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ABSTRACT

Social emotion perception plays an important role in our daily social interactions and is involved in the
treatments for mental disorders. Hyper-scanning technique enables to measure brain activities simultaneously
from two or more persons, which was employed in this study to explore social emotion perception. We analyzed
the recorded electroencephalogram (EEG) to explore emotion perception in terms of event related potential
(ERP) and phase synchronization, and classified emotion categories based on convolutional neural network
(CNN). The results showed that (1) ERP was significantly different among four emotion categories (i.e., anger,
disgust, neutral, and happy), but there was no significant difference for ERP in the comparison of rating
orders (the order of rating actions of the paired participants); (2) the intra-brain phase lag index (PLI) was
higher than the inter-brain PLI but its number of connections exhibiting significant difference was less in
all typical frequency bands (from delta to gamma); (3) the emotion classification accuracy of inter-PLI-Conv
outperformed that of intra-PLI-Conv for all cases of using each frequency band (five frequency bands totally).
In particular, the classification accuracies averaged across all participants in the alpha band were 65.55% and
50.77% (much higher than the chance level) for the inter-PLI-Conv and intra-PLI-Conv, respectively. According
to our results, the emotion category of happiness can be classified with a higher performance compared to the
other categories.

1. Introduction

It is undoubted that emotion is crucial component during human—

For instance, how you feel yourself and other people during the so-
cial interaction [11,12]. Therefore, it is better to investigate emotion
perception during social interaction.

In recent years, hyper-scanning, a technique for measuring brain

human interaction and human-machine interaction in our everyday
life [1]. Emotion is also relevant to some mental diseases and detri-
mental habits such as internet addiction, tristimania [2], anxiety and
social phobia [3]. Although a great deal of efforts have been made
by researchers from diverse disciplines (e.g., neuroscience, psychology,
and computer science) to investigate emotion perception, the knowl-
edge we currently acquired is still limited [4,5]. Most of the prior
studies explored emotion perception in a scenario of one person [6-9],
rather than multiple persons who interact each other. In our daily life,
people usually perceive emotion during interacting with others [10].

activities simultaneously from two or more persons, has been uti-
lized to explore brain-to-brain interactions when two or more persons
engage in a task [13]. The hyper-scanning could be categorized as
fNIRS (functional near infrared spectroscopy) hyper-scanning [14],
fMRI (functional magnetic resonance imaging) hyper-scanning [15]
and EEG hyper-scanning [16] according to the signal recorded in the
experiment. Because EEG is of high temporal resolution and ease of
use with an advantage of low cost [17], we employed EEG hyper-
scanning in our study. Previous studies revealed that the frontal region
was dominantly involved in the emotion recognition, especially facial
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Fig. 1. Framework of our study. EEG signals were simultaneously recorded from two persons while they were watching Chinese facial affective pictures presented as stimuli.
Event related potential was analyzed to reveal the differences in different emotion categories and the effect of behavioral interaction on emotion perception. Intra- and inter-brain
synchronization was explored to show functional connectivity within single brain and between brains. The findings from data analysis were used to guide feature extraction in the

classification. A deep learning model (CNN) was employed to classify emotion categories.

expression recognition [18-20]. This hints us to focus on the frontal
region for emotion perception exploration in the context of multiple
persons. The concentration on a particular region could also benefit
the following step of emotion classification as less amount of data are
required for processing.

In this study, we designed an EEG hyper-scanning experiment to
explore emotion perception in the scenario of two-person interaction.
The characteristics of brain activities were first explored to reveal neu-
ral mechanisms related to emotion perception. Then, a deep learning
model was utilized to classify different emotion categories based on the
findings in the data analysis. The framework of our study was depicted
in Fig. 1. The main contributions of this paper are (1) designing an
EEG hyper-scanning experiment to explore emotion perception in the
scenario of two-person interaction; (2) revealing EEG characteristics
associated with emotion perception; (3) evaluating the effectiveness of
intra-brain and inter-brain phase synchronization features; (4) recog-
nizing emotions based on EEG signal only using twelve electrodes on
the frontal region, which could facilitate the development of portable
emotion recognition system. The remainder of the paper is organized as
follows. The relevant work is introduced in Section 2, which is followed
by the description of experiment design and setup in Section 3. Next,
the methodological descriptions of the preprocessing, ERP, synchro-
nization feature extraction, convolutional neural networks are given

in Section 4, which is followed by the results in Section 5. Finally,
conclusions are drawn in Section 6.

