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Abstract7

Crop models play a paramount role in providing quantitative information on crop growth and field management.8

However, its prediction performance degrades significantly in the presence of unknown, uncertain parameters and9

noisy measurements. Consequently, simultaneous state and parameter estimation (SSPE) for crop model is required to10

maximize its potentials. This work aims to develop an integrated dynamic SSPE framework for the AquaCrop model by11

leveraging constrained particle filter, crop sensitivity analysis and UAV remote sensing. Both Monte Carlo simulation12

and one winter wheat experimental case study are performed to validate the proposed framework. It is shown that: (i)13

the proposed framework with state/parameter bound and parameter sensitivity information outperforms conventional14

particle filter and constrained particle filter in both state and parameter estimation in Monte Carlo simulations; (ii)15

in real-world experiment, the proposed approach achieves the smallest root mean squared error for canopy cover16

estimation among the three algorithms by using day forward-chaining validation method.17
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1. Introduction19

Crop simulation models, providing quantitative crop growth information during the crop life-cycle, play a paramount20

role in sustainable agriculture management. It contributes to intelligent irrigation, nutrient management, and yield21

prediction before harvest, which directly promote agriculture sustainability and food security [1]. However, the pre-22

diction performance of crop model degrades significantly in real-life applications due to the presence of unknown and23

uncertain system parameters. In this regard, a timely and reliable Simultaneous State and Parameter Estimation24

(SSPE) for crop model is highly desirable to realize its full potentials. Recently, the integration of crop models and25

remote sensing information is drawing ever-increasing research interest in precision agriculture, where the problem is26

usually addressed by using various data assimilation techniques (optimization approaches at large) [2].27

Crop models are able to quantitatively simulate crop physiological process at a daily basis. Due to their practical28
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usability, a number of crop models have been developed recently from different principles such as WOFOST, DASSAT,29

STICS and AquaCrop model. Unlike other crop models (i.e. light driven or carbon driven), AquaCrop model is water-30

driven model, which is simple, robust and accurate [3]. This model has been widely applied in precision agriculture31

practices such as crop monitoring, intelligent irrigation management and yield prediction before harvest [4]. Therefore,32

the AquaCrop crop model is adopted to demonstrate the proposed SSPE framework in this study.33

Regarding remote sensing information, images of various spatial/spectral resolutions can be captured by sensing34

platforms such as satellite, manned-aircraft and Unmanned Aerial Vehicles (UAV) [1]. Among them, UAV remote35

sensing is drawing increasing research interests and has become an important supplement to conventional platforms [5].36

This is mainly due to its attractive characteristics including a relatively affordable cost, a high spatial and user-defined37

temporal resolution, and a good flexibility [6]. It has also been widely applied in a large number of applications such38

as crop stress monitoring (e.g. disease, weed, drought), crop state estimation (e.g. canopy cover, biomass, leaf area39

index) and crop parameter inference [2, 7].40

In this study, UAV remote sensing is to derive canopy cover (CC) of the AquaCrop model. CC is defined as the41

ratio of plant leaves projected to the horizontal surface to the total ground area [8] and is one of the most important42

state variables in the AquaCrop model. The calculation of CC value is formulated as an image classification problem,43

which is addressed by the random forest classifier. Image pixels are segmented into wheat and non-wheat pixels, based44

on which the proportion of wheat pixels is calculated as the CC value. It is shown in [9] that this machine learning45

based approach outperforms threshold based approaches [10] and is therefore adopted in this study.46

In addition, state estimation problem can be found in many applications such as crop state estimation, hazardous47

target tracking, hydrological parameter inference [11, 12]. This problem is usually addressed by Kalman Filter (KF)48

or its nonlinear variants such as Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). The SSPE49

problem, in comparison to the standard state estimation, poses new research challenges such as poor observability.50

