.8%) 103 (52.0%)

Female 34 (47.9%) 2 (28.6%) 59 (49.2%) 95 (48.0%)

Age (years) 0.035

Mean (SD) 51.986 (8.379) 48.750 (8.908) 48.779 (8.261) 49.910 (8.426)

NDI_12m 0.401

Mean (SD) 11.296 (8.561) 6.571 (5.062) 11.095 (9.427) 10.972 (8.839)

Vas_neck_now_12m 0.304

Mean (SD) 22.775 (24.282) 9.286 (9.268) 19.078 (24.542) 20.444 (23.984)

Vas_arm_now_12m 0.348

Mean (SD) 22.254 (28.203) 7.625 (15.352) 20.525 (26.442) 20.664 (26.931)

Vas_neck_now baseline 0.259

Mean (SD) 57.873 (22.601) 68.125 (25.284) 54.650 (25.275) 56.367 (24.384)

Vas_arm_now baseline 0.407

Mean (SD) 50.662 (25.879) 63.375 (34.727) 49.456 (29.344) 50.477 (28.328)

NDI baseline 0.469

Mean (SD) 19.887 (6.898) 23.375 (10.141) 20.730 (8.541) 20.537 (8.055)
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intensity (F = 22.36, p < 0.001) were significant (Fig. 1). For the outcome NDI, stepwise regression was the most 
accurate technique compared to least absolute shrinkage and selection operator regression (LASSO) (p = 0.028), 
boosting (p = 0.008), and multivariate adaptive regression splines (MuARS) (p = 0.002). For EQ5D, stepwise 
regression was the most accurate compared to LASSO (p = 0.001) and boosting (p = 0.042); whilst MuARS was the 
least accurate compared to stepwise regression (p < 0.001), LASSO (p < 0.001), and boosting (p < 0.001). For neck 
pain intensity, stepwise regression was the most accurate technique compared to LASSO (p < 0.001), boosting 
(p < 0.001), and MuARS (p < 0.001); whilst MuARS was also significantly less accurate than boosting (p = 0.04). 
For all four outcomes, the differences in mean performance between all four models were small (difference of 
NDI < 1 point; EQ5D < 0.1 point; neck and arm pain intensity < 2 points).

The difference in variability of performance between models for the outcomes of EQ5D (F = 5.651, p = 0.001), 
neck pain intensity (F = 8.575, p < 0.001), and arm pain intensity (F = 33.961, p < 0.001) were significant (Fig. 1). 
For the outcome EQ5D, stepwise regression was the least variable technique compared to boosting (p = 0.036) 
and MuARS (p = 0.001). For neck pain intensity, MuARS was the most variable technique compared to stepwise 
regression (p < 0.001), LASSO (p = 0.001) and boosting (p = 0.006). For arm pain intensity, stepwise regression 
was the most variable technique compared to LASSO (p < 0.001), boosting (p < 0.001) and MuARS (p < 0.001).

The coefficients of the best model for each outcome are presented in Table 2; with the remaining models 
included in the supplementary material (Supplementary material 1). For NDI at 12 months, baseline NDI was 
a common predictor selected across all four models. Given that the MuARS model is a non-linear method, the 
predictive influence of baseline NDI on NDI at 12 months only occurred if the baseline values were > 9. If baseline 
values of NDI were ≤ 9 the regression coefficients were zero. For EQ-5D at 12 months, baseline somatic percep-
tion (MSPQ) was a common predictor across all four models. For the MuARS model, the predictive influence 
of baseline MSPQ on EQ5D at  12th months only occurred if the baseline value was > 26.

For neck pain intensity at 12th months, baseline NDI was selected across all models. For the MuARS model, 
the predictive influence of baseline cervical right axial rotation range of motion (AROM_RR), cervical neck 
extension range of motion (AROM_E), and NDI occurred if the respective baseline values were < 54, > 36, 
and > 14, respectively. The predictors of AROM_R and AROM_E interacted with the Romberg test, whilst NDI 
interacted with right triceps reflex. For arm pain intensity at 12 months, the right C6 light touch test was a com-
mon predictor across all four models.

Figure 1.  Accuracy and variability of predictive performance. RMSE root mean squared error, NDI neck 
disability index, MuARS multivariate adaptive regression spline, lm linear regression, LASSO least absolute 
shrinkage and selection operator.
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Discussion
This study aimed to develop prognostic models of recovery in individuals with CR across the outcomes of dis-
ability, quality of life, neck pain intensity, and arm pain intensity measured 12 months post-surgery. Our primary 
hypothesis was partially supported—stepwise regression was the least variable predictive technique presently 
investigated for the outcome of quality of life at  12th months, but the same technique was also the most variable 
technique for the outcome of arm pain intensity. Importantly, differences in predictive performance across all 
techniques are likely to be clinically insignificant, based on published clinically meaningful  differences22. The 
secondary finding of the present study was that baseline NDI was a common predictor for the outcomes of NDI 
and neck pain intensity at 12 months whereas somatic awareness was a predictor of quality of life and the right 
C6 light touch test was a predictor of arm pain intensity.