2. Relevant work
2.1. Hyper-scanning experiments

Hyper-scanning is a technique that enables to measure signals si-
multaneously from two or more persons. Montague et al. presented an
experiment of deception game played by a pair of participants, which is
the first fMRI-based hyper-scanning experiment [15]. About ten years
later, the first NIRS-based hyper-scanning was reported and NIRS sig-
nals were simultaneously collected from two participants engaging in a
cooperation task [21]. Babiloni et al. [22] designed the first EEG-based
hyper-scanning experiment to investigate the activated regions and
the information flow within individual subject and between subjects
when they performed a game. In the subsequent years, researchers
have achieved more paradigms such as competition and cooperation
interactions [16,23-25], motor and verbal communications [26-28].
There have been exploratory studies using hyper-scanning technique to
investigate emotional social interactions [29,30]. These studies focused
on information flow mechanisms between subjects when they have
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Fig. 2. Experimental environment.

emotional interactions rather than specific emotions and social emotion
recognition.

2.2. EEG-based emotion recognition

EEG-based emotion recognition has been widely studied based on
single-subject experiment. In [31], they used common spatial patterns
and support vector machine (SVM) to classify two emotions (i.e., happy
and sad) and achieved a classification accuracy of 93.5%. In [32], SVM
classifier was trained using fractal dimension features and utilized to
classify three emotions (i.e., anger, happy, and calm). The average
classification accuracy was 60%. In [33], an unsupervised EEG feature
extraction using auto-encoder method was proposed and the classifica-
tion accuracy for three emotions ranged from 44% to 59%. In [5], they
combined eye-movement and EEG features to classify four emotions
and obtained an average accuracy of 72.39%. To the best of our
knowledge, there has been no study on social emotion classification.

2.3. Matrix-based classifier

In conventional EEG classification, classifiers learn based on feature
vectors, such as SVM [34] and Linear Discriminant Analysis (LDA) [35].
Therefore, features have to be stretched into a vector. This destroys
the spatial relationship and results in the loss of discriminant informa-
tion. Deep learning treats features as a form of matrix and has been
widely used in diverse domains for classification. Convolutional Neural
Network (CNN) is one of the prevalent deep learning models [36-38].

3. Experiment setup

The objective of our study aimed to investigate neural mechanisms
of social emotion perception when two persons engaged in the same
task. Since there was a potential cultural bias for Chinese partici-
pants using pictures from the International Affective Picture System
(IAPS) [39], the native Chinese Affective Picture System (CAPS) has
been used in the studies with Chinese participants [40,41]. Similarly,
we used facial pictures from the native CAPS in this study.

Three hundred pictures were selected from the CAPS, which con-
sisted of four emotion categories (anger 74, disgust 46, neutral 80,
and happy 100). Each picture was presented to participants once at
a random order. In the experiment, two participants watched the same
pictures at the same time (see Fig. 2 for the experimental environment)
and were asked to rate each picture in terms of valence and arousal at
a scale from -5 to 5 through two paired iPad devices. One participant
acted as a leader to first rate and the other participant acted as a fol-
lower to rate after his/her partner. The follower can see the rate made
by the leader on the screen before he/she made the rate. Participants

Rating-response

Cross Picture % Leader iH{r Follower |
fixation display 1 rating | 1 _rating J

0.5-0.8 s 2s 6-8 s

| Trial 1 H Trial 2 H Trial 3 | | Trial 74 H Trial 75 |

| Session 1 H Session 2 H Session 3 H Session 4|

Fig. 3. Protocol of our designed experiment.
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Fig. 4. The layout of 62 EEG electrodes. The selected electrodes used in this study
were circled.