Because unknown or uncertain system parameters should also be estimated along with unknown states by using partial51

noisy measurements. Due to the high non-linearity involved in SSPE problem, the generic nonlinear filtering approach52

is usually adopted such as Particle Filtering (PF). PF is a sequential Bayesian approach by Monte Carlo sampling,53

and is particularly suitable for non-linear and non-Gaussian filtering. In this approach, a large number of particles54

are drawn to approximate the probability density function of states and parameters [13, 14, 15, 16] rather than only55

propagating the mean and variance. This distribution can provide confidence information which is not possible in56

point estimation (e.g. optimization based approaches).57
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It should be noted that in real-life agricultural applications, various types of extra information (or background58

knowledge) is usually available. For instance, many unknown or uncertain parameters in the AquaCrop model have59

physical meanings and therefore are with upper and lower bounds. This parameter bound information, if taken into60

account properly, can further improve the estimation performance of particle filter [17, 18, 19]. It is also discovered61

in this study that the sensitivity of various parameters in crop models may vary significantly in different crop growth62

stages, that is, a parameter being sensitive in stage A may become insensitive in stage B and vice versa [20]. As a result,63

a static parameter modelling error term is insufficient to capture this dynamic sensitivity behaviour and alternative64

approaches should be sought. Therefore, this work aims to develop an improved particle filter framework for SSPE of65

the AquaCrop model, which can accommodate these extra information (including parameter bound information and66

parameter sensitivity information) for better estimation performance. The improved particle filter is compared against67

the conventional PF and constrained PF by using both Monte Carlo (MC) simulations and real-life experiment. To68

be more exact, the main contributions are summarized as follows:69

(1) A sequential particle filter with parameter bound and sensitivity information is drawn to integrate AquaCrop70

model and UAV remote sensing measurements so that the posterior distribution of both states and uncertain71

parameters can be estimated in near real time.72

(2) MC simulations and an experimental case study are performed to validate the developed framework against73

conventional particle filter and constrained particle filter.74

2. Problems Formulation75

The core problem in this study can be formulated as a sequential state and parameter estimation (SSPE) problem76

by integrating AquaCrop model and remote sensing observations. Since the AquaCrop model is non-analytical,77

conventional particle filter cannot be used and an open access source AquaCrop model is selected (AquaCrop-OS)78

[4]. This model can be modelled as a discrete-time dynamic state-space model, and satisfies a Markov process where79

the future states at k + 1 step is only associated with the states at k step [21]. The compact system including state80

dynamics and observation model can be represented by (1).81 
xk+1 = F (xk, θ, uk) + νk,

Yk = G(xk, θ, uk) + ηk,with ηk ∼ N(0, σ)

(1)
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where xk+1 represents the canopy dynamic states in crop model at k + 1 time step. θ and uk denote the selected82

parameters and forcing data (e.g. weather data, fixed parameters). Yk represents the observations at k time step.83

νk and ηk are independent, representing the model process noise and measurement noise, which are with zero means84

and proper covariances, respectively. F (.) and G(.) are non-linear functions relating the relevant variables. The SSPE85

problem in this study is to estimate the state xk and unknown parameter θ based on the available measurements86

Y1,··· ,k up to day k.87

3. Methodology88

In this section, some key components of the developed framework are introduced including Sobol sensitive analysis89

and the improved PF algorithm for SSPE problem of AquaCrop model.90

3.1. Crop parameter sensitivity analysis91

In this section, crop parameter sensitivity analysis is considered. This is because the parameter sensitivity in crop92

models may vary significantly in different crop growth stages. As a result, new parameter error modelling instead of93

a static one should be designed to capture the dynamic behaviour of parameter sensitivity.94

3.1.1. Sobol sensitivity analysis95
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Figure 1: First order (left) and total order (right) SA index of three parameters over time.

Sensitive analysis (SA) is one effective tool to quantitatively analyse the uncertain factors (parameters or driving96

variables) on model outputs and identify the most sensitive ones [20]. The Sobol method is a variance based approach97

decomposing the model output variance into contributions associated with each input parameter. For AquaCrop98

model, it can evaluate the contribution of separate parameters and interactions to the model outputs (e.g. CC or99
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biomass) [22]. Crop parameters cgc, ccx and cdc can determine canopy growth gradient, maximum canopy cover and100

canopy decline gradient at growing stages. An approximate canopy cover growth can be simulated once these three101

parameters are confirmed. As a consequence, these three parameters are selected for sensitive analysis and estimated102

in SSPE. Details of Sobol method is referred to [22, 23].103

3.1.2. SA results104

The sensitivity analysis results by Sobol analysis are depicted in Fig 1 including the first order index (left plot) and105

the total order index (right). It follows from Fig 1 that both indices share the same sensitivity trend. In particular,106

cgc has a high sensitivity during the whole wheat growing period. However, ccx starts its influence when the canopy107

is saturated; and cdc plays a significant role in crop degrading period. First order sensitive index can be taken into108

account in the proposed PF framework by adaptively adjusting the parameter modelling error (via variance).109

3.2. PF framework with parameter bound and sensitivity information110

In this section, the improved particle filter based SSPE framework is discussed, which can accommodate the111

parameter bound and sensitivity information. The SSPE framework for AquaCrop is shown in Fig 2.
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Figure 2: Framework of the proposed particle filter for state and parameter estimation of the AquaCrop model.

