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Abstract  

This thesis contains three empirical chapters on the effect of health on some key 

labour-force outcomes of working age individuals in the UK. In the first paper 

chapter two, the effect of health shocks on exit from employment among working age 

individuals using data from British Household Panel Survey was estimated. Factor 

analysis was used to model health as an unobservable concept with two correlated 

dimensions (mental and physical). Past mental and physical health status as well as 

mental and physical health deteriorations had significant effects on exit from 

employment.  

In the second paper, I addressed the effect of changes observed in different 

components of income after acute health shocks were experienced among working 

age individuals. Identification arrived from exploiting uncertainty in the timing of an 

acute health shock, defined by the incidence of cancer, stroke, or heart attack. Results 

after coarsened exact matching, showed that health shocks significantly reduced 

labour income and increased welfare income, with younger male workers 

experiencing the greatest reduction in their net income and no significant increase in 

welfare income.  

The impact of diabetes on exit from employment decisions of individuals in England 

was investigated in chapter four. Using data from English Longitudinal Survey of 

Aging, I utilised a recursive bivariate probit approach to test for the potential 

endogeneity of diabetes in employment outcomes. Parental history of diabetes was 

used as genetic instrumental variables. Results did not suggest that diabetes is 

endogenous. Investigation was advanced by employing a discrete time hazard model 

on the sample of male and female individuals aged 50 years or older in the first wave 



 
 

of ELSA, who were also in paid work. Results illustrated that being diagnosed with 

diabetes is associated with an increased hazard of leaving employment in estimated 

sample. Adverse effects on employment probability are higher among insulin or oral 

medication users.  
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Chapter 1 

1.1 Introduction 

Influence of health on labour supply behaviour has long been recognised in 

the theoretical and empirical economic literature (van den Berg et al., 2006). Human 

capital is one of the theoretical frameworks, used extensively to understand the 

effects of health on employment (Ogundari et al., 2018). Based on this framework, 

health has been viewed as one of the determinants of individuals’ productivity in the 

market place and, moreover, it has been referred to as the main determinant of the 

total amount of time one can spend on commodities and wealth creation (Grossman, 

1972). However, the majority of empirical researchers have used the context of 

standard intertemporal labour supply models to understand the impact of a decline in 

individual’s health on labour supply. Based on this theoretical framework, health 

deteriorations can be expected to lower wages and raise the relative valuation 

of leisure. Both effects will work to lower work hours, though the magnitude depends 

on the extent to which health declines are unpredicted and also on the assumptions 

made on the extent to which they are expected to persist (Gustman et al., 1986). 

The manner in which health affects labour participation has been studied 

extensively and a significant number of empirical papers point to the links between 

health and labour market risks, while the exact relationship between the two and the 

extent of the effect remains unclear (Blundel et al., 2017). There are several reasons 

for this lack of agreement on the magnitude of these effects. First, any effects of 

health on labour-force participation are highly likely to be socially determined. 
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Government policy in promoting labour-market inclusion of individuals with 

impaired health, as well as disabled workers within various organisations, can play a 

substantial role in implementing a fairer society for all workers (Cai et al., 2014). 

Through social security and welfare arrangements, government policy influences how 

individuals and organisations react and can adjust to unpredictable health shocks 

(Börsch -Supan et al., 2008; Gruber et al., 2004; García-Gómez, 2013). Healthcare-

provision arrangements vary greatly between countries. In the US, where many 

employees have an employer-backed insurance service, the labour supply increases 

after an adverse health-shock event due to an envisaged rise in future healthcare cover 

and its related costs (Madrian, 1994; Kapur, 1998; Bradley et al., 2013). In most 

European countries, where nationally funded healthcare services are in place, the 

same pattern is not observed as out-of-pocket expenditures play a limited role in 

healthcare funding (O’Dowd, 2018). The second reason for the observed diversity in 

the reported effects of health on employment is that the definition of health varies 

widely from study to study (Bound, 1991). While estimates of the effects of health on 

labour supply are quite sensitive to the measure used, there is no agreement in the 

literature on the best method of measuring health (Disney et al., 2006). Two empirical 

approaches to quantifying health’s association with labour market outcomes have 

been developed. The first approach was to estimate the effect of general health status, 

which ideally would portray an individual’s ability and desire to work. Such measures 

can be referred to as “work capacity”. However, in practice, the majority of empirical 

research only used one form of self-reported general health status and failed to model 

health as a multi-dimensional concept (Blundell at al., 2017). It has been argued that 
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including multiple or more comprehensive health measures considerably increases the 

explanatory power of regression models (Manning et al., 1982). 

Health is one of the main determinants of wages, hours and labour force 

participation among groups as diverse as recent graduates, single mothers and older 

individuals who are reaching their retirement age. Each week in the UK, one million 

workers take time off due to sickness, while most return to work within days, around 

17000 individuals reach their sixth week of statutory sick pay and at this point, almost 

one in five people will remain off sick and eventually leave work (hse.gov.uk, 2005). 

This can have serious effects on such individuals and their families, as well as 

employers, government and wider society. Financial losses due to lost employment 

income, productivity costs, occupational or statutory sick payments and Liability 

Compulsory Insurance (ELCI) premiums are some of the impacts on these 

individuals, their employers and wider society as a whole. Government costs include 

state benefits, lost tax receipts and NHS treatment expenditures (hse.gov.uk, 2019).  

The relationship between health and employment is a dynamic process that 

can be modelled more accurately using data from longitudinal surveys. Panel data 

methods can aid with addressing and reducing the confounding effects of reverse 

causality and simultaneity bias (Smith, 2004). In this thesis, longitudinal surveys 

were used to map both gradual and sudden deterioration in health as well as 

employment history of individuals. Surveys were selected according to the main 

research question in each chapter in order to provide the best answer to the question; 

in particular, available data was utilised to make comparisons between the 
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magnitudes and extent to which different people from various age and socio-

economic backgrounds are affected. Clearly, people can experience health problems 

in different stages of their lives and the job market-related outcomes can vary 

substantially depending on the patient’s age. Incentives for staying in employment 

and career options available after health deteriorations are closely related to job 

tenure, pension and overall wealth and structure of households. These can vary 

between younger and older individuals and need to be accounted for when 

interpreting empirical results. In addition, some people may never enter the job 

market as a consequence of suffering severe health problems in childhood. This work 

does not cover this specific aspect of health’s effect on labour force inactivity. I 

restricted my attention to people who were in the working age bracket and had been 

in paid work at some point during their participation in considered surveys. The aim 

was to go beyond estimating an average effect of health on exit from employment and 

provide finer details which enabled a comparison between affected people in the UK 

and identify the sub-groups that were more vulnerable when experiencing health 

problem. 

The main objective of my second chapter was to estimate the magnitude of the 

effect of deterioration in general health on the probability of exit from employment 

among working age individuals in the UK. The manner in which labour force 

outcomes for these diverse groups are affected is dependent on the nature of the 

health problem. According to World Health Organisation (WHO), health is a state of 

complete physical, mental and social well-being and not merely the absence of 

disease or infirmity (WHO.int.com, 2016). Motivated by this definition of health, I 
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took a closer look at the concept of work capacity and how a comprehensive 

description of health can be captured based on various health measures provided in 

British Household Panel Survey (BHPS). Although there is overwhelming evidence 

on the effect of mental health on the ability and desire to participate in labour force 

market (Almond et al., 2003), there are only a handful of studies that provide a 

comparison between magnitude of the effect of deterioration in physical and mental 

health on employment. Using factor analysis, health measures were constructed to 

compare people with respect to their general mental and physical health. While most 

well-known health measures are not clear measures of physical or mental health, 

extracting two distinct measures that distinguish between mental and physical health 

enabled me to account for these two aspects of health simultaneously, and test 

whether these two aspects of health differed with regards to their effect on 

employment. Moreover, factor analysis sheds light on what people have on their mind 

when answering health-related questions, and the manner, in which distinct 

dimensions of health are related to each other.  

Third chapter of this work aims to provide details on financial circumstances 

of individuals after they have experienced an acute health shock for the first time. 

One of the main challenges in identifying the effect between health and labour market 

outcomes is that there is potentially an effect of previous labour market outcomes on 

health and thus the potential for reverse causality. One of the suggested approaches to 

mitigate this problem was to use sudden variation in health, which was exogenous 

relative to income and labour force participation as well as controlling for past health 

(Smith 2005). However, measuring and identifying such health shocks is not easy and 
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consequently very few empirical studies have employed this framework. In the third 

chapter of this work, studies such as Datta Gupta et al. (2011) and Zantomio et al. 

(2016) are followed in order to investigate the effect of health shocks as measured by 

the incidence of cancer, stroke or myocardial infarction on different component of 

income among working age individuals in the UK.  

There are plausible reasons to justify the choice of these health problems as 

exogenous health shocks. First, these problems are less likely to be misreported and 

exaggerated compared with milder issues, hence the magnitude of justification bias 

will be minimised (Baker et al., 2004). Additionally, even though genetic inheritance, 

lifestyle choices and chronic health problems play a significant role in the 

development of these health shocks, in most cases the exact timing and probability of 

occurrence remains unexpected (Zantomio et al., 2016). Coarsened Exact Matching 

(CEM) method was used to control for the selection-on-observables problem as 

individuals experiencing such health shocks and those who do not, may not 

necessarily be identical prior to treatment (Iacus et al., 2011). Further regression 

analysis has been conducted to capture variations in different components of 

individual’s income and investigate whether and to what extend the potential 

reduction in labour income is compensated by income received from the welfare 

system.  

The fourth chapter of this thesis considers the effect of diabetes on early 

retirement in England. It is estimated that in the UK, the population aged over 65 will 

grow twice as fast as the working age population and will account for about 24% of 
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the total population by 2037 (Office for National Statistics 2015). This will decrease 

ratio of the number of working age taxpayers over older individuals who receive 

pension and social welfare. An aging population, accompanied by a lower ratio of 

social security contributors to recipients will cause a significant challenge to 

government policies and sustainability of pensions as well as social and healthcare 

services (Hofäcker, 2015). Therefore, encouraging working age people to stay in 

work is one of the priorities for UK government.  

Three factors contribute significantly to rates of early withdrawal from the 

labour market: wealth, health and caring duties. Although around 60% of older 

workers remain fit, healthy and keen to work, the major causes of economic inactivity 

in the age group 50 to state pension age is ill health (parliament.uk, 2011). Four 

million older people in the UK are affected by chronic health conditions and this is 

estimated to rise due to an ageing population (ons.gov.uk, 2018). It is predicted that 

by 2030, around seven million older people will have some form of long-term 

medical condition (ageuk.org.uk, 2019). The number of people with diabetes has been 

steadily increasing in the UK and based on current population trends; by 2035 4.9 

million people will have diabetes (gov.uk, 2016). Therefore, gaining an insight into 

the effect of chronic diseases on labour force participation can assist with defining 

policy measures that are essential to increase labour participation among chronically 

ill individuals. 

Discrimination is one of the contributing factors that increases probability of 

exit from employment following a health deterioration event. The first utilitarian 

https://link.springer.com/article/10.1007/s12062-017-9181-7#CR42
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provisions to reduce and address workplace disability discrimination were introduced 

in 1995 (National Equality Panel, 2010). The Disability Discrimination Act protected 

individuals living in Britain who had a physical or mental impairment with sever and 

long-term effects hindering their ability to carry on with normal day-to-day 

activities. The ‘disability employment gap’ which represented the difference in the 

employment rate of disabled people and those not deemed as being disabled was one 

of the indicators reflecting the scale of the discrimination disabled individuals 

experienced. In April-June 2020, the employment rate for disabled people was 

reported as 53.6% while this was 81.7% for others, indicating a significant 28.1 

percentage points difference (Powell, 2020). 

It has been argued that factors such as life-style choices can affect the diabetic 

status and labour market outcomes simultaneously (Smith, 2005). Therefore, using 

the genetic history of each individual as an instrumental variable, the potential for 

endogeneity of diabetes status and early retirement was assessed in the fourth chapter 

of this work. The other characteristic of diabetes is that in line with other chronic 

health conditions, it increases the likelihood of complications and co-

morbidities. People with diabetes can vary substantially with regards to their levels of 

ability and desire to work as their condition develops over a long period of time. 

However, majority of existing literature uses binary measures and considers diabetics 

as one homogeneous group from which the average effect of the condition on 

employment probabilities is estimated. This work contributed to literature by 

investigating whether and to what extent labour market-related disadvantages differed 

among diabetics and explored which factors led to early retirement in England. Using 
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data from 7 waves of the English Longitudinal Survey of Aging from 2002 to 2014, a 

discrete time hazard model was estimated. The sample consisted of male and female 

individuals between 50 and state pension age as well as being in paid work at the first 

wave of the survey. Results showed that hazard of leaving employment was higher 

among both diabetic men and women compared with non-diabetic counterparts and 

the difference was statistically significant. The effect of being diagnosed with 

diabetes on probability of withdrawal from employment was higher among patients 

who used insulin or oral medications. These findings were consistent even after 

including controls for onset of other comorbidities such as stroke and heart problems. 

In addition, no significant outcomes were observed when duration of diabetes was 

controlled for in survival analysis; suggesting that categorising diabetics based on the 

years since they have been diagnosed was not a good predictor of probability of exit 

from employment.  

The structure of this thesis is as follows: chapter 2 investigates effects of 

mental and physical health on exit from employment using BHPS data. Chapter 3 

addresses effect of acute health shocks on different components of income among 

working age people. Chapter 4 is concerned with diabetes and its effect on early 

retirement: Does duration and intake of medicines matter? Chapter 5 represents the 

overall conclusion of this thesis. References are reported at the end of each chapter 

and Appendix is provided after each chapter’s references.  
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Chapter 2 

2. Effects of mental and physical health on exit from employment 

2.1 Introduction 

Employment is generally the most important means of obtaining adequate 

economic resources and full participation in society, with work being central to social 

roles and status. “Increasing employment and supporting people into work are key 

elements of the UK Government’s public health and welfare reform agendas” 

(Waddell and Burton, 2006). 

For an individual, health problem is one of the main reasons for leaving the 

labour market and empirical findings suggest that health has a significant effect on 

labour force status of individuals (Chirikos, 1993). A substantial number of people in 

Britain leave work every year and mention health as the main reason for their exit 

from employment. According to the Organisation for Economic Co-operation and 

Development (OECD), each year up to 370,000 people leave work due to illness and 

injury, equivalent of 1% of the working age population. Only 1 in 4 returns to work a 

year later (OECD.org, 2014). 

In this paper, magnitudes and dynamics of the impact health deteriorations 

have on exit from employment among people who hold a job is explored. Health 

deterioration can happen gradually. An individual may feel progressively worse over 

the years finally reaching a stage where their health is poor enough to force them out 

of employment. Alternatively, heath deterioration can occur over a shorter time 

http://www.oecd.org/
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frame, such as a broken bone or recurring back issues. I controlled for past health to 

capture the gradual deterioration of health and identify a health shock when an 

individual experiences transition from good or fair health to poor or very poor health 

between two consecutive years. Clearly, people who experience health problems in 

earlier stages of their life may never enter the job market. This work does not cover 

that aspect of health’s effect on labour force behaviour. As this study was interested 

in the effect of health on exit from employment, only individuals who had a job at 

least for a year during their participation in British Household Survey were 

considered.  

Although literature on the relationship between employment and health has 

inherently focused on the effects of health on retirement decisions, health can be an 

important determinant of labour force supply in any age group. British young people 

are twice as likely to be out of work due to health reasons as they are in other rich 

countries (OECD, 2017). In Britain, two-fifths of people claiming benefits due to 

depression or mental health problems are aged between 20 and 34. In addition, health 

can play an important role in decline of labour force participation by influencing 

decisions for early retirement (Auer and Fortuny, 2000).   

The manner in which health shocks affect exit from employment depends on 

two main factors. Firstly, the nature of the health shock and secondly, the nature of 

the job. When a health shock affects capacity of work, it can push individuals out of 

employment. However, depending on the severity of the health shock people may 

choose to reduce working hours or change their professions. 
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It was assumed that health shocks can indirectly and directly affect work 

capacity. Direct effect is when a health problem affects the main skills and abilities 

that an individual requires to do the job, e.g. a surgeon or a pianist with Parkinson’s 

or Arthritis. On the other hand, a computer programmer with the same health problem 

may still be able to manage to continue to work and use advanced technology to 

overcome this barrier (no direct effect). However, the computer programmer with 

arthritis may find doing daily activities very difficult and time consuming. As a result, 

time for rest and leisure will decrease. Chirikos (1993) argued that due to increased 

need for rest or self-care, the actual amount of time spent on leisure will be decreased. 

On the other hand, people may need more time to do non-labour activities that are 

crucial for being able to supply labour. These factors contributed to valuing leisure 

time more compared to time individuals had better health and led to increase in 

probability of reduced working hours or exit from the labour market (Chirikos, 1993). 

In this paper, this aspect of health and its subsequent influence on employment is 

called indirect effect of health on work capacity. 

In the case of indirect effect of health on work capacity or when direct effect 

of a health problem is not strong enough to make it impossible to do the job, an 

individual may prefer to reduce working hours or move to a part-time job. This 

decision is better suited for people who are in professions that enable them to do 

flexible hours, while earned salaries will be sufficient to maintain an acceptable life 

standard. Individuals who are trained in more than one skill or area of expertise 

(Multi-skilled) may manage to change their field of work and find a job that suits 

their new health conditions and even overcome the direct effect of health on working 
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capacity. This change however may lead to a salary downgrade. For example, a 

surgeon with arthritis may turn to teaching and stay in work. Because education is 

one of the main determinants of marketable skills, I assumed that people with lower 

educational attainments and limited skills will be more likely to exit employment 

when a health shock is experienced. 

Working capacity requires different sets of skills in different types of 

occupations. Therefore, depending on the type of job, health problems can affect 

work related skills in various ways. In this work, I divided different occupations in 

two general groups of manual and non-manual jobs and assumed that these two 

categories of jobs required different sets of skills that make it possible to compare 

people’s response to health shock with respect to the type of job they hold.  

I also split health problems into two main categories of mental and physical. 

One reason for this categorisation is that how mental and physical health are 

perceived in society and by the patients are different. There is evidence to suggest 

that physical and mental health are related to employability and therefore job loss in 

different ways (Kennedy, 2012). While around 38% of claimants list mental illness as 

the main reason for their claim, mental health does not receive the same attention as 

physical health. People with mental health problems frequently experience stigma and 

discrimination, not only in the wider community, but also from service providers 

(Bailey et al., 2013). This is exemplified in part by lower treatment rates for mental 

health conditions and an underfunding of mental healthcare relative to the scale and 

impact of mental health problems (Bailey et al., 2013). I tested whether the magnitude 

of the effect of physical and mental health problems is different for men or women in 
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presence of mild or strong shocks. One other main difference between mental and 

physical health problems is that even common mental health issues can significantly 

reduce quality of leisure time (for example lack of sleep and energy). This means that 

indirect effect of mental health can reduce productivity and working capacity 

regardless of the type of job an individual has. In addition, skills such as time and 

stress management that are essential requirements in most professions can become 

disrupted with the onset of mental health problems. This is how direct effect of 

mental health comes into play. I also investigated whether individuals who held 

manual jobs were at higher risk of job loss when confronted with physical health 

problems compared to those with a non-manual job. This is due to the fact, that a 

physical health problem can directly affect their work capacity while, people in non-

manual occupations may be less vulnerable to direct effect of physical health shocks 

as their main expertise is not dependent on their physical well-being.  

The concept of health is comparable to notion of ability, meaning that while 

one has some idea of what is being implied by the term, it is nevertheless challenging 

to measure it (Griliches, 1977). In exploring the relationship between health and 

employment, the first step is to achieve a set of measures of health that shows ability 

and desire to work (Madarian, 1999). My aim was to construct health measures which 

enabled us to compare people with respect to their mental and physical health. For 

example, how should we compare two individuals who report that their health affects 

the type or amount of the job they can do, but one of them also reports that his/her 

health affects his/her daily activities as well. As previously argued, ill health can 

affect people in different ways and all these aspects can be important. Now let’s 
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consider another question such as “how do you rate your health compared to people 

in your age group?” What if one person rates their health as poor and the other one 

rates it as average. Doesn’t this mean that the person with the poor rating has some 

other health issue that is not being captured in the survey or has higher severity of the 

mentioned health problem compared to the average? I think that these extra pieces of 

data are valuable and should not be ignored. Therefore, we need a mechanism that 

enables us to sum up all this information and make it possible to compare overall 

mental and physical health of individuals. 

While most well-known health measures such as those mentioned above are 

not clear measures of physical or mental health, constructing two distinguished 

measures of mental and physical health is essential in this work. To address these 

issues, explanatory factor analysis was used to test whether it was possible to model 

physical and mental health as two distinguished, but correlated latent variables using 

several common health measures. A confirmatory factor analysis model based on 

information gained from the explanatory model and past literature was then 

assembled. One advantage of using factor analysis was that there was no requirement 

to assume that each indicator measured only a single specific dimension of health as 

cross-loadings were allowed.  

This study uses 18 waves of British household Panel Survey to obtain 

estimates of the impact of sudden health deterioration on the probability of transition 

from employment to being economically inactive among working age individuals in 

the UK. Several well-known health measures were considered to model physical and 
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mental health as two correlated latent variables using explanatory and confirmatory 

factor analysis. Therefore, this enabled comparison of the magnitude of effect of 

mental and physical health shocks on probability of exit from employment. 

Furthermore, to test whether mental and physical health deteriorations showed varied 

effects on people engaged in different professions, working individuals were 

categorised into manual and non-manual jobs. Manual job category included skilled, 

partly skilled or non-skilled manual workers as well as people working in the armed 

forces. Non-manual jobs included occupations which were listed as skilled non-

manual, managerial or technical and professional. Additionally, BHPS data permit an 

analysis with separate estimates of the impact of health for males and females to 

allow for comparisons across gender.  

2.2 Health & labour force behaviour (theory and empirical evidence)  

The empirical literature on the effects of health on labour force behaviour is 

mostly focused on how health affects retirement decisions (Hurd, 1999). A number of 

researchers including Bound et al. (1999),  Au et al. (2005),  Disney et al. (2006), 

Hagan et al. (2006),  Rice et al. (2006) and Zucchelli et al. ( 2007) looked at 

individuals older than 50 and showed that reduction in health status had an 

explanatory power for retirement decisions. Among Spanish workers aged between 

50 and 64, the probability of continued working decreased with the severity of the 

shock as shown by Jiménez-Martin et al. (2006). As demonstrated by Smith (2004), 

there was a 15% decrease in the probability of working for individuals older than 50, 

who suffered a health shock and even though this negative effect decreased every 

year, it still remained significantly high at approximately 4% even five years after the 
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shock. Empirical researches have determined that health and financial incentives 

provided by social security schemes and pension plans both play an important role in 

retirement decisions.  

There are fewer studies that focus on involvement of health on labour market 

transitions among all working age people. However, early labour market exits are 

more likely to cause even more adverse outcomes. Younger individuals are more 

likely to experience economical inactivity after a health shock. Long-term poverty is 

very likely among this group of people as the probability of re-entry into work is 

greatly diminished in such individuals (Jones et al., 2015).  

Lindeboom et al. (2006) produced an event history model for transitions 

between work and disability states among working age individuals using British 

National Child Development Study (NCDS). To create this model, they utilised 

unscheduled hospital appointments as an indicator of health shocks. Their findings 

showed that the effects of health shocks in early stages of life on employment were 

not direct, but rather act through the inception of a permanent disability, which 

escalated by 138% after the onset of a health shock. Also demonstrated was the 

finding that onset of a disability at age 25 reduced the probability of employment at 

age 40 by 20%. Messer and Berger (2004) used the US Health and Retirement Survey 

and compared effect of permanent and temporary health deteriorations on wage, 

working hours and employment. They showed that lasting adverse health conditions 

diminished both wages and hours worked. The size of the effect was almost double 

for men compared to women. On average, total working hours of affected men was 
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6.3% less and they earned 6.3% less compared to healthier men. Also, the larger 

effects of health on labour outcomes were found on prime-age individuals, as the 

peak of loss of wages after the onset of a permanent illness occurred at ages 40-49 for 

males (wages are 12.1% lower) and 30-39 for females (wages are 9.2% lower). Short-

term health conditions had little impact on hourly wages or hours worked.   

Dano (2005) focused on injuries caused by road accidents and found that there 

were both short and long-term adverse effects on the probability of being employed 

for Danish male. This effect holds even when those in receipt of disability benefits 

were excluded from the analysis. Effects of a health shock on the prospects of leaving 

employment and inactivity was investigated by Garcia-Gómez et al. (2006) on the 

Spanish working age population. They demonstrated that for those exposed to a 

health shock the probability of remaining in employment decreased by 5% and the 

probability of entering inactivity increased by 3.5%. Similar outcomes have been 

shown for other European countries (Garcia-Gómez et al., 2008).   

Calendar data from the first seven waves of the BHPS was used by Böheim et 

al. (2000) to examine transitions from unemployment to part-time work, self-

employment and economic inactivity. Their findings showed that the existence of a 

health condition that restricts the type or quantity of work observed before a period of 

unemployment, doubled the exit rate from unemployment into economic inactivity.  

Studies such as Jones et al. (2015) focused only on acute health shocks caused 

by stroke or cancer. These health shocks were more likely to be unforeseen and less 

exposed to the chance of misreporting compared to milder conditions. However, this 
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approach lacked generalisability as results were based on labour force response to 

these specific health conditions.  

None of the empirical works mentioned so far have compared effects of 

mental and physical health on labour force behaviour outcomes. In most of these 

studies, precise and distinguishable measures of both mental and physical health are 

not included in empirical estimations and these two aspects of health are lumped 

together. For example; Garcia-Gomez et al. (2009) looked at the effect of health on 

labour market exit and entries. They constructed an index of health using a latent 

variable approach. They then went on to use predicted values of self-assessed health 

obtained from ordered probit estimation in which objective measures of health were 

used as explanatory variables, while self-assessed health was the independent 

variable. The main reason for adopting this method was to eliminate potential 

justification bias in self-reported health measures. Nonetheless, their index of health 

mixed both mental and physical aspects of health and included a self-reported 

measure of mental health (GHQ) separately in their estimated model. Subsequently, it 

is unclear what exactly is the coefficient of index of health measures in comparison 

with the coefficient of mental health identifier.    

To my best knowledge, only Pacheco et al. (2014) distinguished between 

mental and physical aspects of health and examined whether they are related in 

different ways to people’s labour force behaviour. They made use of six health status 

indicators including three measures of physical health (health limiting, pain and 

energy) and three measures of mental health (depression, health-social, health 
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accomplishment) to estimate the effect of health on labour force participation. Their 

results suggested that only physical health-limiting problems had significant negative 

impact on propensity of employment among men. In contrast, the probability of being 

employed among women was negatively affected by pain and mental health-

accomplishing aspects as well as physical health-limiting dimensions (Pacheco et al. 

2006). They acknowledged that all of their health measures were highly correlated. 

This is one of the drawbacks of including multiple health indicators in a model 

because it makes it difficult to interpret the results (Bound et al., 1999). This problem 

was tackled with implementing factor analysis and using correlated health measures 

to form latent measures of mental and physical health.   

As suggested by Chirikos (1993), a valid and reliable measure of health was 

essential to establish the relationship between health and labour force behaviour. This 

valid measure of health enabled me to capture health differences over time and across 

individuals. However, there is still no common measure of health status employed by 

all researchers. Multidimensionality of health could be the reason for diversity in 

health measures used. Various studies concentrate on different dimensions of health 

and thus the magnitude of reported effect of health on labour force behaviour alters 

depending on the measures used (Currie et al., 1999). In general, estimated effect was 

larger when self-assessed health variables were used, and smaller when specific 

impairment, functional limitations, or mortality experience indices were considered 

(Chirikos, 1993).   
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In summarising the literature on this subject, there were no perfect measures 

of health to be found for estimating the effect of health on labour supply. There were 

arguments for and against using self-assessed health. Although, there was a 

justification endogeneity concern over self-assessed health (unemployed people may 

report their health worse than employed people to justify their economical inactivity), 

the empirical evidence on its existence was neither robust nor consistent with the 

hypothesis in the literature. Therefore, use of self-assessed health measures is still 

popular in predicting the effect of health on labour force participation (Cai et al., 

2006). 

Majority of previous literature considered either physical or mental health and 

did not include both aspects in the empirical estimations (e.g. Jones et al., 2015; 

Pelkowski et al. 2004). In addition, usually a limited number of health measures were 

used in empirical research that led to capturing only one segment of the 

multidimensional concept of work-related health. Data limitations could be one 

reason for these shortcomings.   

This study makes use of several health measures that encircle both physical 

and mental health status and contributes to literature by exploring the relationship 

between several well-known measures of health using explanatory factor analysis. 

Extracted latent physical and mental health measures were used to estimate the effect 

of health deteriorations on the probability of exit from employment among working 

age individuals. I made use of both self-assessed health and specific health problems 

to achieve a general and more accurate picture of people’s health each year and 
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constructed two separate measures of health that captured overall mental and physical 

health status of individuals. As previously explained, direct and indirect effect of 

health on working capacity can only be captured through gathering relevant, 

sufficient information on different aspects of people’s health status.      

 

2.3 Data  

British Household Panel Survey (BHPS) is the UK’s first socio-economic 

household panel survey. BHPS interviews and follows the same individuals every 

year. Questions cover many dimensions of people’s lives such as income, labour 

market status, health, psychological well-being, education and household 

composition. Such data provide essential information, enabling researchers to study 

the link between health and employment. When I began writing this chapter in 2013, 

only 3 waves from understanding society were available. It was clear that making use 

of 18 waves of BHPS could provide greater capacity for modelling the complexity of 

relationship between health and employment compared to 3 waves available in 

understanding society.  

 

The initial sample of 5050 households was collected in 1991 containing over 

10,000 adult individuals. Other initial samples used in various national panels had a 

similar size. Data has been gathered for 18 years and changes in people’s lives can 

currently be identified over a period from 1991 to 2008 (18 waves). During this time, 

people may leave the sample due to various reasons. However, year-on-year response 

rates have consistently been 95-96 percent over years (Lynn et al. 2006).  



26 
 

Scottish and Welsh boost samples were added in 1999 and Northern Ireland 

was added in 2001. Each of these samples contained approximately 1900 households 

who were selected with clustered and stratified design.  

 

I first conducted factor analysis on all these individuals including 169292 

observations throughout 18 waves of BHPS. The breakdown of the employment rate 

with respect to health status is provided in table 6.   

 

To measure labour force behaviour in this study, I identified people who had 

carried out “any paid job” using outcomes from two related questions asking if the 

respondents have had a paid job last week and if not whether he/she has a job, but 

was away from it? Therefore, in this method, people who answered “yes” to both or 

one of these questions were considered as working. Paull (2002) suggested that 

combination of these two questions provides the closest measure to the International 

Labour Organisation (ILO) definition of employment in BHPS. Here I define 

“inactive” as being out of work and not looking for any kind of paid work in the last 2 

week or last four weeks. I included two different groups of people in my estimation 

sample; people who have been in work during two consecutive years and people who 

have been inactive in the current year, but in employed. People who were inactive 

during this survey were excluded from the sample. Also, people who moved from 

employment to unemployment have been removed from the estimated sample. I then 

went on to compare people who entered inactivity from employment with those who 

stayed employed.  
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Unemployed and inactive people were separated from each other as they had 

two different economic statuses. Unemployed people actively looked for a job, 

however inactive people decided not to work for a while. Estimated sample included 

men aged 16-64 and women 16-59 years old, excluding individuals in full-time study 

and maternity leave.  