were instructed to rate based on how they really felt rather than the
kind of emotion shown in pictures. There were four sessions in the
experiment and each session consisted of 75 trials. Each trial lasted
from 8.5 s to 10.8 s, comprising picture stimulus for two seconds, pre-
stimulus for a random time period varying from 500 ms to 800 ms,
and the rating-response period varying from 8 to 10 s. The rating order
was reversed in the last two sessions. Fig. 3 showed the protocol of
our experiment. A short training phase was given to participants to
familiarize them with the experiment before the formal sessions.

A total of 40 healthy, right handed participants (15 females) aged
between 18 to 24 years old were divided into 20 pairs to perform
the experiment. All subjects gave their written informed consents after
the detailed introduction of the purpose and procedure of the experi-
ment. EEG signals were acquired by two sets of amplifiers (Ag/AgCl,
Biosemi, the Netherlands), each of them was with 62 electrodes placed
according to the international 10-20 standards. These amplifiers were
synchronized to record EEG at a sampling rate of 1000 Hz. Based on
the previous findings that the frontal region was dominantly related
to emotion recognition and perception [42-44], we, therefore, selected
twelve electrodes on this region in this study. The selected electrodes
were FP1, FPZ, FP2, AF3, AF4, F5, F3, F1, FZ, F2, F4, and F6, which
are shown in Fig. 4.
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Fig. 5. The architecture of hPLI-Conv classifier, consisting of an input layer, three convolutional layers (C), three pooling layers (P), a fully connected layer (F) and an output

layer (O).
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Fig. 6. ERPs on twelve channels for four emotion categories. Asterisks represent statistically significant differences among the four emotion categories at the significance level of
0.05 after the FDR correction. Blue, red, green, and black lines represent the ERPs of anger, disgust, neutral, and happy, respectively. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

4. Methods

4.1. Preprocessing

In the step of signal preprocessing, EEG data were band-pass filtered
at the cut-off frequencies of 0.5 Hz and 85 Hz, which was followed by
common average reference (CAR) that the magnitude mean averaged
across all electrodes was subtracted from the magnitudes of each elec-
trode [45]. Independent Component Analysis (ICA) was subsequently
used to obtain independent components, which was implemented in the
EEGLAB [46]. The components representing artifacts were detected by
using the MARA [47] (a plugin in the EEGLAB) and visual inspection.
These artifact-related components were removed and the remaining
components were used to reconstruct signals.

4.2. Event related potential comparison

Event-related potentials (ERPs) are particular bursts in magnitude,
which are time-locked to specific events or stimuli [48]. This is a
frequently-used marker to study brain activity. In this study, we ex-
plored ERPs for two cases (1) ERPs locked to stimuli, taking the epochs
from 500 ms prior to the onsets of stimuli to the end of stimuli;
(2) ERPs locked to rating responses, taking the epochs from 200 ms
before to 800 ms after the rating responses of the paired participants.
The epochs with obvious residual artifacts were excluded for further
analysis. The epochs whose amplitudes exceeded 200 xV or changes
were greater than 100 uV were also discarded [49]. The ERPs were
obtained by averaging the remaining epochs, separately for stimuli and
rating responses.
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Fig. 7. ERPs for rating response orders. Blue, red, and black lines represent the ERPs of the leader rating response, the follower rating response, and their difference, respectively.
No significantly different ERPs were found between the rating response order. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