The novelty of the presently applied methods warrants a discussion of the rationale behind the study’s 
approach. A predictive model can be developed using theory-driven (i.e. classical hypothesis testing) or data-
driven (e.g. machine learning)  methods23. Theory-driven methods fit a model based on a theory (assumption) 
of a probability distribution of an outcome that is dependent on a controlled set of fixed  predictors23,24. In data-
driven methods, the predictors are not fixed but are tuned by the outcome to maximize the predictive accuracy 
of the  model23; the predictors are bound to (potentially complex) probability distributions. The present study did 
not perform statistical inference with the regression coefficients, given that most classical inference techniques 
do not account for the probabilistic nature of both the predictors and outcome, inherent in machine learning 
 methods24. Even statistical inference after stepwise regression methods, has been acknowledged to be an invalid 
 procedure25, justifying the exclusion of its use presently. In defence, the primary aim of the present study was to 
develop the most accurate predictive model (i.e. prognostic model  research6), rather than infer the population 
probability distribution of the outcome given a predictor.

The present study used multiple statistical methods to develop multiple prognostic models, rather than a 
single method which is commonly used in most prognostic  studies11–13,26. An issue with defining a single model 
is the assumption that it is true or at least optimal in some  sense27. It is common practice when using machine 
learning to use multiple  methods21,28, and either use the single best model, or combine multiple models into a 
“meta” model. The latter approach reduces the bias and variability in the performance a single model might have, 
and combines different effects of the predictors found by different  methods29,30. If a statistical model represents 
a snapshot of an “expert” system, the importance of a predictor would be greater if selected by multiple models 
than a single model.

The performance of our models was comparable to previous machine learning prediction models developed 
in LBP (root mean squared error (RMSE)pain = 20–25 /100 points;  RMSE%disability = 17–20%)31. Given that the 
predictive accuracy of all four modelling methods were clinically similar, the optimal modelling method may 

Table 2.  Coefficients (in original units) of the selected predictors of the most accurate models for each 
outcome. Reg regression, LASSO least absolute shrinkage and selection operator, Coef coefficient, NDI 
neck disability index, C6(C5)_touch_r.1 C6(C5) level light touch on right normal, C8(C7)_pin_r.1 C8(7) 
level pinprick on right normal, Reflex_ach (triceps)_r.1 Achilles (triceps brachii) muscle reflex on right 
normal, MSPQ modified somatic perception questionnaire, SES self efficacy scale, AROM_F(E/RR) cervical 
flexion(extension/right rotation) active range of motion, Sx.2 posterior cervical foraminotomy (PCF) with or 
without laminectomy, Strn_fingabd_r.1 strength of finger abductors on right normal, Vas_arm_worst worst 
arm pain intensity, EQ5D quality of life, HRA_R head reposition accuracy from right to neutral, Handst_r right 
hand grip strength, CSQ_COP coping strategies questionnaire, coping subscale.

Outcome—NDI Outcome—EQ5D Outcome—Neck pain Outcome—Arm pain

Stepwise reg Stepwise reg Stepwise reg LASSO

Predictor Coef Predictor Coef Predictor Coef Predictor Coef

(Intercept) 19.650 (Intercept) 0.590 (Intercept) 24.710 (Intercept) 30.700

NDI 0.484 MSPQ − 0.008 NDI 0.892 Vas_arm_worst 0.103

C6_touch_r.1 − 3.260 SES 0.002 C7_pin_r.1 − 14.340 NDI 0.245

C8_pin_r.1 − 3.450 AROM_F − 0.004 Reflex_triceps_r.1 7.750 MSPQ 0.062

Reflex_ach_r.1 − 4.340 Sx.2 − 0.120 EQ5D − 3.583

C7_pin_r.1 0.100 AROM_E 0.060

Strn_fingabd_r.1 0.110 AROM_RR − 0.108

HRA_R 0.086

Handst_r − 0.095

Romberg 0.040

Figure 8 0.100

CSQ_COP 1.155

C5_touch_r.1 − 0.860

C6_touch_r.1 − 13.040

C7_pin_r.1 − 0.200
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be selected based on the parsimony of predictors. Some of the most parsimonious models were achieved using 
MuARS, a non-linear technique (see Supplementary material 2). The simplest example of a non-linear predictor 
is the addition of a quadratic term (e.g. y = x + x2 ), with the interpretation being that the relationship between a 
predictor and outcome differs with different values of the former. For the MuARSNDI12m model, the hinge func-
tion “h(ndi -9)” indicated that the predictive relationship of β = 0.587 was present only when baseline NDI > 9. 
Given that a 5–14 points on the NDI scale reflects mild  disability32, the predictive value of NDI only appeared in 
individuals with greater than mild baseline disability. The non-linear relationship between baseline and outcomes 
may not be surprising given that previous studies reported different non-linear rates of recovery in disability 
with different baseline NDI scores in individuals with whiplash associated disorders (WAD)33. To the authors 
knowledge, existing prognostic modelling studies in the musculoskeletal literature have only considered linear 
relationships, which may not accurately reflect for the potential non-linearity of physiological pain  processes34.