112

3.2.1. Recursive AquaCrop model113

As one open-sourced model, the AquaCrop-OS can be easily integrated with different algorithms for various ap-114

plications [3, 4, 24]. However, this crop model need to be revised recursively before realizing its full potentials so that115
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the main relationship between crop states (e.g. biomass, canopy cover) and other properties (e.g. weather, crop and116

soil parameters, field management) is reformulated using crop water balance principle. Thus, our new program is able117

to generate and record new crop state in real-time, meanwhile all parameters and states can be easily updated with118

the advert of new observations. Consequently, this model can complete the crop simulation process by using different119

filtering algorithms in a recursive way.120

3.2.2. Improved particle filter121

Particle filter, one of recursive filtering methods, can be modified to solve the SSPE problem [13]. In conventional122

particle filter, a series of particle samples with corresponding weights are used to model the posterior state distribution123

[11], where the weight is calculated based on Bayesian equation fusing prior information and observations. However, in124

some practical scenarios, constrained particle filter is usually utilised as physical principles and process restrictions can125

be taken into account as constraints (as additional knowledge/information) so that effective particles can be increased126

to generate a better posterior distribution [25].127

In the proposed problem, the parameters to be estimated θk are augmented with the original states xk to become128

the augmented states Xk,129

Xk+1 =

 xk+1

θk+1

 (2)

A Gaussian random walk is assumed for the parameters130

θk+1 = θk + µk (3)

where µk ∼ N(0, α) is a Gaussian distribution with zero mean and a pre-defined covariance α. Consequently, by131

substituting Eq.2 and Eq.3 into Eq.1, the dynamic model with augmented state Xk+1 can be rewritten as132 
Xk+1 = F

′
(Xk, uk) + ν

′

k

Yk = G(Xk, uk) + ηk

(4)

where the modified function F
′
(.) and modified noise ν

′

k are given by133

F
′
(Xk, uk) =

 F (xk, θk, uk)

θk

, ν′

k =

 νk

µk

. (5)

It should be noted that the selection of µk (i.e. its variance) is paramount for the filtering performance. It follows134

from [26] that µk reflects the intensity of process noise and the size of sampling range. If a small variance term is135
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chosen, it is difficult to converge to the truth values timely. And if a too large variance is chosen, more invalid particles136

will be generated, impairing algorithm effectiveness. In order to reduce the adverse effect caused by the inappropriately137

selected covariance in SSPE problem, the process noise is related to the sensitivity analysis result, which is defined as138

µk = H(indexk) (6)

where indexk is time-series parameter sensitive index at day k, and H(.) represents the process error function. H(.)139

is designed so that a high sensitivity value leads to a smaller error covariance and a low sensitivity value results in a140

larger error covariance. It will be shown that this strategy can significantly improve the effectiveness of the particle141

filter.142

In real-life agriculture applications, some states and parameters have physical properties and as a result certain143

constraints information (e.g. bound information) is usually available [25]. These constraints can be represented by144

certain inequality function g(Xk) <= 0. The probability conditional on Xk can be defined as p(Dk|Xk). In practical145

implementation, the particles can be accepted if they satisfy the constraints and be rejected if the constraints are146

violated.147

It follows from [17] that the posterior distribution of X0:k+1 with constraints information D1:k+1 can be derived148

according to the Bayesian recursion once measurement Y1:k+1 is available, given by149

p(X0:k+1|Y1:k+1, D1:k+1) =
p(Yk+1|Xk+1)p(Dk+1|Xk+1)p(Xk+1|Xk)p(X0:k|Y1:k, D1:k)

p(Yk+1, Dk+1|Y1:k, D1:k)
(7)

where p(X0:k+1|Y1:k+1, D1:k+1) describes the posterior distribution at time k+ 1 from the posterior p(X0:k|Y1:k, D1:k)150

