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Abstract

A novel numerical method for the estimation of large-scale time-varying parameter seemingly
unrelated regressions (TVP-SUR) models is proposed. The updating and smoothing estimates
of the TVP-SUR model are derived within the context of generalised linear least squares and
through numerically stable orthogonal transformations which allow the sequential estimation
of the model. The method developed is based on computationally efficient strategies. The
computational cost is reduced by exploiting the special sparse structure of the TVP-SUR model
and by utilising previous computations. The proposed method is also extended to the rolling
window estimation of the TVP-SUR model. Experimental results show the effectiveness of the
new updating, rolling window and smoothing strategies in high dimensions when a large number
of covariates and regressions are included in the TVP-SUR model, and in the presence of an
ill-conditioned data matrix.

Keywords: time-varying coefficients, recursive estimation, updating, rolling window estimation,
matrix algebra

1 Introduction

The assumption that the coefficients of a linear model are constant over time is often invalid.
Recently, models with time-varying structures have been adopted to explain inflation dynamics, to
forecast macroeconomic variables under structural change and to model interest rates (Cogley and
Sargent, 2005; Primiceri, 2005; Stock and Watson, 2009; Koop and Korobilis, 2013; Zhang and Wu,
2015; Bianchi et al., 2019). Time varying coefficient models are important in aerospace and space
craft engineering, in signal processing, in ecology and epidemiology to name but a few (Tang et al.,
2010; Grewal and Andrews, 2014; Zhong et al., 2015; Gelfand et al., 2019). A system of 25, 33 and
131 vector autoregressions is referred to as large with or without time-varying specification (Bańbura
et al., 2010; Koop and Korobilis, 2013; Carriero et al., 2016).
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A model with time-varying coefficients can be given a state space formulation. The most common
approach is to use the Kalman filter which recursively estimates the unknown coefficients. The
numerical properties of the Kalman filter have been previously discussed (Bierman, 1977; Verhaegen
and Dooren, 1986; Carraro, 1988; Grewal and Andrews, 2014). Specifically in a recursive method like
the Kalman filter, where at every new data point estimates of the unknown parameters are obtained
using previous computations, a numerical error at one iteration of the algorithm can be propagated
through to future computations and produce inaccurate results (Higham, 2002). Generalised least
squares (GLS) have been applied on a univariate time-varying model in order to derive the Kalman
filter and Kalman smoother estimators (Sant, 1977). However, this approach is difficult to implement
in practical problems as it requires the inversion of a large variance-covariance matrix which is
computationally demanding and numerically unstable.

The contribution, herein, is to develop a novel numerical method for the estimation of the multi-
variate time-varying parameter seemingly unrelated regressions (TVP-SUR) model. The TVP-SUR
model, as an extension to the constant coefficients seemingly unrelated regressions (SUR) model,
allows to form a system of regression equations where each equation may have different explana-
tory variables. This specification may be particularly useful after a variable selection process has
eliminated a subset of the original set of regressors.

The proposed method estimates the TVP-SUR model by solving a generalised linear least squares
problem which yields the best linear unbiased estimator of the model (Paige, 1979; Kourouklis and
Paige, 1981). The updating estimates, when new data are acquired, and the smoothing estimates,
when existing data are revised, are derived. The method is next extended to the rolling window
estimation of the model where data are added and deleted simultaneously. Numerical strategies which
update the model to include the effect of new observations and which downdate the model to exclude
the effect of old or obsolete observations are employed (Paige, 1978; Hadjiantoni and Kontoghiorghes,
2017, 2018). The novel method is numerically reliable in delivering accurate estimation results, and
computationally efficient which makes it feasible to estimate large-scale TVP models. Large-scale,
herein, signifies cases where the number of observations is larger than the number of explanatory
variables. This is achieved in two ways. Firstly, by employing efficiently previous computations when
new observations are acquired and by exploiting the sparsity of the multivariate TVP model (Paige,
1979; Golub and Van Loan, 2013). Secondly, the computational tools which are mainly orthogonal
transformations, have the property of being numerically stable and also the capability to limit the
computational expense of the estimation procedures when modifications are incorporated into the
dataset (Gill et al., 1974; Paige, 1978; Björck, 1996; Golub and Van Loan, 2013). Furthermore, the
QR decomposition with column pivoting is employed in order to offset the rounding problem issues
that may arise during the presence of ill-conditioned data matrices, as for example in the presence of
multicollinearity. Finally, the proposed algorithm does not require non-singular variance-covariance
matrices and also postpones the inversion of matrices up to the last step.

The paper is organised as follows. Section 2 introduces a new numerical method for the estimation
of the univariate time-varying regression model based on orthogonal transformations. Section 3
considers the multivariate TVP-SUR model where the regressions are contemporaneously correlated.
The numerical estimation of the model is presented when observations are added to the model. The
smoothing and rolling window estimates of the model are also derived. Section 4 presents a numerical
example which illustrates the usability of the proposed method in the presence of ill-conditioned
matrices and also computational results. Finally, Section 5 concludes.

2 Numerical Estimation of the TVP Model

Consider the univariate time-varying parameter (TVP) model which is given by
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ψt = xtβt + εt, εt ∼ (0, σ2), t = 1, . . . ,M (2.1a)

and

βt = βt−1 + ηt, ηt ∼ (0, σ2Ση), t = 1, . . . ,M. (2.1b)

Here ψt is the observation of the dependent variable y at time t, xt ∈ R1×k is the row vector of
explanatory variables at time t, βt ∈ Rk is the vector of the unknown coefficients which are evolving
over time according to the random walk from (2.1b), and εt and ηt are the error terms with zero
mean and variance σ2 and σ2Ση, respectively (Cooley and Prescott, 1973, 1976). Also E(εtεt′) = 0
if t 6= t′ and E(ηtη

T
t′ ) = 0 if t 6= t′, t = 1, . . . ,M , where M is the sample size. In addition, Ση is

a symmetric and non-negative dispersion matrix. Furthermore, from (2.1), it is easy to derive (see
Sant (1977))

βt = βt−1 + ηt = · · · = β1 +
t∑

s=2

ηs.

Therefore the TVP model (2.1a)-(2.1b) up to time t takes the form

yt = Xtβt + e∗t , e∗t ∼
(
0, σ2Ωt

)
, (2.2)

where

yt =


ψ1
...

ψt−1

ψt

 , Xt =


x1
...

xt−1

xt

 , et =


ε1
...

εt−1

εt

 , At =


x1 · · · x1
...

. . .
...

0 · · · xt−1

0 · · · 0

 , ut =

η2
...
ηt

 ,

where yt, Xt are the vector of the response variable and the matrix of explanatory variables at time
t, respectively and Xt ∈ Rt×k, t ≥ k. Also, e∗t = et−Atut is the error term at time t with covariance
matrix Ωt = It + At(It−1 ⊗ Ση)A

T
t (Sant, 1977), where It is the identity matrix of dimension t,

(·)T denotes the transpose of a matrix and ⊗ denotes the Kronecker product. When the covariance
matrix σ2Ωt is unknown, the feasible GLS estimator of the latter model is given by

β̂t = (XT
t Ω̂−1

t Xt)
−1XT

t Ω̂−1
t yt,

where Ω̂t = It +At(It−1⊗ Σ̂η)A
T
t and Σ̂η are consistent estimators of the covariance matrix Ωt and

Ση, respectively (Chow, 1984; Carraro, 1985). Details about the estimation of σ2 and Ση are given
in the Appendix. The equivalence of the GLS estimator with the Kalman filter has been shown in
Sant (1977). However, the derivation of the GLS estimator is computationally costly and numerically
unstable when Ωt is ill-conditioned (Paige, 1978; Kourouklis and Paige, 1981).