The present study found that several local and global neuromuscular indices were predictive of disability, 
such as balance (Romberg), neck flexor and extensor endurance, “figure of 8” timing, cervical ROM, and cervical 
proprioceptive acuity. The present findings were supported by the literature which reported up to one-third of 
post-operative individuals with CR present with deficits in neck muscle strength and endurance at a  12th month 
follow up, compared to healthy  controls35. Previous studies have only reported the following baseline variables 
to be predictors of 12 month disability: pain intensity and psychological  distress12; disability, axial cervical 
ROM, pain intensity, sex, hand grip  strength13; axial cervical ROM and  disability11. Considering the outcome of 
24 months disability, the following predictors were selected in previous studies: worker’s compensation case and 
neurological sensory  function36; pain intensity and cervical sagittal  ROM37; disability, pain intensity, cervical 
sagittal and axial ROM, sex and hand-grip  strength13; sex, and number of operated levels on the cervical  spine26.

Paradoxically, better balance interacted with better cervical ROM, to predict worse neck pain at  12th months 
using MuARS. This was in contrast to prior research which reported greater recovery in individuals with CR 
with better cervical  ROM11,37. Based on the predictor of “h(54-AROM_RR) * h(Romberg- 12)”, a 1 s increase 
in Romberg timing and a 1° increase in right cervical rotation, increased neck pain by 0.127 points, only in 
individuals with poorer balance (< 12 s) but with better right cervical rotation (> 54°). Based on the predictor of 
“h(AROM_E-36) * h(12-Romberg)”, a 1 s increase in Romberg timing and a 1° increase in cervical extension, 
increased neck pain by 0.096 points, only in individuals with better balance (> 12 s) but with poorer cervical 
extension mobility (< 36°).

It is clinically more intuitive that better physical function is related to better prognosis, given that enhanced 
function is the aim of many therapeutic efforts. In the wider musculoskeletal literature, there have been reports 
of paradoxical relationships between physical function and pain, such as: (1) greater spine mobility predicting 
poorer recovery in back  pain38, (2) greater physical activity levels increasing the risk of spinal pain  onset39, and 
(3) greater hip internal rotation mobility, as one factor, increasing the responsiveness to manual therapy in back 
 pain40. The predictors selected in the present study should not be interpreted causally but be restricted to the 
predictive framework. A causal understanding of any biopsychosocial variables with pain, quality of life and 
disability would require another type of statistical approach, such as mediation  analysis41.

The present study has several strengths. Firstly, we included a holistic set of predictors that included physi-
cal, psychological, neurological, demographic variables. Second, we followed best practice guidelines in the 
development, validation, and report of our  models6,42. Of note, we used resampling methods to achieve a more 
conservative estimate of our model performance. Third, the complexity of the presented models is alleviated 
through the provision of the codes and results of the present study, which means that readers can fully replicate 
the findings presently reported. A limitation of the present study is the small sample size relative to the number 
of predictors included, which precluded splitting our data into training and validation sets, the latter for inde-
pendent  validation6. In defence, the present study represents one of the largest prospective clinical investigations 
of individuals with CR, compared to previous  research10,11. A previous simulation study reported that machine 
learning methods are “data hungry” – in that they may need 10 times as many events per predictor to achieve 
stable prediction within the classification  framework43. Training models using low bias (i.e. highly accurate) 
techniques on small datasets, such as random forests, runs the risk of having highly variable predictive perfor-
mance when generalizing to external contexts. Therefore, using methods with a higher bias (i.e. less accurate) 
is a strategy to build more conservative models on small datasets, to reduce potential performance variability. 
Strong regularization based on a penalized estimation as done in the LASSO and boosting, or rigorous variable 
selection, as done by stepwise selection procedures, may help further mitigate performance variability. In the 
present study we have therefore chosen methods that we think allowed for enough flexibility while considering 
the relatively small sample size.

conclusion
Baseline NDI was a common predictor for the outcomes of NDI and neck pain intensity; somatic awareness for 
the outcome of quality of life; and right C6 light touch test for the outcome of arm pain intensity. Although the 
present study did not observe clinically meaningful alterations in predictive accuracy and variability between 
models, given the relatively small ratio of sample size to predictors of the present study, it should not be auto-
matically concluded that there is no role of modern machine learning methods in developing prognostic models. 
Interestingly, some of the most parsimonious models created have inherent non-linear characteristics, which 
supports the use of multiple machine learning methods to probe relationships along different regions of the 
predictor space. Future prognostic research would benefit from the findings of the present study on the more 
important predictors of recovery in CR, and use our methods on large sample sized cohorts to build prognostic 
models which balances accuracy, variability in performance, and model parsimony.
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Methods
Study design. This is a prospective cohort study where the data were collected from a randomized con-
trolled trial, methodological details of which have been previously  reported44–46. All participants provided writ-
ten informed consent, and the regional ethics review board in Linköping (Dnr M126-08) approved this study. 
All methods are reported in accordance with the Transparent Reporting of a multivariable prediction model for 
Individual Prognosis or Diagnosis (TRIPOD)  guideline42.