ERPs among four emotion categories stimuli were compared and
ERPs between the leader’s responses and the follower’s responses
were compared. Specifically, for the comparison of stimuli, we made
a matrix a;; € Ay, for each channel. Where g;; represents the
mean averaged across 40 points around amplitude peak for the ith
(G € {1,2,...,40}) participant’s jth (j € {1,2,3,4}, which repre-
sent anger, disgust, neutral, and happy, respectively) stimulus cat-
egory. For the comparison of responses, we compared the vector
{ERP44er(1), ERPjoyger(2), ... . ERPy,pgo(40)}  with  the  vector
LERP 110001 ERPo110006r(2). ... ERP4110,,(40)}, which were con-
structed from the average values of 40 points around the ERP peaks for
each channel. One-way ANOVA was performed to evaluate whether or
not there were significant differences in ERPs among four categories of
stimulus and between rating responses (i.e., leader and follower rating
responses). Additionally, in order to reduce the chance of type I error,
false discovery rate (FDR) correction was applied to correct P-values.

4.3. Intra- and inter-brain phase synchronization

Phase lag index (PLI) was employed to estimate intra- and inter-
brain synchronizations, which was not sensitive to the volume conduc-
tion [50,52]. It can be calculated for each pair of channels by [51],

T

PLI = ((sign(4p()))| = % 3 sign (A1) eY)

k=1

where T is the number of time points, 4¢"%) is the instantaneous phase
difference between two channels at time 7. Its range is between 0 and

1 (0 < PLI £1). A value of 0 indicates either no coupling or coupling
with a phase difference centered around 0 mod z. A value of 1 indicates
perfect phase synchronization. It is worth pointing out that the phase
difference is within the range of —z < A¢ < #. If phase is defined using
a range of 0 < A¢ < 2x, then the formula (1) should be modified as

PLI = |(sign[sinAp(t)]) @

In our case, 12 channels were selected, which resulted in a 12 x 12
matrix for each trial. Each entry in the matrix stood for synchronization
value of a pair of channels. This synchronization calculation was done
for all 20 pairs of participants, resulted in 20 inter-brain connectivity
matrices and 40 intra-brain connectivity matrices. One-way ANOVA
was applied to each entry (i.e., each connection) in the matrices to find
out those which exhibited significant differences among four emotion
categories. Again, FDR correction was used to control type I error.

4.4. Classification

CNN is one of the deep learning models and typically consists of
convolution layer, pooling layer, and fully connected layer [36,53]. The
convolution layer and pooling layer cooperate to form a stacked struc-
ture. Features were extracted and refined layer by layer and the predic-
tion was given at the last layer. We constructed a CNN-based classifier
for classifying hyper-scanning social emotions (Hereinafter referred
to hPLI-Conv), which included intra-PLI-Conv (PLI features extracted
from within-brain synchronization) and inter-PLI-Conv (PLI features
extracted from the between-brain synchronization). The architecture of
hPLI-Conv is shown in Fig. 5.
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Fig. 8. Average intra-brain PLI values for all pairs of twelve channels on the frontal region (upper row), original P-values (left plot in the middle row), and the remaining

connections which were still significantly different after the multiple comparison correction (right plot in the middle row).

The intra-brain PLI (PLI extracted from leader or follower in the
same paired group) or inter-brain PLI matrix of 12 x 12 was input to

Table 1

One-way ANOVA results for ERP comparisons among four emotion categories.

the first convolutional layer (C1 in Fig. 5) and was convolved with a Channel P-value Q-value
kernel with the size of 3 x 3. This layer was followed by a pooling FP1 0.0034 0.0136
(maxpooling) layer (P1 in Fig. 5). The convolution and pooling were gé g'gggg g'gégi
jalteljnated in the flolilowmg layers until the fully connected .layer (s<?e .F4 AF3 0.0031 0.0186
in Fig. 5). In addition, dropout strategy was used to avoid overfitting AF4 0.0045 0.0108
issue (dropout ratio = 0.2). The final softmax layer (see O5 in Fig. 5) F5 0.0388 0.0582
converted features into probabilities for each class, computing as F3 0.1664 0.1664
F1 0.0474 0.0569
P(Y =i|0O,,W,, B))| = softmax;(W,0, + B,) FZ 0.0039 0.0117
F2 0.0417 0.0556
I ® F4 0.0046 0.0092

- Wo;Op+B . .
e / o F6 0.0500 0.0545

J
where W, is a weight matrix, B, is a bias vector and O,, is the output of
Table 2

05. The rectified linear unit (ReLU) activation function was used in the
convolutional layers (C1, C2, C3) and fully connected layer F4, which
was defined as

ReLU(x) = max(0, x) 4
ReLU is the max function between 0 and input x. The strides of each
layer was set as 1 and the size of kernel is 3 x 3.