Sample of estimate was selected, and the strategy motivated by the procedures 

used by Lechner and Vázquez Álvarez (2004) and García-Gómezand et al., (2006) 

was adopted. I considered a window of two years (t and t+1) for each observed 

individual which resulted in creation of sequences of two years over the timespan 

covered by the data. For each sequence, individuals who were in employment or self-

employment at t (the start of the sequence) were selected. These individuals can be 

employed, unemployed or economically inactive at t+1. The treatment or health 

shock is experienced if individuals that had reported good health at t, reported poor 

health at t+1. I estimated the effect of this health shock on probability of being 

economically inactive at t+1.  

The sample used for the regression analysis contained 54,421 observations for 

men including 8,519 individuals that on average were observed in the sample for 6.4 

years. Women’s samples included 8,710 individuals with an average of 6.1 years 

remaining in the sample, providing 53,171 observations. 

 

In this chapter, effect of health on exit from employment and entering 

inactivity was explored. Health measures considered and the method they were 

utilised are explained below.  
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2.3.1 Health variables 

Most of the previous literature considered either physical or mental health and 

did not include both aspects in the empirical estimations (e.g. Jones et al., 2015; 

Pelkowski et al., 2004). In addition, usually a limited number of health measures were 

used in empirical research that led to capturing only one segment of the 

multidimensional concept of work-related health. Data limitations could be one 

reason for these shortcomings.  

This study made use of several health measures that encircle both physical and 

mental health status and contributed to literature by exploring the relationship 

between several well-known measures of health using explanatory factor analysis. 

Extracted latent physical and mental health measures were used to estimate the effect 

of health deteriorations on the probability of exit from employment among working 

age individuals. I made use of both self-assessed health and specific health problems 

to achieve a general and more accurate picture of people’s health each year and 

constructed two separate measures of health that captured overall mental and physical 

health status of individuals. As previously explained, direct and indirect effect of 

health on working capacity can only be captured through gathering relevant 

information on different aspects of people’s health status.  

 

In BHPS there is a group of separate health measures relating to specific 

health issues such as 1-arm, leg or hands 2-sight, 3-hearing, 4-skin or allergy, 5-chest 

or breath, 6-heart or blood, 7-stomach or digestion, 8-diabetes, 9-anxiety or 
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depression, 10-alcohol or drugs, 11-epilepsy, 12-migraine. So far in the literature, all 

these variables have been used together. For example; Gomez et al. (2006) and Jons 

et al. (2010) used all these 12 groups of variables to predict the latent health index of 

Self Assessed Health (SAH). Burchardt (2000) used a binary variable indicating 

whether a person had at least one of these 12 health problems. She suggested that 

these variables could be a measure of an individual’s model of disability. 

Two other measures of health in BHPS, asked people: “Does your health in 

any way limit your daily activities compared to most people of your age?” and “Does 

health limit the type or amount of work?” The outcome obtained from these questions 

depends very much on respondent’s concept of health and their daily 

activities/lifestyle and are highly correlated among working age people in my sample 

(70%). These measures of health are widely used in literature, particularly when 

focusing on long term disability as the main research interest (Bell et al. 2009). When 

answering these questions participants can refer to either their mental or their physical 

health. For instance, a person with depression may find it difficult to do her or his 

grocery shopping. On the other hand, the same daily activity can be difficult for 

someone experiencing mobility issues. We use explanatory factor analysis to see 

which aspect of health is mainly considered in answering these questions.  

GHQ-12 is another set of variables considered. GHQ stands for General 

Health Questionnaire. These were initially used for screening a psychiatric illness, but 

were recently widely used as an indicator of psychological well-being (MacDowell, 

2006). GHQ-12 is a shortened version of the GHQ-60 and is embedded in the self-

completion questionnaire component of BHPS (Goldberg et al., 1988). This reduced 
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form contains 12 individual components that cover concentration, sleep loss due to 

worry, perception of role, capability in decision making, whether constantly under 

strain, perception of problems in overcoming difficulties, enjoyment of day-to-day 

activities, ability to face problems, loss of confidence, self-worth, general happiness 

and whether suffering from depression or unhappiness. All items have a 4-point 

scoring system that ranges from a 'better/healthier than normal' option, through to a 

'same as usual' and a 'worse/more than usual' to a 'much worse/more than usual' 

option. The exact wording depends upon the particular nature of the item.  

 

The exact question that is asked in BHPS as follows: please think back over 

the last 12 months about how your health has been. Compared to people of your own 

age, would you say your health has been excellent, good, fair, poor or very poor? This 

measure of health is seen as an indicator of perceived health status based on the 

individual’s concept of the norm for their age (Jones, 2004). With people’s varying 

expectations, this measure may change over time. The subjective nature of this 

measure provides a personal insight into an individual’s health. Several studies have 

looked at associations between SAH and mortality rates. Most have concluded that a 

significant independent linkage exists when various health status indicators and other 

relevant covariates are considered (Idler et al., 1997). Researchers such as David e al. 

(1981) and Kruse et al. (1994) questioned what SAH really measured and their results 

suggested that this variable mainly reflected physical health problems and to lesser 

extent mental issues. 
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 Health satisfaction (Satisfaction) is the last question that is considered in this 

work. Participants were asked to answer the following question: How dissatisfied or 

satisfied are you with your health how satisfied or dissatisfied they were with their 

health status and individuals are asked to score their satisfaction from 1 to 7 while not 

satisfied at all is scored as 1 and 7 corresponds with being  completely satisfied. 

Correlation between health satisfaction measure of health and SAH is 67%. 

This measure of health is used in several empirical works, for example Riphahn 

(1999) explored how employment and economic well-being of older German workers 

were affected by health shocks. Health shocks are defined as sudden deterioration of 

health satisfaction at least five point on the scale of zero to ten. This measure also has 

been used as an indicator of perceived health in studies such as Ronellenfitch et al. 

(2004) who investigated health deterioration among immigrants from eastern Europe 

to Germany. Also, Ravesteijn et al. (2018) used health satisfaction measured on an 

integer scale from 0 to 10, as their main outcome variable in investigating the role of 

occupation on health of working age people using German socioeconomic panel.. 

 

2.4 Modelling health 

 

Table one describes how variables mentioned in the section 2.1 are used in 

factor analysis model. I constructed a binary variable based on each of the health 

measures to identify people with poor health and avoided mixing people with mild 

conditions with ones with poor and very poor conditions. This kind of identification 

is very common and recommended in the literature (Riphahn, 1999; Burchardt, 2000). 
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In addition, interpretation and comparison of the loadings in factor analysis is easier 

when all the measures are either binary or continuous.  
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                     Table 1: Health variables and descriptions in BHPS and how they have been used in modelling health  

Variables Description 

Conditions 
Question in BHPS: Please see page 34 for the list of variables. Mean 0.05, standard deviation: 2.6 

Binary variable: Equal to 1 if at least one of the health questions is reported and 0 otherwise. 

  (arm leg or hands, sight, hearing, skin or allergy, chest or breath, heart or blood, 

  stomach or digestion, diabetes, epilepsy, migraine) 

Daily 

Question in BHPS: “Does your health in any way limit your daily activities compared to most people of your age?” 

Mean 0.18, standard deviation: 0.09 

Binary variable: Equal to 1 if respondent answers yes to the following question and 0 otherwise 

  

 

Work 

Question in BHPS: “Does health limit type or amount of work?” 

Mean 0.2, standard deviation: 0.81 

Binary variable: Equal to 1 if respondent answers yes to the following question and 0 otherwise 

  

 

SAH 

Question in BHPS: “Pease think back over the last 12 months about how your health has been. Compared to people of 

your own age, would you say your health has been excellent, good, fair, poor or very poor.” 

Mean 2.5, standard deviation: 0.09 

Binary variable: Equal to 1 if respondent reports poor or very poor heath to the following question and 0 otherwise 

  

 

GHQ 

Question in BHPS: Please see page 36 for the complete list of the variables 

Mean 1.82, standard deviation: 2.7 

Binary variable: Equal to 1 if respondent scores more than 3 with caseness scoring and zero otherwise 

Satisfaction 

Question in BHPS: “How dissatisfied or satisfied are you with your health?” 

Mean 3.6, standard deviation: 1.04 

Binary variable: Equal to 1 if respondent scores 6and 7 in the scale from 1 to7 and zero otherwise 
            *This question was not asked in wave 9. We used a similar question provided in wave 9, which asked participants “In general would you say  

              your health is?” and response options were Excellent, Good, Fair and Poor. SAH is coded as one for those that reported poor health and  

              zero was assigned to others.
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“Condition” is constructed based on only physical health conditions, and 

therefore does not include anxiety, depression, alcohol and drug issues, which clearly 

refer to psychological problems or risky behaviour to have a purely physical measure 

of health. I constructed this measure of health as a binary variable to indicate whether 

a person had at least one of the 10 physical health problems. Although constructing a 

binary variable based on whether an individual suffered from one of these health 

issues meant that all health problems were being weighted equally. However, there 

was no established method of comparing the importance of different health problems 

(Burchardt, 2000). Questions about anxiety and depression were not included in 

estimations as these were captured by GHQ-12. Alcohol and drug problems were out 

of this paper’s scope. Constructing a measure that purely measured physical health 

problems helped me decide which extracted latent variable in factor analysis mainly 

stood for physical aspects of health. The exact wording of the question is listed 

below:  

Q1. Problems or disability connected with; arms, legs, hands, feet, back, or neck 

(including arthritis and rheumatism) 

Q.2 Do you have any of the health problems or disabilities listed on this card (28)? 

Difficulty in seeing (other than needing glasses to read normal size print) 

Q3. Do you have any of the health problems or disabilities listed on this card (28)? 

Difficulty in hearing 

Q4. Do you have any of the health problems or disabilities listed on this card (28)? 

Chest/breathing problems, asthma, bronchitis 
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Q5. Do you have any of the health problems or disabilities listed on this card (28)? 

Heart/blood pressure or blood circulation problems 

Q6. Do you have any of the health problems or disabilities listed on this card (28)? 

Stomach/liver/kidneys 

Q7. Do you have any of the health problems or disabilities listed on this card (28)? 

Diabetes 

Q8. Do you have any of the health problems or disabilities listed on this card (28)? 

Migraine or frequent headaches 

Q9. Do you have any of the health problems or disabilities listed on this card (28)? 

Cancer 

Q10. Do you have any of the health problems or disabilities listed on this card (28)? 

Stroke. 

 In this paper caseness scoring was used for GHQ-12. The 'better/healthier 

than normal' and the 'same as usual' answers were scored as 0 and the' worse/more 

than usual' or the 'much worse/more than usual' option was scored as 1. Therefore, the 

higher the score, the more severe the condition. Many studies have used this derived 

variable as an indicator of mental health (Gatrell et al., 2004, Apouey et al., 2010).  

Grouping all 12 questions of GHQ-12 together meant that GHQ-12 was 

considered as a unidimensional scale. This assumption can be supported by findings 

based on various works such as results obtained from principal components analysis 

used by Banks (1980), which examined the factor structure of GHQ12 in three 

different samples. Results supported the existence of just one major factor (Banks et 

al., 1980). Winefield (1989) confirmed a very high internal consistency reliability of 

http://www.sciencedirect.com/science/article/pii/S1353829203000832


36 
 

items in the GHQ-12 in their samples as evidence for unidimensionality of the 

measure (Winefield et al., 1989). The evidence in the literature for unidimensionality 

of the GHQ-12 is based on a high internal consistency of the items, and the results of 

principal components analysis. However, there was no definite conclusion on the 

factor structure of the GHQ-12. This scale has been hypothesised to contain two 

factors (Andrich &Van Schonbroeck 1989; Gureje 1991, Martin 1999) or three 

factors (Cheung, 2002, Werneke et al., 2000; Worsley et al., 1977). Using caseness 

scale, people with scores more than 3 are indicated as experiencing poor mental 

health as this is the recommended threshold for 12-item version of GHQ (Goldberg et 

al. 1997).  

The exact 12 questions asked in BHPS are as followed: 

Q1. Have you recently....   been able to concentrate on whatever you're doing? 

Q2. Have you recently....   lost much sleep over worry? 

Q3. Have you recently....   felt that you were playing a useful part in things? 

Q4. Have you recently...  . felt capable of making decisions about things? 

Q5. Have you recently....   felt constantly under strain? 

Q6. Have you recently....   felt you couldn't overcome your difficulties? 

Q7. Have you recently....   been able to enjoy your normal day-to- day to day 

activities? 

Q8. Have you recently....   been able to face up to problems? 

Q9. Have you recently....   been feeling unhappy or depressed 

Q10. Have you recently....  been losing confidence in yourself? 

Q11. Have you recently....  been thinking of yourself as a worthless person? 

Q12. Have you recently....  been feeling reasonably happy, all things considered? 
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2.4.1 Exploratory factor analysis 

 

Exploratory factor analysis (EFA) as a statistical method was used to uncover 

the underlying structure of the set of health variables described in table 1. EFA is a 

technique within factor analysis whose overall aim is to describe the underlying 

relationships between measured variables. 

  In this analysis, exploratory factor analysis identified only two latent factors 

with eigenvalues greater than one (table 2). This means that these two common 

factors explained most of the variation among health measures considered. The fit 

statistics obtained from the analysis confirms that the model with two non-orthogonal 

factors provides a better fit to data compared to the model that explains common 

variation of the observed measures only by one factor. 

According to the results presented in table 3, there was a clear pattern that 

suggested each health measure is only affected by one of the factors and only SAH is 

defined by both factors. These results suggest a meaningful and straightforward 

intuition on the two dimensionalities of the health measures used. Work, Conditions 

and Daily are mainly determined by first factor and second factor accounts for 

variations in responses provided to GHQ and Satisfaction. Although SAH loads on 

both factors, its loadings are greater on first factor compared to the second one. As we 

mentioned before, literature is not clear about what aspect of health is exactly 

measured by health measures such as work, daily, satisfaction and there is a limited 

literature suggesting that SAH measures both mental and physical health. However, 
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we know that GHQ clearly measures mental health and Conditions is constructed to 

measure only physical health. The fact that GHQ only loads on second factor and 

Condition only on first factor, make it possible to conclude that first factor accounts 

for physical aspect of health and second factor can be seen as a latent measure of 

mental health. To test the generaliability of findings from an EFA based on pooled 

sample, I split the sample randomly into two halves, repeated EFA on each half and 

compared the results. Factor loadings and fit indices remained almost the same on the 

analysis on each half and the full data set. Using this information, confirmatory factor 

analysis was used to extract two separate measures of mental and physical health. 

Table 2: Fit indices for Exploratory Factor Models 

Models              eigenvalues            X2                    DF       CFI         RMSEA 

1 Factor 2.454    6505.073          9        0.962         0.059 

2 Factors 1.102            468.518            4        0.997         0.022 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Geomin Rotated Loadings (N= 169292) 

    Factor one Factor two 

Work 

 

0.707 -0.025 

Conditions 0.524 0.088 

Daily 
 

0.87 0.002 

  
  

GHQ 

 

0.047 0.579 

SAH 0.544 0.366 

Satisfaction 

 

0.002 0.804 
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2.4.2 Confirmatory factor analysis  

 

The following equations describe my confirmatory factor analysis (CFA) 

model using robust diagonally weighted least squares corrected for variance and 

means (WLSMV). Results obtained from EFA was used to form the CFA model. 

Equations 2.1-2.7 summarise this model. In these equations, Physical stands for latent 

physical health and Mental indicates latent mental health. Both latent variables were 

modelled as continuous variables and were allowed to be correlated with each other. 

As indicated before, each observed health measure (Condition, Daily, Work, SAH, 

Satisfaction, GHQ) was transformed to a binary variable that was equal to one when 

the respondent reported poor or very poor health. Residuals were assumed to have 

normal distribution (Probit model) and not correlated to each other.  

 

Physical by measures of physical health: 

Pr (Condition=1|Physical) = Φ (Physical𝛽1)                                      (2.1)  

Pr (Daily=1|Physical) = Φ (Physical𝛽2)                                             (2.2)  

Pr (Work=1|Physical) = Φ (Physical𝛽3)                                            (2.3)  

Pr (SAH=1|Physical) = Φ (Physical𝛽4)                                              (2.4)  

Mental by measures of mental health:  

Pr (SAH=1|Mental) = Φ (Mental𝛽5)                                                   (2.5) 

Pr(Satisfaction=1|Mental) = Φ(Mental𝛽6)                                          (2.6)                                      

Pr (GHQ=1|Mental) = Φ(Mental𝛽3)                                                    (2.7)  

In these equations, physical stands for latent physical health and mental indicates 

latent mental health. Both latent variables were modelled as continuous variables and 

allowed to be correlated with each other. As indicated before, each observed health 
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measure (Condition, Daily, Work, SAH, Satisfaction, GHQ) was transformed to a 

binary variable that was equal to one when the respondent reported poor or very poor 

health. Residuals were assumed to have normal distribution (Probit model) and not 

correlated to each other. Where Pr denotes probability, and Φ is the Cumulative 

Distribution Function (CDF) of the standard normal distribution. The parameters βi is 

estimated by maximum likelihood.  

Physical and Mental are Standardised factor loadings and standard errors for 

this model considering pooled data across years are presented in Table 1. This model 

is re-estimated on each wave and results suggested a similar pattern. It appears that all 

loadings were significant and relatively similar. SAH had the smallest loading on 

both mental and physical categories which was predictable as I assumed that SAH 

was explained by both mental and physical aspects of health. Daily had the largest 

loadings among components of physical health and satisfaction was the variable that 

had been explained the most by mental. Table 2 presents fit statistics for my two-

factor model. This model produced a good fit statistic. The statistically significant 

chi-square value showed less than satisfactory overall fit for this model. Jöreskog and 

Sörbom (1993) pointed out that the use of chi-square is based on the strict assumption 

that the model holds exactly in the population. A consequence of this assumption is 

that models that hold approximately in the population will be rejected in a large 

sample (Jöreskog et al., 1993). In order to overcome this problem of sample size, 

Browne and Cudek (1993) suggested using the Root Mean Square of Approximation 

(RMSEA) as the index of fit.  

https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Maximum_likelihood
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The RMSEA estimates the overall amount of error and is a function of the 

fitting function value relative to the degrees of freedom. This fit statistic should not 

exceed 0.08 and a value less than 0.05 suggests a very good fit (Brown et al. 1993). 

Table 2 shows 0.044, demonstrating a very good fit for the model. As recommended 

by Hoyle and Panter (1995), Comparative Fit Index (CFI) is also used here. This fit 

index assesses how much better the model fits compared with a baseline model, 

usually the independence model (Joreskog et al., 1993). The indices lie between 0 and 

1, and values above 0.95 indicate a better model fit (Hu et al., 1999). Table 2 shows 

that two-factor model produced a CFI index that was more than the acceptable cut-off 

(0.992).  

The square of standardised loadings represented the proportion of the variance 

in the underlying continuous and latent aspect of each categorical observed health 

measures that could be explained by the corresponding factor of the hypothesised 

model. These values are presented as R2 Estimate in tables 4. Variance of residuals (1- 

R2) is also presented in table 4.  
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Table 4: Standardised factor loadings and standard errors of variables 

  Loadings     R2 S.E P-values 
Residual 

variance  

Physical by         

SAH 0.691 0.478 0.008 0 0.522 

Work 0.756 0.571 0.002 0 0.429 

DAL 0.882 0.778 0.002 0 0.222 

Conditions 0.713 0.508 0.003 0 0.492 

Mental by     

 
Mental by      

GHQ 0.655 0.429 0.004 0 0.508 

SAH 0.598 0.357 0.009 0 0.643 

Satisfaction 0.859 0.738 0.005 0 0.262 

 Number of observations: 171071 

 

 

Table 5: Fit statistics for two-factor model   

Tested model Number of items Chi-square  df RMSEA    CFI 

two-factor 6 2627.89 7 0.044 0.992 

 

In order to be able to categorise people’s health using extracted latent health 

measures, I divided each of the predicted latent health measures into 5 quintiles based 

on the pooled sample over years including both men and women (descriptive and 

regression-based results were robust to the use of year-specific quintiles). As greater 

values of latent variables correspond to worse health, the fifth quintile indicated worst 

health reported.  



43 
 

In the whole sample of working age people, the number of observations for 

women exceeded that of men (79,541 men and 89,751 women). In general, it was 

observed that women experienced worse health compared to men. For example; 

17.69% of men and 22.15% of women are included in fifth quintile of mental health. 

17.77% of men are categorised to the fifth quintile of physical health, whereas for 

women this value is 22.09%. In this work, I do not assume that this difference is 

based on systematic differences in reporting behaviour among men and women. If we 

divide samples between genders then we see that some men who are in the 4th quintile 

will be shifted to the 5th quintile and in the regression models we will no longer able 

to compare results of health shocks and health status of men with women.   

Tables 6 and 7 show the mean and standard deviation of latent mental and 

physical measures for each quintile. Standard deviations of 5th quintile of both mental 

and physical is greater compared to other quintiles among men and women, 

suggesting that people’s level of health in this quintile has a larger variation 

compared to people in other quintiles. 

 The employment rate for each level of health is also shown in these tables. 

According to tables 3 and 4 for both men and women there is a significant difference 

in the employment rate of people who reported poorest mental or physical health. 

People who are in poor physical health have a lower employment rate compared to 

those who experience poor mental health. Being in the 4th quintile of mental health 

also corresponded to a lower employment rate compared to the first three quintiles. 

However, 4th quintile of physical health demonstrated similar rate of employment 
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among first four quintiles. Tables 6 and 7 also indicate the number of people moving 

from first 4 quintiles to the fifth quintile between two consecutive years. The total 

number of women who reported this type of health deterioration (physical or mental) 

was slightly higher compared to men. 10.6% of women in my sample reported this 

kind of mental health transition, whereas this was 8.8% for men. The percentage of 

women experiencing this kind of physical health transition was 9.4% compared to 

7.8% for men. Considering means of each quintile between men and women, there 

was no noticeable differences. These facts suggested that there was not much 

difference in pattern of reporting level of health between men and women, but women 

are more likely to experience health deteriorations. Probability moving to 5th quintile 

is significantly higher among people whose health was classified in 4th quintile in the 

previous year. 
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Table 6:  Mental and physical latent health divided in to 5 quintiles, moving towards                                                                   

poorest reported health and employment rate for men 

    Male subjects       

 
Mean Standard deviation  Employment Rate   Moved to fifth quintile next year 

Latent Mental health 
   

Poor (fifth quintile) 1.513 0.484 55% 
  

Fair (forth quintile) 0.334 0.235 76% 2510 (0.15)* 

Good (third quintile) -0.087 0.1 83%                            797 (0.05) 

Very good (second quintile) -0.349 0.171 84% 1,673 (0.07) 

Excellent (first quintile) -0.612 0.275 86% 1,019 (0.05) 

Latent physical health  
   

Poor (fifth quintile) 0.629 0.181 48% 
  

Fair (forth quintile) 0.117 0.083 83% 2,000 (0.12) 

Good (third quintile) -0.01 0.066 83% 1,695 (0.10) 

very good (second quintile) -0.262 0.032 84% 540 (0.03) 

Excellent (first quintile) -0.252 0.17 86% 699 (0.03) 

               *Percentages in last column= (number of people Moved to fifth quintile at t+1/ Number of the people in original quintile at t) 
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Table 7:  Mental and physical latent health divided in to 5 quintiles, Moving towards poorest reported health and employment rate 

for women. 

    Female subjects       

 
Mean Standard deviation  Employment rate 

  Moved to fifth quintile  

next year 

Latent Mental health 
   

Poor(fifth quintile) 1.542 0.513 48% 
  

Fair (forth quintile) 0.374 0.235 65%   3,987 (0.14)* 

Good (third quintile) -0.08 0.103 70%           1,128 (0.06) 

Very good (second quintile) -0.33 0.168 72% 2,163 (0.09) 

Excellent (first quintile) -0.61 0.277 74% 1,141 (0.05) 

Latent physical health 
   

Poor (fifth quintile) 0.624 0.182 43% 
  

Fair (forth quintile) 0.123 0.081 71% 3,069 (0.13) 

Good (third quintile) -0.014 0.067 71% 2,475 (0.12) 

Very good (second quintile) -0.258 0.035 72% 727 (0.03) 

Excellent (first quintile) -0.251 0.172 74% 803 (0.04) 

*Percentages in last column= (number of people Moved to fifth quintile at t+1/ Number of the people in original quintile at t)
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2.5 Estimation Strategy 

 

I analysed the impact of health on exit from employment and entering into 

economical inactivity for working age women (16-59) and men (16-65) separately. 

As I looked at exit from employment between two consecutive years, for each person 

any observations at t for whom information on labour status at t+1 or t-1 is not 

available was excluded from sample. My interest was to see whether lagged health 

status or recent health deterioration among other explanatory factors, influenced 

leaving employment and becoming economically inactive. 

This paper examined the short-run effect of health shocks on probability of 

transferring from employment to being economically inactive. In the early stages of 

being diagnosed with a new mental or physical health problem affected individuals 

tend to be occupied with hospital appointments and adapting to new advert 

circumstances imposed as a result of their sudden health deteriorations. 

Demonstration of these immediate effects of health shocks on employment 

trajectories are important as they showed that newly diagnosed patients are likely to 

experiment becoming economically inactive and encounter even more problems in 

their personal and financial lives. This is an important issue that needs to be 

integrated and highlighted. Consequently, these short-run spells of exit from 

employment can lead to other long-term adverse effects. I acknowledge that this 

study can be extended and enriched with investigating long-term trends and 

sequences of employment patterns of those who have been affected.  
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  The sample contained 54,421 observations for men including 8,519 

individuals that on average were observed in the sample for 6.4 years. Women’s 

sample included 8,710 individuals with an average of 6.1 years remaining in the 

sample, providing 53,171 observations.    

Our empirical specifications are based on equation 2.8:  

   𝑦𝑖𝑡+1 =  𝑥′𝑖𝑡𝛽1 +  ℎ1′𝑖𝑡𝛽2 + ℎ2′𝑖𝑡+1𝛽3 + 𝜇𝑖+ 𝜀𝑖𝑡                             (2.8)                             

The dependent variable 𝑦𝑖𝑡+1 is a dummy which identifies whether the individual was 

in employment (including self-employed people and part-time) at t and inactive at t+1 

and is equal to zero when an individual works for two consecutive years.  

Being inactive means not working and not searching for work during last 2 

weeks or 4 weeks . ℎ1𝑖𝑡 is a vector containing the health status (representing the long-

term physical and mental health status) at t. In some models ℎ1𝑖𝑡 stands for health 

status in the previous year, while in others it represents the moving average between 

time t and t-2. Using moving average excludes estimations only on people who have 

been in the survey at least for four consecutive years and reduces the number of 

observations. On the other hand, it has the advantage of controlling health status 

during a longer period.  ℎ2𝑖𝑡+1is health deterioration measure between t and t+1 

(representing recent changes in physical and mental health status). Defining health 

shocks based on a sudden change of health status is a common way of identifying a 

health shock. For example; Bradley et al. (2013) determined three kinds of adverse 

health shocks. Given that self-reported health status considered is recorded as 

excellent, very good, good, fair, or poor, they identified a health Self-Report Decline 
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(SRD) as a shift from “excellent,” “very good,” or “good” health status in the first 

interview to “fair” or “poor” health status in the second. Several other studies use the 

same approach for capturing health shocks. Cai et al. (2013) and Riphahn (1999) used 

similar identification to capture health deterioration and its effect on labour force 

behaviour. 𝑥𝑖𝑡 is a vector of control variables including characteristics of the 

individuals and their household that may affect labour force participation choices.  

These variables are as follows: Being part time worker, whether 

spouse/partner is employed/self-employed. Number of children categorised with 

respect to their age group ranging from 0 to 15 years old, log of household income at 

t-1(previous income has been included to reduce the fact that exit from employment 

being the main determinant of the size of the household income), job 

classifications(party skilled, skilled manual or armed forces, skilled non manual, 

managerial or technical with non-skilled as reference category), academic 

qualification (categorised as no qualification, O/CSE, A level/HND with having a 

degree and higher as the reference group), housing ownership status (Own house with 

mortgage, housing authority/council house, renting with owning house own right as 

the reference), regional controls ( wales, Scotland, midlands, south west, south east, 

north east, north west) age groups and time (wave) dummies. Very similar variables 

have been used in different academic and imperial research concerning the effect of 

health and employment status (Anderson et al., 1985; Berthoud et al., 2014) 
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 𝜇𝑖 is the individual specific unobserved heterogeneity (in the form of unobserved 

time-invariant individual effects). 𝜀𝑖𝑡 is the error term assumed to have a probability 

density function with logistic distribution.  

Individuals who moved from employment to unemployment between time t 

and t+1 were excluded from the sample as the main interest was identifying the effect 

of health shocks on the immediate decision of being out of the labour market and that 

is best captured by moving from employment to being economically inactive. 

Unemployed individuals actively look at finding a new job which means these 

individuals find themselves physically and mentally fit enough to work again. They 

may be looking for a new job that accommodates for their new health status and there 

is a clear indication that they are still interested in returning to employment. 

However, considering people who move from employment to economically 

inactiveness enabled me to consider the sub-sample that experienced potentially 

severest labour market related consequences after facing a health shock. I 

acknowledge that this estimation can be improved by including people who moved 

from employment to unemployment. Ordinal Logistic Models can be a good choice in 

demonstrating and comparing different scenarios and sequences that can emerge after 

an employment episode is ended.   

Unbalanced panel data was used in all the regression analysis however, longitudinal 

weights provided with BHPS were used to mitigating bias caused by attrition and 

non-response. The longitudinal respondent weights chose cases with full interview at 

each wave in the BHPS. These cases were re-weighted to take into account previous 



51 
 

wave respondents lost due to refusal at the current wave or because of other forms of 

sample attrition. Thus, the longitudinal weight at any wave address losses between 

each adjacent pair of waves up to that point in addition to the initial respondent 

weight at wave one. These weights also included the deceased, people who have 

moved into institutions or otherwise gone out-of-scope. These fail to give an 

interview not through non-response but due to a terminating event which resulted in 

their leaving the population of interest (Lynn, 2006). 

         In order to control for unobserved heterogeneity that may be correlated with the 

explanatory variables a fixed effect model (conditional logit) was estimated. 