at time k. p(Xk+1|Xk) denotes the crop model function and p(Yk+1|Xk+1) expresses the likelihood function.151

p(Dk+1|Xk+1) is hard constraint related probability.152

Our proposed PF applies enough particle samples to approximate the posterior probability density function (PDF),153

where each particle represents a specific state Xi
k+1 with a proper probability weight wi

k+1. The posterior PDF of154

states and parameters could be approximated by N particles and their corresponding weights, given by155

p(X0:k+1|Y1:k+1, D1;k+1) ≈
N∑
i=1

wi
k+1δ(X0:k+1 −Xi

0:k+1) (8)

where N means the particle number and δ is the Dirac delta function. p(X0:k+1|Y1:k+1, D1;k+1) is the truth posterior156

PDF, Xi
0:k+1 is the i-th particle with related weight wi

k+1.157

According to sequential importance sampling principle (particle weight selection), Xk+1 from proposal distribution158
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q(Xi
0:k+1|Y1:K+1, D1;k+1) can be generated and assigned with the corresponding weights according to159

wi
k+1 ∝

p(Xi
0:k+1|Y1:K+1, D1;k+1)

q(Xi
0:k+1|Y1:K+1, D1;k+1)

(9)

According to [13, 27], the proposal distribution could be factorised as160

q(X0:k+1|Y1:k+1, D1;k+1) = q(Xk+1|X0:k, Y1:k+1, D1;k+1)q(X0:k|Y1:k, D1;k) (10)

By inputting Eq. 10 and Eq. 7 into the importance weights Eq. 9, particles weights can be updated161

wi
k+1 ∝

wi
kp(Yk+1|Xi

k+1)p(Dk+1|Xi
k+1)p(Xi

k+1|Xi
k)

q(Xi
k+1|Xi

0:k, Y1:k+1, D1;k+1)
(11)

where q(Xi
k+1|Xi

0:k, Y1:k+1, D1;k+1) means the posterior probability density function affecting the particle filter results.162

In this study, the proposal distribution is assumed to be the prior information q(Xk+1|Xk, Yk+1, Dk+1) = p(Xk+1|Xk),163

thus the above equation can be simplified as164

wi
k+1 ≈ wi

kp(Yk+1|Xi
k+1)p(Dk+1|Xi

k+1) (12)

Considering the hard constraint property, the constraint probability condition on Xk+1 can be written as165

p(Dk+1|Xi
k+1) =


1, if g(Xk+1) <= 0

0, otherwise

(13)

Consequently, the particle weights can be rewritten by considering the constraints information166

wi
k+1 =


∝ wi

kp(Yk+1|Xi
k+1), if g(Xk+1) <= 0

0, otherwise

(14)

Assuming that the measurement noise follows a Gaussian distribution with zero mean and a covariance R, the167

likelihood function and updated particle weight are given by [11, 16]168

P (Yk+1|Xi
k+1) =

1√
2π

√
Rk+1

exp[−
(Yk+1 −G(Xi

k+1))2

2Rt+1
] (15)

169

wi
k+1 =

wi
k+1∑N

i=1 w
i
k+1

. (16)

Due to the particle degeneracy problem, a useful measure of effective number can be defined as170

Neff =
1∑N

i=1(wi
k+1)2

. (17)

To attenuate the particle degeneracy problem, resampling strategy is adopted [28]. In particular, Metropolis171

resampling is employed due to its reliability and a low computation cost. The weight of each particle will be 1/N172
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after resampling process. The posterior distribution of filtered states and parameters is in the form of particles, thus173

the updated particles after resampling will become the initial particles for the next evolutionary iteration until all174

available measurements are assimilated into AquaCrop model. The above steps are summarized in Algorithm 1.175

Algorithm 1: Particle filter with constraints and sensitivity information

1 Require Xi
k,wi

k

2 Initialization: Generate N samples from the prior PDF P (Xk) with equal weight 1/N

3 For: i = 1 : N

4 Parameter process error covariance function µk+1 = H(indexk+1)

5 Draw new particles Xk+1 ∼ p(Xk+1|Xi
k)

6 Update particle weight wi
k+1 according to hard constraints information by Eq. 14

7 End for

8 Particle weight satisfy
∑N

i=1 w
i
k+1 = 1

9 Resampling using Metropolis resampling method

10 Ensure: new samples Xi
k+1,wi

k+1 = 1/N

3.3. Validation method for field experiment176

In this study, two validation methods are adopted for the proposed algorithm including MC simulation in a177

simulated environment and field validation based on an experimental case study. In particular, due to the lack of178

groundtruth crop parameter data for field experiment owning to the logistic issues, the validation of field experiment179

is only based on CC estimation performance instead of both CC and crop parameters estimation. A modified Day180

