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Abstract

The hypothesis that destructive mass extinctions enable creative evolutionatipmadi
(ficr eat i v eisocéntralto classic toncepsfimacroevolutioh? However, the relative
impactsof extinction and radiationn species cabccurrencénave not been directly quantitatively
comparedhcross the Phanerozoic Edfere weuse a novel application afachine learningML) to
generate a spatial embeddimgultidimensional ordination)f thetemporalco-occurrence structure
of the Phanerozoifssil record coveringl,273,254Paleobiology Databas®currences fot 71,231
embeddedpecies. Thifacilitatessimultaneous comparison wfacroevolutionarylisruptionsusing

measures independent of secular diversity trefiiong the 5%mostsignificantdisruption time,



we identify the big five mass extinction eventevenadditional mass extinctionsyo combined
mass extinctiofradiationeventsand fifteenfimass radiatiorts In contrast to narrativemmphasising
postextinction radiation’s®, the propotibnally mostcomparablanass radiationandextinctions
(such as the Cambrian explosimdendPermian mass extinctioa)ye typicallydecoupled in time
refutingany direct causal relationship between thakte thenshow that, in addition to extinctiohs
evolutionary radiations themselves caaselutionarydecay (hodelledco-occurrencerobability
andsharedraction of speciebetween timeapproaching zejpa concept which weescribe as
idestr uct iAdiecttest of thettine tonverthresholdmacroevolutionarglecay (shared
fraction of speciebetween two times= 0.1) counted byt h decafic | o cekealssawtoothed
fluctuations around a Phanerozaieanof 18.6 million yearsAs the QuaternaryPeriodbeganata
belowaveragealecayclock timeof elevenmillion years modern extinctionfurther increasé i f e 6 s

decayclock debt

Main

The aestructive effects ofxtinction, especiallymassextinction eventsncludedirect
elimination of upto ~75 percent of living spect, resultingdecayof evolutionary and ecological
communitieé* andpotentialecosystem collapdeHowever, najor creativé impactshavealsobeen
hypothesisedia the vacation of ecologitaiched, postextinction diversificatioh altered
evolutionary trajectorié$ andshifts in thedominance of particular clades, including our &wiv.
We group such latter hypotheses under the concept of evolutiirastive destructian In the
weaksense, this predicts that extinctions have often enabled subsequent diversifidatidveshard
sense, the hypothesis of creative destruction caxjpesse@ds a causative necessity: thajor
radiatonsrequire prior massextinctions>°% Recently however classicnarrativesof mass
extinction replacement ancecovery have been called into question by complicating fastmtis as

significantdiversification predatinga proposedenablingextinction'!, protractedextinctiors'?, and



debates on mass verdamckground extinction rates and effécts addition,extinction and radiation
may theoretically benore or lesslecoupledn time'®. New groups mightadiatewithout a preceding
decrease in diversitfpure evolutionaryi ¢ r e a On tlrerothber handiological groups lost in
mass extinctions may not be replaceitherimmediately omat all, for example due to the
temporary>“or permanengliminationof the ecological niche they represgmireevolutionary
iid e s t r uFkutthermorgwg proposehatthe evolutionary radiation of one group may itself
causeevolutionarydecay(the dilutionby origination,or erosionby extinctiorf, of pre-existing
communities)a concept whickve describeconversely asu é t e g & r Howeverttheo n 0 .
relativeevolutionaryimpacts, balance and timimg radiationand extinctiorhave nofpreviously
beenguantitativelytested Thesefundamental knowledge gaps affect assessments and predictions of
recentextinction impacts and recovery potential, which require quantitative baselines from historical
diversificationandextinctior?.
Machine learning o time structure in the fossil record

Our machine learningML) embeddingnethod (Supplementary Computer Cogdengthods
summary figure, Extended Ddftéy. 1a) allocates every fossil species a location in a multi
dimensionabkpatial embeddingn which proximity represents the probabilityteporalco-
occurrencédthe probability assigned by the ML model to whether speaiesbserved too-occur in
time, equaton 1). This optimises, over the global record of species occurrences, the relative spatial
position of each specigsuch that species whidverlapped in time ardose together and species
thatneverco-existedare far apariThis enablesisualisation of the time structure of species co
occurrencesind revealsnajor disturbances in the histasylife. Co-occurrencef fossil species was
definedatrelativelysmall time incrementsf 1 million years, enabling exploitation of the full
tempaoal resolution of raw occurrence data (which dfgsdetection of evolutionary phenomghi
Setsof co-existingspeciesare the fundamental constituents of any evolutionary biota, which may