Hassmann test rejects the null that 𝜇𝑖 is not correlated with the regressors 

(explanatory variables) which means non-linear (logistic) random effect model is 

inconsistent. Lindeboom (2012) in the Elgar Companion to Health Economics 

suggested estimating fixed effect model when effect of health on work or effect of 

work on health is estimated separately. Using fixed effect models enabled me to 

control for individual specific unobserved time invariant factors which were 

correlated with health status such as genetic makeup, quality of nutrition during 

childhood or ability to cope with stress. However, fixed effect models only 

considered individuals that reported change in their labour force status and excluded 

individuals that stayed in work during their participation in the survey (individuals 

economically inactive over the course of the sample are excluded as I compared 

individuals who worked during two consecutive years with those who were working 

at time t and were economically inactive at t+1).  
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I also estimated random effect models including means of time-variant variables to 

consistently estimate the parameters of random effects model while relaxing the 

assumption that the explanatory variables are correlated with the unobserved 

heterogeneity (Mundlak, 1978). I adopted Wooldridge (2010) method which is 

developed for unbalanced panel data.  Therefore, mean value of the time varying 

explanatory variables were included in the estimated random effect probit model. 

This can also help with interpreting average marginal effects as the marginal effects 

of logit fixed effect can only be calculated based on the assumption that individual 

fixed effect equal to zero. Also, linear fixed effect models were estimated and 

reported in the Appendix (table 13) for robustness check. The pattern and size of the 

coefficients were similar to marginal effects reported as main results for working age 

men and women separately.  

Number of women who reported change in their labour force status exceeded 

those of men, leading to more men being excluded from sample as a result of using 

fixed effect models. There are 7,004 men (44,593 observations) and 6,149 women 

(36,005 observation) who have been at least 2 years in our data set and have been 

working all the years with reporting no exit from employment. Seven percent of these 

people experience mental shock and 6 percent of them experience physical health 

shock (three percent of them experienced both mental and physical shocks). The 

likelihood of experiencing health shocks among these people is slightly lower than 

that among people who had a change in their labour force status (ten percent of them 

reported a mental health shock and 7 percent reported a physical health shock). 

Therefore, these results might be bias due to exclusion of people who experienced 
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health shock, but did not exit employment. The difference between results obtained 

from fixed effect and random effect models can also be caused by the fact that 

random effect models assume that the entity’s error term is not correlated with the 

predictors which allows for time-invariant variables to play a role as explanatory 

variables. I estimated random effects with exclusion of individuals who had been 

working during the course of their participation in the survey to see to what extend 

variation of the estimated results was due to the different assumption correlation of 

the 𝜇𝑖  with regressors.  

The dependent variable showed whether an individual had changed his or her 

labour force status between t and t+1. Results from such estimations enabled me to 

compare the level of health effects at t or being in poor health at time t with effect of 

deterioration in health between t and t+1 on exit from employment.  

 I included conventional human capital variables such as; age, highest level of 

education (having a degree or higher qualification as the reference point) and number 

of children in the household. Job characteristics such as being a part-time worker, 

unskilled worker, managerial/technical, skilled manual/non-manual partly skilled 

were considered (professional workers were the reference point). Household 

characteristics such as household income and whether a partner works or not 

(reference point is that partner is not working or not having a partner) were being 

taken into account. In all estimations, year and regional specific controls were 

considered. Age, year and region of residence controls are included in all the 

estimations. In empirical estimations extracted, latent measures of mental and 

physical health were used to control for level of health. In order to identify transition 
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into poor mental and physical health I also constructed two other dummies that were 

equal to 1 if the individual was in poor health at time t+1, but was not in poor health 

(fifth quintile) at time t. These dummy variables were called mental health transition 

(worse) and physical health transition (worse). Slightly different variables were 

constructed for identifying mental and physical health transitions and poor mental and 

physical health. Here being in first 3 quintiles means being in good health and being 

in 4th an 5th is equivalent to being in poor health. Therefore, health transformation is 

identified as being in first 3 quintiles at t and being in two last quintiles at t+1(mental 

health transitions2 and physical health transitions2Comparison between results based 

on two different definitions is provided. Table of the main results are shown in the 

next section and complete tables of estimations are included in the appendix.  

Unbalanced panel data was used in all the regression analysis however, 

longitudinal weights provided with BHPS were used to mitigating bias caused by 

attrition and non-response. The longitudinal respondent weights chose cases with full 

interview at each wave in the BHPS. These cases were re-weighted in order to take 

into account previous wave respondents lost due to refusal at the current wave or 

because of other forms of sample attrition. Thus, the longitudinal weight at any wave 

address losses between each adjacent pair of waves up to that point in addition to the 

initial respondent weight at wave one. These weights also include the deceased, 

people who have moved into institutions or otherwise gone out-of-scope. These fail to 

give an interview not through non-response but due to a terminating event which 

resulted in their leaving the population of interest.  
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2.6 Results 

 

 In this section a number of different specifications for equation 2.8 is presented. In 

table 8 results show two sets of estimations; all estimated models include physical 

and mental health transition between t and t+1, but model I includes mental and 

physical health status at t and model II controls for moving average of mental and 

physical health including t, t-1 and t-2. Controlling for health status and health 

deterioration together is based on the intuition that health status is a long-term 

measure of health, which is mainly known to the individual. Health status is one of 

the factors used by the individual to decide on their desired equilibrium position and 

consequently affects the probability of their labour market participation. On the other 

hand, health shocks/deteriorations by their nature are less predictable events that may 

force individuals to revise their equilibrium labour market position and make a 

decision that suits their new conditions better. In table 8, health shocks are dummies 

that are equal to 1 if a person’s health deteriorates from any quintile at time t to the 

5th quintile at time t+1. Results displayed that regardless of controlling for health 

status at time t or moving average, both mental and physical health shocks had 

statistically significant effects on probability of leaving employment towards 

inactivity. Influence of deterioration in physical health is always greater compared to 

deterioration in mental health for both men and women. Marginal effects calculated 

for model I in table 8 for men and women indicated that experiencing physical health 

shock increased probability of exit from employment 1.2 percentage points more than 

mental shock among men. This difference was 4.6 percentage points for women and 

statistically significant. These results were in line with descriptive statistics provided 
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in tables 6 and 7 in section 4.2. Results in tables 6 and 7 show that for both men and 

women employment rates of people in worse physical health was less than those in 

worse mental health. Results of model I and II show gender difference in response to 

health shocks. For lagged health constant, mental health shock increased the 

probability of leaving employment for men further compared to women (7.4 

percentage points based on model II and this difference was statistically significant). 

The long-term effect of mental health status was also greater for men compared to 

women and this difference was 10 percentage points (model II) and statistically 

significant when I controlled for moving average. However, models I and II did not 

suggest a clear pattern of effect of physical health problems among men and women. 

Garsia Gomes et al. (2009) did not control for mental and physical health separately 

and found that the effect of health shocks was greater on men’s exit from employment 

compared to women.  
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Table 8. Logistic fixed effect. Effect of health transition and health status on exit from employment to inactivity 
 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

                

 

 

                                            

Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if the individual works at time t and time t+1.                                            

All models also include year and region control. Coefficients from the fixed effects logit are reported as well as standard errors in parentheses. Marginal effects are calculated                                       

at sample means. * p<0.05; ** p<0.0 

   
Men 

  
Women 

  

 
I M.E II M.E   I M.E II  M.E 

Mental health t  0.836** 0.107*    0.342** 0.081  
 

 
(0.136) 

   
(0.090) 

 
 

 

Moving average (mental)  
  

 1.213** 0.294** 
  

0.773** 0.192** 

   
(0.301) 

   
(0.192) 

 

Mental health transition (worse)  0.493** 0.057*  0.448** 0.110**  0.202* 0.049*  0.146* 0.036 

 
(0.118) 

 
(0.135) 

 
(0.082) 

 
(0.094) 

 

Physical health t  0.624** 0.080* 
  

 0.543** 0.130*  
 

 
(0.131) 

   
(0.088) 

 
 

 

Moving average (physical) 
  

 0.603** 0.147** 
  

 0.507** 0.126** 

   
(0.303) 

   
(0.189) 

 

Physical health transition (worse)  0.641** 0.069*  0.523** 0.130**  0.389** 0.095*  0.302** 0.075** 

 
(0.121) 

 
(0.133) 

 
(0.088)** 

 
(0.101) 

 

Log likelihood -1,974.70 
 

-1317.87 
 

-4,193.77 
 

-2891.69 
 

Number of observations  10,468    6,210    17,067    11,598   
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Table 9. Logistic fixed effect. Effect of health transition and health status on exit from employment to inactivity  

(second version of health transitions)    
Men 

  
Women 

  

 
    I M.E II M.E   I M.E II  M.E 

Mental health t  0.916** 0.154 
  

 0.424** 0.103 
  

 
(0.137) 

   
(0.092) 

   

Moving average (mental) 
  

 1.231** 0.285** 
  

 0.810 0.202** 

   
(0.362) 

   
(0.192)** 

 

Mental health transition(worse)  0.406** 0.074  0.362** 0.087*  0.178* 0.044*  0.178* 0.054* 

 
(0.113) 

 
(0.132) 

 
(0.078) 

 
(0.089) 

 

Physical health t  0.385** 0.065 
  

 0.439** 0.106** 
  

 
(0.125) 

   
(0.085) 

   

Moving average (physical)  
  

 0.291 0.068 
  

 0.415** 0.104* 

   
(0.299) 

   
(0.187) 

 

Physical health transition(worse)  0.103 0.019  0.082 0.018  0.225** 0.055**  0.201* 0.050* 

 
(0.116) 

 
(0.139) 

 
(0.079) 

 
(0.091) 

 

Log likelihood -2,999.74 
 

-1,333.973 
 

-4,603.17 
 

-2,985.79 
 

Number of observations  10,468    6,210    17,067    11,598   

Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if the individual works at time t and time t+1.                                                   

All models also include year and region control. Coefficients from the fixed effects logit are reported as well as standard errors in parentheses. Marginal effects are calculated                                                  

at sample means. * p<0.05; ** p<0.01
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Table 10. Logistic fixed effect. Effect of health transition and health status on exit from employment to inactivity  

(dividing manual and non-manual jobs) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            

Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if the individual works at time t and time t+1.                                                  

All models also include year and region control. Coefficients from the fixed effects logit are reported as well as standard errors in parentheses. Marginal effects are calculated                                       

at sample means. * p<0.05; ** p<0.01  

   
Men 

  
Women 

  

 
Manual M.E Non-manual M.E   Manual         M.E Non-manual  M.E 

Mental health t  0.705** 0.135* 0.867** 0.115*  0.412** 0.063* 0.361** 0.071** 

 
(0.192) 

 
(0.230) 

 
(0.155) 

 
(119) 

 

         

Mental health 

transition(worse) 

 0.534** 0.112*  0.584** 0.090*  0.385** 0.0.65*  0.254** 0.047* 

 
(0.170) 

 
(0.192) 

 
(0.135) 

 
(0.122) 

 

Physical health t  1.104** 0.199* 0.381 0.05  0.763** 0.11*  0.309*  0.060 

 
(0.186) 

 
(0.226) 

 
(0.149) 

 
(0.123) 

 

Physical health 

transition(worse) 

 0.970** 0.213*  0.142 0.019  0.376** 0.063*  0.043 0.008 

 
(0.170) 

 
(0.205) 

 
(0.143) 

 
(0.112) 

 

Log likelihood -866.633 
 

-, 
 

-128.087 
 

-2325.860 
 

Number of 

observations 

 4,021    4,120    4,823    9,725   
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Table 11. Logistic fixed effect. Effect of health transition and health status on exit from employment to  

inactivity excluding individuals older than 50 years old. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                

Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if the individual works at time t and time                                                  

t+1. All models also include year and region control. Coefficients from the fixed effects logit are reported as well as standard errors in parentheses.                                                                               

Marginal effects are calculated at sample means. * p<0.05; ** p<0.0 

   
Men 

  
Women 

  

 
    I M.E II M.E   I M.E II  M.E 

Mental health t  1.043** 0.247*  0.873** 0.082*  0.319** 0.076*  0.304** 0.097* 

 
(0.176) 

 
(0.115) 

 
(0.107) 

 
(0.079) 

 

Mental health transition(worse)  0.502** 0.112*  0.518** 0.043  0.274** 0.063*  0.257** 0.065* 

 
(0.161) 

 
(0.100) 

 
(0.097) 

 
(0.072) 

 

         

Physical health t  0.544** 0.129**  0.131 0.052  0.404** 0.096*  0.384** 0.072* 

 
(0.178) 

 
(0.111) 

 
(0.113) 

 
(0.078) 

 

Physical health transition(worse)  0.689** 0.149*  0.690** 0.064*  0.320** 0.074*  0.343** 0.089* 

 
(0.172) 

 
(0.104) 

 
(0.109) 

 
(0.078) 

 

Log likelihood -1,087.79 
 

-6,300.52 
 

-2,880.24 
 

-11,185.5 
 

Number of observations  7,723    54,423    10,681    53,171   
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Considering all models, regardless of controlling for level of mental and 

physical health at time t or moving average during past three year, these measures 

have significant effects on the probability of leaving employment among both women 

and men, indicating therefore significance of long-term effect of health on working 

age individuals. Results from table 12 in the appendix section, indicate that both men 

and women who do a part-time job have a higher probability of exiting labour force 

market compared to full-time workers and this effect was statistically significant. 

Men with an employed spouse had a lower probability of leaving work compared to 

those who did not have a working spouse or did not live as a couple. Effect of 

household income was not significant for both men and women. Having children 

between 0 to 2 and 3 to 4 years old significantly increased the probability of exit for 

women and having children 5-11 and 12-15 significantly decreased probability of 

leaving work for employed women. People with no academic qualification or having 

only achieved O/CSE or A-level grade were more likely to leave employment 

compared to those with a university degree or higher. Job types on the other hand did 

not reflect a significant effect on the probability of leaving employment. People in all 

ages were less likely to leave their job compared to individuals 16-20 years old. In 

table 9, an alternative definition for health shocks (transitions) was used. Here, a 

health shock is experienced when a person’s health status changes from first three 

quintiles at t to 4th and 5th quintile at t+1 (milder health shocks). Estimated 

coefficients for models I and II for men (table 9), show that experiencing milder 

physical health shock did not affect the probability of exiting from work significantly 

for men. However, a worse health status has a significant effect on men’s exit from 

work in the following year. Milder physical shocks display significant effects on 

likelihood of leaving work for women in both model I and II. Nevertheless, the 
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magnitudes of marginal effects were smaller than those in previous versions of health 

shocks for women (Model I table 8), but the difference was not statistically 

significant. It was mentioned in section 4.2 tables 6 and 7 that employment rate 

among men and women, whose level of health belonged to 4th quintile of physical 

health did not differ from those whose level of physical health belonged to first three 

quintiles. These results propose that people, especially men are more likely to leave 

their jobs, when their physical health alters to the poorest quintile reported. Milder 

mental health shocks on the other hand still have significant effects on men and 

women. These findings reveal a very important difference on how both men and 

women react to physical shocks compared to mental shocks. Physical shocks are 

significantly effective on probability of leaving work for men, only when they 

experience a sudden change and report worse levels of health in the sample, whereas 

deteriorations towards both fourth and fifth quintiles of mental health still can have 

significant effects on exit from work for both genders.     

In order to explore whether mental and physical health deteriorations show 

varied effects on people in different professions, I divided working individuals into 

manual and non-manual jobs. Manual job category included skilled, partly skilled or 

non-skilled manual workers as well as people working in the armed forces. Non-

manual jobs included occupations which were listed as skilled non-manual, 

managerial or technical and professional.  

Results from this model (table 10) suggested that men and women who did 

manual jobs were vulnerable against both mental and physical health (the effect of 

both health shocks were statistically significant). On the other hand, physical health 

shocks did not increase the probability of exit from employment among men and 
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women who had non-manual jobs. Mental health shocks had a significant effect on 

the likelihood of exit from employment among non-manual job holders and the 

marginal effects were not significantly different with those who held manual jobs. 

2.6.1 Sensitivity analysis 

In order to check whether the above reported results were driven mainly by 

the effect of older individuals, I excluded people older than 50 years old from sample 

and re-estimated the model presented in table 11 model I. Results presented in table 

11 show that similar to table 8 (when all the working age people were included in the 

sample), mental and physical shocks, mental and physical health status and being in 

poor mental and physical health had a significant effect on exit from employment for 

both men and women. These findings were consistent with results obtained by 

Garsia-Gomes et al. (2009) as they did not find substantial differences in the effect of 

health on exit from employment, when they excluded older people from their sample. 

Similar to results estimated for all working age sample, based on marginal effects, 

physical health shocks had a greater impact on increasing the probability of exit from 

employment compared to mental shocks (the difference is statistically significant). 

When considering only younger individuals in estimations the effect of both mental 

and physical shocks was greater on men compared to women, but these differences 

were not statistically significant. Main results were also robust to the exclusion of 

part-time workers and self-employed individuals. 

Model II in table 11 represents results based on random effect estimations 

with inclusion of mean of time-variant covariates. Findings suggest very similar 

pattern for the effect of health shocks but lagged physical health status does not 

appear to have significant effects on the probability of leaving employment among 
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men. One possible reason for these findings is that when I consider the whole sample, 

there are men that continue in employment regardless of their physical health status, 

whereas results using fixed effect model only considers individuals that experience 

moving in or out of economic inactivity.  

Results of random effect models were robust to the exclusion of all the 

individuals who were in the survey at least for two consecutive years and were always 

in employment. Estimated linear fixed effect models are presented in table 17 

(appendix). The significance and signs of the variables of interest remain the same as 

the logistic fixed effect models. These results suggest that the main difference 

between random and fixed effect models is caused by the difference in the 

assumption made about correlation of the µi and explanatory variables. 

2.7 Conclusion  

This paper analysed the role of mental and physical health on exit from employment 

and entering economical inactivity among working age men and women. The scarcity 

of research on younger aged workers can largely be ascribed to a lack of adequate 

secondary sources of data. This was likely due to a low rate of health shock events of 

sufficient magnitude to cause labour supply adjustments in this age group. However, 

given the potential impact on income and household members, study on such 

individuals is essential and warrants serious consideration. 18 years of BHPS data 

was used to explore the relationship between health and employment over a long 

period of time. In research works that focus on relationships between health and 

employment, there is no agreement on the best way of measuring health. My first aim 

in this paper was to achieve a set of measures for health that showed ability and desire 

to work. It has been argued that health problems can affect working capacity through 
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various pathways such as main skills and abilities that an individual requires to do the 

job or by increasing the time people need to do non-labour activities that are crucial 

in order to remain active in the labour market. To address multidimensionality of 

health both as a concept and in relation to working capacity, I suggested constructing 

a measure of health using factor analysis, based on several well-known health 

measures. In the literature, researchers tend to control only for physical or mental 

health or their measure of health combines both mental and physical aspects of health 

together. Using factor analysis enabled me to extract distinct latent measures for 

overall mental and physical health and compare the adverse effects of mental health 

shocks on employment with that of physical health shocks.   

Results point to a significant reduction in labour market participation when 

mental or physical health shock is experienced. Effect of strong physical health 

deterioration is always seen to be greater, compared to strong mental health for both 

genders. However, milder physical health shocks no longer have significant effects on 

men and the impact of mild mental health shocks is greater than mild physical shocks 

for both men and women. Such comparisons suggest that both men and women react 

differently towards declines in mental and physical health and men have higher 

threshold for exiting from employment due to physical health. Men leave 

employment only when a sudden health shock leads to very poor physical health. I 

found considerable evidence of heterogeneity in observed health shocks. Manual job 

holders were vulnerable against both physical and mental health shocks, whereas 

physical health shocks did not significantly reduce the probability of leaving 

employment among non-manual job holders.   
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My work is subject to several potential limitations. First, reverse effect of 

work on health is not addressed in estimated models. As discussed before, literature 

does not suggest any solutions for the endogeneity between employment and health. 

Some researchers suggest using health shocks based on experiencing stroke, cancer or 

unscheduled hospital admissions. This approach can reduce justification bias and is 

less predictable, but still these health problems are caused by underlying health 

issues, which could be caused by adverse effects of work on health. In addition, using 

these forms of health shocks do not address the effects of deterioration in overall 

mental and physical health, which is one of the main motivations behind this work. 

The second limitation is that my empirical models cannot explain the reasons behind 

some of our main findings. Therefore, further research is required in a future project 

on explanatory mechanisms behind different outcomes based on gender and 

occupation. Previous literature suggested that the main effect of a health shock on 

labour supply is observed in the short-run and rarely any adjustments occur at a later 

stage. Hence, I only considered the short-run labour supply adjustments of a sudden 

health shock.  
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2.8 Appendix 

  

Table 9 (continued). Logistic fixed effect for men and women: Effect of health 

transition and health status on exit from employment to inactivity                                                                                                                                   

                                                                 Men                                                       Women 

 I II I II 

Mental health t     0.836  0.342  

 (0.136)**  (0.090)**  

Poor mental health t  0.808  0.364 

  (0.130)**  (0.085)** 

Mental health transition(worse) 0.493 0.612 0.202 0.223 

 (0.118)** (0.132)** (0.082)* (0.089)* 

Physical health t 0.624  0.543  

 (0.131)**  (0.088)**  

Poor physical health t  0.683  0.559 

  (0.135)**  (0.094)** 

Physical health 

transition(worse) 

0.640 0.689 0.389 0.462 

 (0.121)** (0.133)** (0.088)** (0.097)** 

Part time t 0.258 0.277 0.313 0.316 

 (0.119)* (0.120)* (0.069)** (0.069)** 

Spouse working at t -0.546 -0.569 0.005 0.000 

 (0.127)** (0.127)** (0.085) (0.085) 

Children 0-2 0.372 0.398 0.532 0.546 

 (0.167)* (0.166)* (0.090)** (0.090)** 

Children 3-4 0.302 0.297 0.343 0.340 

 (0.161) (0.162) (0.090)** (0.090)** 

Children 5-11 0.045 0.033 -0.118 -0.124 

 (0.101) (0.101) (0.057)* (0.057)* 

Children 12-15 0.036 0.023 -0.427 -0.436 

 (0.108) (0.107) (0.074)** (0.074)** 

Log household income 0.023 0.022 -0.051 -0.046 

 (0.077) (0.077) (0.050) (0.050) 

Unskilled  0.253 0.212 0.671 0.680 

 (0.304) (0.303) (0.271)* (0.271)* 

Partly skilled  0.325 0.319 0.626 0.625 

 (0.256) (0.255) (0.244)* (0.244)* 

Skilled manual or armed forces 0.270 0.286 0.599 0.594 

 (0.252) (0.252) (0.254)* (0.254)* 

Skilled non-manual 0.070 0.068 0.316 0.314 

 (0.246) (0.245) (0.240) (0.240) 

Managerial or technological -0.067 -0.062 0.183 0.187 

 (0.224) (0.223) (0.231) (0.231) 

No qualifications  1.331 1.417 1.959 1.921 

 (0.596)* (0.589)* (0.392)** (0.393)** 

Highest qualification 

O/CSE 

2.195 2.214 1.688 1.665 

 (0.346)** (0.345)** (0.242)** (0.242)** 

Highest qualifications 

A level/HND 

2.070 2.065 1.780 1.779 

 (0.292)** (0.290)** (0.211)** (0.211)** 

Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if 

the individual works at time t and time t+1. All models also include year and region control. Coefficients from the fixed effects 

logit are reported as well as standard errors in parentheses. * p<0.05; ** p<0.0 
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Table 9 (continued). Logistic fixed effect for men and women: Effect of health 

transition and health status on exit from employment to inactivity                                                                                                                                

   

  Men Women  

 I II I II 

Own house with 

Mortgage 

-0.353 -0.367 -0.369 -0.358 

 (0.145)* (0.145)* (0.109)** (0.109)** 

Housing authority  -0.165 -0.156 -0.176 -0.151 

 (0.256) (0.255) (0.170) (0.170) 

House is rented -0.301 -0.279 -0.428 -0.389 

 (0.228) (0.226) (0.152)** (0.152)* 

Wales 0.238 0.250 -0.646 -0.631 

 (0.773) (0.776) (0.432) (0.437) 

Scotland 0.957 0.806 0.115 0.152 

 (0.710) (0.719) (0.561) (0.562) 

Midlands 0.663 0.674 0.012 0.019 

 (0.524) (0.524) (0.328) (0.325) 

South west 0.874 0.896 -0.015 -0.007 

 (0.564) (0.558) (0.327) (0.329) 

South east -0.142 -0.104 -0.391 -0.373 

 (0.420) (0.414) (0.257) (0.257) 

North east 1.221 1.166 0.026 0.040 

 (0.669) (0.668) (0.376) (0.376) 

North west 1.909 1.898 -0.587 -0.550 

 (0.664)** (0.665)** (0.391) (0.392) 

Age2024 -1.087 -1.085 -0.679 -0.700 

 (0.177)** (0.176)** (0.137)** (0.137)** 

Age2529 -2.211 -2.245 -0.782 -0.816 

 (0.263)** (0.262)** (0.177)** (0.177)** 

Age3034 -3.203 -3.223 -1.070 -1.078 

 (0.333)** (0.333)** (0.215)** (0.215)** 

Age3539 -3.579 -3.630 -1.429 -1.437 

 (0.388)** (0.388)** (0.250)** (0.250)** 

Age4044 -3.771 -3.802 -2.306 -2.315 

 (0.439)** (0.440)** (0.292)** (0.292)** 

Age4549 -4.283 -4.259 -2.446 -2.440 

 (0.490)** (0.490)** (0.332)** (0.332)** 

Age5054 -4.051 -4.025 -1.979 -1.954 

 (0.533)** (0.532)** (0.374)** (0.374)** 

Age5559 1.050 1.053 0.933 0.938 

 (0.181)** (0.180)** (0.129)** (0.129)** 

Age6064 -1.454 -1.445   

 (0.609)* (0.609)*   

 

Log likelihood 

 

 

   

        -1,974.70 

. 

        -1,992.11 

. 

          -4,193.77 

. 

        -4,254.81 

Number of observations     10,468     10,468     17,067    17,060 

     
Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if 
the individual works at time t and time t+1. All models also include year and region control. Coefficients from the fixed effects 

logit are reported as well as standard errors in parentheses. * p<0.05; ** p<0.0 
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Table 10 (continued). Logistic Random effect for men and women: Effect of health 

transition and health status on exit from employment to inactivity 

                                              

                                       Men                                                                                   Women 

 I II I II 

Mental health t 0.873  0.304  

 (0.115)**  (0.079)**  

Poor mental health  0.679  0.276 

  (0.107)**  (0.074)** 

Mental health 

transition(worse) 

0.518 0.645 0.257 0.278 

 (0.100)** (0.109)** (0.072)** (0.077)** 

Physical health t 0.131  0.384  

 (0.111)  (0.078)**  

Poor physical health  0.352  0.415 

  (0.113)**  (0.080)** 

Physical health 

transition(worse) 

0.690 0.719 0.343 0.391 

 (0.104)** (0.112)** (0.078)** (0.084)** 

Part time at t 0.722 0.729 0.530 0.530 

 (0.105)** (0.105)** (0.063)** (0.063)** 

Spouse working at t -0.297 -0.287 0.041 0.037 

 (0.103)** (0.102)** (0.074) (0.074) 

Children 0-2 0.234 0.246 0.085 0.085 

 (0.137) (0.137) (0.078) (0.078) 

Children 3-4 0.310 0.307 0.063 0.054 

 (0.139)* (0.138)* (0.078) (0.078) 

Children 5-11 0.029 0.040 -0.221 -0.222 

 (0.082) (0.082) (0.050)** (0.049)** 

Children 12-15 -0.017 -0.014 -0.356 -0.354 

 (0.089) (0.089) (0.061)** (0.061)** 

Log household income 0.472 0.474 0.271 0.273 

 (0.060)** (0.059)** (0.046)** (0.046)** 

Unskilled 0.039 0.057 0.615 0.626 

 (0.260) (0.258) (0.253)* (0.252)* 

Partly skilled  0.245 0.260 0.481 0.472 

 (0.222) (0.221) (0.233)* (0.232)* 

Skilled manual or armed 

forces 

0.218 0.233 0.477 0.455 

 (0.219) (0.218) (0.242)* (0.241) 

Skilled non-manual -0.029 -0.010 0.271 0.259 

 (0.215) (0.214) (0.229) (0.228) 

Managerial or technical -0.082 -0.055 0.216 0.213 

 (0.198) (0.197) (0.222) (0.221) 

No qualifications 2.100 2.125 1.380 1.394 

 (0.453)** (0.451)** (0.323)** (0.321)** 

Highest qualifications 

O/CSE 

2.266 2.287 1.505 1.536 

 (0.279)** (0.280)** (0.202)** (0.201)** 

Highest qualifications A-

level/HND 

2.397 2.414 1.521 1.540 

 (0.238)** (0.239)** (0.180)** (0.180)** 
Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if the 
individual works at time t and time t+1. All models also include year and region control.in all random effect models, means of time-

varying variables for each individual is included. Coefficients from the fixed effects logit are reported as well as standard errors in 

parentheses. * p<0.05; ** p<0.01 
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Table 10. (continued). Logistic Random effect for men and women: Effect of health 

transition and health status on exit from employment to inactivity 

                                              

                                                  Men                                                            Women 

 I II I II 
 

Own house with 

mortgage 

-0.019 -0.026 -0.185 -0.193 

 (0.118) (0.118) (0.093)* (0.092)* 

Housing authority 0.139 0.129 -0.062 -0.065 

 (0.208) (0.206) (0.142) (0.141) 

House is rented 0.032 0.043 -0.225 -0.232 

 (0.178) (0.178) (0.131) (0.131) 

Wales 0.511 0.469 -0.593 -0.421 

 (0.623) (0.627) (0.413) (0.427) 

Scotland 0.907 0.814 0.483 0.731 

 (0.716) (0.716) (0.505) (0.505) 

Midland 0.173 0.210 -0.123 0.088 

 (0.426) (0.423) (0.281) (0.301) 

South west 0.754 0.729 0.160 0.311 

 (0.441) (0.440) (0.284) (0.307) 

South east 0.197 0.198 -0.955 -0.193 

 (0.370) (0.369) (0.220)** (0.248) 

North east 0.792 0.811 0.044 0.235 

 (0.515) (0.513) (0.351) (0.363) 

North west 1.517 1.481 -0.619 -0.439 

 (0.501)** (0.500)** (0.356) (0.369) 

Age2024 -0.508 -0.490 -0.489 -0.462 

 (0.136)** (0.136)** (0.107)** (0.106)** 

Age2529 -1.051 -1.053 -0.431 -0.422 

 (0.197)** (0.197)** (0.128)** (0.127)** 

Age3034 -1.396 -1.379 -0.605 -0.583 

 (0.240)** (0.239)** (0.141)** (0.141)** 

Age3539 -1.355 -1.338 -0.927 -0.887 

 (0.271)** (0.271)** (0.151)** (0.151)** 

Age4044 -1.332 -1.326 -1.522 -1.490 

 (0.298)** (0.298)** (0.159)** (0.158)** 

Age4549 -1.509 -1.480 -1.665 -1.624 

 (0.327)** (0.326)** (0.161)** (0.160)** 

Age5054 -1.029 -1.015 -1.369 -1.329 

 (0.346)** (0.345)** (0.162)** (0.162)** 

Age5559 0.849 0.821 0.724 0.716 

 (0.137)** (0.136)** (0.092)** (0.092)** 

Age6064 0.702 0.687   

 (0.379) (0.378)   