5. Results

5.1. Event related potential

Fig. 6 shows the ERPs of four emotion categories for the selected
twelve channels located on frontal region. It can be seen that the ERPs
for anger on the channels FP1, FPZ, FP2, AF3, and AF4 and for disgust
on the channels F1, FZ and F4 were larger than the ERPs for happy on
those channels. Statistical results were listed in Table 1. P-values are

Average accuracies (%) of inter-PLI-Conv (using inter-brain PLI features) and
intra-PLI-Conv (using intra-brain PLI features) for all five typical frequency bands.

Feature 8 (4 a p Y

Inter Mean 61.46 62.25 65.55 60.05 55.42
Std 0.35 0.41 0.42 0.34 0.34

Intra Mean 50.06 48.96 50.77 47.71 47.46
Std 0.59 0.48 0.40 0.36 0.35

original significance level while Q-values are significance level after
multiple comparison correction (using FDR). There were statistically
significant differences in the ERPs on the channels of FP1, FPZ, FP2,
AF3, AF4, FZ and F4.

For the ERP comparisons of response order, we found that the ERP
magnitude of the leader’s rating response was less than that of the
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follower’s rating response for all channels (see Fig. 7). However, the
differences were not significant (p > 0.05) for all channels.

5.2. Intra- and inter-brain phase synchronization

We explored average intra-brain synchronizations among four emo-
tion categories as detailed in Section 4.3. The results for all five typical
frequency bands were shown in Fig. 8. In each subplot in Fig. 8, the
matrix shown in the top row was average PLI values for all pairs of
twelve channels on the frontal region. The left matrix in the middle
row shows original P-values and the right matrix in the middle row
shows the remaining connections which were still significant after the
multiple comparison correction. The bottom topography illustrates the

significant connections after the multiple comparison correction if any.
Only one intra-brain connection (i.e., connection from FPZ to F3) in
delta band was retained after the multiple comparison correction (see
Fig. 8(A)). In general, the connective strengths of the channels located
on the right frontal region were higher than that of the left frontal
region.

We also explored inter-brain synchronization in the same way and
showed the results in Fig. 9. We found much more significantly differ-
ent connections after the multiple comparison correction in this case
of inter-brain synchronization, appearing in all five typical frequency
bands. It is worth noting that the inter-brain connective strengths were
generally much smaller than that of the intra-brain connective strengths
according to the results.
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Anger Disgust Neutral Happy

Anger 14.1 15.2 21.7
Disgust| 325 | 300 | 162 | 213
Neutral | 140 7.0 18.6
Happy | 103 | 80 | 147

(A) Inter-PLI-Conv

Anger Disgust Neutral Happy (%)

Anger 113 | 139 | 264 60

. 50
Disgust| 53951 134 | 176 | 318

40

Neutral| 455 | 74 29.4 30

20

Happy | 182 | 50 | 132 0

(B) Intra-PLI-Conv

Fig. 12. Confusion matrices of inter-PLI-Conv and intra-PLI-Conv. Each column and each row represent the predicted class and target class, respectively. Each entry (i,j) in the
matrix shows the percentage of the samples which belong to class i but are misclassified as class j. (A) Inter-PLI-Conv (B) Intra-PLI-Conv.