persist (to a greater or lesser exteat)one or more taxonomic leveld 16, A set of ceexisting



species is alsthe maximal set for possible ecological interactj@isceco-occurrencen timeis
necessarfthough not in itself sufficieff) for ecological interactioriTherefore, émporal ce
occurrence probabilitglsoprovidesanevolutionarily(andthereforeecologically meaningful
distance measure betwefassil specieghatfacilitates newanalyses othe persistence versus decay
of co-occurrence. The machindearnt distances are then relateeéxtaustively calculated measures
of species occurrence across tifsleared species fractidmetween compared timesnd

proportionate extinctiocrversusorigination'®. In concert, these measum@svide new insights into
therelativeimpactsand timingof extinction andadiation independent of background trends in
diversity (computer simulations, Extendedta Fig. b-g).

The analyses ateased on global fossil occurrences (finds of fossil species from gives time
and geographic locatighpublicly availablein the Paleobiology Database (PBDBicluding
1,273,254occurrence$or 171,231 speciesn the complete datasétfter strictdata screening to only
those occurrences classified to species and phylum level the dataset 688886 occurrences
for 137,779peciesThe datasetoversa broad taxonomic sample of 64 animal, plant and protist
phylaand extends frorthe NeoproterozoiEonto therecentpast with unbroken Phanerozoic data
coverage fronb32 Ma in the Cambrian Periad today (0 Ma)

These analysgsermit new quantitative tests of both longstanding and novel hypotheses in
macroevolutionincluding:1, Simultaneous comparison of the scale and pattern of
macroevolutionarylisruptions across the Phanerozoic fossil recqrQuantitative assessmenttbe
relative balancand timing ofmassradiatiors and extinctios from 580 Ma to the preser8, Direct
tess of the hypothesis of constagnvolutionarydecay and 4, the corresponding impacts of extinction
and radiatioron macraeevolutionarydecay versupersistence
Time structure of the fossilrecord

Thetemporal ceoccurrencestructure of the fossil records represented by our multi

dimensional machinkarnt spatial embeddingas first visualised by using principal component



analyss (PCA)to generate lower dimensional projections from the fulditBensionakmbedding
(Fig. 1).The spatial embedding method takes temporala@mrrence structure, usually exclusively a
property of groups of specigs**® and translates it into an optimal embedding location for each
individual species. Thifacilitatessimultaneous representation of the pattern of overlaps and
separations between species time ranges irotsfl fecordthe time structure of species-co
occurrencesHere,evolutionaryrestructuring events during the history of life are visible as shifts in
species capccurrence structure in spatial embedding projections to 3D, 2D or 1DL(RGA,
explained varianceaxis 1,26%;2, 15%; 3, 1099. In contrast, a simpler method applying PCA
directly to vectors of species time occurrences recovers coarssttirotire but not major
evolutionary events (Supplementary Computer Cod8®) bootstrap datsubsamples
(Supplementary Computer Code 6) showed local stability of relative embedding positions across 18
retrained replicates (Extended Data Fig). 2

Marked effects omemporal ceoccurrencestructure are apparent during episodes of both
diversificaion and extinction. For exampléne endPermian mass extinctiqnt he &égr eat dy
corresponds to a major brepkint in caoccurrence among species occurring before and after the
boundary between the Paleozoic and Mesozoic eras (red ttrdotgdions Fig. 1)All our analyses
recoverthis endPermian mass extinction as the mgighificantrestructuring event in the
continuousPhanerozoic fossil recoahdthe mostmarkedbreak with preceding timd&ig. 2a,
Extended Data Figb-e), as further described belottowever, major restructuring events are also
identified during episodes of diversificatfdn
Balance between radiatiorand extinction

Attempts tocharacterise macroevolution have often focussed on mass extinctions and
subsequent ecol ogi cal repl acement s, i ncluding
destructi ono wh-socaldradiasoasuanudre freteaing mass exgnetions

However, comparisons @foportionate originatioli versus extinctiohat 1 million year increments



through the Phanerozoic E¢Bupplementary Computer CodeilR)stratethat evolutionary
fdestructiono and fAcreationo have been al most
between these extremes (FigEXtended Data Fi@). All of the big five mass extinction events
previously identified based on drops in Faw subsampled diversity are among the 5% most
significant times okvolutionarydisruption identified here. However, among the most significant
disruptiontimeswe additionally identify seveathermass extinctiondifteen comparablescale
diversifications, which we therefore callh masgiradiatiors, a ncdmbihed mass extinctien
radiation eventgFig. 3, Table 1)From either side of this continuum it is therefore possible to
identify mirror (tspwhichishouotlee knoshctpselyelvesisedsrapdrtiors wfe n
species entering or exiting the fossil rec@Fdy. 3 Table ). For example, the mosktreme mass
radiation is the signal of the Cambrian explosion at 541 Ma, at which 87% of species enter the recor
and 12% leaveThe closest mirror to this is tleadPermianmass extinctionwhichsaw73%
extinctionbut also 1% originationwithin amillion year window