Log likelihood    -6,300.52     -6,344.56    -11,185.05   -11,265.46 

Number of observations    54,423     54,423     53,171    53,171 

Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if 

the individual works at time t and time t+1. All models also include year and region control.in all random effect models, means 
of time-varying variables for each individual is included. Coefficients from the fixed effects logit are reported as well as standard 

errors in parentheses. * p<0.05; ** p<0.01 
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Table 11 (continued). Logistic fixed effect for men and women: Effect of health 

transition and health status on exit from employment to inactivity (Second version of 

defining health transitions) 
      

                                                               Men                                                   Women  

 I      II       I II 

Mental health t 0.916  0.424  

 (0.137)**  (0.092)**  

Poor mental health2  0.342  0.258 

  (0.128)**  (0.085)** 

Mental health 

transition2 (worse) 

0.406 0.317 0.178 0.178 

 (0.113)** (0.131)* (0.078)* (0.089)* 

Physical health t 0.385  0.439  

 (0.125)**  (0.085)**  

Poor physical health2   0.414  0.098 

  (0.133)**  (0.088)* 

Physical health 

transition2 (worse) 

0.103 0.180 0.225 0.159 

 (0.116)** (0.138)* (0.079)** (0.092)* 

Part time t 0.254 0.301 0.323 0.328 

 (0.119)* (0.118)* (0.069)** (0.069)** 

Spouse working at t -0.552 -0.566 0.001 -0.009 

 (0.126)** (0.126)** (0.085) (0.084) 

Children 0-2 0.409 0.400 0.531 0.522 

 (0.165)* (0.163)* (0.090)** (0.090)** 

Children 3-4 0.269 0.267 0.339 0.337 

 (0.156) (0.160) (0.090)** (0.089)** 

Children 5-11 0.026 0.026 -0.123 -0.133 

 (0.101) (0.100) (0.057)** (0.057)* 

Children 12-15 0.045 0.039 -0.424 -0.442 

 (0.107) (0.106) (0.074)** (0.073)** 

Log of household 

income 

0.024 0.032 -0.046 -0.045 

 (0.077) (0.076) (0.050) (0.050) 

Unskilled 0.264 0.204 0.676 0.667 

 (0.302)* (0.300) (0.271)* (0.270)* 

Partly skilled 0.320 0.287 0.640 0.637 

 (0.254)** (0.252)** (0.244)** (0.243)** 

Skilled manual or 

armed forces 

0.283 0.239 0.619 0.607 

 (0.251) (0.249) (0.245)* (0.253)* 

Skilled non-manual 0.069 0.044 0.333 0.331 

 (0.245) (0.243) (0.239) (0.239) 

Managerial or technical -0.065 -0.088 0.202 0.200 

 (0.223) (0.222) (0.230) (0.230) 

No qualifications  1.320 1.428 1.941 1.925 

 (0.593)* (0.590)* (0.391)** (0.390)** 

Highest qualification 

O/CSE 

2.240 2.268 1.656 0.634 

 (0.345)** (0.344)** (0.241)** (0.241)** 

Highest qualifications 

Alevel/HND 

2.076 2.077 1.770 1.760 

 (0.290)** (0.344)** (0.210)** (0.209)* 
Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if the individual 

works at time t and time t+1. All models also include year and region control as well as survey panel weights provided by BHPS. Coefficients 

from the fixed effects logit are reported as well as standard errors in parentheses. * p<0.05; ** p<0.0 
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Table 11 (continued). Logistic fixed effect for men and women: Effect of health transition and 

health status on exit from employment to inactivity (Second version of defining health 

transitions) 
      
                                                               Men                                                   Women  

 I      II       I II 
 

Own house with 

mortgage 

-0.353 -0.342 -0.358 -0.347 

 (0.145)* (0.144)* (0.109)** (0.109)** 

Housing authority  -0.186 -0.163 -1.177 -0.159 

 (0.225) (0.253) (0.170) (0.169) 

House is rented -0.304 -0.260 -0.416 -0.393 

 (0.224) (0.225) (0.152)** (0.151)** 

Wales 0.171 0.166 0.100 -0.107 

 (0.105) (0.777) (0.079) (0.079) 

Scotland -0.118 -0.150 -0.189 -0.201 

 (0.105) (0.105) (0.078)* (0.078)** 

Midlands 0.043 0.028 -0.049 -0.025 

 (0.102) (0.102) (0.079) (0.079) 

South west -0.010 -0.026 -0.008 -0.044 

 (0.128) (0.127) (0.098) (0.098) 

South east -0.101 -0.110 -0.059 -0.064 

 (0.112) (0.112) (0.081) (0.081) 

North east 0.059 0.061 -0.054 -0.060 

 (0.111) (0.111) (0.087) (0.087) 

North west 0.231 0.208 -0.163 -0.175 

 (0.117)* (0.116) (0.092) (0.092) 

Age 20-24 -0.771 -0.731 -0.675 -0.642 

 (0.112)** (0.112)** (0.090)** (0.090)** 

Age 25-29 -1.547 -1.490 -0.814 -0.772 

 (0.141)** (0.141)** (0.095)** (0.095)** 

Age 30-34 -1.683 -1.590 -1.069 -1.007 

 (0.147)** (0.146)** (0.097)** (0.097)** 

Age 35-39 -1.624 -1.524 -1.283 -1.204 

 (0.145)** (0.144)** (0.098)** (0.098)** 

Age 40-44 -1.511 -1.393 -1.574 -1.498 

 (0.143)** (0.142)** (0.104)** (0.103)** 

Age 45-49 -1.598 -1.457 -1.469 -1.368 

 (0.149)** (0.148)** (0.105)** (0.104)** 

Age 50-54 -1.032 -0.898 -1.103 -1.001 

 (0.137)** (0.136)** (0.104)** (0.104)** 

Age 55-59 0.889 0.871 0.740 0.741 

 (0.118)** (0.116)** (0.088)** (0.088)** 

Age 60-64 0.901 0.990   

 

 

(0.128)** (0.129)**   

Log likelihood                   -2,999.74         -2,038.86         -4,603.17          -4,714.74 

Number of observations          9,468          9,468          17,067           17,067     
Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if 

the individual works at time t and time t+1. All models also include year and region control as well as survey panel weights 

provided by BHPS . Coefficients from the fixed effects logit are reported as well as standard errors in parentheses. * p<0.05; ** 

p<0.0 
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Table 12 (continued). Logistic fixed effect for men and women: Effect of health 

transition and health status on exit from employment to inactivity excluding older 

individuals  

 

                                                Men                                                            Women 

 I II I II 

Mental health t 1.043  0.319  

 (0.176)**  (0.107)**  

Poor mental health t  0.989  0.267 

  (0.167)**  (0.102)** 

Mental health 

transition(worse) 

0.502 0.642 0.274 0.275 

 (0.161)** (0.176)** (0.097)** (0.105)** 

Physical health t 0.544  0.404  

 (0.178)**  (0.113)**  

Poor physical health  0.723  0.566 

  (0.183)**  (0.115)** 

Physical health 

transition(worse) 

0.689 0.721 0.320 0.422 

 (0.172)** (0.185)** (0.109)** (0.118)** 

Part time at t 0.281 0.310 0.320 0.322 

 (0.143)* (0.143)* (0.078)** (0.078)** 

Spouse work at t -0.506 -0.528 0.277 0.267 

 (0.168)** (0.168)** (0.099)** (0.099)** 

Children 0-2 0.304 0.336 0.505 0.517 

 (0.168) (0.167)* (0.091)** (0.091)** 

Children 3-4 0.305 0.297 0.286 0.283 

 (0.165) (0.165) (0.090)** (0.090)** 

Children 5-11 0.088 0.075 -0.160 -0.165 

 (0.106) (0.106) (0.058)** (0.058)** 

Children 12-15 -0.024 -0.048 -0.460 -0.466 

 (0.123) (0.122) (0.077)** (0.077)** 

Log of household 

income 

-0.040 -0.055 -0.141 -0.137 

 (0.089) (0.089) (0.056)* (0.056)* 

Unskilled  0.457 0.400 0.758 0.751 

 (0.388) (0.386) (0.324)* (0.324)* 

Partly skilled 0.437 0.422 0.569 0.555 

 (0.341) (0.339) (0.291) (0.291) 

Skilled manual or 

armed forces 

0.400 0.423 0.568 0.557 

 (0.343) (0.341) (0.303) (0.303) 

Skilled non-manual 0.261 0.250 0.265 0.251 

 (0.335) (0.333) (0.288) (0.287) 

Managerial or technical -0.127 -0.126 0.082 0.073 

 (0.315) (0.314) (0.281) (0.280) 

No qualifications 0.788 0.872 1.678 1.645 

 (0.599) (0.593) (0.435)** (0.435)** 

Highest qualification 

O/CSE 

1.700 1.690 1.461 1.457 

 (0.355)** (0.354)** (0.250)** (0.250)** 

Highest qualifications  

A-level/HND 

1.847 1.823 1.650 1.655 

 (0.296)** (0.293)** (0.214)** (0.215)** 
Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if the 
individual works at time t and time t+1. All models also include year and region and survet panel weights provided with BHPS. 

Coefficients from the fixed effects logit are reported as well as standard errors in parentheses. * p<0.05; ** p<0.0 
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Table 12 (continued). Logistic fixed effect for men and women: Effect of health 

transition and health status on exit from employment to inactivity excluding older 

individuals  

 

                                                Men                                                            Women 

 I II I II 
 

 

Own house with 

mortgage  

 

-0.065 

 

-0.058 

 

0.064 

 

0.086 

 (0.223) (0.222) (0.152) (0.152) 

Housing authority  0.078 0.086 0.232 0.269 

 (0.314) (0.312) (0.202) (0.203) 

House is rented 0.018 0.034 -0.053 -0.016 

 (0.272) (0.271) (0.183) (0.183) 

Wales 0.017 0.046 -0.410 -0.398 

 (0.769) (0.771) (0.424) (0.428) 

Scotland 0.726 0.520 0.967 0.992 

 (0.712) (0.723) (0.638) (0.636) 

Midlands 0.388 0.434 0.354 0.358 

 (0.569) (0.573) (0.336) (0.335) 

South West 0.610 0.613 -0.185 -0.195 

 (0.601) (0.600) (0.336) (0.337) 

South East -0.055 -0.063 -0.283 -0.270 

 (0.448) (0.444) (0.259) (0.260) 

North East 1.064 0.976 0.125 0.145 

 (0.669) (0.669) (0.376) (0.377) 

North West 1.831 1.810 -0.153 -0.111 

 (0.783)* (0.782)* (0.393) (0.394) 

Age 20-24 -0.634 -0.636 -0.494 -0.509 

 (0.184)** (0.183)** (0.141)** (0.141)** 

Age 25-29 -1.201 -1.226 -0.331 -0.359 

 (0.287)** (0.286)** (0.186) (0.186) 

Age 30-34 -1.620 -1.629 -0.274 -0.283 

 (0.377)** (0.376)** (0.231) (0.231) 

Age 35-39 -1.413 -1.441 -0.290 -0.302 

 (0.464)** (0.463)** (0.275) (0.275) 

Age 40-44 -1.020 -1.017 -0.835 -0.854 

 (0.547) (0.546) (0.326)* (0.327)** 

Age 45-50 -1.196 -1.133 -0.477 -0.484 

 (0.635) (0.632) (0.379) (0.380) 

Log likelihood         -1,087.76         -1,096.35         -2,880.24 -2.880.05 

Number of observations          7,723          7,723          10,681.          10,681 

Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if 
the individual works at time t and time t+1. All models also include year and region and panel survey weights provided by 

BHPS. Coefficients from the fixed effects logit are reported as well as standard errors in parentheses. * p<0.05; ** p<0.0 
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 Table 13. Linear fixed effect model. Effect of health transition and health status on 

exit from employment to inactivity 

 Men  Women  

Mental health t     0.09  0.34  

 (0.08)*  (0.09)**  

Mental health transition (first 

version) 

0.09  0.15  

 (0.03)**  (0.04)**  

Physical health t 0.12  0.22  

 (0.07)**  (0.08)**  

Physical health transition (first 

version) 

0.22   0.39  

 (0.04)**  (0.046**  

Part time t 0.21  0.42  

 (0.06)*  (0.11)*  

Spouse working at t -0.32  0.005  

 (0.11)**  (0.17)  

Children 0-2 0.12  0.32  

 (0.11)  (0.07)**  

Children 3-4 0.07  0.34  

 (0.16)  (0.09)**  

Children 5-11 0.061  -0.32  

 (0.10)  (0.77)  

Children 12-15 0.05  -0.42  

 (0.10)  (0.09)**  

Log household income at t 0.24  -0.051  

 (0.17)  (0.050)  

Unskilled  -0.02  0.09  

 (0.23)  (0.22)  

Partly skilled  0.09  0.32  

 (0.18)  (0.24)  

Skilled manual or armed forces 0.32  0.59  

 (0.07)*  (0.25)  

Skilled non-manual 0.06  0.31  

 (0.24)  (0.24)  

Managerial or technological -0.08  0.12  

 (0.21)  (0.23)  

No qualifications  0.22  0.43  

 (0.09)*  (0.12)**  

Highest qualification 

O/CSE 

0.18  0.21  

 (0.06)**  (0.04)**  

Highest qualifications 

A level/HND 

0.09  0.12  

 (0.05)**  (0.02)**  

Own house with 

Mortgage 

-0.17  -0.36  

 (0.09)*  (0.10)**  

Housing authority  -0.03  -0.12  

 (0.11)  (0.17)  

House is rented -0.30  -0.14  

 (0.18)  (0.15)  

Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if the 

individual works at time t and time t+1. All models also include year and region control and panel survey weights provided in BHPS data. 

Coefficients from the fixed effects logit are reported as well as standard errors in parentheses. * p<0.05; ** p<0.0 
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  Table13 (continued). Linear fixed effect model. Effect of health transition and health status 

on exit from employment to inactivity  

Wales 0.12  -0.64  

 (0.54)  (0.43)  

Scotland 0.38  0.13  

 (0.15)*  (0.42)  

Midlands 0.04  0.03  

 (0.15)  (0.38)  

South west 0.08  -0.01  

 (0.18)  (0.19)  

South east -0.03  -0.06  

 (0.16)  (0.25)  

North east -0.14  0.07  

 (0.15)  (0.17)  

North west -0.28  -0.31  

 (0.17)  (0.14)  

Age2024 -0.08  -0.10  

 (0.21)  (0.13)  

Age2529 -0.38  -0.46  

 (0.17)*  (0.17)**  

Age3034 -0.37  -1.22  

 (0.21)  (0.21)  

Age3539 -0.33  -0.42  

 (0.20)  (0.25)  

Age4044 0.43  -0..30  

 (0.20)**  (0.29)  

Age4549 0.44  -0.32  

 (0.20)**  (0.33)  

Age5054 0.51  -0.09  

 (0.21)**  (0.24)  

Age5559 0.50  0.42  

 (0.18)**  (0.12)**  

Age6064 0..45      --  

 (0.28)*  --  

 

R square (overall) 

 

 

   

  0.31 

 . 

  0.29 

 

Number of observations          54,423            53,171  

Notes: Dependent variable takes the value 1 if the individual is inactive at time t+1 but working at time t and takes the value 0 if 

the individual works at time t and time t+1. All models also include year and region control and panel survey weights provided 

in BHPS data. Coefficients from the fixed effects logit are reported as well as standard errors in parentheses. * p<0.05; ** p<0.0 
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Chapter 3 

3. Effect of acute health shocks on different components of income 

among working age people 

3.1 Introduction 

Although the link between health and socio-economic status is well documented, the 

causal roots of this relationship are not easy to identify (Deaton and Paxson, 1998; 

Goldman, 2001; Fuchs, 2004). Evidence from the social and medical sciences 

confirm that when people are financially better off, they tend to live and work in 

healthier environments, have access to the best medical care available, and have 

sufficient income to spend on the goods, foods and services that help with 

maintaining a healthier lifestyle. However, the potential positive effect of income on 

health can be mitigated by negative factors such as longer working hours and work-

related stress (Halla et al., 2013). 

When health is considered as a form of human capital, as Grossman (1972) 

suggests, it is plausible to argue that people with good physical and mental health are 

able to work longer and harder than people suffering from mild or severe health 

problems. Healthier children are likely to stay in school longer and attain a higher 

standard of education, gain more social and technical skills and consequently earn a 

better salary when they enter the workforce. The rate of time preference is an 

alternative pathway that can explain the positive correlation of health and socio-

economic status without referring to any causal link. In this framework, an individual 

who is better off financially is more likely to invest in human capital, which leads to 

their healthier life-style (Adam et al., 2003). This group also tend to hold less 

physically demanding jobs. On the other hand, poor health tends to lead to lower 

income as people may lose some of their productive working hours and become less 
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efficient. The next phase might involve being dropped out of the labour market 

altogether or being unable to get promoted. One of the strategies adopted by a number 

of researchers is to identify a new health shock, while controlling for past health to 

isolate the effect of a new health event (Smith, 2005). This sudden variation in health 

can be exogenous relative to income and labour force participation. Measuring and 

identifying such sudden and unanticipated health shocks is the main challenge facing 

analysts aiming to identify the causal relationship between health and income. Both 

are mutually affected by each other as well as by other relevant forces (Smith, 2005). 

It can be argued that a higher income can increase the probability of gaining access to 

enhanced, regular and timely healthcare. In addition, a higher level of health literacy 

and an adoption of a healthier life-style, such as healthy diet and regular exercise are 

more likely to maintain health. Very few empirical studies have investigated the 

casual impact of health on employment and income using various forms of 

identifiable health shocks. Wing Han Au et al. (2005) used quick deterioration in self-

assessed health to model labour market outcomes. Similarly, Riphahn (1999) 

suggested defining negative health shocks as a sudden and substantial drop in 

satisfaction with health, and Wagstaff (2007) used a substantial reduction of body 

mass index. Effects of workplace (and non-workplace) accidents on employment and 

income have been investigated in some other studies such as Reville and Schoeni 

(2001) and Crichton et al. (2005), while Moller Dano (2005) and Halla et al. (2013) 

estimated the effect of severe road accidents on labour market participations. Gracia 

Gomez et al. (2013) restricted their attention to acute hospitalization episodes. 

I followed studies such as Smith (2005), Datta Gupta et al. (2011) and Jones 

et al. (2013) by investigating the effect of health shocks as measured by the incidence 

of cancer, stroke or myocardial infarction. There are plausible reasons to justify this 
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choice of health problems as exogenous health shocks. First, these problems are less 

likely to be misreported and exaggerated compared with milder problems so that the 

magnitude of justification bias will be minimised (Baker et al. 2004). Additionally, 

even though genetic inheritance, lifestyle choices and chronic health problems play a 

significant role in the development of these health shocks, in most cases the exact 

timing and probability of occurrence remains unexpected (Jones et al. 2003).  

I also used coarsened exact matching (CEM) to control for bias caused by 

observable confounding as the treated and the control groups were not necessarily 

identical before treatment (Grazia Gomez, 2011). CEM is one of a class of monotonic 

imbalance bounding matching methods which bound the maximum imbalance in 

some feature of the empirical distributions through an ex ante choice by the user. It 

also has been shown that CEM reduces both the error in estimating the average 

treatment effect and the amount of model dependence (Iacus et al., 2008). Any 

estimated outcome depends on the modelling assumption and different causal 

inferences can be drawn based on different specifications. King et al. (2006) 

described model dependence as the difference, or distance, between the predicted 

outcome of dependent variable values based on any two plausible alternative model. 

Matching methods pre-process observational data and weaken the link between 

treatment variable and control variables. If data quality is sufficient such that 

appropriate matches become available, causal effect estimates do not vary 

substantially based on alternative parametric modelling assumptions (Ho et al., 2007). 

This study also attempts to control for the potential correlation among unobservable 

characteristics, affecting both health shock incidence and labour market outcomes by 

combining matching with fixed effect and lag dependent models (Heckman et al., 

1998).   
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Health problems such as cancer, stroke and heart failure affect many people in the 

UK and can cause substantial adverse effects on working-age people’s socio-

economic status. 352,197 people in the UK were diagnosed with cancer in 2013 

(Cancer Research UK 2016). Cancer causes more than one in four of all deaths in the 

UK. Some patients may experience a drop in their income due to time away from 

work because of cancer-onset side effects (Bennett et al., 2008; Lauzier et al., 2008). 

It has been suggested that particular sub-groups of patients, such as those with lower 

incomes, may be more vulnerable to the adverse financial and economic 

consequences of cancer (Arozullah et al., 2004; Langa et al., 2004). Each year, 

around 110,000 people have a stroke in England. The brain injuries caused by strokes 

are the main reason for disability among British adults and over half of all stroke 

survivors are left with a form of disability (www.nhs.uk, 2016). Myocardial 

Infarction (MI) is another common condition affecting approximately 150,000 people 

per year in the UK (Trends in coronary heart disease, 2011). Affected individuals are 

highly likely to struggle with daily activities and may find it impossible to return to 

full-time occupation. Although old age is one of the most important risk factors for 

health problems mentioned above, the number of working-age people with these 

health problems is not negligible. Adults aged 25-49 contribute 10% of all new cancer 

cases and female cases are twice as many as males in this age group (Cancer 

Research UK 2014). 26 percent of all strokes in the UK occurred in people aged 

under 65 years old. The number of people having strokes aged 20 to 64 increased by 

25% from 1990 to 2010 worldwide. Around 1 in 150 strokes in the UK was reported 

among those aged under 20 (stroke.org.uk, 2016). 

When and how patients return to work after treatment is related to different 

factors, such as type of work, nature of recovery, personal characteristics, financial 
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resources and health insurance cover. Many people return to their previous full-time 

occupations, but others may have to decrease their hours or take up jobs better suited 

to this new condition. There are also affected individuals who may never be able to 

return to work due to the long-term side effects of their illness. In a country such as 

the UK, with universal healthcare coverage and disability insurance, the welfare 

system is one of the main factors shaping the labour market’s response to health 

shocks (Datta Gupta et al., 2011). In this paper, I contributed to the literature by 

investigating whether and to what extend potential reductions in labour income were 

compensated by the financial supports available from the UK welfare system. While 

most of the previous empirical research using British data limited its focus to the 

effect of health shocks on unemployment, I set out to explore different potential 

pathways that could lead to alterations in different components of income following a 

health shock. My results showed the degree to which labour income, welfare income, 

benefits and total income were affected after onset of cancer, stroke and heart failure.  

The focus of published literature has been on the effect of health shock on 

employment. In this work I focused on the income loss after health shock. Although it 

was clear that becoming economically inactive or unemployed were main reasons for 

loss of income among people who were previously employed or self-employed. 

Taking into account alterations in income shed more light on diverse scenarios and 

the extent to which individuals suffered financially even if they stayed at work. In 

addition, the magnitude of change in social benefits that affected individual receive 

can be examined to investigate if it compensates for their income loss.   

Almost all affected individuals needed some time away from work when 

undergoing treatment. In the UK, all employed (not self-employed) individuals whose 

work ability is affected by health problems are entitled to statutory sick pay. This is 
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paid for by employers for a maximum period of 28 weeks (www.gov.uk, 2016). 

Depending on the individual’s employment contract, some employees may 

additionally qualify for occupation or company sick pay. Individuals who are not fit 

to return to work after 28 weeks are entitled to apply for Employment and Support 

Allowance (ESA). Incapacity Benefit (IB) has been replaced by ESA since 2008. IB 

was paid to working age people who had contributed sufficient national insurance 

contributions in the relevant tax years. EAS has both a contributory and means tested 

part. People may receive either or both depending on their contribution history and 

their income and savings (www.disabilityrightsuk.org, 2014). Self-employed 

individuals are also entitled to claim ESA conditioned on whether they have paid the 

correct amount of national insurance contribution. Disability living allowance is also 

available for people under 65 who find it difficult to walk or look after them. This 

benefit is made up of a care and a mobility component. People with terminal illness 

such as cancer receive the disability living allowance care component at the highest 

rate. Even people who return to work can experience substantial loss in overall 

income or labour income. Therefore, they may become entitled to a range of benefits 

that are available for people on low income. Some of these benefits include income 

support, working tax credit, housing benefit and working tax benefit 

(www.citizensadvice.org.uk, 2016).  

The main aim of this work was to investigate the magnitude of change in 

different sources of income following an acute health shock. This paper took 

advantage of available longitudinal data set from Understanding Society using survey 

waves 2009 to 2014 to explore the effect of negative health shocks on different 

components of income among working age men and women 

(www.understandingsociety.ac.uk, 2015). Results provide an in-depth insight to 
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income dynamics and impact of social welfare payments among affected people after 

the economic crisis of 2008. I included labour market active individuals and 

compared different income components of people who experienced cancer, stroke or 

heart failure for the first time with those who had never experienced any of these 

health shocks. Combining coarsened exact matching with parametric regression, I 

argued that within my research design the health shock was quasi experienced and 

enabled me to investigate causal effects of interested health shocks on different 

component of individual income.  

3.2 Data 

This paper used the UK’s largest household longitudinal survey, The UK 

Household Longitudinal Survey (UKHLS). UKHLS includes 40,000 households. In 

addition to household questioner which is answered by the household representative, 

all adults older than 16 living in the household are asked questions on a wide range of 

themes such as their ethnicity, financial problems, employment status, expectations 

and aspirations, their social network and family, health and mental well-being, 

neighbourhood and proportion of time spent on work or leisure. This survey studies 

individuals in their changing household contexts and this setting is essential to avoid 

bias caused by focusing only on the unchanged households in analysing people’s 

behaviour (Giles, 2001).  

Pathways to income loss caused as a consequence of an acute health shock 

can be summarised as follows; a loss of income is a significant source of concern and 

the biggest financial impact among people experiencing acute health shocks. The 

manner in which loss of income occurs, and its effects are dependent on the impacted 

individual’s stage in life, household circumstances as well the length of time that such 
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a loss of income lasts. Among people who were employees at the time of their health 

decline, to have spent at least a period of time receiving only Statutory Sick Pay 

and in other cases the length of time people needed to take off work meant that their 

entitlement to Statutory Sick Pay had also ended, leaving some with no income at all. 

Health deterioration can also lead to temporary financial loss among self-employed 

people, during periods when they were not fit to work. People who return to work can 

be the only sub-group that can manage their finances despite the temporary loss of 

income. However, a major health shock can also cause a permanent loss of incomes, 

with very serious negative consequences for a household's finances. This could be as 

a direct result of a diagnosis: it is possible that diagnosed individuals become 

dismissed from their jobs, while receiving or recovering from treatment or recovery 

period. In conjunction with the emotional and mental distress caused by facing a 

health shock, individuals can feel less employable. They are sometimes seen as less 

able to manage stress or endure the physical burden of day to day job. The burden of 

additional expense or loss of income resulting from cancer led most people to need to 

draw on resources other than their regular income at some point since their diagnosis. 

For many, this involved using up savings, using social benefits, turning to 

commercial borrowings or accepting financial help from friends or family. 

Understanding society is a critical data source as it is one of the few UK 

surveys that contains information on individuals' income and health. The main 

motivation of this research was the effect of health shock on income alterations. 

Therefore, I considered several different types of income to ensure accuracy of 

obtained results. This was made possible as understanding society provides detailed 

information on different component of individuals income as well as sources of 

unearned income such as savings, investments and social benefits. Understanding 
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Society is the data source for the Department for Work and Pensions publication on 

income dynamics (Fisher et al., 2019). In addition, its large sample size offers new 

opportunities to study sub-groups that may be too small for separate analysis using 

other studies. Understanding Society will also support inter-disciplinary research on 

issues such as health and income and enabled me to consider a wide range of other 

socioeconomic variables which can influence both health and income outcomes. 

The richness of this panel data set allowed me to compare sub-groups of 

populations (for example heterogeneity in labour market responses to health shocks 

among younger individuals or people in poverty) and match individuals with respect 

to the relevant socioeconomic and demographic characteristics. Due to the large 

number of sample households, the fieldwork for each wave takes two calendar years 

to complete. These data provide the information on the wellbeing and health of the 

participants prior to joining the survey which enables us to identify individuals who 

have already experienced the onset of a health shock. Their income and labour market 

adjustment might be different to that for individuals who experience these health 

shocks for the first time. Over the course of the sample, individuals were asked about 

specific health problems in the current year. They are then asked different sets of 

questions depending on participation history. For example; being a new participant or 

having been interviewed the year before or whether there was a gap between 

participated years. Using this information, we can build up a comprehensive picture 

of the health status of participants. A battery of standard health indicators covers self-

assessed health, the presence of a long-standing illness or disability, different types of 

limitations in activities of daily living (ADLs), and information about health habits 

and behavioural risk factors, via past and current smoking participation and intensity. 
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I considered short-run effect of health shocks on income alteration (within a 

year). It was one of the limitations of this work. However, previous research (Smith, 

2005) found most of the income adjustment after an acute health shock was 

immediate and tended to persist afterwards. Therefore, identifying the short-term 

changes in income was of great value. Another limitation which is imposed by the 

data that affects our analysis is that the exact time difference between diagnosis of the 

health shock and reported employment status or monthly income is not known. This 

difference can be anything between a couple of days to almost 12 months. Therefore, 

we are not able to distinguish between the immediate effects of health shocks on 

income with those after several months.   

Basic demographic information including age, gender, race, marital status, 

number of children, and household size, together with socioeconomic characteristics 

including highest educational qualification, individual and household income from 

various sources, and housing tenure was used. With respect to labour market activity, 

at each wave respondents are asked about employment status (including self-

employment), type of occupation, the number of hours worked (including overtime 

hours, both paid and unpaid), incomes, job satisfaction and other job and employer 

characteristics.  

Understanding Society collects detailed information each wave on income. All 

individuals aged 16 or more are asked to report: incomes from main and second jobs, 

social security benefits, state and private benefits and private transfers and investment 

income. Net and Gross monthly income are estimated from the individual income 

components described below. When gross income is calculated, incomes components 

are gross which means, before taxes and National Insurance contributions are 

deducted and also before tax deduction from non-pay income (rental income), which 
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is assumed to be reported gross. The term “net” refers to net of taxes on incomes and 

national insurance contributions. It is constructed as the sum of the six income 

components described below. The six component of individual net income are as 

follows: Component 1: Labour income, this is the sum of three incomes components: 

net usual pay; net self-employment income; net pay in second job. Component 2: 

Miscellaneous income, This measure captures receipts reported in the income data 

file if people report receiving  “educational grant (not student loan or tuition fee 

loan)”, “payments from a family member not living here”, or “any other regular 

payment (not asked in Wave 1)”. This is assumed to be reported net of tax. 

Component 3: private benefit income, This includes receipts reported in the income 

data file where one of the following payments are reported: “trade union / friendly 

society payment”, “maintenance or alimony”, or “sickness and accident insurance”. 