5.3. Classification

5.3.1. Analysis of different bands

We evaluated classification performance in terms of accuracy for all
five frequency bands using the channels located on the frontal region.
Our objective was to investigate how the performance varied when
different frequency bands and different synchronizations (intra-brain
PLI and inter-brain PLI) were used. The classification performance was
evaluated by five-fold cross-validation (80% samples including all four
categories were for the training and the remaining 20% samples were
for the testing in each time of the total of five times). The average
accuracies and standard deviations for each frequency band are sum-
marized in Table 2. From the table, we can see that the inter-PLI-Conv
outperformed the intra-PLI-Conv, showing the higher accuracies for all
frequency bands and the lower standard deviations for all frequency
bands except the alpha band. One-way ANOVA showed that there was
significant difference in classification accuracy among frequency bands
in the case of inter-brain PLI (p < 0.01) but no significant difference in
the case of intra-brain PLI (p > 0.05). The performance was best in the
alpha band in the case of inter-brain PLI (see Fig. 10).

5.3.2. EEG-based emotion recognition
Based on the above results, we selected alpha band to evaluate
classification performance of EEG-based emotion recognition. As shown

in Fig. 11, the inter-PLI-Conv (obtained from inter-brain PLI) outper-
formed the intra-PLI-Conv (obtained from intra-brain PLI) for all paired
groups except for the paired group 5, 11 and 14. Although the follower
with accuracy of 65.83% is higher than inter-PLI-Conv with accuracy
of 60.83% in paired group 5 and follower with accuracy of 65.81% is
higher than inter-PLI-Conv with accuracy of 64.17% in paired group 11,
the paired participants averaging accuracy of intra-PLI-Conv in paired
group 5 is 57.92% and 57.91% in paired group 11, which are still lower
than inter-PLI-Conv accuracy.

To further investigate the classification performance for each emo-
tion category, we showed the confusion matrices, which reveal how
many samples were misclassified to another class (see Fig. 12). We
observed that inter-PLI-Conv had an advantage of classifying neu-
tral (60.4%) and happy (67.0%) emotion categories compared to the
intra-PLI-Conv (45.0% for neutral and 63.6% for happy).

6. Conclusion

In this paper, we explored social emotion perception and emotion
classification with the channels located on the frontal region. We focus
on frontal lobe because (1) it was reported that the frontal lobe plays
an important role in emotion perception; (2) from the perspective of
practical application of emotion recognition, less number of channels
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could reduce computational complexity and facilitate the setup. In this
study, we investigated social emotion from the aspects (1) time-locked
mechanisms and the influence caused by the social interactions; (2)
synchronization comparisons between intra-brain and inter-brain under
the identical experimental setting; (3) classification performances using
intra-brain PLI and inter-brain PLI.

We proposed an EEG-based hyper-scanning social emotion per-
ception experiment. According to the ERP analyses, we discovered
that there were significant differences among four emotion categories
(i.e., anger, disgust, neutral, and happy) on the explored channels
located on the frontal region and there was no significant difference
between rating orders. From the results of PLI, we observed that (1)
the values of intra-brain PLI are greater than that of inter-brain PLI
across four emotions and five frequency bands; (2) the number of
significantly different inter-brain PLI connections is more than that of
intra-brain PLI. We designed a CNN-based classifier for social emotion
classification and compared performances when using different kinds
of features. Results show that the classification performance of inter-
PLI-Conv outperforms that of intra-PLI-Conv for all frequency bands.
It shows that the best performance was achieved when using alpha
frequency band compared to other four bands.

Our study demonstrated that the better classification performance
was obtained when the inter-brain PLI was used as features compared
to the intra-brain PLI. Previous studies have shown that social inter-
action promotes the synchronization between brains [16,54-56], when
multiple subjects engaged in a collaborative task. Moreover, another
study found that performance could be enhanced in the context of
multi-user brain computer interface compared to the case of single
user [57]. This performance enhancement was also found in the coop-
erative working mode [58] and larger group for decision making [59].
Alpha band was relevant to the social interactions [13,55,60] and
affectively emotional stimuli [61,62], which might explain why the
highest classification performance was obtained when using features
in alpha band.
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