An alternative procedure to the GLS methodology is to consider solving a generalised linear least
squares problem (GLLSP), that is,

argmin
βt,vt

‖vt‖2 subject to yt = Xtβt +Ctvt, (2.3)

where Ct ∈ Rt×t is upper triangular and non-singular such that Ω̂t = CtC
T
t , vt ∈ Rt is an arbitrary

vector, vt ∼ (0, σ2It) and ‖·‖ denotes the Euclidean norm. Observe that Ω̂t is not formed explicitly
but instead its special structure is taken into account. That is,

Ω̂t = It +At(It−1 ⊗ Σ̂η)A
T
t

=
(
It At(It−1 ⊗ Ĉη)

) (
It At(It−1 ⊗ Ĉη)

)T
,
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where Ĉη is the Cholesky factor of Σ̂η, i.e. Σ̂η = ĈηĈ
T
η . Then the RQ decomposition (RQD) of

(It At(It−1 ⊗ Ĉη)) gives(
It At(It−1 ⊗ Ĉη)

)
Pt,1 =

(
0 Ct

)
,

where Pt,1 ∈ R((t−1)k)×((t−1)k) is orthogonal and Ct ∈ Rt×t is upper triangular and non-singular. To
solve (2.3), the generalised QR decomposition (GQRD) of Xt and Ct is computed, namely,

QT
t

(
Xt yt

)
=

(
Rt yt,A
0 yt,B

)
(2.4a)

and (
QT
t Ct

)
Pt,2 = Ut =

(
U11,t U12,t

0 U22,t

)
, (2.4b)

where Rt ∈ Rk×k, Ut ∈ Rt×t are upper triangular and non-singular and Qt,Pt,2 are orthogonal
matrices of order t, yt,A ∈ Rk, yt,B ∈ Rt−k, U11,t ∈ Rk×k and finally U22,t ∈ R(t−k)×(t−k). When Qt

and Pt,2 are applied on (2.3), it gives

argmin
βt,vt

∥∥P T
t,2vt

∥∥2
subject to QT

t yt = QT
t Xtβt +QT

t CtPt,2P
T
t,2vt.

The GLLSP (2.3) now becomes

argmin
βt,vt,A,vt,B

∥∥∥∥(vt,Avt,B
)∥∥∥∥2

subject to

(
yt,A
yt,B

)
=

(
Rt

0

)
βt +

(
U11,t U12,t

0 U22,t

)(
vt,A
vt,B

)
, (2.5)

where the second part of the restrictions in (2.5) yields vt,B = U−1
22,tyt,B. The GLLSP in (2.5) is then

reduced to
argmin
βt,vt,A

‖vt,A‖2 subject to ỹt,A = Rtβt +U11,tvt,A,

where ỹt,A = yt,A−U12,tvt,B. The estimator for βt is derived by setting vt,A = 0, in order to minimise
the argument, and from the solution of the upper triangular system Rtβt = ỹt,A.

2.1 Rank-deficient data matrix Xt

Let the TVP model in (2.2) and assume that the data matrix Xt is not full rank, or in other
words it is rank-deficient. Rank deficiency is caused by collinearity when there is linear dependency
between two or more of the columns of Xt. Specifically, suppose that rank(Xt) = r < k, where
Xt ∈ Rt×k. In this case, a QR decomposition with column pivoting (QRD-CC ), often referred to as
rank-revealing QR decomposition, is computed.

To solve the GLLSP in (2.3), consider the QRD-CC of Xt, namely,

Q̌T
t

(
XtΠ yt

)
=

(
Řt,A Řt,B y̌t,A

0 0 y̌t,B

)
, (2.6)

where Řt,A ∈ Rr×r is upper triangular and non-singular, Řt,B ∈ Rr×(t−r) and Π ∈ Rk×k is a permu-
tation matrix (Golub and Van Loan, 2013, p.276). Similarly to the full-rank case, the QRD-CC in
(2.6) is followed by the RQD of Q̌T

t Ct, that is(
Q̌T
t Ct

)
P̌t,2 = Ǔt =

(
Ǔ11,t Ǔ12,t

0 Ǔ22,t

)
, (2.7)

where Ǔ11,t ∈ Rr×r and Ǔ22,t ∈ R(t−r)×(t−r) are upper triangular and non-singular and Ǔ12,t ∈
Rr×(t−r). The corresponding GLLSP is then given by
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argmin
βt,A,βt,B ,v̌t,A,v̌t,B

∥∥∥∥(v̌t,Av̌t,B
)∥∥∥∥2

subject to

(
y̌t,A
y̌t,B

)
=

(
Řt,A Řt,B

0 0

)(
βt,A
βt,B

)
+

(
Ǔ11,t Ǔ12,t

0 Ǔ22,t

)(
v̌t,A
v̌t,B

)
,

(2.8)

where
(
βTt,A βTt,B

)T
= ΠTβt and

(
v̌Tt,A v̌Tt,B

)T
= P̌ T

t,2vt. The bottom block of rows in (2.8) gives

v̌t,B = Ǔ−1
22,ty̌t,B and therefore, the latter GLLSP becomes

argmin
βt,A,βt,B ,v̌t,A

‖v̌t,A‖2 subject to y̌∗t,A =
(
Řt,A Řt,B

)(βt,A
βt,B

)
+ Ǔ11,tv̌t,A,

where y̌∗t,A = y̌t,A − Ǔ12,tv̌t,B. Hence, the basic generalised least squares solution is given by β̂t,A =

Ř−1
t,Ay̌

∗
t,A after setting βt,B = 0 and v̌t,A = 0 (Anderson et al., 1992; Golub and Van Loan, 2013,

p.292).
Moreover, in the event of a singular variance-covariance matrix Ωt the RQD in both (2.4b) and

(2.7) for the solution of the GLLSP will need to be replaced with a complete RQ decomposition.
This orthogonal decomposition can manage the reduced rank of Ωt (Anderson et al., 1992).

3 Multivariate Time-Varying Parameter Model

A more general case of the TVP model in (2.1) is a system of G such regressions which are
contemporaneously correlated. That is, consider the time-varying parameter seemingly unrelated
regressions (TVP-SUR) model which is given by the state space formψ1,t

...
ψG,t

 =

x1,t

. . .

xG,t


β1,t

...
βG,t

+

ε1,t...
εG,t

 , t = 1, . . . ,M

and β1,t
...
βG,t

 =

β1,t−1
...

βG,t−1

+

η1,t
...
ηG,t

 ,

where ψi,t, xit ∈ R1×ki and βi,t ∈ Rki are the observation of the dependent variable yi, the row vector
of explanatory variables and the vector of time-varying parameters to be estimated, respectively, for
the regression i at time t, i = 1, . . . , G. For regression i, the vector of unknown parameters βi,t
evolves over time following a random walk. Also, (ε1,t . . . εG,t)

T is a G× 1 disturbance vector with
zero mean and variance-covariance matrix Σ = [σij]i,j, i, j = 1, . . . , G. Moreover, ηit ∼ (0, σiiΣi)

and E(ηjtη
T
it) = 0 for i 6= j. As in the constant coefficients SUR model, when σij 6= 0 for i 6= j,

efficiency will be gained if the estimation of the unknown parameters is executed in a system of
the G regressions (Zellner, 1962; Chow, 1984; Davidson and MacKinnon, 2004). Moreover, due to
the different regressors in each regression equation, the sparsity of the explanatory data matrix is
taken into account and thus, gives a computational advantage in high dimensions. A time-varying
specification of this form is usable in a zero coefficients constraints specification or following vari-
able selection and shrinkage methodologies. Furthermore, let K =

∑G
i=1 ki be the total number of

unknown time-varying parameters in the model.
Consider the ith regression of the system with all the available observations up to time t, that is,
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
ψi,1

...
ψi,t−1

ψi,t

 =


xi,1

...
xi,t−1

xi,t

βi,t +


εi,1
...

εi,t−1

εi,t

−

xi,1 · · · xi,1

...
. . .

...
0 . . . xi,t−1

0 · · · 0


ηi,2...
ηi,t

 (3.1)

or in compact form as
yi,t = Xi,tβi,t + e∗i,t, e∗i,t ∼

(
0, σii

(
It +Ai,t(It−1 ⊗Σi)A

T
i,t

))
,

where yi,t, Xi,t and e∗i,t = ei,t −Ai,tui,t are defined conformably to (3.1). Note that Ai,t is defined
as in (2.2). The TVP-SUR model is then given in matrix form, at time t, by

y1,t

y2,t
...
yG,t

 =


X1,t

X2,t

. . .

XG,t



β1,t

β2,t
...
βG,t

+


e∗1,t
e∗2,t

...
e∗G,t

 ,

or equivalently by

vec ({yi,t}) =
(
⊕Gi=1Xi,t

)
vec ({βi,t}) + vec({e∗i,t}), (3.2)

where, for the time-varying regression i, yi,t ∈ Rt are the response vectors at time t, Xi,t ∈ Rt×ki

are the exogenous matrices at time t, t ≥ ki, βi,t ∈ Rki are the time-varying coefficients at time t
and e∗i,t ∈ Rt are the disturbance terms, i = 1, . . . , G. Note that {·} denotes a set of vectors, vec()
is the vector operator which stacks a set of vectors and ⊕Gi=1 is the direct sum which for notational
convenience will be abbreviated by ⊕i. The error term in (3.2) has zero mean and variance-covariance
matrix

Ωt =


σ11Ω1,t σ12It . . . σ1GIt
σ21It σ22Ω2,t . . . σ2GIt

...
...