This is assumed to be reported net of tax. Component 4: investment income , This 

measure represents receipts reported in income record if one of the following are 

reported: “a private pension / annuity”, “rent from boarders or lodgers (not family 

members) living here”, “rent from any other property”. Also, monthly income from 

savings and investments, estimated as the annual income from savings and 

investments divided by 12 is added. All these sources are assumed to be reported net 

except for rent from other property which is assumed reported gross, and a tax 

liability is deducted. Component 5: pension income, this includes receipts reported in 

the income data file when individuals report receiving “a pension from a previous 

employer”, or “a pension from a spouse’s previous employer”. This is assumed to be 

reported net of tax. Component 6: social benefit income,  This component includes 

receipts reported in income record where  “state retirement (old age) pension”,  “a 

widow’s or war widow’s pension”, “a widowed mother’s allowance / widowed 
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parent’s allowance”, “pension credit (includes guarantee credit & saving credit)”,  

“severe disablement allowance”, “industrial injury disablement allowance”,  

“disability living allowance”, “attendance allowance”, “carer’s allowance (formerly 

invalid care allowance)”,  “war disablement pension”,  “incapacity benefit”, “income 

support”, “job seeker’s allowance”, “child benefit (including lone-parent child benefit 

payments)”, “child tax credit”,  “working tax credit (includes disabled person’s tax 

credit)”,  “maternity allowance”, “housing benefit”, “council tax benefit”,  “foster 

allowance / guardian allowance”, “rent rebate (NI only)”, “rate rebate (NI only – 

offset against rates)”, “employment and support allowance”, “return to work credit”, 

“in-work credit for lone parents”, “other disability related benefit or payment”,  

“income from any other state benefit (not asked in Wave 1),  “universal credit” (from 

Wave 4), “personal independence payments” (from Wave 4). This is assumed to be 

reported net of tax. Personal gross monthly income can be decomposed into three 

subcomponents: labour income equal to the sum of gross usual pay, self-employment 

pay and gross second-job pay; annual income from savings and investments and 

monthly income from benefits and other sources (Fisher et al., 2019). 
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3.3 Empirical strategy    

 

The empirical strategy exploits changes in health induced by the first onset of 

an acute health shock (cancer, heart attack and stroke). I considered the effect of the 

acute health shocks occurring between two consecutive years (t-1and t) on different 

component of income at time t. These estimates identify the short run income change, 

observed at time t. the acute health shock is considered unanticipated because 

conditioned on the observed health status of an individual, the actual occurrence and 

timing of it is not exactly predictable (Trevisan et al., 2015). 

Acute health shocks are denoted by a binary indicator which is equal to 1 if an 

individual experienced her/his first acute health shock between t and t-1, and zero 

otherwise. The sample for analysis is restricted to who would both be younger than 

the statutory retirement age and older than compulsory full-time education age at time 

t. To allow the inclusion of a lag in the analysis, individuals should be observed for at 

least two consecutive years and are included in the sample from the first year  

they report themselves as employed or self-employed. These participants are followed 

up over the course of the survey and are permitted to exit from work and still included 

in the estimated data. I also excluded those who had experienced these health 

problems prior to their participation in the survey because income and labour market 

behaviour adjustments had occurred sometime before the start of my analysis and this 

could dilute the estimated effect first health shocks on income. All new participants 

were asked about their health history in the first year of their participation in the 

survey and the full list included: asthma; arthritis; congestive heart failure; coronary 

heart disease; angina; heart attack (myocardial infarction); stroke; emphysema; over-

active thyroid (hyperthyroidism); under-active thyroid (hypothyroidism); chronic 
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bronchitis; liver condition (any kind); cancer or malignancy; diabetes; epilepsy; high 

blood pressure; and clinical depression. 

Every wave, all new entrants are asked “has a doctor or other health 

professional ever told you that you have any of these conditions?  

1.Asthma, 2.Arthritis, 3.Congestive heart failure, 4.Coronary heart disease, 5.Angina, 

6.Heart attack or myocardial infarction, 7.Stroke, 8.Emphysema, 9.Hyperthyroidism 

or an over-active thyroid, 10.Hypothyroidism or an under-active thyroid, 11.Chronic 

bronchitis, 12.Any kind of liver condition, 15.Epilepsy, 16.High blood pressure, 17. 

Clinical depression, 96. None of these. 

Participants who report any of the health problems listed above will be asked “Do you 

still have the condition?” 

Also, all the participants who have been interviewed before are asked “Since 

last interview, has a doctor or other health professional newly diagnosed you as 

having any of the following conditions? If so, which ones? 

Health shocks are identified if a person faces Congestive heart failure, Heart attack or 

myocardial infarction, stroke or cancer for the first time in his/her lifetime over the 

course of the survey. Out of 88053 observations, 534 individuals who experienced 

health shock for the first were identified. 

In order to define treatment and control group, Selection on observables 

identification approach suggested by Sianesi (2004). In a dynamic treatment 

assignment setting at any point in time t, a subset of individuals that just experienced 

their first acute health shock between time t and t-1, are considered as the treatment 

group. The subgroup of individuals, selected from the subset who have not been hit 

by the acute health shock up to time t, are regarded as the potential controls (Trevisan 

et al., 2015) 
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below is a brief description of variables which were used for matching process.  

Poor self-reported health is based on the following question:  In general, 

would you say your health is? Options are 1. Excellent, 2. Very good, 3. Good, 4. 

Fair, 5. Poor.  Poor self-reported health is equal to 1 if poor health is reported and 0 

otherwise.  

Long-term health problem or disability is based on the question below and is 

equal to 1 if any of the health-related difficulties are reported and zero otherwise. 

Question in the survey: Does this/Do these health problem(s) or disability(ies) mean 

that you have substantial difficulties with any of the following areas of your life? 1. 

Mobility (moving around at home and walking), 2. Lifting, carrying or moving 

objects, 3. Manual dexterity (using your hands to carry out everyday tasks), 4. 

Continence (bladder and bowel control), 5. Hearing (apart from using a standard 

hearing aid), 6.Sight (apart from wearing standard glasses), 7.Communication or 

speech problems, 8.Memory or ability to concentrate, learn or understand, 9. 

Recognising when you are in physical danger, 10. Your physical co-ordination (e.g. 

balance), 11. Difficulties with own personal care (e.g. getting dressed, taking a bath 

or shower), 12. Other health problem or disability. 96, None of these 

Smoker is based on the question that askes “Do you smoke cigarettes? Please 

do not include electronic cigarettes (e-cigarettes)” and takes on value 1 if an 

individual has reported yes as an answer in at least one of the waves.  

Question on ever high blood pressure, ever diabetes, ever coronary heart 

disease and ever angina are based on 2 questions on a set of diagnosed health 

conditions and are equal to 1 if a participant repots being diagnosed with any of these 

health conditions at some point in their life. The questions are as following: 
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 “has a doctor or other health professional ever told you that you have any of these 

conditions? And Since last interview, has a doctor or other health professional newly 

diagnosed you as having any of the following conditions? If so, which ones? 

“ Since last interview, has a doctor or other health professional newly diagnosed you 

as having any of the following conditions? If so, which ones? 

(1. Asthma, 2. Arthritis, 3.Congestive heart failure, 4. Coronary heart disease, 5. 

Angina, 6.Heart attack or myocardial infarction, 7.Stroke, 8.Emphysema, 9. 

Hyperthyroidism or an over-active thyroid, 10. Hypothyroidism or  an under-active 

thyroid, 11.Chronic bronchitis, 12.Any kind of liver condition,13.Cancer or 

malignancy, 14.Diabetes,15. Epilepsy,16. High blood pressure, 17. Clinical 

depression, 96. None of these) 

 

Descriptively comparing individuals who experienced acute health shocks 

with those not affected would only estimate the causal effect of health shocks if these 

shocks were randomly distributed in the sample (Table 1 and 2). However, the 

average characteristics of the sample of affected individuals are statistically different 

to those of the control group with respect to most covariates included in the matching. 

The treated group is older and has a higher proportion of smokers in the year before 

the health shock. There are pronounced differences with respect to education, race, 

general health and history of experiencing conditions such as high blood pressure, 

diabetes, congestive heart failure, coronary heart disease and angina among treated 

and control group, suggesting that the incidence of health shock is correlated with 

some of the observable characteristics. Descriptive analysis also revealed some 

differences between men and women. For example, unlike men, the distribution of 

labour income and of holding a part-time job was not significantly different for the 
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treatment and control groups of women and lagged mental health among treated 

women was significantly worse than in control group, but this difference was not 

evident among men.  

I pre-processed the data using a non-parametric matching method to account 

for some or all the potentially confounding effect of pre-treatment control variables 

by reducing the covariate imbalance between the treated and control groups. This 

study employed Coarsened Exact Matching (CEM) which was a Monotonic 

Imbalance Bounding (MIB) matching method. While traditional matching methods 

usually imply a trade-off in the balance achieved across different conditioning 

variables, the CEM approach allows - at the cost of a reduced sample size - to reduce 

the imbalance in any chosen confounder with no detrimental effect on the balancing 

of others (Iacus et al. 2011). This monotonic imbalance bounding property is 

achieved by coarsening selected variables into meaningful groups and performing 

exact matching on the coarsened data, so that balance is achieved in the full joint 

distribution of coarsened variables, accounting for interactions and non-linearities. 

Clearly, as the number of co-founders increases, CEM may result in a progressively 

reduced sample size as exact matches with the set of potential controls become more 

difficult to locate. In our setting, it is therefore employed to ensure that adequate 

balancing is achieved with respect to those confounders deemed most relevant for 

capturing endogenous selection into experiencing an acute health shock. This allows 

for adjusting the imbalance on one variable without affecting on the maximum 

imbalance of any other (Iacus et al., 2012). CEM makes use of a multidimensional 

exact matching algorithm and applies it to cells identified by categorising continuous 

variables into discrete intervals or by reshaping categorical variables into fewer 

coarsened categories. CEM’s algorithm identifies a range of strata with the same 
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coarsened values of matching variables and restricts the matched data to areas of 

common empirical support by omitting unmatched observations from both treated 

and control samples. Furthermore, CEM meets the congruence principle, requiring 

the equality of the data and analysis space. Methods that do not hold this principle 

often produce implausible results (King and Zeng, 2006). 

Following Ho et al. (2007), I combined matching with parametric regression 

models to obtain causal inferences about the Average Treatment effect on the Treated 

(ATT) from secondary data. Using the weights produced by Coarsened Exact 

Matching (CEM), the sample was reprocessed so that the resulting comparison group 

was as similar as possible to the treated group (Iacus et al., 2012). I also tested the 

robustness of findings by comparing these results with those obtained using 

alternative identifying assumptions. The alternative approaches are based on fixed 

effects and lag-dependent models. The incidence of a health shock and an 

individual’s unobservable characteristics can be correlated and unobserved 

differences between the treated and comparison samples may also result in difference 

in incomes for these two groups. For example, developing cancer may be correlated 

with unhealthy lifestyle or underdeveloped life skills unobserved in the data (poor 

diet or poor stress management). This, in turn, may depend on a particular unobserved 

individual characteristic such as personal motivation or work ethics. Individuals with 

such characteristics may have a higher chance of developing an acute health condition 

and also have greater likelihood of income a lower income. Even if the effect of the 

unobserved characteristics is not significant, not controlling for the average difference 

in unobservable characteristics of the cancer and comparison groups can cause an 

overestimation of the effect of health shocks on incomes (Jeon, 2014). 
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Fixed effects models control for differences between the treated and 

comparison samples by eliminating time-invariant unobserved characteristics that can 

be correlated with both incidence of acute health shock and incomes. Lagged 

dependent models on the other hand control for previous incomes and are more 

appropriate when the unobserved omitted variables are not time invariant. These two 

models are not nested and controlling for both time invariant variables and lagged 

dependent variables causes inconsistency in the model. Therefore, I estimated each of 

these models separately, using the weights obtained from the exact coarsen matching 

for men and women. 

The identification strategy relied on the assumption that conditional on the set 

of confounding variables and lagged outcomes, the occurrence of a health shock can 

be treated as an exogenous shock. The approach to estimation of the treatment effect 

involved a combination of coarsened exact matching (CEM) and propensity score 

matching to ensure common support and adequate covariate balance, followed by 

parametric regression analysis on the balanced data. This followed the method for 

estimating the average treatment effect on the treated (ATT) set out in Ho et al. 

(2007). 

 The central idea in CEM is to first coarsen each observed variable into 

meaningful groups that preserve information defined by the analyst. Then exact 

match algorithm is applied on coarsened data. The original (un-coarsened) values of 

the matched data is retained and observations with the same values for all the 

coarsened variables are placed in a single stratum. Finally, comparison observations 

within each stratum are weighted to equal the number of intervention observations in 

that stratum. Weights are calculated as described below.  
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Where S is a set of strata denoted to the same coarsened value of X  𝑠 ∈ 𝑆Ts
 

represents the treated units in stratum s and 𝑀𝑡
𝑠 denotes the number of treated units in 

the stratum. Similarly, Cs stands for the control unites in stratum and  𝑀𝑐
𝑠 number of 

control units in that stratum. The number of matched units are, respectively, for 

treated and controls Mt and Mc. CEM weights for each matched unit i in stratum s are 

calculated as described in equation 3.1 below: 

𝑤𝑖 = {
1,    𝑖 ∈  𝑇𝑠

Mc

 Mt

𝑀𝑡
𝑠

𝑀𝑐
𝑠 ,     𝑖 ∈ 𝐶𝑠                                                                         (3.1) 

 

The weighted regression accounts for potential confounding effects of observable 

characteristics as at t-1. By applying this matching procedure, it was possible to find 

9083 controls for 447 of treated matches (87 of treated observations are excluded). 

Estimation sample consisted of 534 treated units out of 88053 potential control units 

in the pre-processed sample. Although the number of treated individuals was small, 

this was not atypical for this kind of studies (Johns et al. 2013). Full list of the 

variables used for matching is presented in table 1 and 2. P values obtained after 

applying CEM show that no differences between the mean of treated and the matched 

comparison sample remained. All these variables are included in the regression 

analysis, although this does not alter the health shock’s effect because as a result of 

reweighting, the health shock is mean-independent conditioning on the matching 

variables. 

 The linear regression was based on the specifications are based on equation 3.2:  

   𝑦𝑖𝑡 =  𝑥′𝑖𝑡−1𝛽1 +  ℎ1′𝑖𝑡𝛽2+ ui + 𝜀𝑖𝑡                              (3.2)                             
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The dependent variable 𝑦𝑖𝑡 is a natural logarithm of income of individual i at time t.  

ℎ1′𝑖𝑡 is a dummy which identifies whether the individual experienced health shock at 

time t and takes on value of one when an individual has faced health shock and zero 

otherwise. 𝑥′𝑖𝑡−1 is a vector containing the weighted (based on CEM weights) health 

status and socioeconomic variables of individual i at t-1. 𝜀𝑖𝑡 is the error term assumed 

to have a probability density function with logistic distribution and ui is the individual 

specific shock which is assumed to be independent of explanatory variables (random 

effect assumption).    

When probability of the eligibility for different welfare income was 

investigated a nonlinear model as described below was employed. It is assumed that 

diabetes is a binary variable which might be endogenous and take value 1 if 

individual i reports being diagnosed with diabetes at time t and 0 otherwise. The 

employment equation is given by: 

Welfare*it  = ß0 + ß1Xit-1 + ß2Diabetesit +  ui   + εit                                  (3.3) 

where welfare*it  > 0 (Welfare*it =1) and Welfare*it < 0 (Welfareit  =0) indicates that 

individual i is receiving a specific form of welfare income  or otherwise at time t; Xit-1 

denotes various control variables that has been used in CEM and weighted based on 

CEM weights (full list of variables demonstrated in table 1). Β1 is the vector of 

coefficients associated with Xit-1; ui represents the individual specific unobservable 

and time invariant. εit is a time-specific idiosyncratic shock.



102 
 

Table 1: Mean of variables used for 

CEM (women)               Full sample      Matched sample  

 Control  Treatment  

  P 

value  Control  Treatment  

  P 

value 

Age (16-30/31-40/41-50/51-60) 4.22 3.21 ***  4.27 4.27 - 

Long term health problem or disability (t-1) 1.61 1.49 ***  1.63 1.63 - 

Poor self-reported health (t-1) 0.06 0.02 ***  0.021 0.021 - 

Smoker (t-1) 0.13 0.15 -    0.14      0.14 - 

Ever high blood pressure till t-1 0.03 0.042 ***  0.049 0.049 - 

Ever diabetes till t-1 0.02 0.07 ***    0.0714   0.0714 - 

Ever congestive heart failure till t-1 0.08 0.052 ***    0.06      0.06 - 

Ever coronary heart disease till t-1 0.04 0.06 ***  0.074 0.074 - 

Ever angina till t-1 0.01 0.032 ***  0.039 0.039 - 

Married/cohabiting t-1 0.57 0.574 -  0.591 0.591 - 

Number of children  0.36 0.509 ***  0.333 0.333 - 

highest qualification: Degree 0.37 0.34 **    0.35      0.35 - 

highest qualification: A-level/ GCSE 0.36 0.42 **  0.349 0.349 - 

highest qualification: Other qualification 0.31 0.41 -  0.407 0.407 - 

highest qualification: None 0.2 0.36 **  0.342 0.342 - 

White 0.86 0.94 -  0.962 0.962 - 

Permanent or temporary job at t-1 0.94 0.95 -  0.972 0.972 - 

Full time or part time job at t-1 1.27 1.24 -  1.283 1.283 - 

Quintile of household income 2.17 2.128 -  2.121 2.121 - 

Working at t-1 0.91 0.9 -  0.929 0.929 - 

Year of interview  3.55 3.54 -   3.6 3.6 - 
Source: UKHLS, wave 1- 5 

 Notes: p values for tests of equality of means between treated and controls were calculated 

***p<0.01, **p<05, *p<0.1 , __ No statistically significant difference 
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Table 2: Mean of variables used for 

CEM (men)   Full sample     Matched sample   

 Control  Treatment  

   P 

value  Control  Treatment  

   P 

value 

Age (16-30/31-40/41-50/51-60)  3.865 3.154 ***  3.95      3.95 - 

Long term health problem or disability (t-1) 1.74 1.553 ***  1.587 1.587 - 

Poor self-reported health (t-1)   0.022 0.092 ***  0.042 0.042 - 

Smoker (t-1)    0.25      0.44 -     0.29      0.31 - 

Ever high blood pressure till t-1  0.158 0.251 ***  0.312 0.312 - 

Ever diabetes till t-1  0.094 0.164 ***  0.382 0.382 - 

Ever congestive heart failure till t-1  0.002  0.0097 ***  0.0072   0.0072 - 

Ever coronary heart disease till t-1  0.038 0.051 ***  0.063 0.063 - 

Ever angina till t-1  0.006 0.048 ***  0.042 0.042 - 

Married/cohabiting t-1    0.62 0.751 ***  0.775 0.775 - 

Number of children   0.489 0.331 ***  0.293 0.293 - 

highest qualification: Degree  0.308 0.236 ***  0.237 0.237 - 

highest qualification: A-level/ GCSE    0.33 0.419 ***  0.349 0.349 - 

highest qualification: Other qualification 0.312 0.396 ***  0.407 0.407 - 

highest qualification: None 0.287 0.332 ***  0.342 0.342 - 

White   0.85 0.909 ***  0.927 0.927 - 

Permanent or temporary job at t-1 0.939 0.956 -  0.968 0.968 - 

Full time or part time job at t-1 1.146 1.082 **  1.073 1.073 - 

Quintiles of household income  2.167 2.231 -  2.206 2.206 - 

Working at t-1  0.909      0.93 -  0.923 0.923 - 

Year of interview  3.532 3.544 -   3.525 3.525 - 
Source: UKHLS, wave 1- 5 
Notes: p values for tests of equality of means between treated and controls were calculated 

***p<0.01, **p<05, *p<0.1,  - No statistically significant difference 
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3.4 Results 

 

In this section, estimated effect of acute health shocks on the reported income 

is presented. My main analysis was based on weighted linear or logit regression based 

on the distribution of the dependent variable. However, both weighted fixed effect 

and lag dependent models are estimated for robustness check. First columns in tables 

3-8 show estimates of health shock effects on income of time t, while the acute health 

shock has been developed during time t and t-1. These estimations are not conditional 

on working (zero labour income are included in this analysis), and they include 

income losses caused by transitions from employment before health shock occurrence 

to non-employment following diagnosis. Estimated sample only included working 

age individuals who were employed or self-employed at some point during the 

survey. In order to gain more detailed information on the effect of health shocks on 

income, the sub-samples of those who continued to be employed after the health 

shock has also been investigated separately as well as being included in the main 

estimated sample. Estimates in third columns in tables 3-8 are conditional on 

remaining in employment (zero labour incomes excluded). Results represent the 

effect of acute health shocks on survivors who are able and willing to stay at work. 

Results indicated that when health shock is experienced, net labour income 

and income from benefits are the main components of the total income that are 

affected. Changes in these components are the principal determinant of the alteration 

in total gross or net income. Other sources of income such as investment, pension or 

second job (not presented here) were considered, but no significant changes related to 

these components of income were observed. Results presented here are based on both 

gross and net income. However, income analysts prefer working with net income as 
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this shows amount available for spending after direct taxation is taken into account. 

Findings indicated that the reduction in net income of affected people was smaller 

compared to losses in gross income. This was due to the nature of the taxation system 

in the UK as the distribution of net income was less unequal than that of gross income 

(Berthoud, 2012). The benefit income variable used in this paper includes all the net 

income obtained from government support. This enabled consideration of all financial 

aid people received after the onset of the health shock.    

When all working age men and women were considered, experiencing an 

acute health shock led to a significant reduction in labour income (men 23% and 

women 24%) and benefit income showed a significant increase (men 31% and 

women 32%). Considering gross income, only ATT estimated for male survivors 

showed a significant reduction compared to their counterparts who were never 

diagnosed with any form of the health shock. No significant effect was found on net 

income of men or women. When the effect of health shock was estimated conditional 

on working, workers diagnosed with acute health shock earned 3% less at time t than 

their counterparts from the comparison sample and this difference was no longer 

statistically significant.  

Each of the female and male samples were divided into two sub-samples, 

including individuals 16-49 years old and people older than 49 years old. Men 

younger than 49 years old are the only sub-group that experienced significant 

reduction in their net income (8%) and no significant increase in the income received 

from welfare system. On the other hand, men older than 50 years old experienced 

35% increase in their benefit income and no significant reduction in net or gross 

income. These clear differences between two age groups of men did not appear to 

hold among women. None of the sub-groups of women faced significant reduction in 
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their gross or net income. Older women experienced a significant fall in their labour 

income (23%) and a significant increase in their benefit income (18%). Younger 

women reported a 6% (significant) reduction in their labour income and an 8% 

increase (significant) in benefit income. The significant rise in benefit income was 

experienced even when sample was restricted to individuals who continued working 

after the onset of the health shock among all the working age sub-groups of both 

genders except younger men.  

 

Next, the robustness of findings was tested using alternative identifying 

assumptions and both fixed effect and lag dependent models were considered. 

Obtained results were broadly similar and suggested the same pattern discussed above 

based on original regression models. Tables 5 and 6 present results for men and 

women. Patterns emerged based on these results were in line with previously 

presented results and confirmed differences in income changes between younger and 

older men. It was also evident that after young men, it was younger women who on 

average experienced the lowest rate of increase in welfare income. 
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Table 3: Effect of acute health shock on income component of working age 

men     

 All men All men Men Men (16-49) Men Men (50-65) 

  

Conditioned 

to working (16-49) 

Conditioned to 

working (50-65) 

Conditioned to 

working 

Log of gross monthly  -0.06* -0.03 -0.11* -0.14 -0.18 0.11 

 income       

 
(0.09) (0.19)  (0.09)  (0.17) (0.21) (0.17) 

Log of net monthly  

 

-0.03 -0.04 -0.08* -0.06 -0.18 0.11 

income       

 
(0.19) (0.15)  (0.06)  (0.1) (0.21) (0.16) 

Log of labour 
-0.23** -0.13 -0.28* -0.093 

 

-0.20* 

 

-0.15 

income       

 
(0.09) (0.81)   (0.073)  (0.97) (0.11) (0.63) 

Log of income 

 

0.31** 0.23* 
0.24 0.13 

0.35* 0.16* 

from benefit       

  (0.038) (0.019)   (0.61) (0.168) (0.13) (0.085)  

Number of observations 4,637 4,297 1,739 1,688 2898 2,609 
** Significantly different from reference category (p<0.01),  
* Significantly different from reference category (p<0.05) 

 Note: Results are estimates for a linear regression model with Coarsened Exact Matching (CEM) weights. All regressions conditional on the full set 

of control variables listed in Subsection 2.3 
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Table 4: Effect of acute health shock on income component of working age 

women     

 All women All women women Women (16-49) Women Women (50-65) 

  

Conditioned 

to working (16-49) 

Conditioned to 

working  (50-65) 

Conditioned to 

working 

Log of gross monthly  
-0.08 

-0.02 -0.02 -0.141 -0.05 -0.08 

 income       

 
(0.15) 0.096 (0.2) (0.19) (0.2) (0.16) 

Log of net monthly  -0.07 -0.02 -0.02 -0.13 -0.03 -0.07 

income (0.15)      

 
-0.24 0.092 (0.19) (0.19) (0.199) (0.18) 

Log of labour 
 

 
-0.18* 

-0.16 -0.23** -0.05 

income   (0.04)** (0.09)     

 
  (0.13) (0.2) (0.06) (0.19) 

Log of income 0.28 0.12 0.06* 0.04* 
 0.18** 

0.08* 

from benefit       

      (0.08)**  (0.81) (0.06) (0.04) (0.07) (0.06) 

Number of observations 4,893 4,459 2,419 2,304 2,285 1,988 

             ** Significantly different from reference category (p<0.01) 
             * Significantly different from reference category (p<0.05)  

                  Note: Results are estimates for a linear regression model with Coarsened Exact Matching (CEM) weights. All regressions conditional on the full set of  

control variables listed in subsection 2.



109 
 

   
Table 5: Different age group of men and women; Effect of acute health 

shock on income, Lag dependent models.     

 All men Men Men All women Women Women 

   (50-65) (16-49)   (50-65) (16-49) 

Log of gross monthly  -0.08* -0.15 -0.21** -0.17 -0.08 -0.14 

 income 
      

 
(0.012) (0.196) (0.13) (0.14) (0.18) (0.23) 

Log of net monthly  -0.05 -0.15 -0.11** -0.15 -0.15 -0.15 

income 
      

 
(0.181) (0.195) (0.14) (0.14) (0.18) (0.29) 

Log of labour 
-0.36** -0.25** -.0.32** 

-0.29** -0.30** -0.06* 

income 
      

 
(0.14) (0.14) (0.17) (0.09) (0.11) 

(0.04) 

 

Log of income 0.39** 0.41** 0.18 
0.27** 0.23** 0.05* 

from benefit 
      

  (0.059) (0.08) (0.71)  (0.10) (0.09) (0.04) 

Number of observations 4,637 2,898 1,739 4,893 2,294 2,599 

 

** Significantly different from reference category (p<0.01) 

* Significantly different from reference category (p<0.05) 

Note: Results are estimates for a lag dependent regression model with Coarsened Exact Matching (CEM) weight. All regressions conditional on the  

full set of control variables listed in Subsection 2.3 
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Table 6: Different age group of men and women; Effect of 

acute health shock on income, fixed effect model.     

 All men Men  Men All women Women Women 

  (50-65) (16-49)  (50-65) (16-49) 

Log of gross monthly  -0.11* -0.21 -0.18** -0.083 -0.017 -0.098 

 income 
      

 
(0.15) (0.160) (0.14) (0.11) (0.132) (0.153) 

Log of net monthly  
-0.19 -0.19 -0.17** 

-0.073 -0.006 -0.072 

income 
      

 
(0.16) (0.16) (0.18) (0.103) (0.134) (0.151) 

Log of labour -0.41** -0.33** -0.32** 
-0.47** -0.38* -0.17** 

income 
 

  
   

 
(0.19) (0.18) (0.21) (0.21) (0.27) (0.37) 

Log of income 0.37** 0.34** 0.11 0.31** 0.26* 0.06* 

from benefit 
      

  (0.35) (0.41) (0.91) (0.10) (0.09) (0.08) 

Number of 

observation 
4,637 2,526 1,233 4,893 2,244 1,961 

** Significantly different from reference category (p<0.01) 

 * Significantly different from reference category (p<0.05) 
Note: Results are estimates for a lag dependent regression model with Coarsened Exact 

matching (CEM) weight. All regressions conditional on the full set of control variables listed in 

Subsection 2.3     
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Table 7 reports the impact of experiencing health shock on the probability of 

becoming entitled to receiving various income benefits. Recipients of disability 

benefit significantly increased among all age groups in both genders. Sick, disable or 

incapacity benefit is the only benefit that is not means-tested amongst state benefits. 

All other benefit entitlements vary depending on household income. When health 

shock affects men aged 50-65, this shock is likely to influence the whole household 

as these men are more likely to have a family and be the main breadwinner. 72% of 

older men are married whereas only 44% of men younger than 50 are married. In 

addition, 78 percent of older men who live with their partners are the main 

breadwinner whereas, 71 percent of younger cohabiting men earn more than their 

partners. Hence, men who are older than 49, become entitled to a wider range of 

available benefits.  

The results for child benefit recipients demonstrated a small, but significant 

increase in only men older than 50. This could be due to changes introduced by the 

then coalition government in January 2013, where benefits received gradually 

decreased as the income of the highest earning parent rose above £50,000. This 

benefit was completely removed when income reached £60,000. Prior to 2013 every 

child regardless of parent’s income was entitled to this benefit. Therefore, at the time 

of this study data for only 2 years was available.     

Results for income support indicated that the likelihood of receiving this 

benefit after an acute health shock was enhanced in older men (aged 50 to 65). To 

receive this benefit, incomes and savings of the whole household are assessed. In this 

generation, it is more likely for the main wage earner to be a man, henceforth the 

household’s overall income is more likely to be negatively affected, pushing their 

entitlement over the threshold for receiving this benefit. If you consider the total 
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income from various benefits, men aged 50 to 65, tend to have a higher probability of 

receiving more than one benefit at a time. This could be due to men within this age 

group being the household’s main breadwinner. 

 

Table 7: Effect of acute health shock on probability of receiving different benefit 

income   

  Men 50-65 Men 16-49 women 50-65 women 16-49 

Income support 0.0123 0.0002 0.0005) 0.0095 

 (0.0109)* (0.032) (0.042) (0.014) 

Sick, disable or incapacity  0.081 0.082 0.094 0.052 

Benefit     

 (0.003)** (0.038)** (0.03)** (0.027)** 

Child benefit 0.006 0.002 0.033 0.004 

 (0.002)** (0.052) (0.023) (0.018) 

Tax credits (working tax  0.022 0.026 0.027 0.0044 

credit or child tax credit)     

 (0.025) (0.054) (0.024) (0.05) 

Housing or council  0.002 0.045 0.053 0.01 

tax benefit     

 (0.016) (0.003)** (0.025) 0.031 

Income from any other  0.0179 0.0002 0.007 0.008 

state benefit     

 (0.013)** (0.043) (0.012) (0.013) 

No of Observation 2,898 1,739 2,285 2,419 
** Significantly different from reference category (p<0.01) 

 * Significantly different from reference category (p<0.05) 

Note: Results are estimates for a probit regression model with Coarsened Exact Matching (CEM) weight. Average Marginal 
Effects are reported. Standard errors in prentices. All regressions  

conditional on the full set of time-variant control variables listed in Subsection 2.3. 
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3.5 Conclusion 

 

The issue of economic consequences of acute health shocks and the 

mechanisms behind observed responses to these shocks have remained relatively 

unexplained. Published research papers on this topic have mainly explored different 

forms of exit from employment among older working individuals. Early retirement 

therefore has been the primary focus of researchers on this topic. It has been assumed 

that strong health shocks are not prevalent among younger people is one of the main 

reasons for the younger age groups being largely excluded from studies. Majority of 

published research on British workforce found a significant decrease in labour market 

participation in response to an acute health shock. Although among workers no 

adjustment in hours and incomes was detected in the short-term. It is noteworthy to 

mention however, that the focus of these publications was not the effect of health 

shocks on income. To contribute to the current literature, I first investigated different 

components of income and investigated if lack of significant reduction in income 

among British working age was due to an increase in benefits income after health 

deterioration. Similarly, I looked at whether there was heterogeneity in income 

adjustment with respect to individual’s pre-shock characteristics.  