participants. Participants with CR were recruited from four spinal surgery centres in the south of Sweden, 
if they fulfilled the inclusion criteria: aged 18–70 years old, persistent CR symptoms ≥ 2 months, magnetic reso-
nance imaging results of disc disease commensurate with clinical findings, and unsatisfactory improvement after 
rehabilitation. The exclusion criteria were: cervical fracture or traumatic subluxation, previous neck surgery, 
cervical myelopathy, spinal malignancy, spinal infection, any disorders which precluded safe performance of an 
extensive rehabilitation program, myofascial pain syndromes, persistent severe LBP, diagnosis of a severe psychi-
atric disorder, drug or alcohol addiction, and power command of the Swedish  language46.

interventions. A total of 201 participants (mean [standard deviation (SD)] age = 50.0 [8.4] years, males = 105, 
females = 96) were recruited. Participants were randomly allocated to either a structured or a standard (control) 
rehabilitation group prior to the  operation44–46. The type of surgery received by each participant was individually 
determined by the surgeons at each of the four spinal centres, based on the patient’s clinical  presentation45; 38 
participants received a posterior cervical foraminotomy (PCF) with or without laminectomy, whilst 163 partici-
pants received an anterior cervical discectomy and fusion (ACDF).

Common post‑surgical care (weeks 1 to 6 post‑surgery). All participants followed an identical rehabilitation 
pathway for the first six weeks immediately post-surgery44,45. Management included advice about appropriate 
ergonomics and posture, instructions about shoulder mobility exercises, and movements to avoid during the 
first post-surgical week. Patients returned for a routine visit 6 weeks post operation to the spinal centre with the 
surgeon; and a physiotherapist who instructed patients on neck mobility exercises. In some cases the contact 
with the surgeon at 6 weeks was conducted by a telephone call.

Structured post‑surgical rehabilitation (weeks 7 to 26). Participants were referred to a local primary care physi-
otherapist. Each physiotherapist received a half day training session with the project leader on the rehabilitation 
program. The structured program included a cervical neuromuscular and endurance training component and 
a cognitive-behavioural  component46. Participants visited the physiotherapists once per week between weeks 7 
to 12, and twice per week between weeks 13 to 26. Participants were also advised on the performance of a home 
exercise program. After week 26, participants were discharged and encouraged to continue increasing their 
physical activity levels.

Standard post‑surgical rehabilitation (weeks 7–26). Participants in this group were treated in accordance with 
the Swedish standard post-surgical care of individuals with CR. Briefly, participants were referred to their local 
physiotherapist on an as-needed basis, decided by the patients themselves. Any interventions were pragmatic 
and not designed to rehabilitate known neuromuscular deficits of neck pain disorders.

outcome variables. Four outcomes were used to define recovery—perceived disability  (NDI32), perceived 
quality of life  (EQ5D47), present neck pain intensity, and present arm pain intensity, all obtained at a 12 month 
follow-up. Details of the outcome measures can be found in the supplementary material (Supplementary mate-
rial 2).

potential predictors. Predictors that were considered, included baseline collected demographic details 
(e.g. age), treatment group (structured vs standard rehabilitation), neurological sensory tests (e.g. light touch), 
neurological motor tests (manual muscle testing), neurological reflex tests, special musculoskeletal tests (e.g. 
Spurling’s), neurodynamic tests (upper limb neural tension), whole-body functional tests (e.g. Romberg bal-
ance), cervical neuromuscular assessment (e.g. neck muscle endurance), self-reported pain intensities, disability, 
quality of life, and psychological assessments (e.g. self-efficacy). Details of all the predictors, their original and 
transformed scales can be found in the supplementary material (Supplementary material 2).

Data pre‑processing and missing data handling. The workflow for analyses is illustrated in Fig. 2. 
Four variables, bilateral straight leg raise neurodynamic tests, and bilateral Babinski tests, were excluded as they 
demonstrated near zero variance (i.e. values remained near constant) across all  participants48. Levels within 
categorical variables with relatively few participants were collapsed, such that the transformed levels each had a 
relatively balanced number of participants (see Supplementary material 2).

We performed several analyses to determine the appropriateness of missing value imputation. First, we per-
formed Little’s missing completely at random (MCAR) test, to determine if values were missing (completely) at 
random. Second, we compared the main baseline characteristics of participants with and without missing data, 
to determine if there were any clinically relevant differences between groups. Participants with more than 50% 
missing data were also excluded (n = 8 participants).
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Multiple imputation was performed on all predictor and outcome variables with missing values using the 
Multivariate Imputation by Chained Equations  method49. We used the Random Forest algorithm for imputation 
as it was capable of imputing continuous and categorical variables, with a maximum iteration number of 1000.

prognostic modelling. The codes used for the present study are included in the supplementary material 
(results in compressed file also in Supplementary material 3). A total of 193 participants, 81 predictors, and four 
outcomes were used for modelling. Four modelling techniques were used for each outcome, yielding a total of 
16 models. The following common modelling steps were followed for all approaches (Fig. 1). First, highly col-
linear continuous predictors were removed using a threshold > 0.750. Second, all continuous predictors were 
scaled (demeaned and divided by its standard deviation [SD]) so that variables of different scales could have 
equal opportunity to be included into the model. For each of the four modelling techniques, the following tuning 
procedures were performed:

Two stage stepwise linear regression. First, potential predictors were singularly entered into simple linear regres-
sion  models14. Predictors with a statistically significant relationship with the outcome, set at an alpha of 10%, 
were retained. Second, the retained variables were used in a multiple variable linear regression model. A bidi-
rectional stepwise selection process was applied, where predictors with a p-value > 0.05 was removed, until only 
significant (p < 0.05) predictors  remained14. Significant predictors remaining in this stage are subsequently used 
to build and validate the final linear regression model.