. . .
...

σG1It σG2It . . . σGGΩG,t


= ⊕iσiiAi,t(It−1 ⊗Σi)A

T
i,t + Σ⊗ It

= ⊕iCi,tC
T
i,t +CCT ⊗ It

=
(
⊕iCi,t C ⊗ It

) (
⊕iCi,t C ⊗ It

)T
,

(3.3)

where Ωi,t =
(
It +Ai,t(It−1 ⊗Σi)A

T
i,t

)
, Ci,t =

√
σiiAi,t(It−1 ⊗Ci) and Σi = CiC

T
i is the Cholesky

decomposition of Σi. In practice, as for the univariate TVP model, the covariance matrix Ωt will
most probably be unknown. In this case, a limited information method can be preceded in order to
give estimators of Σ and Σi, i = 1, . . . , G (Chow, 1984; Carraro, 1985; Davidson and MacKinnon,
2004, p.528). The Appendix provides information as to how to derive estimators of Σ and Σi,
i = 1, . . . , G. The best linear unbiased estimator of the TVP-SUR model (3.2) is obtained from the
solution of the GLLSP

argmin
βi,t,vi,t

‖vec({vi,t})‖2 subject to

vec({yi,t}) = (⊕iXi,t)vec({βi,t}) + (⊕iĈi,t Ĉ ⊗ It)vec({vi,t}),
(3.4)

where Ĉi,t =
√
σiiAi,t(It−1⊗Ĉi), Ĉ are the Cholesky factors of the estimatedCi,t and Σ, respectively.

Also, vec({vi,t}) ∼ (0, I(t−1)K+Gt) is such that vec({e∗i,t}) = (⊕iĈi,t Ĉ⊗It)vec({vi,t}). The solution
of (3.4) is derived by computing the RQD(

⊕iĈi,t Ĉ ⊗ It
)
P̃t,1 =

(
0 C̃t

)
, (3.5)
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and the GQRD

Q̃T
t

(
⊕iXi,t vec({yi,t})

)
=

(
⊕iRi,t vec({yi,tA})

0 vec({yi,tB})

)
, (3.6a)

(
Q̃T
t C̃t

)
P̃t,2 = Lt =

(
L11,t L12,t

0 L22,t

)
, (3.6b)

where C̃t ∈ RGt×Gt, Ri,t ∈ Rki×ki , i = 1, · · · , G, and Lt ∈ RGt×Gt are upper triangular and non-
singular with L11,t and L22,t matrices of order K ×K and (Gt−K)× (Gt−K), respectively. Also,

P̃t,1 ∈ RGt×((t−1)K+Gt), Q̃T
t , P̃t,2,∈ RGt×Gt are orthogonal. Note that in the above computations

the special structure of the matrices is exploited. Numerically stable and computationally efficient
strategies which exploit the special sparse structure of the matrices have been previously developed
(Foschi et al., 2003; Yanev and Kontoghiorghes, 2007). Using the computations in (3.5) and (3.6),
the GLLSP in (3.4) is equivalently given by

argmin
βi,t,vi,tA,vi,tB

∥∥∥∥(vec({vi,tA})
vec({vi,tB})

)∥∥∥∥2

subject to

(
vec({yi,tA})
vec({yi,tB})

)
=

(
⊕iRi,t

0

)
vec({βi,t}) +

(
L11,t L12,t

0 L22,t

)(
vec({vi,tA})
vec({vi,tB})

)
,

(3.7)

where(
vec({vi,tA})
vec({vi,tB})

)
= P̃ T

t,2P̃
T
t,1vec({vi,t}).

The solution of the GLLSP in (3.7) is obtained by solving the triangular system L22,tvec({vi,tB}) =
vec({yi,tB}) for vi,tB and by setting vec({vi,tA}) = 0 in order to minimise the argument in (3.7). The
BLUE of βi,t, i = 1, . . . , G, is derived from the solution of the triangular system ⊕iRi,tvec({βi,t}) =
vec({ỹi,tA}), where vec({ỹi,tA}) = vec({yi,tA})−L12,tvec({vi,tB}).

Furthermore, the specification of the TVP-SUR model in (3.1) assumed that E(ηjtη
T
it) = 0 for

i 6= j. When this assumption is relaxed, to allow cross-sectional correlation between the time-varying
βt, it is assumed that E(ηjtη

T
it) = σijΣij, where Σij is a ki×ki symmetric and non-negative dispersion

matrix. As a result, the sparse structure of the dispersion matrix of the error term in (3.1), that is
(3.3), is affected. Specifically, the variance-covariance matrix of the error term e∗i,t now becomes

Ω
(η)
t =


σ11Ω11,t σ12Ω12,t . . . σ1GΩ1G,t

σ21Ω21,t σ22Ω22,t . . . σ2GΩ2G,t
...

...
. . .

...
σG1ΩG1,t σG2ΩG2,t . . . σGGΩGG,t

 , (3.8)

where Ωij,t =
(
It +Ai,t(It−1 ⊗Σij)A

T
j,t

)
. It can also be written as Ω

(η)
t = Ω

(u)
t + Σ⊗ It, where the

block elements of Ω
(u)
t are given by the matrices Ai,t(It−1 ⊗Σij)A

T
j,t. Henceforth, the specification

of model (3.1) and the structure in (3.3) are assumed. The main steps for the solution of the GLLSP
in (3.4) and the remaining discussion hereafter are not affected by this assumption.

3.1 Updating the TVP-SUR Model with one new Observation

Consider now updating each regression in the TVP-SUR model when a new datum is collected.
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This is defined as the original model (3.2) together with a single new observation in each regression
which at time t+ 1 is given byψ1,t+1

...
ψG,t+1

 =

x1,t+1

. . .

xG,t+1


β1,t+1

...
βG,t+1

+

ε1,t+1
...

εG,t+1


and β1,t+1

...
βG,t+1

 =

β1,t
...
βG,t

+

η1,t+1
...

ηG,t+1

 .

The updated TVP-SUR model at time t+ 1 is written as

y1,t

ψ1,t+1

y2,t

ψ2,t+1
...
yG,t
ψG,t+1


=



X1,t

x1,t+1

X2,t

x2,t+1

. . .

XG,t

xG,t+1




β1,t+1

β2,t+1
...

βG,t+1

+



e∗1,t
ε∗1,t+1

e∗2,t
ε∗2,t+1

...
e∗G,t
ε∗G,t+1


, (3.9)

where the variance-covariance matrix is

Ωt+1 =


σ11Ω1,t+1 σ12It+1 . . . σ1GIt+1

σ21It+1 σ22Ω2,t+1 . . . σ2GIt+1
...

...
. . .

...
σG1It+1 σG2It+1 . . . σGGΩG,t+1

 ,

and Ωi,t+1 =
(
It+1 +Ai,t+1(It ⊗Σi)A

T
i,t+1

)
. Notice that the dispersion matrix of each time-varying

regression is also updated by Xi,tΣiX
T
i,t to encapsulate the new information available, namely,

Ωi,t+1 =

(
Ω̃i,t 0
0 1

)
=

(
Ωi,t +Xi,tΣiX

T
i,t 0

0 1

)
.

For the recursive estimation of the TVP-SUR model, consider re-arranging the observations of
the updated TVP-SUR model (3.9) as follows

y1,t

y2,t
...
yG,t
ψ1,t+1

ψ2,t+1
...

ψG,t+1


=



X1,t

X2,t

. . .

XG,t

x1,t+1

x2,t+1

. . .

xG,t+1




β1,t+1

β2,t+1
...

βG,t+1

+



ẽ∗1,t
ẽ∗2,t

...
ẽ∗G,t
ε∗1,t+1

ε∗2,t+1
...

ε∗G,t+1


, (3.10)

which is conformably written as(
vec({yi,t})

vec({ψi,t+1})

)
=

(
⊕iXi,t

⊕ixi,t+1

)
vec({βi,t+1}) +

(
vec({ẽi,t})

vec({ε∗i,t+1})

)
,

(
vec({ẽi,t})

vec({ε∗i,t+1})

)
∼
(
0,Ω∗t+1

)
.