Using data from the longitudinal survey of household in the UK (UKHLS), 

this paper offers a new insight on the labour supply responses to acute health shocks 

experienced by workers of all ages. UKHLS data has been collected from 2008 to 

2014 and provides an up-to-date insight into the British society. In this paper, onset of 

a stroke, cancer or major heart problems such as myocardial infraction that are 

unpredictable at the time of onset and tend to have a sudden occurrence are defined as 

acute health shocks. Such conditions tend to be less likely to be misreported 
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compared to conditions that develop gradually over a longer time frame. Non-

parametric coarsened exact matching was used followed by parametric estimation of 

the average treatment effect for the treated and considered different component of 

income as independent variables. My findings indicated significant reduction in 

labour income, indicative of a reduction in employment as shown in previous 

published literature. A significant increase was also observed in total income from 

benefits. However, there were differences in the magnitude of the change observed in 

labour and benefit income among different age groups of men and women. For 

example, men younger than 49 years old are the only sub-group that experienced  

significant reduction in their net income (8%) and no significant increase in the 

income received from welfare system, while men older than 50 years old experienced 

35% increase in their benefit income and no significant reduction in net or gross 

income. The increase in benefit income received by women younger than 50 is 

smaller than that among their older counterparts (6% compared to 18%). 

To investigate these results further, the impact of experiencing health shock 

on the probability of becoming entitled to receiving various income benefits was 

examined. Recipients of disability benefit significantly increased among all age 

groups in both genders. This is the only state benefit that is not means-tested. All 

other benefit entitlements vary depending on household income. This explained why 

child benefit and income support were increased only when older men experienced 

acute health shock. This shock is likely to influence the whole household as these 

men are more likely to be married and have children (72% of them are married while 

only 44% of younger men are married). According to these results younger people 

were less likely to benefit from social welfare after a health shock as most benefit 
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allowances are designed to support families and prevent them from entering into 

poverty. 

In this paper, limited number of data (5 waves) constrained assessment of the 

labour supply effects. I focused on the short-run effect of health shock as sample size 

can be significantly reduced due to panel attrition when further extended time frame 

is considered. Future work can mitigate this problem by combining BHPS with the 

understanding society data. However, previous published materials indicated that the 

greatest effect was seen shortly after an onset of a health shock (Halla et al., 2003; 

Smith, 2005). As additional waves of data become available, further research can be 

directed at affected individuals and these can be followed over a longer period, 

providing detailed insights into the effects of health shocks on working age 

individuals over a longer time frame. 

The main challenge in this area of research remains identifying drivers of 

response to acute health shocks. Our results showed that labour income reduction was 

the main reason for reduced income and social benefit income was the main source of 

income that people relied on immediately after facing an acute health shock. 

Reduction in labour income can be due to individuals changing their preferred labour 

supply as perceiving a reduced life expectancy relevant to their intertemporal 

decision-making, or because of stronger preferences for leisure or other activities. 

However, a different type of intervention could arise if individuals, or subgroups of 

them, preferred remaining in the labour market, but work related impeded such a 

decision. 

Policy makers need to consider which one of these two sets of pathways are the main 

reasons for individual’s response to health shock. If labour market exit occurs as a 

result of individual’s financial constraints, policy interventions aimed at retaining 
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them in the labour market should be considered strongly. Policies aimed at improving 

the financial incentives to remain active are appealing to people who desire to stay at 

work. Obtained results showed that there was a difference in the magnitude of the 

reduction in income with respect to sex and age. The observed diversity in change of 

income showed there must be variety of policies in place to support different 

subgroup of individuals when they face an acute health shock. Therefore, policy 

makers should avoid grouping all individuals who suffer from an acute health shock 

as one coherent group. There is substantial evidence showing that all the individuals 

who face an acute health shock experience a reduction in their total income. but the 

ones that become unemployed suffer a significant reduction, which is not fully 

compensated for with the social benefit income they receive. 
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Chapter 4 

4. Diabetes and its effect on early retirement: Does duration and 

intake of medicines matter?  

4.1 Introduction 

The rise in life expectancy has altered the demography of populations 

worldwide (Lutz et al. 2008) and meeting the needs of an ageing population is one of 

the main concerns of policy makers in developed countries such as Britain (Walker, 

2018). Ageing is associated with a higher probability of experiencing poor health and 

early withdrawal from the labour market (Leijten et al., 2015). For most people, 

longer life coincides with more years spent with chronic disability. In the UK, the 

number of individuals aged 50-69 are about twice those aged 15-24. As a 

consequence, number of people in the UK with one or more long-term condition is 

expected to increase in the near future (ONS, 2015). Many studies suggest that 

ongoing care and support to assist individuals affected by chronic health conditions 

will impose substantial pressures on the health and social care services. This is 

sometimes coupled with considerable out-of-pocket expenditure for individuals (Paez 

et al., 2009; Weir et al., 2018).  

Recent studies have confirmed that, in addition to the direct costs associated 

with health problems, substantial indirect costs can be imposed on society and 

individuals through increased likelihood of leaving work and productivity loss, 

particularly as workers reach retirement age (Garcia-Gomez et al., 2010; Jones et al., 

2010; Miah et al., 2007; Disney et al,. 2006). The dynamics associated with how 

employment is affected by health conditions differ according to the severity and 

nature of the health problems. From a policy making point of view, it is very 

important to have access to detailed information on how different health problems 
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affect different groups of people. Therefore, in this paper, I focused on diabetes as 

one of the prevalent and rising forms of chronic health problems worldwide and also 

in the UK (Wiviott et al., 2019). 

Even though there is documented evidence on the adverse effects of diabetes 

on employment, there is inadequate research on the dynamics and magnitude of the 

social and economic effects of diabetes on British workers (Diabetes.org.uk, 2018). 

By 2025, it is estimated that five million people will have diabetes in the UK. Type 2 

diabetes, which includes 90 to 95% of all diabetic cases, is more prevalent 

particularly among older individuals. In England and Wales, in 2017, 19% of people 

aged 50 to 59 years old and 26% of those aged 60 to 69 were diabetic, compared with 

only 3.5 percent of people aged 30 to 39 and 10.6 percent of those aged 40 to 49 

(Diabetes.co.uk, 2017). According to the 2018 position statement published by 

diabetic.co.uk, 37% of diabetic individuals who are in employment declared that their 

condition had caused them or a family member difficulty at work; 16% reported that 

they felt they had been discriminated against by their employer due to their diabetes. 

In addition, there is evidence suggesting that people with diabetes may have to work 

part-time or stop working prematurely because they feel they have to choose between 

their health and their job (Diabetes.co.uk, 2018).  

Type 2 diabetes is a chronic disease that leads to elevated blood sugar 

(glucose) levels in affected individuals. As glucose receptors located on cell 

membranes no longer detect this ligand (glucose molecule), there is a gradual build-

up of glucose in the body which can cause heart failure and eventually death if left 

untreated. Most symptoms of type 2 diabetes occur when blood sugar levels become 

abnormally high. Some of these early symptoms include excessive frequent or 

https://www.healthline.com/health/urination-excessive-volume#overview1
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increased urination, excessive hunger, fatigue blurry vision or cuts that do not heal. A 

significant number of affected individuals are initially unaware of their elevated 

blood sugar levels, as early symptoms are ignored and regular check-ups are not 

conducted by physicians. High blood sugar levels lead to long-term harm to the body 

and causes serious health problems such as higher risk for heart disease, foot 

problems and amputations, nerve damage, eye sight issues, kidney disease and 

serious bladder infections. Some patients that are on medication may encounter a 

situation whereby their blood sugar levels fall dangerously low. This is known as 

hypoglycaemia and occurs as a result of dangerously low levels of blood sugar and in 

some cases is considered a medical emergency. The range and severity of symptoms 

and complications caused by diabetes differ from one patient to another and is 

sometimes associated with patient’s level of awareness, health literacy and self-

management (Diabetes Atlas, 2013).  

Productivity losses, changes in workers preferences and perceived 

discrimination have been the main pathways considered to describe the mechanism 

through which diabetes affects labour market behaviour. As previously mentioned, 

type 2 diabetes is assumed to be associated with a reduction in productivity at work. 

Such a loss in productivity, increases the length of exposure to diabetes (Lavigne et 

al., 2003). While many people can manage their diabetes without it affecting their 

work routine. It is important for employers to become aware of the risks for 

employees with diabetes. Some employees (especially those with type 2 

diabetes) may struggle with undertaking shift work or long commutes as changes to 

the timing of medication and diet can affect their condition and may cause unease and 

stress. For example, if a diabetic person’s blood sugar falls below an optimum level, 

they can suffer from a hypoglycaemic episode, and can feel faint, weak, and even lose 

https://www.healthline.com/health/urination-excessive-volume#overview1
https://www.healthline.com/health/type-2-diabetes/kidney-disease
https://www.healthline.com/health/bladder-infection
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consciousness (fittowork.org, 2017). Some studies have investigated the prevalence 

and risk factors of perceived diabetes-related discrimination in workplaces. For 

instance, Puder et al. (2009) found that perceived diabetes-related discrimination in 

the workplace and by work-related insurances is a common problem in Switzerland. 

They suggested that introduction of effective non-discrimination legislation for 

patients with chronic illnesses was a necessary action in supporting affected 

individuals (Pudor et al., 2009). In addition, as is the case with other health problems, 

individuals changed their preferred labour supply as perceiving a reduced life 

expectancy relevant to their intertemporal decision-making. 

Most empirical studies on diabetes have considered all the diabetics as one 

group and estimated an average effect of the condition on employment probabilities. 

However, it is very important to be able to map progression, severity and 

complications and comorbidities of this chronic condition to understand which factors 

and dynamics actually lead to adverse labour market outcomes. So far, Rumball-

Smith et al. (2014) is the only study that has investigated the effect of diabetes on 

working age males and females in England using a nationally representative data. 

They reported that diabetes had a 40 percent increase in the rate of labour-force exit, 

compared to people without the disease. The novelty of their work lies on using data 

from different OECD countries. However, the weakness of this work is that they only 

used 3 first wave of English longitudinal study of aging and self-reported diabetes 

status was the only measure considered. In this study I aimed to establish a more 

accurate picture of how diabetes affects labour market outcomes in England. I took a 

closer look into the existing differences among diabetic sufferer and posed the 

following question; does the probability of exit from employment vary amongst 

diabetic individuals and if so, what is the best proxy for identifying patients with a 
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higher risk of early retirements? This approach took into account the variety, nature 

and severity of symptoms and their effect on exit from employment.  

I aimed to investigate whether and to what extent labour market related 

disadvantages differ among diabetic people. I considered the duration of the 

condition and use of medicine/insulin as two potential proxies of severity, and 

investigated the association of these two factors with early-retirement decisions and 

comorbidities. I also made use of biomarker data provided by ELSA to identify pre-

diabetics and undiagnosed diabetics. Biomarker data is considered to be more 

objective and less prone to measurement errors compared to self-reported health 

measures. Although, due to scarcity of data some analysis based on biomarker data 

were merely descriptive and not used in longitudinal regression analysis, but was 

instead used to shed light on other aspects of the illness, aiding deeper understanding 

of how labour market participation was affected (Buescher et al., 2010; Tunceli et al., 

2010).  

In comparison with Understanding Society and British Household Panel 

Survey (BHPS), ELSA has the advantage of providing parental history of diabetes. 

This information had significant importance in this research as it enabled me to 

investigate existence of potential exogeneity between exit from work and being 

diabetic among working age individuals. The English Longitudinal Study of Ageing 

(ELSA) is a study of people aged 50 and over and their younger partners, living in 

private households in England. The initial sample (Cohort 1) was drawn from 

households that had previously responded to the Health Survey for England (HSE) in 

1998, 1999 or 2001. The ELSA sample has been designed to represent people aged 50 
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providing detailed information on their health, income, employment and household 

composition.  

There are very few studies that have previously investigated heterogeneity 

among diabetic patients in the context of labour market participation. Kraut et al. 

(2001) argued that the most obvious adverse effect was experienced when related 

complications limited an individual’s ability to work and compared the labour force 

participation rate and unemployment rate of diabetic people (with and without 

complications) with those of nondiabetic individuals among working-age men and 

women in Canada. Controlling for time since diabetes diagnosis or the duration of 

diabetes has also been used to capture the progression of the condition and the 

difficulty imposed on diabetic people on a daily basis (Minor, 2011). Minor et al. 

(2016) compared the effect of undiagnosed diabetes with diagnosed cases and 

concluded that the labour market penalty that undiagnosed individuals with type 2 

diabetes experienced was similar to very recently diagnosed populations. 

Distinguishing between people who used oral medication or insulin and those who 

did not, is an alternative proxy for the severity of this chronic condition. Chatterji et 

al., (2016), used hazard models to report that only diabetes with medication 

significantly decreased the probability of being still employed among men who were 

approaching retirement age in the US.   

In the recently published studies where authors looked at the effect of diabetes 

on employment, the possibility of endogeneity of diabetes has been taken into 

account using family history of diabetes as an instrument. Reverse causality and 

omitted variable bias can lead to biased results. Type of occupation can affect the 

lifestyle people adopt and an unhealthy lifestyle can have an influential effect on the 
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probability of developing diabetes. A job with long office hours might push a person's 

diet or pattern towards a more unhealthy, inactive lifestyle due to reduced leisure 

time, increasing the person's risk for diabetes. Furthermore, unobserved factors, such 

as personal characteristics, could simultaneously influence a person's employment as 

well as his or her diabetes status and so introduce omitted-variable bias. A person 

with poor stress-management skills could be less productive in his or her work, 

increasing the risk of being laid off, and he or she could simultaneously develop 

unhealthy eating habits such as comfort eating as a mechanism for coping with stress 

leading to higher chances of developing diabetes (Araiza et al., 2018) 

Latif (2009) used Canadian data to estimate the effect of diabetes on an older 

Mexican American population between 1996 -1997. Employing IV models, diabetes 

was found endogenous only among men and to be overestimated when exogeneity 

was assumed. According to Minor (2011), diabetes was endogenous among American 

females in the National Health Interview Survey (NHIS), and the effect was found to 

be underestimated if treated as exogenous. Using IV estimates, type 2 diabetes was 

found to have a significant negative effect on female employment chances during 

2006. Brown et al. (2005) found diabetes to be endogenous for women but not for 

men in the US. The results of the Instrumental Variable (IV) estimation suggested no 

significant effect on men which, compared with the adverse effect found using 

standard probit models, indicated an overestimation of the effect for men when 

endogeneity was not accounted for. However, the effect was negative and significant 

for women based on both IV and probit estimations. Seuring et al. (2015) estimated 

the impact of diabetes on employment in Mexico using data from the Mexican Family 

Life Survey (MxFLS) during 2005. Using an instrumental variable estimation 

strategy, they found no indication of diabetes being endogenous while significantly 
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decreasing employment probabilities for men by about 10 and 4.5 percentages for 

women. Accordingly, in some cases, not accounting for endogeneity can lead to 

biased estimate of the impact of diabetes on employment. All the studies mentioned 

above used cross sectional data except Minor (2011), who distinguished between 

type1 and type 2 diabetes. Their focus has been on addressing the potential 

endogeneity of diabetes status and estimate an average effect of self-reported diabetes 

status on labour market outcomes. To the best of my knowledge, there has been no 

study to test for endogeneity of diabetes on the working age population in the 

England, hence my decision in this paper is to use parental history of diabetes 

provided in ELSA and test for potential endogeneity among older male and female 

separately. 

There are other specific health conditions that can impact employment among 

working age groups in a similar manner to that of diabetes. For instance, Laires et al., 

(2018) demonstrated an association between Osteoarthritis (OA) and early exit from 

employment before retirement age in the Portuguese population. They showed a 

significant relationship between OA and early exit as well as an economic burden 

amounting to roughly 0.4 percent of Portugal National Gross Domestic Product. Such 

an impact needs government intervention and relevant policies that target such groups 

and enable those that can and want to re-enter the job market to do so in a meaningful 

way. This condition was also included in this work’s estimation strategy. Kidney 

problem is another example of a specific and chronic health problem that has been 

mentioned as a factor contributing to exit from employment especially among the 50 

years and older individuals who have been in employment. This condition has been 

recognised as one of the diabetes comorbidities (Atkins et al., 2010).    
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4.2 Data and descriptive statistic 

 

Eight waves of the English Longitudinal Study of Ageing (ELSA), a 

longitudinal panel data set consisting of people aged 50 and over, including their 

partners, living in private households in England was used. Akin to its companion 

household data set, USA health and retirement study, ELSA is a unique source of 

information on health and socioeconomic aspects of aging in England and describes 

the demographic, lifestyle, and health characteristics of older adults (Steptoe et al. 

2013). ELSA is restricted to individuals older that individuals that are 50 years of old 

and above, however they are still in working age bracket. ELSA provides the older 

sub-group within the working age group which are more likely to experience chronic 

health problem such as diabetes (Ward et al., 2013). This study includes detailed 

information on household and individual demographics, physical and psychosocial 

health, work and pensions, income, assets and housing (Pierce et al., 2009).  

The baseline sample of ELSA comprises all eligible participants from the 

Health Survey for England (HSE) in 1998, 1999, and 2001. The Health Survey for 

England (HSE) is an annual survey monitoring changes in the health and lifestyles of 

people all over the country that has been carried out since 1991. The first wave of 

ELSA was conducted in 2002-2003 with follow-up waves taking place every two 

years (Pierce et al., 2009). The baseline sample consisted of 12,099 participants with 

wave-to-wave response rates ranging from 73% to 82% of all eligible participants. 

The sample has been refreshed at wave 3, 4 and 6 to retain survey’s 

representativeness of the current population of people aged 50 years and over. 

Therefore, not all respondents have been part of the study since the first wave.  

Besides the main interviews, the nurse visit has been carried out at alternative 

waves starting from wave 2 (2004-2005). Only core sample members who 
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participated in an interview in person (i.e. not by proxy) at the relevant wave were 

considered for a nurse visit at that wave. The sample of wave 2 nurse data used in the 

following analysis consisted of 10305 individuals after the exclusion of 362 

participants with proxy or partial interviews, 459 who did not consent to the mortality 

linkage, 5 who died the same month they granted their baseline interview and 260 

with missing values in baseline variables (excluding body mass index (BMI)). The 

response rate for the nurse data is 87.3% for wave 2 and 85.7% and 84.3% in waves 4 

and 6 (Hammer et al., 2014).  

Percentage of proxy interviews in each wave (Full interview by proxy or 

Partial interview in person) was around 3 percent (Banks et al., 2008). To ensure the 

representativeness of the sample, nurse weights were used. These were available for 

each wave that included a nurse visit (Waves 2, 4, 6 and 8). The weighting strategy 

for blood sample intended to mitigate any bias due to differential non-response 

between completion of the nurse visit and giving a blood sample. A non-response 

weight for the blood sample was designed by taking the inverse of the estimated 

probability of responding. The final blood sample weight was constructed based on 

the nurse visit weight and the adjustment for non-response to the blood sample. The 

variables found to be related to probability of response were: (1) age-by-sex group, 

(2) Government Office Region, (3) social class, (4) self-assessed health, (5) whether a 

current smoker, (6) frequency of physical activity, and (7) limiting long-standing 

illness. The non-response weight was calculated as the inverse of the predicted 

response probabilities obtained from logistic regression model. The non-response 

weight was then combined with the interview weight to create the final non-response 

weight to use with the nurse visit data (Scholes et al., 2013).  
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Following questions were used to construct diagnosed diabetes status variable.  

1-Has a doctor ever told that you have any of the conditions on this card? Code all 

that apply. 

01 High blood pressure or hypertension 02 Angina 03 A heart attack (including 

myocardial infarction or coronary thrombosis) 04 Congestive heart failure,05 A heart 

murmur,06 An abnormal heart rhythm, 07 Diabetes or high blood sugar, 08 A stroke 

(cerebral vascular disease) ,85 Other answer - not code able 01 to 08,86 Irrelevant 

response - not code able 01 to 08,95 Any other hear trouble (SPECIFY), 96 None of 

these.  

2-diabetes or high blood sugar diagnosis newly report (to understand which of these 

two conditions are reported, diabetic related question has been considered (use of 

medicine, knowledge 

2-YEAR TOLD HAD DIABETES (This variable is used to reassure that the diabetes 

status in each wave is correctly specified) 

3-WHETHER CURRENTLY INJECTS INSULIN 

4-WHETHER IS CURRENTLY TAKING MEDICATION FOR DIABETES  

(Copy paste from thesis for undiagnosed diabetes?) 

Based on technique of ‘feeding forward’ data, certain responses that individuals 

report in previous waves were used to reassure the consistency of their responses 

across waves. As an example, a respondent who had previously reported a certain 

diagnosis would be asked at following waves to confirm the accuracy of previous 

diagnosis and whether they still had it. Previous answers were also used in the 

directing the computerised interviews. Following user guidance provided in each 

wave of ELSA, feed forward variable was used to correctly identify all those who had 
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ever reported diabetes. In Wave 4 the variable applied to those who newly reported a 

diagnosis of diabetes or high blood sugar and to those who had reported diabetes or 

high blood sugar previously but had identified for their previous interview or who had 

not answered this question. In Wave 2 this question simply applied to those who had 

reported diagnosis of diabetes or high blood sugar either at Wave 1 or Wave 2. I used 

diabetes related questions such as age of diagnosis of diabetes, use of insulin and 

medication and year of being diagnosed and questions related to diabetes 

management and somebodies such as diabetes related eye problem and kidney 

problem to reassure the accuracy of the final diabetes status used in descriptive and 

parametric estimations.   

 

Table1 describes the main variables used in this analysis. Participants were 

identified as having diabetes if they reported ever being told by a doctor that they had 

diabetes. Participants who did not report doctor-diagnosed diabetes were categorised 

as non-diabetics. In waves where nurse data was available (2, 4 and 6), I investigated 

whether individuals who have reported themselves as non-diabetics actually have 

prediabetes or undiagnosed diabetes. The haemoglobin A1c test (HbA1c) designed to 

indicate how well diagnosed diabetes is being controlled was used. This test has been 

recommended for diagnosing diabetes as well as prediabetes (American Diabetes 

Association, 2010). Compared with alternative tests such as individual fasting or 

post-load blood glucose measurements, HbA1c is more reliable as it reports the 

average circulating glucose levels over the 2–3 months prior to the time of the test, 

which makes it a better predictor of subsequent diabetes (Selvin et al., 2007). 

Information drawn from fasting blood sample was used to identify prediabetes and 

undiagnosed diabetes. Prediabetes is described as a high-risk state where blood 
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glucose levels are higher than normal, but lower than the threshold needed for a 

diagnosis of type 2 diabetes (Rebekah et al., 2007). Similar to type 2 diabetes, 

prediabetes is defined as a state in which the level of insulin production is lower than 

normal that leads the body to develop insulin resistance and thus lose its ability to use 

insulin effectively (Monnier et al., 2006). 

In ELSA, blood glucose was only measured for those who had fasted and 

respondents were not asked to fast if they had diabetes or were on a treatment plan. 

Therefore, I do not have information on the level of HbA1c for every individual with 

diabetes and so cannot determine how well everyone manages their glucose level. 

Unfortunately, ELSA does not distinguish between different types of 

diabetes. However, I followed Sicree et al. (2011) by assuming that around 90 percent 

of the reported diagnoses are due to type 2 diabetes, which is estimated to be the 

population prevalence (Sicree et al., 2011).  

Field work in ELSA is conducted by NatCen using experienced interviewers 

and nurses distributed round the country. A robust system of quality control is in 

place, and many of the interviewers have met the same respondents over several 

waves of data collection (Hardcastel et al., 2015).  

 

One of the advantages of ELSA is that it provides information on parental 

diabetes, enabling me to construct an instrumental variable to test for endogeneity 

when impact of diabetes on employment is estimated. Parental diabetes identification 

is based on these questions: Has [^your / ^Name’s] natural mother ever been told by a 

doctor that she has diabetes? Also, similar question about father is available: Has 

[^your / ^Name’s] natural mother ever been told by a doctor that she has diabetes? 

This information was self-reported and there was no information on the age of 

diagnosis of diabetes of natural mother or father.  
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Participant’s age, sex, marital status, ethnicity, wealth, education, and employment 

status are based on self-reported answers. Education was categorised as no 

qualifications, qualifications below a degree (A-level, GCSE or equivalent), or degree 

or higher (Au et al., 2015). Smoking status (current, former, or never smoker) was 

measured based on self-reported information. I identified individuals that reported 

poor or bad general health based on self-rated health measured on a 5-point scale 

from poor coded as 1 to excellent scored as 5. Body mass index (BMI) was calculated 

based on height and weight measured every 4 years by a nurse. BMI was then 

categorized as normal (below 25 kg/m2), overweight (25-29.9 kg/m2), and obese (30 

kg/m2 and above) (Tanaka et al., 2012). 

  

Detailed information on different aspects of wealth was included in all waves 

of ELSA. Total net non-pension household wealth was used to summarise the value 

of financial, physical and housing wealth owned by the household (i.e. a single 

respondent or a responding couple along with any dependent individuals) minus any 

debt. The estimation of this variable was based on 22 different wealth and debt 

components, which were either observed or imputed (Demakakos et al., 2015). 

Quintiles of net total non-pension household income has also been used. This 

measure was highly related to total household pension wealth in ELSA (Banks et al. 

2005).  

As favourable social position is associated with continued and longer working 

careers (Damman et al., 2016), I controlled for occupational classifications which 

were measured according to the National Statistics Socioeconomic Classification 

(NS-SEC) (Graham et al., 2006). The NS-SEC is the primary social classification in 
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the United Kingdom and my study used the three-category version to measure socio-

economic position (“managers and professionals”, “intermediate occupations”, and 

“routine and manual occupations”). 

I also used information on cardiovascular and non-cardiovascular health 

problems that have been suggested by literature as having explanatory effect on 

labour market behaviour (Johnes et al., 2016). The cardiovascular health issues were 

heart failure, heart attack, and stroke. Non-cardiovascular conditions included 

arthritis, cancer or a malignant tumour (excluding minor skin cancer). Depressive 

symptoms were measured using the short-form Centre for Epidemiological Studies 

Depression (CESD) scale. Scores ranges from 0 to 8, with 4 or more symptoms used 

as a cut-off to indicate elevated depressive symptoms (Hamer et al. 2009). This 

measure reported whether participants for much of the time during the past week felt 

1) depressed, 2) everything they did was an effort, 3) their sleep was restless, 4) 

happy, 5) lonely, 6) they enjoyed life, 7) sad or 8) they could not get going (NatCen 

Social Research., 2015). The 8-item CESD is closely related to usage of 

antidepressants and physician-diagnosed depression in an elderly population. It has 

additionally been validated for use in older European populations (Saczynski et al., 

2015). Table 2 provides summery statistics for men aged between 50 and 65 and for 

women aged between 50 and 60 by diabetes status. About 13 percent of women and 

22 percent of men reported diagnosed diabetes. The prevalence in the sample was in 

line with the national average for individuals in this age group (Diabetes UK, 2015): 

6 percent of women and 8 percent of men had undiagnosed diabetes, and 14 percent 

of women and 13 percent of men met the criteria for prediabetes. On average, both 

men and women reported that they have been living with diabetes for more than 10 

years. 57 percent of Men and 34 percent of women with diabetes are active in the 
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labour market, which was significantly lower compared to non-diabetic men and 

women who had 64% and 51% employment rates respectively (p<0.01). Diabetic 

men and women were more likely to belong to a non-white ethnicity (p<0.01), have 

routine or manual jobs (p<0.01) and have non-working partners (p<0.01). It was 

observed that people with diabetes had on average lower total net wealth.  

The difference between net household income was not statistically significant when a 

variable ranging from first to fourth quintiles (as presented in table 2) was used. 

Further investigations showed that diabetic men and women were more likely to 

belong to the first quintile (lowest income) (p<0.01) and less likely to belong to the 

third and fourth total net household quintiles (p<0.01). Probability of being in part-

time as well as full-time employment was higher among non-diabetic men and 

women (p<0.01). Both men and women with diabetes were more prone to hold a 

manual or routine job and less likely to be in a professional or managerial role. 

However, the difference between highest academic qualifications 

was statistically significant only between diabetic and non-diabetic women as the 

percentages of people with diabetes who held a degree and had no academic 

qualification was 6% and 36% respectively, in comparison to non-diabetic women: 

13% and 27% (p<0.01). In addition, probability of being diabetic was 

only associated with number of children among women and not men. Pregnant 

women were excluded from sample, hence gestational diabetes was not included, 

however, it is a known fact that gestational diabetes increases the probability of 

becoming type 2 diabetic in future. Captured data suggested that women with more 

pregnancies were more likely to become diabetic in the long-term (Sanderson et al. 