LASSO regression. LASSO regression constitutes a penalized linear model with a shrinkage penalty that 
induces sparsity of predictors in the  model42,51. Due to the L1-penalty used by the LASSO, the effects of predic-
tors can be shrunk to be zero, effectively resulting in predictor selection and thereby also improving prediction 
performance. For a given amount of shrinkage, as determined by the � value, the model can be estimated using 
coordinate descent (see “Algorithms” in Supplementary material 1). The optimal amount of shrinkage induced 
by the algorithm is found via a tenfold cross-validation (CV)51, and this � value is subsequently used to build and 
validate the final LASSO model.

Figure 2.  Predictive modelling workflow. RMSE root mean squared error, MuARS multivariate adaptive 
regression spline, lm linear regression, LASSO least absolute shrinkage and selection operator, MICE 
multivariate imputation by chained equations.
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Model‑based boosting. Model-based boosting uses a component-wise gradient boosting algorithm for model 
fitting (see “Algorithms” in Supplementary material 1)52. The algorithm adds a predictor iteratively to the model 
to “correct” the error made by the prior model. To estimate the optimal number of iterations, a tenfold CV was 
performed. Given its iterative nature, some predictors are never selected, meaning that this method automati-
cally performs predictor selection. The optimal iteration number is subsequently used to build and validate the 
final boosting model.

MuARS. Multivariate adaptive regression splines are semi-parametric extensions of linear models to capture 
non-linear or interaction effects of predictors. It includes non-linearity and interactions by evaluating each 
covariate using basis functions. Three types of basis functions for each covariate are used: constant functions, 
hinge (“h”) functions (piece-wise linear functions on two intervals connected with one knot) and products of 
two or more hinge functions. The model is then built in an iterative manner considering those basis functions for 
each predictor in a forward-pass and then reducing the model in a backward step to avoid overfitting (see “Algo-
rithms” in Supplementary material 1). The selected predictors and associated basis functions were subsequently 
used to build and validate the final MuARS model.

performance validation. For all methods, the optimal hyperparameters (for LASSO and boosting) or the 
optimal set of remaining predictors, were used to build the respective models at the validation stage. Given 
that the outcomes are continuous, an appropriate metric of model performance would be the RMSE, between 
the predicted and observed outcome. For all methods, validation was performed using tenfold CV repeated 50 
 times53. A tenfold CV iteratively splits the training set into 10 approximately equal folds, trains the model on 
9 folds and evaluates the model’s performance (i.e. yielding a RMSE) on the 10th fold. Hence, performing 50 
repeated tenfold CV would yield 50 sets of 10 RMSE values. A repeated tenfold CV reduces validation optimism, 
since a model would perform well on the data it was exactly trained  on42.

Statistical inference. The dependent variables were the mean and standard deviation (SD) of RMSE values 
across a single tenfold validation. Given that 50 repeats were performed, each model produced 50 sets of mean 
and SD values. The independent variable was the four modelling techniques (stepwise regression, LASSO, boost-
ing, MuARS). Simple regression was performed on the independent and dependent variables, with pairwise 
post-hoc inference investigated where appropriate. Significance was determined at a threshold of p < 0.05.

Received: 13 May 2020; Accepted: 18 September 2020

References
 1. Murray, C. J. et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. J. Am. Med. Assoc. 310, 591–608. 

https ://doi.org/10.1001/jama.2013.13805  (2013).
 2. Radhakrishnan, K., Litchy, W. J., O’Fallon, W. M. & Kurland, L. T. Epidemiology of cervical radiculopathy. A population-based 

study from Rochester, Minnesota, 1976 through 1990. Brain 117(Pt 2), 325–335 (1994).
 3. Thoomes, E. J., Scholten-Peeters, W., Koes, B., Falla, D. & Verhagen, A. P. The effectiveness of conservative treatment for patients 

with cervical radiculopathy: a systematic review. Clin. J. Pain 29, 1073–1086. https ://doi.org/10.1097/AJP.0b013 e3182 8441f  (2013).
 4. Bono, C. M. et al. An evidence-based clinical guideline for the diagnosis and treatment of cervical radiculopathy from degenerative 

disorders. Spine J. 11, 64–72. https ://doi.org/10.1016/j.spine e.2010.10.023 (2011).
 5. Hemingway, H. et al. Prognosis research strategy (PROGRESS) 1: a framework for researching clinical outcomes. BMJ 346, e5595. 