Forward-Chaining (DFC) method [29, 30], as shown in Fig 3, is used for temporal validation in the field experiment.181

This is because forward chaining method can avoid the problems that an arbitrary selection of the hold-out test set182

may lead to a biased estimate, especially for the case with a limited number of observations.183

In the modified DFC of Fig 3, each measurement denotes one fold with 12 folds in total in the field case study.184

Index N in red cells denotes the first few folds used for training; in other words, the measurements on these first few185

days are for state and parameter estimation using the proposed particle filter. In real-life agriculture management186
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Figure 3: Day Forward-Chaining validation illustration for field case study.

practice, the decision is usually made by analysing the forecasting information in a number of future dates. Following187

this line of thought, the three folds following the training folds are used for testing. This means that the estimated188

state and parameters using the folds in red are inserted into the AquaCrop model to generate the prediction for folds189

in blue so that performance can be evaluated. The folds used for training and testing are illustrated in Fig 3.190

4. Systematic settings191

In this section, various validation approaches including Monte Carlo simulation and a real-world experiment case192

study are implemented to test the improved particle filter against the conventional particle filters with constraints or193

sensitivity information.194

4.1. Monte Carlo simulation settings195

MC simulations are firstly adopted to evaluate the SSPE performance for AquaCrop model, in particular for196

parameter estimation. Three parameters strongly associated with dynamic state canopy cover (CC) are selected.197

Thus, a four dimensional state and parameters vector is defined.198

X = [cgc, ccx, cdc, CC]T .

The states and parameters with their bound information and definitions are displayed in Table 1. In MC simulation,199

the default crop parameter values (being constant in its life-cycle) and model-generated CC in the AquaCrop simulation200

model are set to be the groundtruth. The noisy observations for model comparisons are derived from groundtruth201

CC by adding a Gaussian measurement noise with zero mean and a variance of 0.052. The time period of the202

AquaCrop model is consistent with the experiment from 08/Oct/2018 to 06/June/2019 under the same treatment and203

the measurement interval is 10 days. 50 MC simulations with random initials and random measurement noises are204
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performed to test the robustness of all three methods including the conventional PF, the PF with constraints and the205

improved PF with constraints and sensitivity information.206

Table 1: Selected state and parameters definition with bounds information for MC simulation and field experiment.

Variables Prior information Physical meaning

cgc (0.005,0.02) Canopy growth coefficient

ccx (0.82,0.98) Maximum canopy cover fraction

cdc (0,0.02) Canopy decline coefficient

CC (0,1) Canopy cover

4.2. Experimental evaluation207

In addition to MC simulation, experimental verification is also performed. There is one case study (winter wheat)208

conducted from 2018-2019 to validate the proposed method. The key model state, wheat canopy cover, is extracted209

from multi-spectral images as below.210

4.2.1. Experiment wheat field and UAV aerial imaging211

latitude: 34°306´N, 
longitude: 108°090´E, 

499m a.s.l.

Figure 4: Geographic details of the study area.

The experiment site is located at Caoxinzhuang experiment field, which belongs to Northwest Agriculture and212

Forestry University (see Fig 4 for the location) [31]. The climate in this area is characterized by semi-humidity and semi-213

aridity, with an average annual temperature of 12.9oC. In this study, the cultivar Xiaoyan22 (winter wheat) is adopted,214

which was developed by Northwest A&F university. In addition, some key information that is required in AquaCrop215
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model, such as meteorological data and basic soil data can be downloaded from National Meteorological Information216

Center (http://data.cma.cn) and national Earth system Science Data Sharing Infrastructure (http://www.geodata.cn).217

Figure 5: UAV camera system: DJI M100 Quadrotor UAV (left), GPS (upper right) and RedEdge camera(lower right)

In this study, UAV remote sensing images are preferred due to its high spatial/spectral resolutions. In particular,218

commercial DJI M100 Quadrotor (DJI Company, Shenzhen, China) and RedEdge camera (MicaSense Company,219