Now Ω∗t+1 is given by

Ω∗t+1 =

(
Ω̃t 0
0 Σ

)
,
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where Ω̃t is the updated variance-covariance matrix of the first t observations. That is, (3.3) is now
revised to become

Ω̃t =


σ11Ω̃1,t σ12It . . . σ1GIt
σ21It σ22Ω̃2,t . . . σ2GIt

...
...

. . .
...

σG1It σG2It . . . σGGΩ̃G,t


= Ωt +⊕iXi,tΣiX

T
i,t

= C̃tC̃
T
t +⊕iXi,tCiC

T
i X

T
i,t

=
(
C̃t ⊕iXi,tCi

) (
C̃t ⊕iXi,tCi

)T
,

where C̃t is from the RQD in (3.5) and Ci is the Cholesky factor of Σi. Then it follows that

Ω∗t+1 =

(
C̃t ⊕iXi,tCi 0
0 0 C

)(
C̃t ⊕iXi,tCi 0
0 0 C

)T
.

Hence the GLLSP, which yields the BLUE of the updated by one observation TVP-SUR model, is
given by

argmin
β̃i,t+1,vi,t,v∗i,t,vt+1

∥∥∥∥∥∥
vec({vi,t})

vec({v∗i,t})
vt+1

∥∥∥∥∥∥
2

subject to

(
vec({yi,t})

vec({ψi,t+1})

)
=

(
⊕iXi,t

⊕ixi,t+1

)
vec({βi,t+1}) +

(
C̃t ⊕iXi,tĈi 0

0 0 Ĉ

)vec({vi,t})
vec({v∗i,t})
vt+1

 ,

where previous computations from the solution of the GLLSP (3.4) can be efficiently utilised to
reduce the computational cost. Namely, using the GQRD in (3.5) and (3.6) and the solution of (3.7),
the latter GLLSP becomes

argmin
β̃i,t+1,vi,tA,vi,tB ,v

∗
i,t,vt+1

∥∥∥∥∥∥∥∥


vec({vi,tA})
vec({vi,tB})
vec({v∗i,t})
vt+1


∥∥∥∥∥∥∥∥

2

subject to

 vec({yi,tA})
vec({yi,tB})
vec({ψi,t+1})

 =

 ⊕iRi,t

0
⊕ixi,t+1

 vec({βi,t+1}) +

L11,t L12,t ⊕iRi,tĈi 0
0 L22,t 0 0

0 0 0 Ĉ




vec({vi,tA})
vec({vi,tB})
vec({v∗i,t})
vt+1

 ,

which reduces to

argmin
β̃,vi,tA,v

∗
i,t,vt+1

∥∥∥∥∥∥
vec({vi,tA})

vec({v∗i,t})
vt+1

∥∥∥∥∥∥
2

subject to

(
vec({ỹi,tA})
vec({ψi,t+1})

)
=

(
⊕iRi,t

⊕ixi,t+1

)
vec({βi,t+1}) +

(
L11,t ⊕iRi,tĈi 0

0 0 Ĉ

)vec({vi,tA})
vec({v∗i,t})
vt+1

 ,

(3.11)

where ỹi,tA = yi,tA −L12,tvi,tB. The GLLSP in (3.11) is solved in two stages. Firstly, by computing
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the updating RQD(
L11,t ⊕iRi,tĈi

)
Pt+1,1 =

(
L̃11,t 0

)
, (3.12)

where L̃11,t ∈ <K×K is upper triangular and non-singular, and Pt+1,1 ∈ <2K×2K . Employing (3.12)
in (3.11) yields the equivalent GLLSP

argmin
β̃,ṽi,tA,vt+1

∥∥∥∥(vec({ṽi,tA})
vt+1

)∥∥∥∥2

subject to

(
vec({ỹi,tA})
vec({ψi,t+1})

)
=

(
⊕iRi,t

⊕ixi,t+1

)
vec({βi,t+1}) +

(
L̃11,t 0

0 Ĉ

)(
vec({ṽi,tA})

vt+1

)
.

Secondly, by computing the updating GQRD

QT
t+1

(
⊕iRi,t vec({ỹi,tA})
⊕ixi,t+1 vec({ψi,t+1})

)
=

(
⊕iRi,t+1 vec({yi,t+1A})

0 vec({ψi,t+1B})

)
, (3.13a)

and

QT
t+1

(
L̃11,t 0

0 Ĉ

)
Pt+1,2 = Lt+1 =

(
L11,t+1 L12,t+1

0 L22,t+1

)
, (3.13b)

where Ri,t ∈ <ki×ki , i = 1, . . . , G, Lt+1 ∈ <K×K are upper triangular and non-singular and Qt+1,
Pt+1,2 are orthogonal matrices of order K +G. The GLLSP is now given by

argmin
β̃i,t+1,vi,t+1A,vt+1B

∥∥∥∥(vec({vi,t+1A})
vi,t+1B

)∥∥∥∥2

subject to

(
vec({yi,t+1A})
vec({ψi,t+1B})

)
=

(
⊕iRi,t+1

0

)
vec({βi,t+1}) +

(
L11,t+1 L12,t+1

0 L22,t+1

)(
vec({vi,t+1A})

vt+1B

)
,

where (vec({vi,t+1A})T vTt+1B)T = P T
t+1,2((vec({vi,tA})T vec({v∗i,t})T )Pt+1,1 vTt+1)T . The latter

GLLSP is solved in a similar way to (3.7). The strategy for updating the TVP-SUR model with a
single new observation is summarised in Algorithm 3.1.

Algorithm 3.1 Estimating the updated TVP-SUR model (3.9) using orthogonal transformations.

1. Let ỹi,tA,Ri,t,L11,t and Pt,2 emanate from the solution of the GLLSP (3.4).

2. Compute the RQD
(
L11,t ⊕i Ri,tĈi

)
Pt+1,1 = (L̃11,t 0).

3. Compute the updating QRD in (3.13a).
4. Compute the updating RQD in (3.13b).
5. Compute vec({ỹi,t+1A}) = vec({yi,t+1A})−L12,t+1vt+1B.
6. Solve the triangular system ⊕iRi,t+1vec({βi,t+1}) = vec({ỹi,t+1A}) for βi,t+1.

3.2 Multivariate Smoothing

Consider now estimating βi,t based on information up to time M , M > t. That is, at time M
the estimates of βi,t will be re-estimated in order to be revised given the full sample of data. In a
way similar to the filtering of the TVP model, it obtains that

βM = βM−1 + ηM = · · · = βt +
M∑

s=t+1

ηs.

10



In order to derive the smoothing estimate of βi,t, say βi,t|M , given the full sample, consider the
following system of observations for each time-varying regression

ψi,t+1

ψi,t+2
...

ψi,M

 =


xi,t+1

xi,t+2
...

xi,M

βi,t|M +


εt+1

εt+2
...
εM

+


xt+1 0 · · · 0
xt+2 xt+2 · · · 0

...
...

. . .
...

xM xM · · · xM



ηt+1

ηt+2
...
ηM

 . (3.14)

The latter is given in compact form by

yi,t+1:M = Xi,t+1:Mβi,t|M + εi,t+1:M , (3.15)

where yi,t+1:M , Xi,t+1:M and εi,t+1:M are defined conformably to (3.14). The error term εi,t+1:M =

ei,t+1:M + Ãi,t+1:Mui,t+1:M has zero mean and variance-covariance matrix σ2Ω̃i,t+1:M = σ2(IM−t +

Ãi,t+1:M(IM−t⊗Σi)Ã
T
i,t+1:M). The system of regressions in (3.15) is used to form the following model(

vec({yi,t})
vec({yi,t+1:M})

)
=

(
⊕iXi,t

⊕iXi,t+1:M

)
vec({βi,t|M}) +

(
vec({e∗i,t})

vec({e∗i,t+1:M})

)

with

(
vec({e∗i,t})

vec({e∗i,t+1:M})

)
∼
(

0,

(
Ωt 0
0 Ωt|t+1:M

))
,

(3.16)

where the first block of rows in (3.16) is the TVP-SUR model (3.2) used in obtaining the filtering
estimates of the model up to time t. The variance-covariance matrix Ωt|t+1:M , which is the variance
of the last M − t observations when smoothing the estimates of (3.2), has a structure similar to
(3.3). That is, its block diagonal elements are given by Ωi,t+1:M = ⊕iσiiÃi,t+1:M(IM−t ⊗Σi)Ã

T
i,t+1:M

and its off-diagonal elements are σijIM−t, i, j = 1, . . . , G. Also let Ω̂t|t+1:M = C̃t+1:MC̃
T
t+1:M be the

Cholesky factorisation of the estimated Ωt|t+1:M .
The estimation problem of model (3.16) is now written as the GLLSP

argmin
βi,t|M ,vi,1:t,vi,t+1:M

∥∥∥∥( vec({vi,t})
vec({vi,t+1:M})

)∥∥∥∥2

subject to

(
vec({yi,t})

vec({yi,t+1:M})

)
=

(
⊕iXi,t

⊕iXi,t+1:M

)
vec({βi,t|M}) +

(
C̃t 0

0 C̃t+1:M

)(
P T

1,tvec({vi,t})
vec({vi,t+1:M})

)
.