https ://doi.org/10.1136/bmj.e5595  (2013).
 6. Steyerberg, E. W. et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLOS Med. 10, e1001381. https ://

doi.org/10.1371/journ al.pmed.10013 81 (2013).
 7. da Costa, M. C. L. et al. The prognosis of acute and persistent low-back pain: a meta-analysis. CMAJ Can. Med. Assoc. J. journal 

de l’Association medicale canadienne 184, E613-624. https ://doi.org/10.1503/cmaj.11127 1 (2012).
 8. da Silva, T. et al. Risk of recurrence of low back pain: a systematic review. J Orthop Sports Phys Ther 47, 305–313. https ://doi.

org/10.2519/jospt .2017.7415 (2017).
 9. Kelly, J., Ritchie, C. & Sterling, M. Clinical prediction rules for prognosis and treatment prescription in neck pain: a systematic 

review. Musculoskelet. Sci. Pract. 27, 155–164. https ://doi.org/10.1016/j.math.2016.10.066 (2017).
 10. Wong, J. J., Cote, P., Quesnele, J. J., Stern, P. J. & Mior, S. A. The course and prognostic factors of symptomatic cervical disc hernia-

tion with radiculopathy: a systematic review of the literature. Spine J. 14, 1781–1789. https ://doi.org/10.1016/j.spine e.2014.02.032 
(2014).

 11. Sleijser-Koehorst, M. L. S. et al. Clinical course and prognostic models for the conservative management of cervical radiculopathy: 
a prospective cohort study. Eur. Spine J. 27, 2710–2719. https ://doi.org/10.1007/s0058 6-018-5777-8 (2018).

 12. Peolsson, A., Vavruch, L. & Öberg, B. Predictive factors for arm pain, neck pain, neck specific disability and health after anterior 
cervical decompression and fusion. Acta Neurochir. 148, 167–173. https ://doi.org/10.1007/s0070 1-005-0660-x (2006).

 13. Peolsson, A. & Peolsson, M. Predictive factors for long-term outcome of anterior cervical decompression and fusion: a multivariate 
data analysis. Eur. Spine J. 17, 406–414. https ://doi.org/10.1007/s0058 6-007-0560-2 (2008).

 14. Chester, R., Jerosch-Herold, C., Lewis, J. & Shepstone, L. Psychological factors are associated with the outcome of physiotherapy 
for people with shoulder pain: a multicentre longitudinal cohort study. BJSM Online 52, 269. https ://doi.org/10.1136/bjspo rts-
2016-09608 4 (2018).

 15. 15Harrell, F. E., Jr. In Regression modeling strategies. With applications to linear models, logistic and ordinal regression, and survival 
analysis. Springer series in statisticsCh. 4, 67 (2015).

 16. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 58, 267–288 (1996).
 17. Friedman, J., Hastie, T. & Tibshirani, R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder 

by the authors). Ann. Statist. 28, 337–407. https ://doi.org/10.1214/aos/10162 18223  (2000).
 18. Friedman, J. H. Multivariate adaptive regression splines. Ann. Stat. 19, 1–67. https ://doi.org/10.1214/aos/11763 47963  (1991).

https://doi.org/10.1001/jama.2013.13805
https://doi.org/10.1097/AJP.0b013e31828441fb
https://doi.org/10.1016/j.spinee.2010.10.023
https://doi.org/10.1136/bmj.e5595
https://doi.org/10.1371/journal.pmed.1001381
https://doi.org/10.1371/journal.pmed.1001381
https://doi.org/10.1503/cmaj.111271
https://doi.org/10.2519/jospt.2017.7415
https://doi.org/10.2519/jospt.2017.7415
https://doi.org/10.1016/j.math.2016.10.066
https://doi.org/10.1016/j.spinee.2014.02.032
https://doi.org/10.1007/s00586-018-5777-8
https://doi.org/10.1007/s00701-005-0660-x
https://doi.org/10.1007/s00586-007-0560-2
https://doi.org/10.1136/bjsports-2016-096084
https://doi.org/10.1136/bjsports-2016-096084
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1176347963


9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16782  | https://doi.org/10.1038/s41598-020-73740-7

www.nature.com/scientificreports/

 19. Sanchez-Pinto, L. N., Venable, L. R., Fahrenbach, J. & Churpek, M. M. Comparison of variable selection methods for clinical 
predictive modeling. Int. J. Med. Inform. 116, 10–17. https ://doi.org/10.1016/j.ijmed inf.2018.05.006 (2018).

 20. Churpek, M. M. et al. Multicenter comparison of machine learning methods and conventional regression for predicting clinical 
deterioration on the wards. Crit. Care Med. 44, 368–374. https ://doi.org/10.1097/CCM.00000 00000 00157 1 (2016).

 21. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M. & Qureshi, N. Can machine-learning improve cardiovascular risk prediction using 
routine clinical data?. PLoS ONE 12, e0174944. https ://doi.org/10.1371/journ al.pone.01749 44 (2017).

 22. Young, I. A., Cleland, J. A., Michener, L. A. & Brown, C. Reliability, construct validity, and responsiveness of the neck disability 
index, patient-specific functional scale, and numeric pain rating scale in patients with cervical radiculopathy. Am. J. Phys. Med. 
Rehabil. 89, 831–839. https ://doi.org/10.1097/PHM.0b013 e3181 ec98e 6 (2010).