Seattle, USA) with five multi-spectral bands was integrated as the UAV sensing system (see Fig 5). RedEdge camera,220

in comparison to conventional RGB camera, has extra Rededge and NIR bands, providing extra spectral information221

for better classification performance [7]. The weight, dimensions and image resolution of RedEdge camera are 135g,222

5.9cm× 4.1cm× 3.0cm and 1280× 960 pixels, respectively.223

In each flight, the RedEdge camera was fixed on the UAV, pointing vertically downwards to the wheat canopy.224

Flight altitude was set to be about 20 meters above ground with a ground image spatial resolution of about 1.2 cm/pixel.225

Image overlap and sidelap were set to be up to 75 % for an accurate orthomosaic generation. Reflectance calibration226

panel was always imaged at 1m height before each flight to account for camera and reflectance characteristics, and227

environmental variations [1, 31]. After data collection, Pix4DMapper, a commercial photogrammetry software, was228

then used to process the raw images to generate the caliberated orthomosaic images for each band. The overall229

process includes initial processing, Point Cloud and Mesh generation and orthomosaic generation, where more details230

are referred to the existing studies [7, 31]. Finally, a total of twelve multi-spectral images were collected covering231

winter wheat key developmental stages (please refer to Table. 2 for the specific imaging times) including tillering232

stage, green-up stage, jointing stage, anthesis stage and grain filling stage [32].233
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4.2.2. CC calculation234

Pre-processed 
image

Data 
labelling

Feature
Selection

Random forest 
classifier

Image 
segmentation

CC value

Figure 6: Steps for canopy cover calculation by using remote sensing images and random forest classifier.

In this study, the CC calculation can formulated as a wheat/non-wheat two-class classification problem so that the235

wheat pixel proportion can be calculated for the region of interest. The overall process is displayed in Fig 6, which236

include several components such as data labelling, random forest classifier and CC value calculation. One typical237

example for the data on 16/Dec/2018 is presented, where these steps are detailed in the following subsections.238

Supervised classification depends on data labelling. In this study, wheat and non-wheat pixels are directly labelled239

according to on-site experiment and UAV RGB color image, where the RGB image is generated by using Red-Green-240

Blue bands of the multispectral image. The labelled sample image is displayed in Fig 7, where wheat pixels (wheat),241

non-wheat (others) and unlabelled pixels (un) are represented in different colours. Moreover, all available five bands242

including Blue (B), Green (G), Red (R), RedEdge and Near-infrared (NIR) bands are selected as the features for243

supervised classification. Spectral comparison between wheat and non-wheat pixels is referred to [1].244
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Figure 7: Survey data on 16/Dec/2018: A. RGB color image generated by Pix4DMapper; B. labelled image for supervised classification;

C. segmented image by the random forest classifier.
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A classifier is then required to perform the classification task so that new aerial images can be automatically245

classified for CC calculations. In this study, random forest classifier is implemented due to its good performance246

in terms of accuracy and robustness and a relatively low computation load, where the hyper-parameters are further247

automatically tuned by using Bayesian optimization [31]. Random forest algorithm has been previously used for wheat248

canopy segmentation in previous studies [1], which show that an accuracy of 99% can be achieved in selected labelled249

dataset. The detailed algorithm is omitted due to the lack of space and is referred to [31, 33].250

The labelled image is split into training and testing data with a proportion of 70% and 30%. The trained random251

forest classifier is then applied to the original example image, where the classification map is displayed in the right252

plot of Fig 7. Then CC value can be calculated by CC = Nwp/(Nwp + Nnwp), where Nwp and Nnwp represent the253

number of wheat and non-wheat pixels in the region of interest. All CC values over time are displayed in Table 2 by254

following the above steps.255

Table 2: Canopy cover values over time

Date CC Value Date CC Value

11/11/2018 0.362 09/12/2018 0.7972

16/12/2018 0.8296 30/12/2018 0.8973

03/03/2019 0.9361 25/03/2019 0.9494

30/03/2019 0.9649 05/04/2019 0.9874

15/04/2019 0.9775 23/04/2019 0.9893

27/04/2019 0.9686 02/05/2019 0.9321

4.2.3. Experiment settings256

Measurement noise of the experiment data can be estimated by using the algorithm in [1], where the covariance257

value is set to be 0.0021. The prior information of state and parameters as well as other settings of the improved PF258

algorithm remain the same as MC simulation (see Table 1).259

5. Results and discussion260

This section demonstrates a comparative estimation result using various PF methods. For MC simulation, the261