2019).     

https://www.mdpi.com/search?authors=Helen%20Sanderson&orcid=
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Results indicated that health status seemed to be always significantly worse 

among those who had been diagnosed with diabetes, regardless of whether it was 

prevalence of acute, chronic, general self-reported or psychological health. The only 

exception was the probability of experiencing cancer, which was not 

significantly different between diabetic and non-diabetics sub-samples. Also, 

likelihood of being a current or past smoker was not statistically significant between 

diabetic and non-diabetic sub-samples. Moreover, people with diabetes were more 

likely to be overweight and obese, as well as having diabetic parents.  
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Table 2: Description of variables used 

Employment Binary dependent variable; 1 If respondent states she/he is at paid work and 0 otherwise 

Diabetes 1 if respondents states that has been diagnosed with diabetes by a doctor 

Undiagnosed  1 if respondent has not been diagnosed by doctors but HbA1c> 6.4 (46mmol/mol) 

Diabetes 1 if respondent has been diagnosed by doctor or nurse and zero otherwise 

Pre diabetic  1 if 5.7% <= HbA1c =< 6.4% (39 - 46mmol/mol) 

Diabetes duration  1 if respondent has been diagnosed less than 4 years ago, 2 if 4 to 10 years, 3 if more than 10 years 

Parents diabetes 1 if one of the natural parents has been diagnosed with diabetes 

General health 1 if respondent reports bad general health and 0 otherwise 

Self employed 1 if respondent states the her/his man job as self-employment 

professional job 1 if job is identified as professional and managerial based on NS-SEC socioeconomic classifications 

Intermediate job 1 if job is identified as intermediate based on NS-SEC socioeconomic classifications 

Routine/manual job 1 if job is identified as routine or manual based on Ns-SEC socioeconomics classifications 

Part time 1 if main job is part time and zero otherwise 

Degree and above 1 if the respondents has a degree or a postgraduate degree and zero otherwise 

A level and GCSE 1 if the highest academic qualification is A level or GCSE and zero otherwise 

No qualifications 1 if respondent has no academic qualifications and zero otherwise 
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Table 2: Description of variables used  

No of children 0 if no child under 18 is in the household, 1 if 1/2 and 2 if there are more children   

single/no partner if currently has no partner, including widow and divorced 

partner working 1 if respondent's partner is working and 0 if there is no partner or partner doesn't work 

Total HH income quintiles of participant’s net total non-pension household income and zero otherwise 

Net wealth of HH quintiles of total net non-pension household wealth and zero otherwise 

Heart failure  1 if respondent ever had heart failure and zero otherwise 

Stroke 1 if respondent ever had stroke and zero otherwise 

Cancer 1 if respondent ever had cancer and zero otherwise 

Arthritis 1 if respondent has arthritis and zero otherwise 

Ex-smoker 1 if respondent used to smoke and zero otherwise 

Current smoker 1 if respondent currently smokes and zero otherwise 

Age age in years for descriptive and zero otherwise 

Under weight 1 if BMI = <18.5 and zero otherwise 

Over weight 1 if    25<=BMI =< 29.9 and zero otherwise 

Obese 1 if BMI >= 30 and zero otherwise 

Depression 1 if 4 or more depressive symptoms are reported based on CESD scale and zero otherwise 

White 1 if respondent is white and 0 if is from any other ethnicity          
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Table 2: Comparing characteristics of diabetic and non-diabetic individual 
    Female     Male   

 Diabetic  Non-diabetic   Diabetic  Non-diabetic   

 Mean SD Mean SD T test Mean SD Mean SD T-test 

Employment 0.34 0.47 0.51 0.5 *** 0.57 0.49 0.64 0.47 *** 

Undiagnosed^    0.06 0.24    0.08 0.28  
Diabetes           
Pre diabetic ^   0.14 0.34    0.13 0.33  
Diabetes duration  2.4 0.74    2.3 0.75    
Parents diabetes 0.45 0.49 0.21 0.4 *** 0.37 0.48 0.15 0.35 *** 

General health 0.54 0.49 0.29 0.4 *** 0.47 0.49 0.21 0.41 *** 

Self employed 0.02 0.14 0.06 0.24 *** 0.11 0.31 0.13 0.33 ** 

Professional job 0.29 0.41 0.22 0.45 ** 0.36 0.48 0.41 0.49 ** 

Intermediate job 0.27 0.41 0.28 0.45 __ 0.21 0.4 0.2 0.41 __ 

Routine/manual job 0.51 0.5 0.42 0.5 ** 0.42 0.49 0.37 0.48 ** 

Part time 0.19 0.39 0.32 0.46 ** 0.09 0.29 0.13 0.33 *** 

Degree and above 0.6 0.24 0.13 0.32 *** 0.18 0.38 0.17 0.37 __ 

A-level and GCSE 0.45 0.47 0.43 0.49 __ 0.43 0.49 0.37 0.48 __ 

No qualifications 0.36 0.48 0.27 0.44 *** 0.21 0.4 0.21 0.41 __ 

No of children 0.08 0.31 0.05 0.23 ** 0.09 0.32 0.1 0.48 __ 

Single/no partner 0.31 0.29 0.23 0.21 ** 0.17 0.31 0.16 0.36 __ 

Partner working 0.34 0.47 0.44 0.5 ** 0.47 0.49 0.5 0.49 ** 

Total HH income 2.4 1.13 2.56 1.1 __ 2.7 1.1 2.7 1.07 __ 

Net wealth of HH 2.3 1.3 3.1 1.4 *** 2.61 1.46 3.16 1.4 *** 

Heart failure  0.05 0.21 0.02 0.14 *** 0.13 0.33 0.08 0.2 *** 

Stroke 0.04 0.19 0.2 

0 

.15 ** 0.7 0.26 0.03 0.18 ** 

Cancer 0.11 0.31 0.12 0.33 __ 0.08 0.27 0.09 0.3 __ 

Arthritis 0.47 0.51 0.4 0.49 ** 0.36 0.48 0.31 0.47 ** 

Ex-smoker 0.39 0.48 0.38 0.48 __ 0.51 0.49 0.51 0.49 __ 

Current smoker 0.19 0.39 0.18 0.38 __ 0.19 0.39 0.18 0.39 __ 

Age 59 4.05 58.7 4.22 ** 59.2 4.11 59.05 4.08 __ 

Under-weight^ 0.002 0.5 0.005 0.07 __ 0.004 0.07 0.004 0.07 __ 

Over-weight^ 0.21 0.41 0.39 0.48 *** 0.36 0.49 0.46 0.49 *** 
Obese^ 0.65 0.47 0.31 0.46 *** 0.53 0.49 0.29 0.45 *** 

Depression 0.3 0.45 0.15 0.35 *** 0.18 0.38 0.11 0.31 *** 

White 0.88 0.32 0.97 0.16 *** 0.92 0.26 0.98 0.15 *** 

***p<0.01, **p<05, *p<0.1 , __ No statistically significant difference. 
Note:8.2 percent of women and 5.8% women in the estimated sample for bivariate probit model had diabetes. 

 Number of observation: men (6157 including 1575 individuals), women (7633 including 1710 individuals) 

 ^ These variables are asked only in wave 2,4 and 6.  
The sample includes men and women older than 49 and younger than retirement age. 
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4.3 Empirical strategy  

According to the literature, it is probable that unobserved factors related to the 

probability of developing diabetes are correlated with the unobservable factors that 

affect employment status (Brown et al., 2005). For example, high self-motivation or 

good social skills can increase both the propensity of being employed and the 

propensity of having a healthy lifestyle, which in turn decreases the chances of 

developing diabetes. On the other hand, lack of self-motivation or poor management 

of day-to-day stress can increase the probability of being unemployed, while also 

leading to an unhealthy diet and eventually, the onset of diabetes. 

Following pervious research on diabetes and employment such as Latif 

(2009), Brown et al. (2009) and Seuring et al. (2015), a recursive bivariate probit 

model was used to test the possibility of endogeneity of diabetes and employment in 

data set. Using a recursive bivariate probit instead of two step probit instrumental 

variable routine was due to the fact that the latter model did not account for the 

potential endogeneity of a dichotomous variable (diabetes status) in a model where 

the dependent variable was binary (employment status) (Madala, 1983; Greene, 

1998). Likewise, estimators such as ivprobit in STATA assumed that the endogenous 

regressors were continuous and not appropriate for use with discrete endogenous 

regressors (www.stata.com, 2019). The estimator suggested by Plum (2016) used 

quasirandom numbers (Halton draws) and maximum simulated likelihood to estimate 

the correlation between the error terms of both equations. One other advantage of 

bivariate probit models was the superior performance when treatment probabilities 

were low (Only 22% of men and 13% of women reported an occurrence of diagnosed 

diabetes in estimated sample) (Chiburis et al., 2012). 

http://www.stata.com/
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To allow for the potential endogeneity from omitting key influences on 

employment and diabetes, an instrumental variable analysis was conducted, where the 

instrumental variable was derived from information on whether an individual’s 

biological parents had been diagnosed with diabetes. Studies that had used the family 

history of diabetes as an instrument for diabetes were Brown et al. (2005), for a 

Mexican-American community; Latif (2009) for Canada; Minor (2011) for women in 

the US; Lin (2011) considered Taiwan; and Seuring et al., (2015) used data on 

Mexico. All of these papers used cross sectional data. To fulfil the instrument’s 

validity condition, family history of diabetes has to be significantly correlated with 

diabetes status of the individual, which is suspected to be endogenous regressor. 

Although medical literature does not suggest a single factor or exact pathway through 

which type II diabetes develops, it provides various results based on observations 

linking the strong associations between genetic factors and the onset of diabetes 

(Ridderstrale et al., 2009). For example, in the UK, having a family history of 

diabetes increases the probability of being diagnosed with this condition by 2 to 6 

times in later life (Bonnefond et al., 2010).  

The second condition required for validity of our instrument is that parental 

diabetes should not be directly correlated with the individual’s own employment 

given their diabetes status. A diabetic parent is more likely to be exposed to 

prolonged jobless episodes, early exit from employment, unemployment, economic 

inactivity or early death. All of these factors can impose financial burden on the 

family and decrease the amount and quality of investment in children’s education and 

talent that could eventually decrease the likelihood of employment among their 

offspring. The effect of parental diabetes on offspring’s employment was controlled 

through education by including information on educational qualification. 

https://www.sciencedirect.com/science/article/pii/S030372070800453X#!
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Furthermore, this adverse effect can be mitigated through free and compulsory 

education available for all children up to 16 years old in England. Nevertheless, the 

quality of compulsory education can impact an individual’s motivation and ability to 

undertake further education. It is presumable that diabetes can affect the offspring’s 

employment decision directly by other routes than educational attainments and this 

can be one of the limitations of employing parental diabetes as instrument. Diabetes 

may deteriorate parental health to the extent that the offspring has or had to exit 

employment to become the primary care giver of his or her parents or chooses to take 

up work to financially provide for the parents. However, if this effect exists, it can be 

detected by the over-identification test (Seuring et al., 2015). 

There were two questions in Life History Interview which asked participants 

to report some information on health and employment status of their parents. The 

exact wording of the questions are as follows: “When you were aged under 16, were 

either of your parents unemployed for more than 6 months when they wanted to be 

working?”. When you were aged under 16, did your parents drink excessively, take 

drugs or have mental health problems? This question can potentially be used as an 

additional control to reflect on the impact of parental diabetes on probability of 

employment among resonances. However, life history was only carried out at wave 3 

and taking part in Life History Interview was voluntary which meant this information 

was available for a fraction of the whole estimated sample and not for all participants. 

To employ an IV strategy using a bivariate probit model in panel data, Plums 

(2016) routine, which accounts for the correlation in the time-specific and individual 

specific error terms was followed. This routine has been used in studies such as Co et 

al. (2018) and Carina et al. (2017). It is assumed that diabetes is a binary variable 
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which might be endogenous and take value 1 if individual i reports being diagnosed 

with diabetes at time t and 0 otherwise. The employment equation is given by: 

Employed*it  = ß0 + ß1Xit + ß2Diabetesit +  ui   + εit                                             (4.1) 

where Employed*it  > 0 (Employed*it =1) and Employed*it < 0 (Employedit  =0) 

indicates that individual i is employed or otherwise at time t; Xit denotes various 

control variables that affect the employment decision (full list of variables 

demonstrated in table A2). Β1 is the vector of coefficients associated with Xit; 

ui represents the individual specific unobservable and time invariant. εit is a time-

specific idiosyncratic shock. The diabetes equation is given by 

Diabetes*it   = ɑ0 + ɑ1Xit+ ɑ2Parentsdiabetesi + ƞi + π it          (4.2)   

where Diabetes*it > 0 (Diabetes*it = 1) and Diabetes*it < 0 (Diabetes*it = 0) indicate 

where individual i is diabetic or not. The instrumental variable Parentsdiabetesi 

indicates whether if any or both of natural parents had ever been diagnosed with 

diabetes. The individual specific unobservable effect is captured by ƞi which is time 

invariant and π it represents the time-specific idiosyncratic shock. Equation 4.1 

specification is identical to equation 4.1 and represents same probit random effect 

specifications. ƞi and ui are normally distributed with mean 0 and variances σƞ𝑖

2  and 

σ𝑢𝑖

2 . π it and εit are jointly normally distributed with means of 0 and variances equal to 

1 and a correlation equal to ρ. Conditional on the Xit , ui  is IN (0, σε
2) and 

independent of both εit and Xit. This implies that the correlation between two 

successive error terms for the same individual is a constant (Arulampalam, 1996). 

Following Plum (2016) routine in STATA, I estimated Eq. (1) and Eq. (2) 

simultaneously, allowing for ƞi and ui to be correlated and also π it and εit be correlated 
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as well. If equations are independent of each other, correlation between π it and εit will 

be equal to zero or statistically insignificant and it is assumed that endogeneity of 

diabetes is not a major concern in our estimated sample.  

4.4 Results 

 

Table 3 contains the bivariate random effects (panel) probit estimates for men 

and women. My main purpose for using bivariate probit models was to test the 

endogeneity of diabetes. The bivariate random effects (panel) probit estimates show 

that the correlation between the time specific residuals of the two equations are -0.16 

and -0.24 for women and men respectively and are not significantly different from 

zero even at the 10 percent level. Since the cross-equation correlations are not 

significantly different from zero, we can be reasonably confident that estimating the 

effect of diabetes on employment for this age group will not be affected by 

endogeneity between diabetes and employment status. As there has not been any 

study similar to this on an English data set, it was not possible to compare these 

results with any published materials. It was well known that the endogeneity between 

diabetes and employment was closely related to the population sample studied. For 

example, Brown et al. (2005) found that diabetes was endogenous for older Mexican-

American men, but not for women of the same age and ethnicity. Latif (2009) 

reported endogeneity among women and not men in Canada and Seuring et al. (2015) 

found no endogeneity among men or women in Mexico.   

 Moreover, obtained results were in line with the previous literature (Minor, 

2011; Zhang et al. 2010). However, the bivariate model had larger standard errors. I 

also considered results of the linear IV model (table 1A appendix). According to test 

statistics based on linear IV method, parental diabetes can be regarded as sufficiently 
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strong and a valid instrument for diabetes status of individuals. Kleibergen-Paap 

Wald F statistic for weak instruments is reported in table A1 and is 17.7 for men and 

24.5 for female sub-samples (Kleibergen-Paap, 2006). These results were above the 

critical value of 19.93 for ten percent IV size and well above the rule of thumb of 10 

for weak identification (Staiger et al., 1997). 
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Table 3: Bivariate random effect model 

 Female     Male    

 Employment   Diabetes    Employment   Diabetes   

Diabetes -0.12* (0.07)    -0.75* (0.18)  
 

Parents diabetes    0.45** (0.06)     0.51** (0.06) 

General health -0.48*** (0.05)  0.72** (0.06)  -0.51 (0.09)  0.36** (0.07) 

Self employed  1.82*** (0.12) -0.22 (0.14)   1.75*** (0.12) -0.1 (0.11) 

Professional job -0.16** (0.41)  0.03 (0.08)  -0.4** (0.08)  0.12 (0.11) 

Intermediate job -0.11* (0.05)  0.03 (0.07)   0.09** (0.06)  0.02 (0.11) 

A-level and GCSE -0.1** (0.05)  0.05 (0.09)  -0.18** (0.09) -0.01 (0.13) 

No qualifications -0.32*** (0.06)  0.06 (0.1)  -0.23** (0.09)  0.06 (0.15) 

No of children -0.25*** (0.07)  0.14 (0.12)  -0.05 (0.12) -0.02 (0.12) 

Married  0.72*** (0.05) -0.012 (0.08)   0.22** (0.09) -0.02 (0.11) 

Partner working  0.58** (0.04) -0.15 (0.07)   0.56** (0.06) -0.08 (0.09) 

Total HH income  0.33*** (0.02)  0.08** (0.03)   0.45 (0.03) 0.015 (0.03) 

Net wealth of HH -0.12*** (0.02) -0.15** (0.02)  -0.18*** (0.02) -0.1 (0.03) 

Heart failure  -0.42** (0.13)  0.48* (0.13)  -0.28 (0.12)  0.11 (0.14) 

Stroke -0.17** (0.09) -0.01 (0.15)  -0.19** (0.06)  0.06 (0.17) 

Cancer -0.18** (0.04) -0.04 (0.07)  -0.21** (0.08)  0.06 (0.13) 

Arthritis -0.24*** (0.05) -0.02 (0.06)  -0.16*** (0.06)  0.07 (0.09) 

Ex-smoker -0.04 (0.03) -0.002 (0.06)   0.01 (0.06)  0.05 (0.11) 

Current smoker  0.04 (0.05) -0.13   -0.14 (0.09)  0.03 (0.14) 

Depression -0.2** (0.05) -0.06* (0.07)  -0.36*** (0.09)  0.03 (0.1) 

White         
 

Age 50 54  0.9** (0.04) -0.27*** (0.06)   0.6** (0.03) -0.27*** (0.05) 

Age 55-59  1.33** (0.07) -0.24*** (0.04)   0.8** (0.08) -0.4** (0.1) 

Age 60 65  0.45** (0.06)  0.06** (0.09)   0.7* (0.11) -0.13* (0.2) 

Constant -2.14** (0.15) -1.49** (0.25)  -3.42** (0.28) -2.81** (0.48) 

N observation  7633        6157  
N individuals  1710        1575  
P -0.16       -0.24  
Wald test of p=0  0.56        0.98  
p value  0.45        0.32  
Table reports the simultaneously estimated coefficients of the equation 4.1 and 4.2.  Standard errors are reported 

in parentheses. Data from 7 waves of ELSA 

***p<0.01, **p<05, *p<0.1   
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4.5 Durational models 

 

Econometric specification is based on the duration model stock-sampling 

approach of Jenkins (1995). A discrete-time hazard model was used to estimate the 

effect of diabetes onset on Exit for employment in England. A similar approach was 

employed by Chatterji et al. (2016) and Smith et al. (2014) to estimate the effect of 

diabetes on exit from employment among US and European populations respectively. 

This approach initially had been used by Jones et al. (2010) and Garcia-Gomez et al. 

(2010) to investigate the effect of health shocks on employment. 

Following Jenkins (1995), the stock sample included individuals who were 

aged between 50 and the state pension age, working at wave one of ELSA and who 

had a full interview. These respondents were followed up through the subsequent 

seven waves until they first became non-employed or were censored. Censored 

respondents are those who drop out of the sample for reasons other than death, or 

respondents who work continuously throughout the survey period. By the end of the 

survey period, some participants completed duration data and stopped paid-work due 

to retirement, unemployment or disability. Non-employment is considered a 

permanent state and return to employment is not considered. Only people who were at 

the risk of exit from employment were included, therefore these individuals were 

excluded from the sample when they reached state pension age (65 for men and 60 

for women).  

An individual’s duration of staying in the labour market was modelled using a hazard 

function. This represented an individual’s conditional probability of leaving 

https://www.sciencedirect.com/topics/economics-econometrics-and-finance/duration-analysis
https://www.sciencedirect.com/science/article/pii/S2212828X16300639#b0070
https://www.sciencedirect.com/science/article/pii/S2212828X16300639#b0040
https://www.sciencedirect.com/science/article/pii/S2212828X16300639#b0040
https://www.sciencedirect.com/topics/social-sciences/duration
https://www.sciencedirect.com/topics/social-sciences/probability
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employment at age t, conditional on staying in employment until age t. Individual i’s 

discrete-time hazard of exiting work, hit is formally defined as: 

  

ℎ𝑖𝑡 = Pr[𝑇𝑖 = 𝑡|𝑇𝑖 ≥ 𝑡; 𝑋𝑖𝑡]                                                                   (4.3) 

 

where 𝑇𝑖 is a discrete random variable representing the age at which the end of the 

employment spell occurs and 𝑋𝑖𝑡 is a vector of covariates, which may or may not vary 

over time (age).As suggested by Allison (1982) and Jenkins (1995), the sample log-

likelihood function of the observed duration data can be simplified by defining a 

dummy variable yit which is equal to 1 if t=Ti and the individual is non-censored, or 

yit =0 otherwise. Therefore, for an individual who remains in employment, yit =0 for 

all periods, whereas for those who stop working, yit =0 for all periods except the 

period in which exit occurs, when yit=1. The log-likelihood can be defined in a form 

familiar for the analysis of a binary variable yit, where the unit of analysis is the spell 

period.  

 

 Log L = ∑ ∑ log
hik

1− hik

𝑡𝑖
𝑘=1

𝑛
𝑖=1 + ∑ ∑ log(  1 − ℎ𝑖𝑘) 

𝑡𝑖
𝑘=1

𝑛
𝑖=1                              (4.4) 

Following Garcia-Gomez et al. (2010), Jones et al. (2010), a complementary 

log-log hazard rate was employed. That is, the hazard function for each individual i 

for wave t is written as follows: 

 ℎ𝑖𝑡 = 1 − exp{− exp[𝜃(𝑡) + 𝛽′𝑋𝑖𝑡 + 𝛾𝐷𝑖𝑡 + 𝑢𝑖𝑡]}                                        (4.5)                                                                                                                            

 

where 𝜃(𝑡) is the baseline hazard modelled as a step function by using dummy 

variables to represent each year of age at risk. 𝐷𝑖𝑡  is a dummy variable representing 

the individual’s diabetes status in period t. In other words, if an individual i reports 

having been diagnosed with diabetes in period t, 𝐷𝑖𝑡 = 1 and 𝐷𝑖𝑡 = 0 otherwise. The 

complementary log-log link would be an appropriate choice as time is continuous and 

https://www.sciencedirect.com/science/article/pii/S2212828X16300639#b0040
https://www.sciencedirect.com/science/article/pii/S2212828X16300639#b0070
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exit from employment can happen at any point in time while I only observed it in 

each wave. Results based on the c-log-log link should be more robust than those 

based on the logit link (Hedeker et al., 2000). A lagged measure of diabetes was also 

used in some alternative specifications to test the robustness of the obtained results.  

As the initial employment spell at t = 0 in the sample period had no known 

starting point, a self-reported information provided with life history section of ELSA 

on employment history was used. Therefore, in all models a covariate capturing 

number of years since the spell of employment reported was included. This approach 

was similar to that taken by Garcia-Gomez et al. (2010) to address the initial 

conditions problem.  As unobserved heterogeneity is a potential problem, this model 

was extended to the random effects complementary log–log model, which allowed for 

Corr (uit1,uit2) ≠ 0 when t1 ≠ t2. The model was based on the assumption that the 

unobserved heterogeneity was normally distributed with mean zero. Using a 

likelihood ratio test, the null hypothesis that heterogeneity is zero was tested. A 

limitation of this approach was that the random effects were assumed to be 

uncorrelated with the explanatory variables, including the measure of diabetes. 

https://www.sciencedirect.com/science/article/pii/S2212828X16300639#b0040
https://www.sciencedirect.com/topics/social-sciences/heterogeneity
https://www.sciencedirect.com/topics/economics-econometrics-and-finance/multi-level-analysis
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4.6 Results 

Sample of interest was comprised of a group of participants who were either 

employed or self-employed at the first wave of ELSA and at risk of exiting 

employment. The number of females in this sample was 1461, with 80 of these being 

diabetic. The stock sample of males consisted of 1694 individuals, 165 of whom 

reported diagnosed diabetes at wave one. The number of all observation was 9477 for 

the male and 6238 for the female sample. Non-parametric Kaplan–Meier estimator to 

illustrate the difference between the probabilities of survival in employment among 

diabetic and non-diabetic individuals was first used. As shown in Fig.1, it is evident 

that individuals with diabetes are less likely to remain in employment. The log-rank 

test for equality of survivor functions rejects the null hypothesis that the failure 

function is equivalent across diabetic and non-diabetic men and women. The X2 

values of the log rank test are is 0.14 for men and 0.19 for women with the p values 

of 0.0001 and 0.005 respectively.  

 
Fig.1. Kaplan–Meier survival estimates and Long-rank and tests of equality of survivor functions [χ2 

(Prob)] for men and women working at wave 1, by diabetes status 

  

 

Main results were obtained from estimating the random effects discrete time 

hazard model and presented in table 4 for separate samples of male and female. As 

well as a set of socio-demographic and job-related controls which are listed in table 
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https://www.sciencedirect.com/topics/economics-econometrics-and-finance/multi-level-analysis
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https://www.sciencedirect.com/topics/social-sciences/sociodemographics


154 
 

A2, these models include several dichotomous indicators for having had diabetes for 

1–2, 3–5, 6–10, 11–20 and 21 or more years (with no diabetes as the baseline). 

Columns 1a of Table 4 (males) and Column 1b of Table 4 (females) represent results 

from a model which estimated the contemporises effect of onset of self-reported 

diagnosed diabetes at time t on the hazard ratio of exit from labour market. The 

hazard of labour-market exit is about 1.5 times greater for men who have been 

diagnosed with diabetes compared with male respondents who did not report 

diagnosed diabetes at time t and this effect is statistically significant at the 0.05 level. 

As represented in column 1b table 4, being currently diagnosed with diabetes is 

associated with a 70% increase in probability of women’s exit from employment and 

this effect is statistically significant. 

The magnitude of effect of diabetes varies based on the age group and county 

and regional differences. The only study comparable with this work was by Rumball-

Smith et al. (2014) which used 3 first waves of ELSA. Findings based on self-

reported doctor-diagnosed diabetes were in line with Rumball-Smith et al. (2014), 

who used data from the first 3 waves of ELSA along with data from surveys of aging 

populations in fifteen European countries, to estimate the effect of diabetes on early 

retirement. Rumball-Smith et al. (2014) reported that having diagnosed diabetes 

increased the risk of leaving labour force by about 40 percent across countries. 

Results showed a bigger effect for both men and women in this chapter which can be 

due to individuals being followed for a longer time period. Diabetic individuals’ risk 

of unemployment increases as they get older because the prevalence and duration of 

diabetes increases among the stock sample. Similar results have been reported by 

Herquelot et al. (2011) suggesting 1.6 as hazard ratio associated with risk of early exit 

from employment among French population.  

https://www.sciencedirect.com/topics/social-sciences/diabetes
https://www.sciencedirect.com/topics/social-sciences/labour-market
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Data from baseline sample of ELSA which included information prior to wave 

one of ELSA to construct a lagged indicator for diagnosed diabetes at time t-1 was 

used. This information was provided by Health Survey for England (HSE) in 1998, 

1999, and 2001. Hence, 22 cases of wave one was lost and obtained results were 

comparable to results from diagnosed diabetes at time t. These results indicated that 

lagged diagnosed diabetes had a statistically significant effect on the hazard ratio of 

exit from employment. The probability of exit from employment was increased by 90 

per cent for women (column 2b); for men, this effect was a 70 per cent increase in 

hazard ratio (Column 2a).  

In columns 3a and 3b, I combined the self-reported and the biomarker 

information to construct a measure of diabetes that included both diagnosed and 

undiagnosed diabetes. Obtained results were very similar to models that estimated 

only the effect of diagnosed diabetes on the probability of employment. The hazard 

ratio of failure (exit from employment) was 1.48 and 1.8 respectively for men and 

women and statistically significant at the 0.05 level. These results illustrated the 

effect all individuals experiencing diabetes regardless of a clinical diagnosis and 

reduced the magnitude of individual’s knowledge of their own condition. Obtained 

results suggested that coefficient changed only slightly when both diagnosed and 

undiagnosed diabetes were combined. This approach has been adopted previously by 

Minor et al., (2016) and the coefficient based both specifications were very similar. It 

is true that undiagnosed diabetic individuals might spend less time on managing their 

illness but there is evidence in literature that undiagnosed and newly diagnosed 

diabetics have similar profiles with respect to broader health status and 
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socioeconomic characteristics which can explain similarity observed in obtained 

results (Hill et al., 2013). 

Columns 4a and 4b show the effect of diagnosed diabetes with and without 

medication. Based on these models, the effect of diagnosed diabetes with oral 

medication or insulin shots was statistically significant for both men and women (1.8 

and 1.9 respectively). The estimated hazard ratio of diabetes without medication was 

1.12 for women and 1.20 among men (Column 1a, Table 2). However, this 

association was not statistically significant. As no other similar empirical research on 

the British work-force is available, comparisons of these results could only be made 

with papers such as Chatterji et al. (2016). Here they reported that diabetes without 

medication and undiagnosed diabetes had no significant results on probability of 

staying in the labour market among older Americans. Considering that undiagnosed 

diabetes and diabetes without medications were more likely to be in the earlier stages 

of the disease, individuals might not be experiencing symptoms, and might not spend 

time managing their diabetes (since they are undiagnosed or not using medication). 

Therefore, their labour market status was less likely to be affected.  

In models presented in table 4, dichotomous indicators of diabetes duration 

are included, but these controls do not show significant association with leaving 

employment. I also estimated models with dichotomous diabetes duration variables as 

the only measures of having diabase, but even for these models the observed results 

were not significant.  

In this work I have compared the hazard ratio of duration of diabetes against 

hazard ratio of diabetes with medication and results showed that usage of insulin or 

medication by diabetic individuals was significantly associated with the risk of exit 

https://www.sciencedirect.com/science/article/pii/S2212828X16300639#t0010
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from employment. However, duration since being diagnosed with diabetes did not 

show a statistically significant effect. There is a strand of literature on relationship 

between diabetes and employment which considers the role of diabetic-related 

conditions or co-morbidities as the main pathway through which diabetes affects 

employment. I therefore carried out a set of descriptive investigations to compare the 

correlation between experiencing diabetes comorbidities with diabetes duration and 

use of medication and insulin. The purpose of these tests was to gain more insight on 

why diabetes duration’s hazard ratio was not statistically significant, whereas the 

hazard ratio of diabetes with medication was significant. I considered kidney 

infections, use of ACE inhibitors and feet problems as three common diabetes 

comorbidities. 

Averages of diabetes duration has been compared for each of the sub-groups that had 

diabetes and one of the mentioned comorbidities. These were compared with those 

diabetics who did not have that specific comorbidity. Averages of diabetes duration 

was not statistically significant among diabetic people who had each of these 

comorbidities compared with those who did not. The only statistically significant 

difference was observed among diabetic women who had kidney problems compared 

with other diabetic women who did not have this issue. On the other hand, the 

probability of having each of these comorbidities was statistically significantly higher 

among diabetic male and female who were using oral medication or insulin compared 

to those that were not. These findings suggested that usage of medicine and insulin 

was strongly associated with experiencing other diabetic related health problems. 

This is one of the reasons for considering usage of medicine and insulin as a good 

predictor of severity of diabetes in this estimated sample.  
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The hazard ratio of undiagnosed diabetes is 1.31 for men and 1.23 among women and 

was statistically significant at 95% confidence interval. The difference between 

hazard ratio of undiagnosed diabetes and hazard ratio of diagnosed diabetes was 

statistically significant at 90% confidence interval. Also, the difference between 

hazard ratio of diagnosed diabetes and diabetes with medicine has been tested and 

results indicated that this difference was not statistically significant. The insignificant 

difference between these two groups was not surprising as diabetics who used 

medicine or insulin were one of the sub-groups of all diagnosed diabetics. The main 

point highlighted based on presented survival analysis was that the significant adverse 

effect of diabetes on employment choices was experienced by diagnosed diabetics 

that used medicine or insulin and not among diagnosed diabetics that did not use 

medicine or insulin. 