 23. Breiman, L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16, 199–231. https ://
doi.org/10.1214/ss/10092 13726  (2001).

 24. Berk, R., Brown, L., Buja, A., Zhang, K. & Zhao, L. Valid post-selection inference. Ann. Stat. 41, 802–837. https ://doi.org/10.1214/12-
AOS10 77 (2013).

 25. Rügamer, D. & Greven, S. Selective inference after likelihood- or test-based model selection in linear models. Stat. Prob. Lett. 140, 
7–12. https ://doi.org/10.1016/j.spl.2018.04.010 (2018).

 26. Peolsson, A., Hedlund, R. & Vavruch, L. Prediction of fusion and importance of radiological variables for the outcome of anterior 
cervical decompression and fusion. Eur. Spine J 13, 229–234. https ://doi.org/10.1007/s0058 6-003-0627-7 (2004).

 27. Buckland, S. T., Burnham, K. P. & Augustin, N. H. Model selection: an integral part of inference. Biometrics 53, 603–618. https ://
doi.org/10.2307/25339 61 (1997).

 28. Zhao, J. et al. Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event predic-
tion. Sci. Rep. 9, 717. https ://doi.org/10.1038/s4159 8-018-36745 -x (2019).

 29. Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140. https ://doi.org/10.1023/A:10180 54314 350 (1996).
 30. Schapire, R. E. The strength of weak learnability. Mach. Learn. 5, 197–227. https ://doi.org/10.1007/BF001 16037  (1990).
 31. Molgaard Nielsen, A. et al. Exploring conceptual preprocessing for developing prognostic models: a case study in low back pain 

patients. J Clin Epidemiol 122, 27–34. https ://doi.org/10.1016/j.jclin epi.2020.02.005 (2020).
 32. Vernon, H. The neck disability index: state-of-the-art, 1991–2008. J. Manip. Physiol. Ther. 31, 491–502. https ://doi.org/10.1016/j.

jmpt.2008.08.006 (2008).
 33. Sterling, M., Hendrikz, J. & Kenardy, J. Compensation claim lodgement and health outcome developmental trajectories following 

whiplash injury: a prospective study. Pain 150, 22–28. https ://doi.org/10.1016/j.pain.2010.02.013 (2010).
 34. Sturgeon, J. A. et al. Nonlinear effects of noxious thermal stimulation and working memory demands on subjective pain percep-

tion. Pain Med. 16, 1301–1310. https ://doi.org/10.1111/pme.12774  (2015).
 35. Peolsson, A., Vavruch, L. & Öberg, B. Disability after anterior decompression and fusion for cervical disc disease. Adv. Physiother. 

4, 111–124. https ://doi.org/10.1080/14038 19023 20387 531 (2002).
 36. Anderson, P. A., Subach, B. R. & Riew, K. D. Predictors of outcome after anterior cervical discectomy and fusion: a multivariate 

analysis. Spine (Phila Pa 1976) 34, 161–166. https ://doi.org/10.1097/BRS.0b013 e3181 9286e a (2009).
 37. Peolsson, A., Hedlund, R., Vavruch, L. & Oberg, B. Predictive factors for the outcome of anterior cervical decompression and 

fusion. Eur. Spine J. 12, 274–280. https ://doi.org/10.1007/s0058 6-003-0530-2 (2003).
 38. Burton, A. K. & Tillotson, K. M. Prediction of the clinical course of low-back trouble using multivariable models. Spine (Phila Pa 

1976) 16, 7–14. https ://doi.org/10.1097/00007 632-19910 1000-00002  (1991).
 39. Overas, C. K. et al. Association between objectively measured physical behaviour and neck- and/or low back pain: a systematic 

review. Eur. J. Pain https ://doi.org/10.1002/ejp.1551 (2020).
 40. Childs, J. D. et al. A clinical prediction rule to identify patients with low back pain most likely to benefit from spinal manipulation: 

a validation study. Ann. Intern. Med. 141, 920–928 (2004).
 41. Lee, H. et al. How does pain lead to disability? A systematic review and meta-analysis of mediation studies in people with back 

and neck pain. Pain 156, 988–997. https ://doi.org/10.1097/j.pain.00000 00000 00014 6 (2015).
 42. Moons, K. G. M. et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): 

explanation and elaboration. Ann. Intern. Med. 162, W1–W73. https ://doi.org/10.7326/m14-0698 (2015).
 43. van der Ploeg, T., Austin, P. C. & Steyerberg, E. W. Modern modelling techniques are data hungry: a simulation study for predicting 

dichotomous endpoints. BMC Med. Res. Methodol. 14, 137–137. https ://doi.org/10.1186/1471-2288-14-137 (2014).
 44. Wibault, J. et al. Structured postoperative physiotherapy in patients with cervical radiculopathy: 6-month outcomes of a randomized 

clinical trial. J. Neurosurg. Spine 28, 1–9. https ://doi.org/10.3171/2017.5.spine 16736  (2018).
 45. Wibault, J. et al. Neck-related physical function, self-efficacy, and coping strategies in patients with cervical radiculopathy: a rand-

omized clinical trial of postoperative physiotherapy. J. Manip. Physiol. Ther. 40, 330–339. https ://doi.org/10.1016/j.jmpt.2017.02.012 
(2017).