SSPE performance is evaluated by the root mean squared error (RMSE) of all MC runs. While in experimental262

validation, due to the absence of parameters groundtruth, error analysis is only tested on CC.263
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5.1. Results of MC simulation264

MC analysis with random initial values and various measurements is first performed for the three methods. Mean265

and variance can be calculated from all particles at each observation day for one MC simulation run. For RMSE266

comparison, the estimated parameters on the last day of each MC run are used to calculate the RMSE value. In267

addition to parameter comparison, for CC, the total error is obtained by using the mean RMSE of all MC runs, where268

the RMSE of each run can be calculated by all CC estimations against the groundtruth at all observation dates. In269

particular, in MC simulations, all parameters to be estimated are constant in one certain local field and the default270

parameters are set to be groundtruth for performance evaluation [3].271

Table 3: RMSE of 50 Monte Carlo simulations using different particle filter methods.

Parameters Proposed PF(error) Constrained PF(error) Conventional PF

cgc 0.000592(-60.7%) 0.000833(-44.6%) 0.001506

cdc 0.010725(-31.5%) 0.035224(+125%) 0.015655

ccx 0.002034(-71.8%) 0.008303(+15%) 0.007217

CC 0.014137(-16.4%) 0.016027(-5.2%) 0.016907

The RMSE value of each method is shown in Table 3. Meanwhile, the error is also displayed, where ′−′ means the272

error reduction and ′+′ denotes the error increment in comparison to RMSE value using conventional PF. The RMSE273

error using different methods is defined by the following formula.274

EPPF =
RMSEPPF −RMSEPF

RMSEPF
∗ 100%;ECPF =

RMSECPF −RMSEPF

RMSEPF
∗ 100% (18)

where EPPF and ECPF denote the parameters error using the proposed PF and constrained PF in comparison to275

using conventional PF. RMSEPPF , RMSECPF and RMSEPF represent the RMSE of estimated parameters and276

state CC using the proposed method, constrained PF and conventional PF, respectively.277

It follows from Table 3 that the RMSE value of the proposed method is much smaller than the constrained PF278

and the conventional PF in terms of all parameters and canopy cover over 50 MC simulations. For cdc estimation, the279

result is not as good as other parameter estimation, the possible reason is that, as shown in Fig 1, CC is not sensitive to280

cdc parameter for most of the growing period. However, one can still see that the proposed PF and the constrained PF281

result in 16.4% and 5.2% improvement over the conventional PF in terms of canopy cover RMSE, which is significant282

in error percentage. The relationship between the parameters cdc, cgc, ccx and CC is complex and generally nonlinear,283

and the weightings of different parameters on CC are also diverse and time-varying (since the parameter sensitivity284
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Figure 8: Error bar of the conventional PF on parameters and CC estimation from one MC simulation with groundtruth (red line/points).

is time-varying). As a result, the CC estimation performance may improve even some parameters estimation being285

poorer (by comparing the constrained PF and conventional PF). But our proposed PF still results in (significantly)286

better performance over the conventional PF for both CC and model parameters estimation. Consequently, it can be287

summarised that the proposed method can improve the SSPE estimation performance on both parameter and canopy288

cover whereas the constrained PF can only marginally improve the estimation performance on cgc and canopy cover.289
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Figure 9: Error bar of the constrained PF on parameters and CC estimation from one MC simulation with groundtruth (red line/points).

An error bar of one MC simulation is given in Fig 8–Fig 10 to evaluate the estimation performance by uncertainty290
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Figure 10: Error bar of the improved PF with constraints and sensitivity information on parameters and CC estimation from one MC

simulation with groundtruth (red line/points).