(3.17)

Given (3.6) and (3.7), it follows that the latter is equivalent to

argmin
βi,t|M ,vi,tA,vi,t+1:M

∥∥∥∥( vec({vi,tA})
vec({vi,t+1:M})

)∥∥∥∥2

subject to

(
vec({ỹi,tA})

vec({yi,t+1:M})

)
=

(
⊕iRi,t

⊕iXi,t+1:M

)
vec({βi,t|M}) +

(
L11,t 0

0 C̃t+1:M

)(
vec({vi,tA})

vec({vi,t+1:M})

)
.

(3.18)

The solution of (3.18) is analogous to that of the GLLSP in (3.7) and follows from the updating
GQRD

Q̃T
(s)

(
⊕iRi,t vec({ỹi,tA})
⊕iXi,t+1:M vec({yi,t+1:M})

)
=

(
⊕iRi,s vec({ỹi,(s)A})

0 vec({yi,(s)B})

)
(3.19a)

and

Q̃T
(s)

(
L11,t 0

0 C̃t+1:M

)
P̃(s) = L̃(s) =

(
L̃11,(s) L̃12,(s)

0 L̃22,(s)

)
. (3.19b)
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In (3.19a)-(3.19b), Q̃T
(s) and P̃(s) are orthogonal matrices of order K + G(M − t), Ri,s ∈ Rki×ki for

i = 1, . . . , G, and L̃(s) ∈ R(K+G(M−t))×(K+G(M−t)) are upper triangular and non-singular, ỹi,(s)A ∈ Rki ,
yi,(s)B ∈ RM−t, i = 1, . . . , G. Algorithm 3.2 below summarises the steps for obtaining the smoothing
estimates using the proposed method.

Algorithm 3.2 Computing the smoothing estimates of the TVP-SUR model (3.16).

1. Let ỹi,tA,Ri,t,L11,t and Pt,2 emanate from the solution of the GLLSP (3.4).
2. Compute the updating QRD (3.19a).
3. Compute the RQD (3.19b).
4. Let (vec({ṽs,A})T ṽTs,B)T = P̃ T

(s)(vec({vi,tA})T vTt+1:M)T .

5. Compute vec({ỹi,(s)A}) = vec({yi,(s)A})− L̃12,(s)ṽs,B.
6. Solve the triangular system ⊕iRi,svec({βi,t|M}) = vec({ỹi,(s)A}) for βi,t|M .

3.3 Rolling Window Estimation of the TVP-SUR Model

While a model needs to be updated with the most recent data to keep the estimates up to
date, often it is possible that observations will need to be removed from a model so that they no
longer affect the estimation results. Observations are excluded from a model because they have been
detected to be outliers or influential data. Many a time, deleting observations from a model will
occur in parallel with adding observations. This is part of the estimation over a rolling window of
data and cross validation procedures.

Assume that the TVP model (3.2) has been estimated and at time t+ 1 a rolling window moves
forward acquiring one new observation and discarding the oldest one from the model. That is,
consider (3.9) and partition yi,t+1, Xi,t+1 and e∗i,t+1 as follows

yi,t+1 =

ψ
(d)
i

y
(r)
i

ψ
(n)
i

 , Xi,t+1 =

x
(d)
i

X
(r)
i

x
(n)
i

 and e∗i,t+1 =

e
(d)
i

e
(r)
i

e
(n)
i

 ,

where ψ
(d)
i , x

(d)
i , e

(d)
i correspond to the deleted observation from the ith regression of the model, y

(r)
i ,

X
(r)
i , e

(r)
i correspond to the remaining observations in the ith regression and ψ

(n)
i , x

(n)
i , e

(n)
i is the

new observation included in the the ith regression of the model. Using the above partitioning, and
applying a permutation of the model as in (3.10),(

vec({y(r)
i })

vec({ψ(n)
i })

)
=

(
⊕iX(r)

i

⊕ix(n)
i

)
vec({β̄i}) +

(
vec({e(r)

i })
vec({e(n)

i })

)
,

(
vec({e(r)

i })
vec({e(n)

i })

)
∼
(

0,

(
Ω̄(r) 0
0 Σ

))
.

(3.20)

For the sequential estimation of β̄i over a rolling window of data, consider the following TVP-SUR
model
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vec({ıψ(d)
i })

vec({yi,t})
vec({ψ(n)

i })

 =

⊕iıx(d)
i

⊕iXi,t

⊕ix(n)
i

 vec({β̄i}) +

vec({ıe(d)
i })

vec({ei,t})
vec({e(n)

i })

 ,

vec({ıe(d)
i })

vec({ei,t})
vec({e(n)

i })

 ∼ (0, Ω̄) ,
(3.21)

where ı denotes the imaginary unit, that is, ı2 = −1. The variance-covariance matrix in (3.21) is
given by

Ω̄ =

Cd ıC̃d,t−d ⊕iıx(d)
i,t Ci 0

0 C̃t ⊕iXi,tCi 0
0 0 0 C

Φ

Cd ıC̃d,t−d ⊕iıx(d)
i,t Ci 0

0 C̃t ⊕iXi,tCi 0
0 0 0 C

H

, (3.22)

where Φ is a signature matrix with entries ±1 in the diagonal and zeros elsewhere, and (·)H denotes
the conjugate transpose. The variance-covariance matrix in (3.22) is such that the effect of the
oldest observation is excluded from the current estimate but the new information from the acquired
observation will be incorporated. The imaginary unit in (3.21) gives the weight needed to downdate
the model, that is, to eliminate the affect of the first datum (Hadjiantoni and Kontoghiorghes, 2017).
The rolling window estimation problem is then given by

argmin
β̃,v

(d)
i,t ,vi,t,v

(n)
i

∥∥∥∥∥∥
vec({ıv(d)

i,t })
vec({vi,t})
vec({v(n)

i })

∥∥∥∥∥∥
h

subject to

vec({ıψ(d)
i })

vec({yi,t})
vec({ψ(n)

i })

 =

⊕iıx(d)
i

⊕iXi,t

⊕ix(n)
i

 vec({β̄i}) +

Cd ıC̃d,t−d ⊕iıx(d)
i,t Ci 0

0 C̃t ⊕iXi,tCi 0
0 0 0 C

vec({ıv(d)
i,t })

vec({vi,t})
vec({v(n)

i })

 ,

(3.23)

where the hyperbolic norm is used together with the imaginary unit ı to downdate the estimate of
the TVP-SUR model (Rader and Steinhardt, 1988). Namely, for a complex vector x, the hyperbolic
norm gives ‖x‖h = xHΨx where Ψ is a signature matrix and xH is the conjugate transpose of

x. Here, C̃t and ⊕iXi,tCi is the new information incorporated into the variance-covariance matrix
of the first t observations due to the inclusion of the new data point. Notice that the information
which updates the covariance matrix because of the deleted observations, i.e. C̃d,t−d and x

(d)
i,t Ci,

is multiplied with the imaginary unit since it has to be excluded from the model. The GLLSP in
(3.23) is solved by computing the corresponding RQ and generalised QR decompositions in a manner
similar to the updating but using hyperbolic transformations when information needs to be removed
from the TVP-SUR model (3.2).

4 Numerical and Computational Experiments

4.1 A numerical example

The Kalman filter is a fast recursive method which provides updated values of the coefficients,
when a new observation is acquired. The Kalman filter is based on matrix inverses, which can
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true βi,t+1 Updating SR-KF
i = 1 2.191550 2.202320 2.271559

0.024207 0.015785 -0.018808
-0.017334

i = 2 -2.978534 -2.986150 -2.985890
3.759932 3.770437 3.770096

i = 3 0.820482 0.809521 0.809445
1.621967 1.621543 1.621373

-3.996387 -3.999587 -3.999608
-2.894876 -2.892347 -2.892309

Table 1: Comparing the updating estimates of the SR-KF and the proposed Updating algorithm with the true
unknown parameters βi,t+1 for a TVP-SUR model when G = 3, where k1 = 3, k2 = 2 and k3 = 4.

be near singular or ill-conditioned, and may be the reason for inaccurate results (Golub, 1965).
The Kalman filter may provide misleading estimates in the presence of ill-conditioned matrices as
for example when the variance-covariance matrix is singular or near singular, and when the data
matrix is rank-deficient. Moreover, as the conventional Kalman filter algorithm does not restrict the
updated covariance matrices be positive semi-definite, the square-root Kalman filter, which solved
this problem by using the Cholesky decomposition, is preferred (Potter and Stern, 1963; Kaminski
et al., 1971; Grewal and Andrews, 2014).