 46. Peolsson, A. et al. Outcome of physiotherapy after surgery for cervical disc disease: a prospective randomised multi-centre trial. 
BMC Musculoskelet. Disord. 15, 34. https ://doi.org/10.1186/1471-2474-15-34 (2014).

 47. Brooks, R. EuroQol: the current state of play. Health Policy (Amsterdam, Netherlands) 37, 53–72. https ://doi.org/10.1016/0168-
8510(96)00822 -6 (1996).

 48. Kuhn, M. & Johnson, K. Applied Predictive Modeling 487–519 (Springer, New York, 2013).
 49. van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. 1(3), 2011 

(2011).
 50. Hinkle, D., Wiersma, W. & Jurs, S. Applied Statistics for the Behavioral Sciences 5th edn. (Houghton Mifflin, Boston, 2003).
 51. Tibshirani, R. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B (Methodol.) 58, 267–288. https ://doi.

org/10.1111/j.2517-6161.1996.tb020 80.x (1996).
 52. Buhlmann, P. & Hothorn, T. Boosting algorithms: regularization, prediction and model fitting. Statist. Sci. 22, 477–505. https ://

doi.org/10.1214/07-STS24 2 (2007).
 53. James, G., Witten, D., Hastie, T. & Tibshirani, R. in An Introduction to Statistical Learning: With Applications in RVol. 1 (eds G 

James, D Witten, T Hastie, & R Tibshirani) Ch. 5, 175–201 (Springer, 2013).

Acknowledgements
Trials registration: ClinicalTrials.gov identifier: NCT01547611.

Author contributions
A.P., J.W., H.L., A.D., P.Z., and D.F. developed the methods and collected the data. B.L., J.W., A.P., and D.R. 
processed the data and developed the codes for the present analysis. B.L. and D.R. performed the analysis. All 
authors contributed to the writing and editing of the entire manuscript.

https://doi.org/10.1016/j.ijmedinf.2018.05.006
https://doi.org/10.1097/CCM.0000000000001571
https://doi.org/10.1371/journal.pone.0174944
https://doi.org/10.1097/PHM.0b013e3181ec98e6
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1214/12-AOS1077
https://doi.org/10.1214/12-AOS1077
https://doi.org/10.1016/j.spl.2018.04.010
https://doi.org/10.1007/s00586-003-0627-7
https://doi.org/10.2307/2533961
https://doi.org/10.2307/2533961
https://doi.org/10.1038/s41598-018-36745-x
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1007/BF00116037
https://doi.org/10.1016/j.jclinepi.2020.02.005
https://doi.org/10.1016/j.jmpt.2008.08.006
https://doi.org/10.1016/j.jmpt.2008.08.006
https://doi.org/10.1016/j.pain.2010.02.013
https://doi.org/10.1111/pme.12774
https://doi.org/10.1080/140381902320387531
https://doi.org/10.1097/BRS.0b013e31819286ea
https://doi.org/10.1007/s00586-003-0530-2
https://doi.org/10.1097/00007632-199101000-00002
https://doi.org/10.1002/ejp.1551
https://doi.org/10.1097/j.pain.0000000000000146
https://doi.org/10.7326/m14-0698
https://doi.org/10.1186/1471-2288-14-137
https://doi.org/10.3171/2017.5.spine16736
https://doi.org/10.1016/j.jmpt.2017.02.012
https://doi.org/10.1186/1471-2474-15-34
https://doi.org/10.1016/0168-8510(96)00822-6
https://doi.org/10.1016/0168-8510(96)00822-6
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/07-STS242
https://doi.org/10.1214/07-STS242


10

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16782  | https://doi.org/10.1038/s41598-020-73740-7

www.nature.com/scientificreports/

funding
The authors acknowledge financial support from the Swedish Research Council, the Swedish Society of Medi-
cine, the Medical Research Council of Southeast Sweden, Region Östergötland, Lions, and Futurum (Academy 
of Health and Care, Region Jönköping County).

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-73740 -7.

Correspondence and requests for materials should be addressed to B.X.W.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-73740-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Clinical predictive modelling of post-surgical recovery in individuals with cervical radiculopathy: a machine learning approach
	Results
	Discussion
	Conclusion
	Methods
	Study design. 
	Participants. 
	Interventions. 
	Common post-surgical care (weeks 1 to 6 post-surgery). 
	Structured post-surgical rehabilitation (weeks 7 to 26). 
	Standard post-surgical rehabilitation (weeks 7–26). 

	Outcome variables. 
	Potential predictors. 
	Data pre-processing and missing data handling. 
	Prognostic modelling. 
	Two stage stepwise linear regression. 
	LASSO regression. 
	Model-based boosting. 
	MuARS. 

	Performance validation. 
	Statistical inference. 

	References
	Acknowledgements