This analysishowsthat the most comparabheassradiatiors versus extinctiosi(e.g. mirror
events among the 5% most significant disruption tifmiable ) are in general temporally
decoupled, strongly arguing against an immediate causal connection between them. In particular, the
proportionately most extreme masdinctionswerg necessarilynotaccompaniedby a radiation of
comparable scopsithin the same 1 My time windo{able ). Nor are themass extinctions
generally observed to be closely followed by a mirroring mass radi@earson correlation r =
0.20, p = 0.295, ShapHw/ilk W = 0.934) which would be predicted by nickracation andlirect
replacement for exampté'® Instead, the events in Phanerozoic history which have created
proportionately most diversifincluding mass radiations at the beginning of@aenbrian,
Carboniferous, Late Ordovician and early Cretacebagg generally occurred at timixst were
widely separated from theassextinctionevents Table 1,Extended Data Figud). The most

extreme of theemass radiations are the Cambrian explosion (froin\&&)'8-2% in which species



representing many animal phyla first appear, and the beginning of the GarbasiPeriod358
Ma), in which a signal of major terrestrialisation is evident in both plant and animal speciations
(Extended Data Figp). Thereforethe proportionatelyjlargestradiatiors arguablyoccurred nogfter
ecologicalnicheswerevacatedy comparablescale extinction's>'°but whenlife exploitednew
realms ofopportunity®1821.22 One notablexception to tis temporal decoupling of mass extinction
and radiations the enéPermian mass extincticat 252 Mawhich was followedlosely?*82°by two
significant radiation events at 251 and 247. Mapping of these mass turnover events, evident from
proportionate extinction or origination, onto the visual output from our machine learnt spatial
embedding, shows that these are associated with majar ishgfbecies coccurrence structure
(Figs. 12, Extended Data Fig. 29,e
Macroevolutionary decay

Visualisation of all possible timto-time distance (Fig. 2) generallyshowsa trail of high,
then decayinggo-occurrencerobabilities Thistrail extend from a giverbasetime, back to those
times beforat in which existingspeciegsemain comparatively closely located within our multi
dimensional spatial embdding.Its fall-off represents thprocesf macroevolutionary turnovever
which the probability of species-@zcurrence falls tavery low level.Across the Phanerozoic, the
exhaustively calculated fraction of fossil species shared between any two times (which is closely
conceptually relatetb the ceoccurrence probability butterehasthe additionaladvantage ofon
heuristicvaluecalculation) falls below 0.1 in a meani8.6 million years (taxonomically screened
species dataset, standard devigt®b = 9.84 median =17 My). This decayrateresuls from the
distribution ofspecies occurrence times and rangdschin aggregateomprisethe fossil record
(90% ranges <= 19.8 Mynedian =6.5My, additionalsummary statistics, Extend&data Fig.6ab).
The fraction of specieshared between times falls below 0.5 in a mean of 4.43@y<3.1),
therefore this represents ttedativehalf-life of specieccurrence A lower threshold of 0.05 is

reachedata mean of 30.6 MySD =14.9).For comparison against the shafedttion, he



probability of species ecoccurrenceacroscompared timescélculated fronthe meantime-to-time
embedding distance, Fig. @lls below 0.1 ira mearof 30.4million yearsfor the complete dataset,
similarly 32.5 My after strict taxonomiceening Therefore pn averagdor atime seriesby
approximatelyl9 million years after istartsproportionallyvery few, to none of the species that
existwill be thosethat werepresent at thbeginning. Comersely by this time thexistingspecies
will, on average, be entirely new