The new method proposed herein, has been developed based on orthogonal transformations which
are known for their numerical privileges. To illustrate the numerical advantages of the proposed
method, compared to the Square-root Kalman filter (SR-KF) algorithm which is known to be nu-
merically more reliable than the conventional Kalman filter (KF), consider the TVP-SUR model in

(3.2) where the data matrix of the ith equation, that is Xi,t, is ill-conditioned. Specifically, let x
(t)
ij

be the jth predictor variable of the ith equation, that is the data matrix is given by

Xi,t =
(
x

(t)
i1 x

(t)
i2 · · · x

(t)
ik

)
.

Using synthetic data from the uniform distribution to generate yi,t and Xi,t, and the normal distri-
bution to generate the error term, the TVP-SUR model (3.2) has been simulated. Without loss of
generality, it is assumed that the first regression (i.e. i = 1) suffers from multicollinearity as follows:

x11 = 0.5x21 + 0.25x31 + 5e−7.

In the presence of multicollinearity, the new method employs QR decomposition with column
pivoting which deals with the rank deficiency of the data matrix Xi,t. The SR-KF and conventional
KF algorithms ignore that Xi,t is rank deficient and therefore, its rank deficiency is not handled.
Table 1 shows the true parameters of a TVP-SUR model with G = 3, where k1 = 3, k2 = 2 and
k3 = 4 and the estimated parameters obtained by the SR-KF and the proposed Updating algorithm,
in the presence of rank-deficiency. The empty cell at the third row of the column ‘true βi,t+1’ of
Table 1 indicates that there is collinearity and that the corresponding variable should be excluded
from the model. As it can be seen in the other two columns of Table 1, the proposed algorithm
detects collinearity and eliminates the corresponding variable from the estimated model as opposed
to the SR-KF algorithm which fails to detect it. It is also noticed that the proposed algorithm gives
better estimates in the presence of rank-deficiencies. Specifically, in the first time-varying regression
(i = 1), the SR-KF fails to estimate correctly the unknown parameters and it predicts a wrong
relationship between the predictor and the dependent variable (a negative coefficient is estimated
whereas the true parameter is positive).

To investigate further the estimation performance of the two algorithms, the estimated parameters
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of the SR-KF algorithm and those of the proposed new algorithm are compared with the true
parameters. In each case, the root mean squared error (RMSE) of the estimated parameters, obtained
by one of the two algorithms (SR-KF or Updating algorithm), compared with the true parameters
of the simulated model are calculated. Table 2 shows the RMSE obtained from the estimated
parameters of the two algorithms for different specifications of the TVP-SUR model in (3.2). For
each model specification, the RMSE of the two algorithms after 100 simulations of the underlying
model specification is reported. As it can be seen, the SR-KF algorithm accumulates considerably
more error compared to the new proposed algorithm.

RMSE
G SR-KF Updating
3 94.25 0.04
5 143.52 0.18
10 140.13 0.14
100 160.80 1.47

Table 2: The RMSE of the SR-KF algorithm and the proposed Updating algorithm after 100 simulations of models
with G = 3, 5, 10, 100 and ki = 3 ∀i = 1, . . . , G.

4.2 Computational evaluation

Experiments have been designed to assess the computational efficiency of the proposed algorithms.
Specifically, the strategies presented herein have been compared with existing ones which estimate
the model afresh. The computational efficiency of one algorithm compared to another algorithm is
defined as the ratio of the computational cost of the two algorithms. Here, the execution time (in
CPU seconds) required by each algorithm to compute the desired estimate is presented in order to
determine the computational efficiency of the proposed strategies.

To analyse the computational performance of the proposed methods and their counterparts, the
theoretical complexity analysis has been analysed and experiments based on synthetic data have been
conducted. For the efficient implementation of the new methods, sequential and recursive strategies
which exploit the special sparse structure of the matrices are employed (Yanev and Kontoghiorghes,
2007; Hadjiantoni and Kontoghiorghes, 2017, 2018). Three cases with the corresponding algorithms
have been considered. Specifically, it is assumed that the TVP-SUR model has been estimated using
the initial dataset and then, new observations become available.

Firstly, the problem of estimating the TVP model (3.9), which incorporates the effect of a single
observation is investigated, by employing the SR-KF algorithm (see for example (Grewal and An-
drews, 2014, Chapter 6)), and by implementing the new Updating algorithm (see Algorithm 3.1 in
Section 3.1) which solves the GLLSP (3.11). Assuming that ki = k, ∀i = 1, . . . , G, the theoreti-
cal complexities of the SR-KF algorithm and Algorithm 3.1, when the updating RQD in (3.12) is
computed explicitly (ignoring the special sparse structure of ⊕iRi,tĈi), are given approximately by
G3k2(18k/3+7) and G3k2(10k+4)/3 floating point operations, respectively. When the special sparse
structure of ⊕iRi,tĈi is taken into account, the approximate complexity analysis of Algorithm 3.1

reduces to 2Gk2(2G2/3 + k). This is of a lower order of complexity (by k) than when ⊕iRi,tĈi is
formed explicitly in the updating RQD in (3.12). The latter suggests that Algorithm 3.1 will always
be computationally more efficient than the SR-KF algorithm. Table 3 presents the execution times,
in CPU seconds, of both algorithms which recursively add the effect of one new observation into
the model 1000 times. That is, the execution times presented in the third and fourth columns of
Table 3 are the sum of re-estimating the model with one extra observation 1000 times. Examples
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with various numbers of time-varying regressions G and number of unknown parameters ki with
ki = k, ∀i = 1, . . . , G in each time-varying regression are shown. The results in Table 3 show
that the Updating algorithm outperforms the SR-KF as it is around 2 times faster than the latter
algorithm.

G ki SR-KF Updating
SR-KF

Updating
10 10 76.4 35.0 2
10 50 306.1 243.9 1
25 10 112.3 64.3 2
25 25 558.8 368.3 2
50 2 106.7 48.7 2
50 10 123.0 68.7 2
50 25 4847.1 2572.7 2
50 50 34317.6 17855.7 2
100 10 2472.0 1213.2 2
100 25 37187.0 19435.4 2
100 50 314391.0 115253.0 3

Table 3: Total execution times (in CPU seconds) of the recursive estimation of the TVP-SUR model. The SR-KF
and Updating algorithms sequentially estimate the TVP-SUR model with one new observation at 1000 points in time.
Models with different numbers of regressions G and unknown parameters ki are presented.

Secondly, consider deriving the smoothing estimates in (3.16) by the Kalman smoother (KS)
algorithm, or by the new revising algorithm, (see Algorithm 3.2 in Section 3.2) which solves the
GLLSP (3.17). The order of the theoretical complexity of the KS algorithm is approximately given
by 19G3k3s/3 and it is higher than that of Algorithm 3.2 which is approximately given by 4G3k2s/3,
where s = M−t is the number of time points the algorithms go backwards. As a result, the proposed
algorithm for deriving the smoothing estimates is always computationally more efficient than the KS
algorithm. This is also confirmed by the computational experiments. Table 4 compares the two
algorithms when each of them, at the end of the period M = 60, goes backwards 5 points in time to
compute the smoothing estimates. That is, βM−i|M , i = 1, . . . , 5 are estimated. Table 4 presents the
average time, multiplied by 10, required of the corresponding algorithm after 1000 iterations. The
times reported are in CPU seconds. The Revising algorithm is considerably computationally faster
than the KS algorithm. Specifically, the computing performance of the Revising algorithm becomes
more effective when both the number of regressions G and the total number of unknown parameters
K increase.