One limitation of these findings was that the information on diabetes was self-

reported. As a result, I could only examine the effects of diagnosed diabetes, and 

accounted for the severity by the participant’s report on medication usage and insulin 

injection and the number of years since diabetes has been diagnosed. In waves 2, 4 

and 6 of ELSA A1C levels of respondents who were not diabetic or were diabetic, but 

not on medication were collected. However, as this information was not available in 

every wave, it was not possible to use this as a separate measure in durational model 

and also could not consider effects of both diagnosed and undiagnosed diabetes or 

prediabetes on the probability of leaving employment.  
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Table 4:  Effect of diabetes on leaving employment, Male and female 

  Male   Female 

  1a 2a 3a 4a   1b 2b 3b 4b 

 
  

       
Diagnosed diabetes (t) 1.50**  

   
1.7*** 

   

 
0.27  

   
0.34 

   

Diagnosed diabetes (t-1) 1.7*** 
    

1.9*** 
  

 
 0.32 

    
0.35 

  

Diagnosed and high (t)  1.48** 
    

1.8*** 
 

HAD   
       

 
  0.24 

    
0.627 

 

Diagnosed diabetes  
 

1.8** 
    

1.9*** 

with medication (t)  
       

 
  

 
0.35 

    
0.589 

Diagnosed diabetes  
 

1.2 
    

1.119 

without medication (t)  
       

 
  

 
0.33 

    
0.806 

diabetes 1-2 years 1.2 1.3 1.4 1.3 
 

1.8 1.7 1.7 1.4 

 
0.49 0.52 0.6 0.51 

 
0.82 0.82 0.91 0.74 

diabetes 3 -5 years 1.4 1.2 1.16 1.3 
 

1.6 1.5 1.2 1.3 

 
0.51 0.48 0.51 0.49 

 
0.81 0.78 0.48 0.45 

diabetes 6-10 years 0.8 0.9 0.78 0.661 
 

0.92 0.93 0.95 0.81 

 
0.28 0.31 0.26 0.221 

 
0.32 0.33 0.33 0.31 

diabetes 11 -20 years 0.91 0.8 0.84 0.74 
 

0.61 0.58 0.62 0.57 

 
0.21 0.22 0.28 0.25 

 
0.41 0.38 0.41 0.36 

diabetes 21 + 0.75 0.9 0.43 0.32 
 

0.91 0.87 0.86 0.76 

 
0.35 0.38 0.32 0.24 

 
0.28 0.26 0.28 0.24 

Stroke  1.28* 1.29* 1.28* 1.3* 
 

1.08 0.88 1.11 1.09 

 
0.26 0.26 0.25 0.28 

 
0.4 0.6 0.4 0.43 

heart problem 1.13 1.15 1.12 1.18 
 

1.09 1.12 1.09 1.12 

 
0.17 0.18 0.17 0.17 

 
0.38 0.41 0.42 0.42 

cancer  1.32** 1.31* 1.28** 1.24* 
 

1.30** 1.3** 1.30** 1.31** 

 
0.13 0.14 0.13 0.13 

 
0.21 0.21 0.2 0.2 

Arthritis 1.19** 1.19* 1.21** 1.21** 
 

1.21** 1.18 1.21** 1.22** 

 
0.1 0.12 0.11 0.11 

 
0.12 0.1 0.12 0.13 

Depression 1.40* 1.38* 1.38* 1.39* 
 

1.35* 1.32 1.35* 1.36* 

 
0 .22 0.21 0.22 0.21 

 
0.21 0.18 0.21 0.23 

p-value (LR test: rho= 

0) 
0.496 0.496 0.493 0.498 

 
0.495 0.493 0.493 0.493 

N of observation 9477 9477 9477 9477 
 

  6238 6238 6238 6238 

N of individuals 1,694 1,255 1,255 1,255   1461 1461 1461 1461 

Notes: Table shows estimated hazard ratios and standard errors associated with selected covariates based on a random effects 

discrete time duration model. Standard errors are in parentheses. Other covariates included in all of the models but not shown in 
table are presented in table A2 Appendix. ⁄⁄***p <0.01, **p< 0.05. 
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All the models presented in this table included specific health conditions and the 

CESD indicator of depressive symptoms as an additional set of control variables. 

Becoming diabetic can increase the probability of developing other health conditions 

that independently have an explanatory effect on early-retirement decisions 

(Rodriguez-Sanchez et al. 2017). Among both males and females, cancer, depression 

and arthrosis show statistically significant increases in the hazard of leaving 

employment. Onset of stroke increases the risk of exit from paid work statistically 

significantly only among men (28%) and heart problems do not have statistically 

significant effect on the retirement decision of male or female individuals. It is not 

surprising that the onset of a range of chronic health conditions play an important role 

in older individual’s likelihood of leaving employment and previous empirical 

research has found similar results (Jones et al., 2016). The exclusion of these 

covariates does not lead to any significant change in the effect of diabetes for males 

and females. The p-values of log- likelihood ratio test of heterogeneity is reported for 

every model and indicates that we fail to reject the null hypothesis that unobserved 

heterogeneity is zero at 1 per cent level and can confirm that in this estimated model 

unobserved heterogeneity is not important. 

The effects of other socioeconomic covariates are consistent across different 

models, as presented in Table A2 in the Appendix. For example, the hazard of exit 

from employment was significantly increased by age compared to the youngest 

category as the baseline. In addition, the hazard of non-employment decreased as the 

log of household income and total wealth of household increased. For both the male 

and female stock samples, individuals with higher or first-degree education had a 

greater hazard of exit from employment compared with workers without any 

educational qualifications. These differences were around 60 percent for men and 
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women and were statistically significant at 0.05 level. These findings were in line 

with studies such as García-Gómez et al. (2008). They also found that having a 

degree or higher education increased the hazard of employment among stock sample 

of non-working older males and females in the UK, suggesting that these individuals 

changed jobs more frequently. Living with a partner or being married seemed to 

decrease the hazard ratio of unemployment for both males and females by around 

65%, as compared to baseline category (unmarried or non-cohabiting). Number of 

children under 18 years old increased the hazard ratio of non-employment for both 

male and female workers, but these effects were statistically significant only for 

women.   

 

4.7 Conclusion 

 

In this study the impact of diabetes on exit from labour force among workers 

aged between 50 and retirement, using 7 waves of English Longitudinal Survey of 

Aging was estimated. My first contribution to the existing body of literature was to 

test for the possibility of endogeneity between diabetes and employment in England. 

Employing bivariate probit model and parental diabetes status as the instrumental 

variable, diabetes was not found to be endogenous neither for males nor females. This 

study also adds to the existing body of evidence by providing estimates using 

durational analysis to ensure the correct sequence of exposure and outcome. The 

results indicate that women and men diagnosed with diabetes had 50 percent and 70 

percent increase in the rate of labour force exit respectively, compared to those 

without this condition. Findings based on self-reported doctor-diagnosed diabetes are 

in line with Rumball-Smith et al. (2014), who used data from the first 3 waves of 

ELSA along with data from surveys of aging populations in fifteen European 



162 
 

countries, to estimate the effect of diabetes on early retirement. Rumball-Smith et al. 

(2014) reported that having diagnosed diabetes increased the risk of leaving labour 

force by about 40 percent across countries. Results showed a bigger effect for both 

men and women. This was due to the fact that individuals were followed for a longer 

time period, and as these individuals got older both the prevalence and duration of 

diabetes increased among the stock sample. 

Workers with diabetes tend to be more likely to experience difficulties in 

maintaining their job or find a new job compared with non-diabetic workers. Chronic 

or acute symptoms related to diabetes, along with side effects of medication can 

decrease the work ability and day-to-day functioning. These factors can decrease the 

chances of career advancement while increasing probability of facing work-place 

discrimination (Petrides et al., 2000) and poor work-place functionality (Tunceli et 

al., 2006), rates of absenteeism (Backer et al., 2006), and reduced productivity 

(Ramsey et al., 2002). This study attempted to go beyond estimating the average 

effect of diabetes on exit from employment to identify which diabetic people were 

more likely to exit from employment. The association of the duration of diabetes and 

intake of oral medication and insulin with each other and with some of diabetic 

comorbidities were investigated. Based on these results, the use of oral medication 

and insulin was a better proxy for experiencing other comorbidities and related 

symptoms compared with duration of diabetes. In addition, based on durational 

analysis, diabetic men and women who did not use oral medication or insulin did not 

experience significant reduction in the duration of employment whereas, the hazard 

ratios for leaving the work-force for diabetic men and women who were on 

medication or insulin was increased by 70 percent and 90 percent respectively. In 
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contrast, a significant difference in probability of leaving employment based on the 

duration of the diagnosis was not found.  

These findings have numerous policy implications. While healthcare costs 

associated with diabetes is well recognised and studied, the costs to employers and 

society resulting from the loss of labour have not been as well documented. As this 

study demonstrated, workers with diabetes who used insulin or oral medication left 

the labour market prematurely in England. This has the potential to cause additional 

costs on employers, including those costs associated with the recruitment and training 

of new staff. Therefore, policies that motivate pre-diabetics as well as diagnosed 

diabetics to improve their lifestyle and educates them to make healthier day-to-day 

choices can improve management of their conditions and delay the onset of severe 

symptoms requiring costly medications. If the probability of staying in work 

increases, the economic burden of this condition for both individuals and society 

might be minimised. Potential policy interventions include those outlined to reduce 

the risk of developing diabetes and programmes and policies which emphasise on the 

impact of social conditions and individual lifestyle to promote people’s conscious 

decision to increase physical activities and healthy diet (Gov.uk, 2019). In addition, 

such programmes can help workers manage their condition with lifestyle intervention 

to minimise the risk and severity of associated diabetes complications. Finally, there 

may be strategies to support people with diabetes in their working lives. Both the 

public and private sectors could contribute to these interventions. 
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4.9 Appendix 

 

 

 
Table A1: Linear IV (random effect)   

 Female     Male    

 Employment   Diabetes    Employment   Diabetes   
Diabetes   -0.21 (0.24)    - 0.31 (0.39)  

 

Parents diabetes    0.091** (0.012)    0.04*** (0.006) 

General health - 0.08** (0.02)  0.04** (0.008)  - 0.12** (0.03) 0.09** (0.006) 

Self employed   0.31*** (0.02)  0.002 (0.009)    0.39** (0.02) - 0.01 (0.01) 

Professional job   0.11** (0.02)  0.008 (0.01)  - 0.05** (0.01) 0.005 (0.007) 

Intermediate job   0.09* (0.02)  0.012 (0.01)  - 0.03 (0.012) 0.004 (0.006) 

A-level and GCSE   0.023 (0.012)  0.003 (0.032)  - 0.07** (0.02) 0.001 (0.007) 

No qualifications - 0.008 (0.02)  0.01 (0.014)  - 0.09** (0.02) 0.003 (0.009) 

No of children   0.007 (0.017)  0.02* (0.009)  - 0.07** (0.02) 0.009 (0.01) 

Married   0.07** (0.02)  0.008 (0.012)    0.22** (0.01) 0.002 (0.006) 

Partner working   0.13** (0.01) - 0.019* (0.007)    0.19** (0.01) - 0.01 (0.005) 

Total HH income   0.12 (0.005)   0.012** (0.003)    0.1** (0.006) 0.007* (0.002) 

Net wealth of HH   0.035** (0.004) - 0.008* (0.002)    0.22** (0.01) 0.013** (0.001) 

Heart failure  - 0.08* (0.03)   0.02 (0.017)  - 0.08** (0.044) 0.09* (0.02) 

Stroke - 0.02 (0.04)   0.018 (0.02)  - 0.02 (0.02) 0.0009 (0.014) 

Cancer - 0.008 (0.03) - 0.001 (0.014)  - 0.08* (0.04) 0.006 (0.06) 

Arthritis - 0.06* (0.02)   0.014 (0.01)  - 0.07** (0.009) 0.001 (0.004) 

Ex-smoker - 0.02 (0.01)   0.011 (0.009)  - 0.008 (0.01) 0.003 (0.005) 

Current smoker - 0.04 (0.02) - 0.006 (0.014)     0.004 (0.01) - 0.01 (0.006) 

Depression - 0.06* (0.02)   0.007 (0.01)  - 0.06* (0.01) - 0.004 (0.007) 

Note: table shows estimated hazard ratio and standard errors associated based on a random effects discrete time duration model. Standard errors are  

in parentheses. ***p <0.01, **p< 0.05  
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Table A1: Linear IV (random effect) continued 

 Female     Male   

 Employment   Diabetes    Employment   Diabetes 
 

Age 50 54            0.24*  (0.02)   - 0.06** (0.005)           0.26     (0.01)    -0.02* (0.005) 

Age 55-59 0.38*   (0.02)   - 0.08* (0.01)           0.41 (0.02)    -0.02** (0.009) 

Age 60 65 0.22*   (0.02)   - 0.03** (0.009)           0.13 (0.02)    -0.05** (0.008) 

Constant 0.04*   (0.005)      0.11* (0.03)        0.05*  (0.02) 

N observation 6157           7622 
 

N individuals 1575           2025  
Endogeniety (H0: 0.424           0.12  
Diabetes exogenous)  

       
 

Pvalue  0.512            0.73 
 

F stat (H0: weak    24.512           17.743  
instruments)  

       
 

Sargant test (H0:valid  0.317             0.735  
instruments)  

       
 

P value 0.471                   0.386   
Data from 7 waves of ELSA,   

 
      

 

Note: table shows estimated hazard ratio and standard errors associated based on a random effects discrete time duration model. Standard errors are  

in parentheses. ***p <0.01, **p< 0.05  
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Table A2. Durational model. Effect of diabetes on leaving employment 

  
Male   Female 

  1a 2a 3a 4a   1b 2b 3b 4b 

Diagnosed diabetes (t) 1.50**  
   1.7***    

 0.27  
   0.34    

Diagnosed diabetes (t-1)  1.7***     1.9***   

 
 0.32     0.35   

Diagnosed and high (t)   1.48**     1.8***  
HAD   

       

 
  0.24     0.627  

Diagnosed diabetes   
 1.8**     1.9*** 

with medication (t)   
       

 
  

 0.35     0.589 

Diagnosed diabetes   
 1.2     1.119 

without medication (t)   
       

 
  

 0.33     0.806 

diabetes 1-2 years 1.20 1.3 1.40 1.3  1.8 1.7 1.7 1.4 

 0.49 0.52 0.6 0.51  0.82 0.82 0.91 0.74 

diabetes 3 -5 years 1.4 1.2 1.16 1.3  1.6 1.5 1.2 1.3 

 0.51 0.48 0.51 0.49  0.81 0.78 0.48 0.45 

diabetes 6-10 years 0.8 0.9 0.78 0.661  0.92 0.93 0.95 0.81 

 0.28 0.31 0.26 0.221  0.32 0.33 0.33 0.31 

diabetes 11 -20 years 0.91 0.8 0.84 0.74  0.61 0.58 0.62 0.57 

 0.21 0.22 0.28 0.25  0.41 0.38 0.41 0.36 

diabetes 21 + 0.75 0.9 0.43 0.32  0.91 0.87 0.86 0.76 

 0.35 0.38 0.32 0.24  0.28 0.26 0.28 0.24 

Stroke 1.28* 1.29* 1.28* 1.3*  1.08 0.88 1.11 1.09 

 0.26 0.26 0.25 0.28  0.4 0.6 0.4 0.43 

heart problem 1.13 1.15 1.12 1.18  1.09 1.12 1.09 1.12 

 0.17 0.18 0.17 0.17  0.38 0.41 0.42 0.42 

cancer  1.32** 1.31* 1.28** 1.24*  1.30** 1.3** 1.30** 1.31** 

 0.13 0.14 0.13 0.13  0.21 0.21 0.2 0.2 

Arthritis 1.19** 1.19* 1.21** 1.21**  1.21** 1.18 1.21** 1.22** 

 0.1 0.12 0.11 0.11  0.12 0.1 0.12 0.13 

Note: table shows estimated hazard ratio and standard errors associated based on a random effects discrete time duration model. Standard errors are  

in parentheses. ***p <0.01, **p< 0.05 
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Note: table shows estimated hazard ratio and standard errors associated based on a random effects discrete time duration model. Standard errors are  

in parentheses. ***p <0.01, **p< 0.05 

 

 

 

Table A2. (Continued). Durational model. Effect of diabetes on leaving employment 

  
Male   Female 

  1a 2a 3a 4a   1b 2b 3b 4b 

 

          

Depression 1.40* 1.38* 1.38* 1.39*  1.35* 1.32 1.35* 1.36* 

 0 .22 0.21 0.22 0.21  0.21 0.18 0.21 0.23 

White 0.57 0.57 0.61 0.6  0.72* 0.81* 0.72* 0.73* 

 0.35 0.35 0.36 0.37  0.32 0.34 0.28 0.31 

 

Intermediate job 1.33** 1.34** 1.26** 1.35**  0.87 0.99 0.72 0.73 

 0.18 0.18 0.16 0.2  0.19 0.22 0.27 0.21 

Professional job 1.49 1.37 1.42 1.36  1.31 1.28 1.27 1.32 

 0.45 0.43 0.45 0.45  0.48 0.48 0.58 0.51 

Degree and higher 1.6** 1.62** 1.62** 1.58**  1.68** 1.68** 1.65** 1.64** 

 0.18 0.15 0.15 0.16  0.16 0.18 0.19 0.17 

No of children 0.68 0.68 0.71 0.69  0.56** 0.57** 0.56** 0.58** 

 0.13 0.13 0.14 0.14  0.08 0.09 0.08 0.09 

Married  0.66** 0.67** 0.66** 0.65**  0.37** 0.37** 0.38** 0.37** 

 0.09 0.09 0.11 0.09  0.08 0.08 0.09 0.08 

partner working 0.68*** 0.68*** 0.7*** 0.68***  0.66** 0.66** 0.71** 0.71** 

 0.07 0.07 0.08 0.07  0.11 0.11 0.12 0.11 

Total HH income (quintiles) 0.48*** 0.48*** 0.49*** 0.51***  0.54*** 0.55*** 0.54*** 0.59*** 

 0.02 0.03 0.04 0.06  0.04 0.04 0.05 0.08 

Net wealth of HH (quintiles) 1.34** 1.34** 1.45** 1.42**  1.19*** 1.2*** 1.21*** 1.19*** 

 0.09 0.091 0.11 0.12  0.06 0.06 0.07 0.08 

Ex-smoker 0.91 0.98 0.91 0.92  1.12 1.13 1.18 1.2 

 0.09 0.09 0.12 0.11  0.18 0.18 0.18 0.2 

current smoker 0.95 0.95 0.94 0.91  1.13 1.14 1.13 1.15 

 0.15 0.15 0.16 0.17  0.18 0.18 0.19 0.21 

age 51 0.03*** 0.04** 0.031** 0.032***  0.38 0.34 0.37 0.38 

 0.04 0.04 0.04 0.05  0.15 0.13 0.17 0.15 
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Table A2 (continued). Effect of diabetes on leaving employment, Male and female 
  Male   Female 

  1a 2a 3a 4a   1b 2b 3b 4b 

age 52 0.11*** 0.12** 0.11** 0.13**  0.3 0.32 0.31 0.31 

 0.06 0.06 0.07 0.08  0.11 0.14 0.12 0.12 

age 53 0.29*** 0.31** 0.28** 0.31**  0.19 0.21 0.18 0.19 

 0.08 0.09 0.08 0.09  0.07 0.08 0.07 0.07 

age 54 0.27*** 0.28** 0.32** 0.33**  0.25 0.25 0.28 0.27 

 0.08 0.09 0.11 0.12  0.08 0.09 0.09 0.8 

age 55 0.39*** 0.38** 0.33** 0.32**  0.54 0.53 0.58 0.54 

 0.09*** 0.07 0.08 0.09  0.13 0.12 0.14 0.13 

age 56 0.4** 0.41** 0.42** 0.41** 
 0.8 0.81 0.79 0.72 

 0.09 0.09 0.11 0.09  0.12 0.13 0.12 0.14 

age 57 0.49** 0.51** 0.48** 0.48**  0.76 0.78 0.77 0.77 

 0.11** 0.12 0.09 0.11  0.13 0.12 0.11 0.13 

age 58 0.45** 0.46** 0.47** 0.45**  0.81 0.82 0.86 0.83 

 0.09 0.09 0.11 0.09  0.12 0.13 0.11 0.14 

age 59 0.79 0.81 0.78 0.82  0.88 0.84 0.83 0.82 

 0.15 0.17 0.18 0.19  0.12 0.12 0.14 0.13 

age 60 0.81 0.87 0.89 0.91   
   

 0.15 0.16 0.17 0.18   
   

age 61 1.2** 1.25** 1.26* 1.12   
   

 0.09 0.11 0.12 0.09   
   

age 62 0.79** 0.72** 0.73** 0.75   
   

 0.09 0.09 0.09 0.1   
   

age 63 1.34** 1.32** 1.25** 1.34**   
   

 0.12 0.11 0.13 0.12   
   

age 64 1.21** 1.29** 1.25** 1.26**   
   

 0.13 0.14 0.12 0.12   
   

p-value (LR test: rho= 0) 0.496 0.496 0.493 0.498  0.495 0.493 0.493 0.493 

N of observation 4,667 4,667 4,667 4,667  2,989 2,989 2,989 2,989 

N of individuals 1,255 1,255 1,255 1,255   1,066 1,066 1,066 1,066 

Note: table shows estimated hazard ratio and standard errors associated based on a random effects discrete time duration model. Standard errors are  
in parentheses. ***p <0.01, **p< 0.05 
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Chapter 5 

5.1 Conclusion 

 

This thesis has examined a key issue in the economic literature: the effect of 

health problems in determination of labour market outcomes. Being in work enables 

individuals to undertake active roles within their community and maintain social and 

professional skills that enhance career prospects. Certain individuals facing health 

conditions might not be able to carry on with fulfilling their professional 

responsibilities. However, many such individuals can stay in work and with adequate 

support, avoid the potential negative impacts such as social exclusion and financial 

difficulties of becoming economically inactive. The costs associated with exit from 

employment are not only incurred by the individual and family members, but also by 

tax payers through central as well as local governments: OECD countries spend on 

average of about 1.2% of GDP (up to 2% when including sickness reimbursements) 

on disability benefits (OECD, 2009). Expenses incurred by excluding workers 

with partial capacity from the labour market have a serious impact on public 

expenditure decisions. Policy solutions should be in place by governments to support 

individuals who stay at work as well as those who decide or are forced to exit 

employment after a health shock occurs. Creating such policy interventions will 

require further research on how working age people respond to health deteriorations 

and steps taken by affected individuals to adjust to their new health status.  

 

One of the core objectivise of this thesis was to discuss and address how 

health as a concept can be reported and measured in various methods within empirical 

studies and how each study represented a pathway and association between health and 
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employment based on the selected health definition. Therefore, different health 

measures were considered in each of the three empirical studies presented in this 

thesis.   

Specific issues that were investigated in this thesis included the impact of 

mental and physical health shocks on labour force participation; the change in 

different income components after an acute health shock; and the effect of diabetes on 

early retirement. These issues were examined both descriptively and using various 

econometric methods such as factor analysis, nonlinear fixed and random effect 

regression, exact Coarsened matching, bivariate probit regression and survival 

analysis. It should be noted that the approach used here was slightly different with 

studies that concentrate on registered disabilities or benefit recipients; individuals 

who have been through Work Capability Assessment as described in the UK 

government documents (www.gov.uk.health,conditions-disability-universal-credit 

2020) and their claims have been approved as a measure of health issues. In this 

work, self-reported health problems, doctor diagnosis or biomarkers were used which 

mean a new group of individuals were included in estimations. These people might 

never be registered as disabled or could become registered as incapacitated only after 

the timespan of the study, while experiencing unemployment and financial difficulty 

in short-run as a result of their poor health.   

Several insights were uncovered through presented analysis. A significant 

reduction in labour market participation is observed after a mental or physical health 

shock is experienced. This study contributed in the existing literature by providing 

evidence indicating a varied response between men and women towards deterioration 

in mental and physical health. For example, Men have a higher threshold for exiting 

from the labour market due to physical health. Therefore, exit from employment 

http://www.gov.uk.health,conditions-disability-universal-credit/
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tended to occur when physical health suddenly deteriorated to a very poor state in 

men. Furthermore, considerable evidence of heterogeneity was observed with regards 

to the nature of occupation. For instance, manual job holders were vulnerable against 

both physical and mental health shocks, whereas physical health shocks did not 

significantly reduce the probability of leaving employment among non-manual job 

holders. From a broader angle it can be concluded that this study contributed to the 

literature on health and employment by providing evidence that supports 

biopsychological perspective suggested by Prince et al. (2007). This approach 

regarded mental and physical health as two interconnected components of general 

health status of an individual. These results emphasised that British society should 

move from regarding mental health issues as a less important matter compared to 

physical health and reach a point of awareness that its healthcare, social and welfare 

systems work together to develop an integrated care model, spanning people’s 

physical, mental and social requirements (Mental Health Taskforce, 2016). 

When acute health shocks were considered, findings indicated significant 

reduction in labour income, indicative of a reduction in employment as shown in 

previous published literature. Also, a significant increase in total income received 

from state support was observed in the estimated working age sample. However, there 

were differences in the magnitude of the change observed in labour and benefit 

income among different age groups of men and women. As an example, men younger 

than 49 years old were the only sub-group that experienced significant reduction in 

their net income (8%) and no significant increase in income received from welfare 

system, while men older than 50 years old experienced a 35% increase in their benefit 

income and no significant reduction in net or gross incomes. This study sheds light on 

how vulnerable individuals are when faced with an unpredicted health shock and tests 
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whether financial aids and welfare supports are adequately provided when reduction 

of labour income takes place.  

A number of empirical studies have investigated type, extent and reach of 

welfare support that working age individuals who left employment due to health- 

related issues experienced. Their results suggested that some individuals and sub-

group of people experienced reduced access to welfare support and consequently 

received inadequate benefit coverage in comparison with other individuals. In 

addition, there were two other factors that contributed to the considerable inequity in 

the provision of support. Firstly, financial support was administered by various 

agencies and secondly, eligibility criteria for receiving support was numerous and 

multifaceted (Gardiner et al., 2019). In this study, I showed that younger men 

received less welfare money compared to men older than 50 years old. There can be 

other contributors on the probability of welfare support entitlement. Besides, some 

studies demonstrated negative impact on the sense of self-respect and discriminatory 

processes in the benefits system. These have negatively impacted the sense of self- 

respect and security experienced by claimants (Emanuel et al., 2000)  

 

Associations between diabetes and exit from employment decisions touches 

issues related to an aging population in many countries and an increasing necessity 

for meeting the needs of a growing segment of the population who have contributed 

for years in taxes. Yet, this group may feel vulnerable and unsupported when facing 

health problems (Gusmano et al., 2018). Chronic health problems can cause invisible 

disabilities (Santuzzi et al., 2014). It has been argued that these class of health 

problems are more challenging to identify and evaluate in empirical research 

compared to established forms of disabilities (European patient forum, 2018). Chapter 
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four of this thesis contributed to the previous published literature by shedding more 

light on the main pathways in which diabetes can increase the probability of exit from 

employment. The chronic nature of diabetes means that this condition tends to cause 

progressive symptoms and associated co-morbidities over time. Therefore, this work 

aimed to identify heterogeneity among sub-groups of diabetics based on the severity 

of their condition. Duration of diabetes since diagnosed and usage of insulin or oral 

medicine were proposed as two possible proxies for dividing diabetic individuals 

based on severity of their condition.  

 Results suggested that both duration of diabetes and use of oral 

medication/insulin were correlated with experiencing other comorbidities and related 

symptoms. However, use of insulin and oral medication/insulin combined was a 

stronger predictor of co-morbidities and exit from employment decisions compared 

with duration of diabetes. Based on durational analysis, diabetic men and women who 

were not on oral medication/insulin did not experience significant reduction in years 

of employment. The hazard ratios for leaving the work force for diabetic men and 

women who were on medication or insulin is increased by 70 percent and 90 percent 

respectively. In contrast, I did not find a significant difference in probability of 

leaving employment based on the duration of the diagnosis. 

This work is subject to several shortcomings due to limitations associated with 

the available data. Except for the work carried out in chapter four, where durational 

modelling was used, only short-time effects of health shocks on labour outcome were 

estimated. Such abrupt and adverse effects cause disruption to individuals as well as 

poorly equipped families who are forced to cope with the consequences. In addition 

to the short-time adjustments, further decisions are taken by individuals over a 

number of years following a health shock. These lifestyle modifications can manifest 
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themselves in different ways, such as moving to a part-time job, teleworking and 

benefitting from flexible working hours. Also, people may change their jobs to one 

better suited to their new health status. Further research can aid in identifying the 

government and employer’s response to acute and chronic health shocks and 

investigate to what extent various options are available and favoured by different 

affected individuals. Capturing an accurate image of long-term adjustments after a 

health shock can contribute to the current literature. Such analysis would enable us to 

identify which occupations and organisations offer more options to their employees. 

This would enable researchers to make valuable policy recommendations to aid the 

most vulnerable affected individuals. It would also assist us identify whether labour 

market sections and occupations differ in terms of accommodating for the needs of 

affected individuals. 

 Studies with multidisciplinary perspectives that focus on both employment 

and health aspects are still constrained with data scarcity particularly on health 

measures and retrospective data on employment and income history. Capturing long-

term employment and income trajectories, in combination with modelling health 

status in a detailed manner are challenging tasks for researchers in this field. Despite 

various publications in different disciplines that examine such issues, these studies 

face limitations as social science tends to treat health as a unitary concept while 

clinical and biomedical studies generally control for a single measure of social 

position. As an example, in most household surveys, biomarkers are not gathered as 

frequently as self-reported measures, making it difficult to compare obtained results 

with those based on self-reported health measures or combine them and construct a 

measure for severity or self-management. For similar reasons, in chapter 4 of this 

research I could not control for pre-diabetes in durational analysis and compared its 
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effect with the effect of being diabetic in exit from employment. Therefore, further 

refined research is required to improve current state of our knowledge in order to 

suggest appropriate policy reforms and aid us achieve an accurate picture of decision-

making steps and preferences of working age individuals in the UK. 

Government has declared that supporting people with health issues to obtain 

or maintain their job, and be productive within the workplace, is a vital part of UK’s 

economic success and contributes to the well-being of individuals, community 

cohesiveness and inclusion with different industries (Jones et al. 2012). Therefore, it 

is important that people are supported to gain employment and maintain economic 

independence for themselves and their families even when faced with long-term 

conditions and disabilities. It has been mentioned that “good work” is good for health 

and having a “good work” is one of the factors that prevents exit from employment 

due to health problem (publichealthmatters.blog.gov.uk, 2019). Suggested 

characteristics for a “good work” are providing opportunities for in-work 

development, flexibility to enable a reasonable work-life balance and protection from 

adverse working environments that can harm health (gov.uk, 2019). Therefore, 

further research can be conducted to consider the relationship between health and 

employment from this perspective. Information in the available household data sets 

can be used to construct measures related to these characteristics and to job quality 

and assess whether these measures have an effect on the probability of exiting 

employment after experiencing a health shock.  

Investigating the pattern and probability of returning to work after facing a 

health shock can provide a valuable contribution to the literature. It will be beneficial 

to shed light on which factors indicate the likelihood of return to work after 
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experiencing a health shock and identify what proportion of the exits are permanent 

leave from employment. Relatively few studies address the return to work issue 

following a health shock (Chen et al., 2020). The process of returning to work 

depends on individual’s specific health problem, rehabilitation process and the option 

provided from their job or employer. Different studies use various definition for exit 

from employment and returning to work (Black-Schaffer et al., 1990) and some 

studies address indicators of readiness to return to work as oppose to actual return to 

employment (McMahon et al., 1998). Therefore, a great variety is observed in the 

reported percentage of people returning to the job market. As an example; studies that 

report likelihood of “considering return to work” after a stroke have reported 3% to 

84% as the proportion of individuals that are willing to re-engage with work Rolene 

et al. (2011)  
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