Across the Phanerozoic as a wholés time tooverthresholdevolutionarydecay fluctuates
around an approximately constame¢an(Fig. 2). This equilibrium level has be@onsistently
returned to over Phanerozoic histolgspite secular diversity increases during this p&tidam
which our measures of @mccurrence structerarelargelyindependentExtendedData Fig. 1b-g,
6b, 76. Based ortonstant extinction probability estimates faxaof different agesvVan Valen
predicted that theffective environment(ecologicaf® setting of a given species would tend to
deteriorate at a constant rate (the Red Queen hypothd@sis)neasures a$pecies canccurrence
calcubted here provide a diregstimateof the decay rate ahacroevolutionargtructure, which we
c al | dedaytd ofdhedecayclock counts the timéo overthresholdevolutionarydecay which
is here defined athe time (looking back froreach base timd-ig. 2-d) at which the shared fraction
of specieqor ca-occurrence probabilijyapproaches zer@pecifically falling to 0.1)As the global
set of ceoccurring species is the arena within whichealblogical interactions must take platiee
decayclock shows howhis maximal ecological envelogiecays or persists over tin@ur results
demonstrate thahe globalPhanerozoibiota hasndeeddecaydoveran equilibriumaverage of 19
million years(Fig. 2b) However rather than remaininfiat (as might be the expectation from a
consideration only of theneanor maximumspecies rangd-ig. 20, we show that
macroevolutionarylecayis characterised by dynamic fluctuations arotimd long-termaverage as

species caccurrencestructures periodically disturbed then graduatBcovers continuity



At timesof majorevolutionarydisruptionduring the Phanerozo{€ig. 3), the normakhains
of speciegso-occurrence have beemroken leading to suddediscontinuitiegFigs %2). Here the
probability that any existing species-cocuss with speciesrom any precedingime fell to
exceptionally lowlevels at an exceptionally rapid rdtég. 2). Most markedlythe great majority of
species which have lived at any time from 251 million yearsoagaardsdid not occutbefore the
endPermian mass extinctipnr cooccur with any species which existedthe preceding Palaeozoic
Era Consequentlythere wasa dramatic increase in the ratenoficroevolutionarglecayat the end of
the Permian PeriofFig. 2, Extended Data Fig.c,d), with a drop to a sharegpeciedraction of 0.1
1 million yearsafterthis extinctionevent(reaching 0.1 before 253 M&9 times faster than the
Phanerozoienear). As time goes on, after each such disturbance everdetta/clocktime can
only increasegradually each My that10% ofa givenbiotahas persistedrhishighlightsan
inherent timeasymmetry in macra®lutionarydisturbance and recovery, in that tlecayclock can
be rapidly reset but can only count up year by year between disturb@oogsaratively long
intervals between major disturbance events are therefore characterised-tgriopgrsistence of
evolutionary biota (the flip-side of evolutionary decay), for example during the Carboniferous and
mid-Cretaceous (Fig. 2).

The concepbf evolutionarydecay was originally formulated in relation to extincgon
(conceptuatliagram, Extended Data Figa-c). Extinctionsthemselvegrode a given community by
removing original membetsHowever, we show that evolutionamdiations also causmmparable
decay bydiluting apre-existingspecies set, therelofecreasing the eoccurrence probability and
fraction of species shared with times precedingdiation event (Fig. 2, Extended Datad-@-¢,
6e-f, 7a-C). In this sense, mass radiatiqigy. 3 Table ) can be as destructive as major extinction
events Consequently, thdecayclock has been periodically reset throughout Phanerozoic history by
both extinctions and radiations (Fig. 2). While thestructive aspect of evolutionary radiatroay

initially appear countemntuitive (since radiations necessarily create new specespnt



biogeography presents numeraxamples of the major ecological disrupsdimat can result from

the appearance within an existing community of new invasive sptdiée analyses conducted here
show that disturbances resultingrir the evolution of new species have occurred periodically,
sometimes on a huge scale, throughout Phanerozoic history (Fi¢po8f species present at the
onset of a mass radiation experienggllixes of new speciegenerating upo 87% oftotal standirgy
diversity (Fig. 3), with this most extremexample occurring at the Ediacar@ambrian transition
Mass radiations have therefoepresergddisruptionsto the priorbiote’'#at scales comparable to,
and in cases exceeding, those of the mass extinctiorss g3y

There has been considerable interestands in diversity andxtinctionacross Phanerozoic
history, includingeffects of marine versus terrestrial settiigliotic* versus abiotit* extinction
triggersandtrends$-?° and periodicitie€-?’in extinctionmagnitudgall of which have been subject to
scientific debate)Our analyss provide an oveview of the relative dynamics of diversity over time,
that take into account all events recorded by the pattern of species occurrences (not solely
extinctions or their largest or best known subgethtrary to some previous results using other
measures of diversity or taxonomic levels (e.g. number or percentagrilidgagoing extinct within
a time interval®?”%9, the specietevel measuresalculatechere, do not show significant declines
throughout the Phanerozaither in the intensity adisruptions taco-occurrence structure or
proportional originatioror extinctionlevels(statistics, Extended Dakg. 76.