Finally, consider estimating the model over a rolling window of data. Namely, let the fixed size
estimation window move forward at one point of time to capture the information from the next data
point while excluding the effect of the oldest data point. That is, estimate (3.20) by employing
the SR-KF algorithm or by solving the GLLSP (3.23) using an Up-downdating algorithm similar to
that in (Hadjiantoni and Kontoghiorghes, 2017). Table 5 reports the total time, in CPU seconds, to
estimate the model over a rolling window (of fixed size) which rolls ahead one data point 1000 times.
The ratios of the execution times in Table 5 confirm that the recursive Up-downdating algorithm
performs better than the SR-KF algorithm and, similarly to the previous computational results, the
efficiency increases when the models’ dimensions increase.

Overall, the results show that the recursive algorithms which utilise previous computations out-
perform the algorithms which estimate the model afresh. In Table 4 and Table 5, we can see that
when keeping G constant the computational efficiency becomes more significant when the number of
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G ki KS×10 Revising×10
KS

Revising
10 10 1.1 0.3 4
10 25 2.6 0.5 5
10 50 7.1 1.1 6
25 4 1.1 0.4 3
25 10 2.6 0.7 4
25 25 23.5 2.9 10
50 2 1.1 4.7 2
50 10 12.6 2.5 5
50 25 231.7 8.7 27
50 50 2083.1 32.0 65
100 10 116.9 11.9 10
100 25 2225.4 64.2 35
100 50 136763.7 2384.6 57

Table 4: Total execution times (in CPU seconds) of the smoothing estimates for the TVP-SUR model. The KS
and Revising algorithms go backwards at s = 5 points in time to compute the smoothing estimates of the TVP-SUR
model. Models with G = 10, 25, 50, 100 regressions and different dimensions of unknown parameters ki are estimated.
The execution times presented is the overall time required to look backwards at 5 points in time. The average times
of 1000 such repetitions, multiplied by 10, are reported.

G ki SR-KF Up-downdating
SR-KF

Up-downdating
10 10 278.0 104.6 3
10 25 2016.8 204.7 10
10 50 12108.7 189.3 64
25 10 2246.2 59.8 38
25 25 26479.3 362.8 73
25 50 216878.3 2797.28 78
50 10 15169.7 276.5 55
50 25 231573.0 2993.0 77
50 50 152281.0 2016.83 76
100 10 44784.1 2154 21
100 25 855135.0 22055 39
100 50 11602034.1 141506.1 82

Table 5: Total execution times (in CPU seconds) for the rolling window estimation of the TVP-SUR model. The SR-
KF and Up-downdating algorithms estimate the TVP-SUR model over a rolling window of data where one observation
is added to the model and one is deleted. Models with initial number of observations t = 59, G = 10, 25, 50, 100
regressions and different numbers of unknown parameters ki are presented. The time required to up-downdate the
model with one observation 1000 times is presented.

unknown parameters ki increases. These results also show that the computational efficiency becomes
notable when both G and K increase. This demonstrates the practical usability of the proposed
methods in estimating TVP models of high dimensions.

In addition, when ηit are assumed to be correlated and the structure of Ω
(η)
t in (3.8) is assumed,

the block structure of the matrices involved in the RQD in (3.5) is affected but not the remainder
of the solution of the GLLSP in (3.4). Similarly, for the updating of the TVP-SUR model in (3.10),
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the block structure of the updating RQD in (3.12) of Algorithm 3.1 is affected. However, recall
that Algorithm 3.1, whose approximate theoretical complexity analysis is G3k2(10k+ 4)/3 when the
block structure of the matrices in (3.12) has been ignored, requires less floating point operations than
the SR-KF. Therefore, Algorithm 3.1 is computationally more efficient than the SR-KF under the
assumption of cross-sectional correlation between the time-varying βt. Regarding the multivariate
smoothing in Section 3.2, the Cholesky factorisation of Ωt|t+1:M will have to be computed which will
cost an extra (Gs)3/3 floating point operations. Nonetheless, the approximate theoretical complexity
of Algorithm 3.2 is still lower than that of the Kalman smoother.

4.3 Empirical examples

To illustrate the practicability of the proposed methods, experiments based on real applications
from asset pricing and macroeconomics have been conducted. The seemingly unrelated regressions
(SUR) model has been widely used for the estimation of the capital asset pricing model (CAPM)
when more than one assets or portfolios are to be analysed simultaneously and contemporaneous
correlation among assets is non zero, see for example (Gibbons, 1982; Pástor and Stambaugh, 2002;
Wu and Chiou, 2007). Besides, when considering assets from different markets, the important factors
in the asset pricing equations may be different across markets. The SUR model in this case will be
more efficient than considering each equation separately (Zellner, 1962; Casas et al., 2019). Moreover,
evidence has shown that an asset’s beta and other related risk factors change over time (Fama and
MacBeth, 1973). As a result, it is desirable to allow the coefficients in the CAPM be time-varying.

Dynamic SUR models which assumed that the regression coefficients are time-varying have been
previously examined. Within the framework of the models and applications studied in Wu and Chiou
(2007), Wang (2010) and Bianchi et al. (2019), consider investigating systematic risk using the plain
CAPM of Sharpe (1964) and Lintner (1965), the three-factor CAPM in Fama and French (1993) and
the five-factor CAPM in Fama and French (2015) when the coefficients are assumed to vary over
time following a random walk. More specifically, using portfolios constructed by Fama and French�

consider analysing i) the international market based on regions (North America, Europe, Japan, and
Asia Pacific), and ii) 25 portfolios formed on Size and Book-to-Market, using the plain, the three-
factor and the five-factor CAPMs. These correspond to time-varying SUR models with dimensions
where G = 4 and 25, respectively and ki = 2, 4, 6. In addition, consider an empirical analysis of
time-varying systemic risk, on the S&P100 firms, where G = 100 and the time-varying parameters
are also ki = 2, 4, 6. The computational times and the corresponding efficiency to estimate the
aforementioned models using the SR-KF, the KS and the proposed Updating, Revising and Up-
downdating algorithms have been examined.

In small dimensions, that is when ki = 2, 4, 6, the computational times and efficiency do not
change significantly for different ki. For this reason, in Table 6 only the times to estimate the models
with dimensions G = 2 with ki = 2, G = 25 with ki = 4 and G = 100 with ki = 6 are reported.
The total execution times, in CPU seconds, after 1000 repetitions are presented. Moreover, in
Table 7, consider the estimation of a small (G = 3, K = 39), medium (G = 7, K = 203) and large
(G = 25, K = 2525) time-varying parameter vector autoregressive (TVP-VAR) models as in Koop
and Korobilis (2013). Applications with very large K, e.g. above 2500 can be seen in bio-informatics
where the number of genes (features) sometimes exceed 15,000; see for example Kelemen et al. (2006).

The results based on the empirical examples in Table 6 and Table 7 are similar with those in
the preceding section, and show that the new algorithms perform better than the SR-KF and the

�http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_historical_be_data.

html
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G ki SR-KF Updating
SR-KF

Updating
4 2 73.4 32.7 3
25 4 82.2 35.6 2
100 6 635.6 381.9 2

(a) Panel A: Updating

G ki KS Revising
KS

Revising
4 2 103.8 27.9 4
25 4 115.9 34.5 3
100 6 2043.9 464.6 4

(b) Panel B: Smoothing

G ki SR-KF Up-downdating
SR-KF

Up-downdating
4 2 28.4 2.8 10
25 4 404.0 27.3 15
100 6 31739.3 1014.2 31

(c) Panel C: Rolling window

Table 6: Total execution times (in CPU seconds) of the existing and proposed algorithms when the time-varying
asset risk is explored for a system of G = 4, 25, 100 portfolios. The number of parameters to estimate are ki = 2 for
the plain-vanilla CAPM, ki = 4 for the three-factor CAPM, ki = 6 for the five-factor CAPM. The times required to
perform the underlying tasks (updating, smoothing or rolling window estimation) 1000 times are presented.

G K SR-KF Updating
SR-KF

Updating
3 39 76.8 34.2 2
7 203 93.4 48.9 2
25 2525 3538.2 56.1 2

(a) Panel A: Updating

G K KS Revising
KS

Revising
3 39 1.9 0.5 4
7 203 90.9 5.3 17
25 2525 20764.2 205.2 101

(b) Panel B: Smoothing

G K SR-KF Up-downdating
SR-KF

Up-downdating
3 39 125.9 94.5 1
7 203 1054.9 145.36 7
25 2525 277961.4 2102.5 132

(c) Panel C: Rolling window

Table 7: Total execution times (in CPU seconds) of the existing and proposed algorithms for the recursive estimation
of time-varying parameter vector autoregressive models when G = 3, 7, 25 and the number of time-varying parameters
to be estimated are K = 39, 203, 2525, respectively. The times required to perform the underlying tasks (updating,
smoothing or rolling window estimation) 1000 times are presented.