analysis, where mean value and self-defined 1.5 times the standard deviation of all generated particles at each obser-291

vation day are in blue, and the red line and points denote the groundtruth parameter and CC, respectively. It can292

be seen from Fig 10 that all estimated parameters are close to the groundtruth after sensitive period. In contrast,293

some parameters do not converge well by using other PF methods due to the absence of constraints and sensitivity294

information. Furthermore, it can also be seen from CC results that all estimated CC are all closer to the truth CC295

by using the proposed PF. In addition to mean value, it can be visually seen that the uncertainties by the proposed296

method are the smallest among these three methods, mainly due to the sensitivity information making the measure-297

ments more efficient in the process of estimation. Therefore, the proposed method achieves the best performance on298

parameter and CC estimation in terms of stability and accuracy.299

In addition, the time-series 3D histogram of state and parameter estimation distribution of one MC run is also300

displayed in Fig 11. It can be seen that PF can provide posterior distribution of each parameter and state instead of301

point estimation, and therefore it can provide estimation confidence. The confidence rule is that the less spread the302

distribution is, the more reliable the estimation is. As is shown in Fig 11.C, the state and parameters distribution with303

small variance can take effects on sensitive period and thereafter. Consequently, in comparison to the conventional PF304

and constrained PF, the proposed PF with both constraints and sensitivity information achieve the best estimation305

with concentrated distributions.306
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Figure 11: Time-series 3D histogram of one MC run by different methods: A. conventional PF; B. constrained PF; C. proposed PF.
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5.2. Results of experimental validation307

By using the DFC validation method, the first few folds are used for training and the following three ones are for308

testing. Testing data at each run derives a RMSE value against canopy cover observation value. The final validation309

performance is evaluated in terms of mean RMSE of all runs to test the algorithm robustness. In addition to the310

aforementioned three SSPE approaches, the default parameter-based canopy cover is also simulated for the field311

experiment using the default parameter values (cgc=0.0111; ccx=0.9051; cdc=0.0300) and noisy CC. The comparative312

results with error percentage against conventional PF are summarized in Table. 4. It follows from Table 4 that: (1)313

all SSPE approaches significantly outperform the default parameter based one (i.e. without parameter estimation);314

(2) our proposed method achieves the smallest RMSE among these four methods.315

Table 4: Mean RMSE of different methods by DFC validation.

State Proposed PF(error) Constrained PF(error) Conventional PF Default Parameter PF(error)

CC 0.0656 (-4.8%) 0.0691(+0.2%) 0.0689 0.0758(+10.0%)

It follows that the experimental validation performance is not as good as MC simulation among three methods. It316

may be due to the lack of measurements at certain key sensitive stages. Meanwhile, the performance of constrained317

PF is worse than the conventional PF. The possible reason is that the constrained PF reduces the number of particles318

and the measurement is not enough to get a better estimation on CC value. Still it can be concluded that all three319

methods with parameter estimation are capable of solving the SSPE problem for the AquaCrop model, however, the320

estimation performance of the proposed method considering both constraints and sensitivity information is the best.321

6. Conclusions and future work322

This paper introduces an improved particle filter framework to integrate UAV multispectral images into AquaCrop323

model so that state and parameter estimation performance can be improved for the AquaCrop model. Machine324

learning classifier is applied to UAV multispectral image to calculate canopy cover value for winter wheat. Then325

particle filter is drawn to assimilate canopy cover information and AquaCrop model information in deriving posterior326

distributions for state and parameters. Notably, crop sensitivity information is accommodated in the improved particle327

filter in addition to model parameter bound information. Both Monte Carlo simulations and experimental case study328

are conducted to assess the performance of the improved particle filter against conventional and constrained particle329

filter. Monte Carlo simulation shows that the proposed method yields the best performance on state and parameter330
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estimation. The proposed approach also obtains accurate canopy cover estimation in experiment in term of root mean331

square error. Consequently, the proposed approach provides one alternative to the existing particle filter methods for332

the simultaneous state and parameter estimation problem.333

The AquaCrop model is a very useful model for crop management (e.g. crop growth monitoring, irrigation decision).334

However, some key crop model parameters should be estimated for local farmlands in order to accurately reflect the335

local behaviour so that its full potentials can be realized. This study achieves this objective by developing a state and336

parameter estimation algorithm by using particle filter along with parameter sensitivity information. The developed337

algorithm generally outperforms the conventional approaches, and therefore results in better simulation performance.338

As a result, this study provides a better management model to the local farmers, so that they can manage their339

fields in a more precise and sustainable manner. Therefore, local farmers can potentially benefit from an increased340

productivity while with a reduced input (e.g. water resources). Although the results are promising, there is still much341

room for further improvement, the number of observations need to be increased and obtained at crop sensitive stage342

in real-world experiment; in addition, more state information (e.g. biomass, yield) can be collected to further evaluate343

the algorithm performance.344
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