KS even for models of small dimensions. In conclusion, the new proposed algorithms offer numerical
and computational advantages in the estimation of large-scale time-varying regression models.

5 Conclusions and Future Work

The estimation of the multivariate TVP model using a numerical method, which is alternative to
the conventional Kalman filter, has been investigated. The TVP model can be written as a general
linear model and therefore be estimated with the method of GLS (Sant, 1977). However, using GLS
to estimate such a model is computationally expensive and numerically inaccurate due to the com-
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putation of large matrix inverses. Therefore, the proposed method considers the equivalent GLLSP
to provide the estimates of the model. The GLLSP method has been shown to be computationally
faster and numerically more stable than solving the normal equations to obtain the GLS estimator
(Paige, 1979).

Herein, numerical methods have been investigated for the efficient estimation of the TVP and
TVP-SUR models. Various cases have been examined for the efficient estimation of the model when
the estimates of the unknown parameters need to be re-computed after changes occur in the dataset.
Specifically, the case of updating the model with one new observation and also that of deriving the
smoothing estimates of the model are examined. Finally, the simultaneous addition and deletion of
observations (up-downdating) within the context of rolling window estimation is explored.

The algorithms developed herein, take advantage of the special sparse structure of the models
and utilise efficiently previous computations. Experiments have been carried out to analyse the
computational performance of the proposed algorithms which update the model with one new ob-
servation, compute the smoothing estimates of the model and estimate the model over a rolling
window of data. The computational results show that the proposed algorithms are computationally
more efficient than their counterparts and that their performance becomes more significant in high
dimensions. This demonstrates the usefulness of the proposed methods in practical problems of
large-scale multivariate TVP models. The Appendix, provides information about the estimation and
computation of the unknown covariance matrices. As the initialization of both algorithms (proposed
Algorithm 3.1 and the SR-KF) are affected by the estimation of the unknown covariance matrices,
the computational performance discussed is not affected.

Future work will consider the estimation of multivariate TVP models using a high-dimensional
setting where the number of covariates exceeds the sample size, resulting in a singular variance-
covariance matrix. Having more parameters to estimate than available observations will affect the
estimation of the initial model (see (3.2)), but the updating when an extra data point arrives will
be straightforward using the novel methods developed herein. Future work could also extend the
proposed algorithms to consider their parallelisation, given existing strategies for parallelising updat-
ing and/or downdating QR decompositions (Yanev and Kontoghiorghes, 2006, 2008). Furthermore,
models with a more complex time-varying structure should be addressed. For example, to allow for
a time-varying variance-covariance matrix. Additionally, the estimation of time-varying parameter
vector autoregressive models using the proposed numerical methods and their extension to model
selection merit investigation.
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Appendix Estimating the covariance matrix

To derive the feasible GLS estimator of βt in (2.2), estimators of σ2 and Ση are needed, since

they are often unknown. A two-stage least squares procedure, similar to that in Carraro (1985), can

be applied to derive consistent estimators of σ2 and Ση for the univariate TVP model in (2.1) and

for Σ, Σi, i = 1, . . . , G of the TVP-SUR model in (3.1).

Specifically, for the estimation of σ2 and Ση for the TVP model in (2.1), consider the model

yt = Xtβ0 +Btũt + et, Btũt + et ∼
(
0, Ω̃t

)
, (A.1)

where yt, Xt, et are defined as in (2.2), and Bt, ũt are given by

Bt =


x1 0 · · · 0

x2 x2
. . . 0

... · · · 0
xt xt · · · xt

 , ũt =


η1

η2
...
ηt

 . (A.2)

Let the error term in (A.1) be written as wt = Btũt + et, where Ω̃t = σ2It +Bt(It ⊗W )BT
t and

W = σ2Ση. In the first stage, applying ordinary least squares (OLS) to (A.1) gives a consistent

estimator of Ω̃t, namely ˆ̃Ωt = ŵtŵ
T
t , where ŵt = yt −Xtβ̂0 (Carraro, 1985). In the second stage

of this procedure, the covariance matrix W will be estimated by taking advantage of the structure

of Ω̃t. In particular, the l,mth element of Bt(It ⊗W )BT
t is given by xlWxTm, l,m = 1, . . . , t.

Therefore, applying the vector operator (see Koning et al. (1991)), yields, for the upper triangular

part of Ω̃t, the vector ω
(u)
t , that is

ω
(u)
t =

δ1 x
(1)
ω

...
...

δt x
(t)
ω

( σ2

vech(W )

)
≡
(
∆t X

(t)
ω

)( σ2

W ∗

)
, x(l)

ω = [(xl ⊗ xm)m]lm=1 ,

where ω
(u)
t ∈ Rt(t+1)/2, δl ∈ Rt−l+1 has all elements 0 except the last one which is 1, l = 1, . . . , t,W ∗ ∈

Rk(k+1)/2 and vech(·) denotes the vector operator which also takes into account half-vectorisation

(since Ω̃t is a symmetric matrix). Then, using the estimator of Ω̃t, the second stage regresses ω̂
(u)
t

on (∆t X
(t)
ω ) and yields estimators of σ2 and W ∗, namely(

σ̂2 (Ŵ ∗)T
)

=
(
(∆t X

(t)
ω )T (∆t X

(t)
ω )
)−1 (

∆t X
(t)
ω

)T
ω̂

(u)
t , (A.3)

which have been shown to be consistent (Carraro, 1985). As a result, the estimator of Ση can be

computed, that is, Σ̂η = σ̂−2Ŵ ∗. A sufficient identification condition requires that rank(∆t X
(t)
ω ) =

1 + k(k + 1)/2 and t ≥ 1 + k(k + 1)/2 (Swamy and Tinsley, 1980; Carraro, 1985). Then, once Σ̂η

has been obtained, the feasible GLS estimator of β̂t can be derived by solving the GLLSP in (2.3).

For the TVP-SUR model of Section 3, the two-stage least squares procedure described above can

be applied to each time-varying regression in the TVP-SUR model (3.1). Specifically, let yi,t, Xi,t

and ei,t be defined as in (3.1) and let Bi,t, ũi,t and Ω̃i,t be defined conformably, with the equivalent

specification as in (A.2), yielding the linear model

yi,t = Xi,tβi,0 +Bi,tũi,t + ei,t, Bi,tũi,t + ei,t ∼
(
0, Ω̃i,t

)
, i = 1, . . . , G. (A.4)
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Applying OLS to (A.4) derives ŵi,t = yi,t − Xi,tβ̂i,0, where wi,t = Bi,tũi,t + ei,t, and thus, the

consistent estimator ˆ̃Ωi,t = ŵT
i,tŵi,t. The residuals ŵi,t are used to obtain consistent estimators of Σ

and Σi, i = 1, . . . , G, by applying the second stage of the procedure described above.

The OLS steps (in (A.1) and (A.3)) can be derived by employing the QRD of the corresponding

matrices. This guarantees numerical stability and computational efficiency but also facilitates the

updating of the estimators when new data points become available. Specifically, in the first stage, the

OLS of (A.1) can be obtained by using the QRD of Xt and applying the orthogonal transformations

on yt, namely the QRD in (2.4a) is required, (or equivalently the QRD in (3.6a) for the TVP-SUR

model). In the second stage, the QRD of (∆t X
(t)
ω ) will need to be computed and the orthogonal

transformations will be applied on ω̂
(u)
t , namely

QT
∆,t

(
∆t X

(t)
ω ω̂

(u)
t

)
=

(
R∆,t ωtA

0 ωtB

)
. (A.5)

When a new data point becomes available, say xt+1, and one wishes to repeat the above procedure

for the estimation of the related covariance matrices, updating QRDs can be applied in the two stages.

That is, consider the updated, with one extra data point, model

yt+1 = Xt+1β0 +Bt+1ũt+1 + et+1, Bt+1ũt+1 + et+1 ∼
(
0, Ω̃t+1

)
.

In the first stage the updating QRD is computed, that is

QT
t+1

(
Rt ỹtA
xt+1 ψt+1

)
=

(
Rt+1 yt+1,A

0 yt+1,B

)
, (A.6)

or equivalently, the updating QRD in (3.13a) will apply for the updated TVP-SUR model. In the

second stage, as Ω̃t+1 has increased in dimensions by a column and a row of length (t+1), compared to

Ω̃t, an updating QRD which augments R∆,t of the QRD in (A.5) with the extra column is computed.
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