Three major disturbance events in the Eocene epoch of the Paleogene period are particularly
relevant to the establishment of the modern ecosystem, including two mass radiations at the start of
the epah and latter Priabonian stage, as well as a mass extinction at the-Bdigercene transition
approximately 33 million years ago (Figs4R Subsequentlgwhile falling outside the 5% most
significant times of disturbangesvents withinthetwo most reent geological periods of the
Neogene and Quaternary show moderate to high levels of disturbance (fataitExtended Data

Fig. 7d) with fractional species turnover greater than 3@#th{n the top 11% of 600 analysed times
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and top 30% of 222 timexf identified turnoverExtended Data Fig). These events include
radiations at approximately 28, 23 and 20 MilH{ originations = 30%). They also include
extinctiors (atapproximatelyl5,5 and2 Ma) associated with climate change at ¢imel Miocene
(5.3 Mg andNeogeneQuaternary transitio(2.58 Mg*82° which, while moderate when compared
against the entire scope of Phanerozoic hidtangformidablefrom a modern conservation
perspectiv® (with speciesextinction >=30%). Becausanacroevolutionarglisturbances careset
thedecayclock, theserecent extinctioreventsresulted irrapidevolutionarydecay(Fig. 2, detail
Extended Data FigZd). Consequentlydiversity enteredhe Quaternary period with an already
belowaveragealecayclock time of approximatelyIlmillion years.From that point, theecayclock
would therefore take minimum of8 million yearswithout largescale disturbanc® count upto the
Phanerozoitnean. Based on the historical processes identified here, modern extinctions and
originations ardikewise predicted terasehe connections to the paghich aremeasured by the
decayclock. Each modern extinction therefore represestsmtowardsnacroevolubnarydecay

thatfurther increases the time required to recover to thetemg equilibrium
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Figure legends

Figure 1. Time structure of the fossil recorda, 15! 3 principal component analysis (PCA) axes
from a 16dimensional machinkearnt spatial embedding where distance represents probability of
temporal ceoccurrence (equation 1, 152 PC axes. Pointsi= 171,231 fossil species, occurring
from 10000 Ma (complete dataset). Colours: geological period boundaries e.g. P@maissic,
red-blue.c, 15 PCA axis after movingaverage smoothing, highlighting temporal shifts in co
occurrence structure (vertiacmovements, either up or down), independent of secular changes in
diversity (n =171,173species, 600 Ma). Vertical lines: 5% most significant times of fractional
species turnover (Fig. 3, Table 1); mass extinctions (red), mass radiations (blue)nassed

extinctionradiations (magenta).
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Figure 2. Macroevolutionary decay. a,Heatmap where colour represents mean probability of

temporal ceoccurrence between species occurring at compared times (complete dataset, all pairwise
time comparisons, 1 My increments, 58 Ma, n = 532imeg calculated from distances in the ML

spatial embeddindy, Time tooverthresholdevolutionary decaywhen the fraction of species shared
betweerabase time and its preceditimes falls to 0.1 (taxomically screened dataset). Horizontal

lines indicate mean time to decay (grey) and maximum range among the 90% shortest species ranges
(black). Vertical lines indicate 5% most significant mass extinctions (red), mass radiations (blue),
mixed mass extinctieradiation events (magenta) (F&) Extended Data Fig). ¢, d, Examples of

major disturbance events at which the rate of evolutionary decay rapidly increas@eremain

mass extinctiond) and subsequent Middle Triassic mass radiatijn (
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Figure 3. Balance between mass radiatioand extinction. Species origination versus extinction

as a proportion aptal diversitywithin the time windowat 1 My increments from 600 to O Ma. Data
points: n = 222 times at which any species enter or exifosil record (taxonomically screened
dataset). Labelled times: 30 (5%) most significant event times frord 80& (corresponding to a >

42% species entry/exit threshol d, gre¥ squar e
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Colours: magenta, both extinction and origination above threshold (mass extnacli@ion); red,

extinction only (mass extinction); blue, origination only (mass radiation).

1.0 -~ v
N s
N ’
~ 7/
541y, e
~ /
Zosd N e
‘0 ~ 7/
P ~ I
g ~ I'd
2 58 N ’
T ,
c 247 N ’
9 081 N e
% a8 st 485 N/
8 o B e °
Soal TR ede _’7{. ~
8 oo b
=) 443 N
T 145 €6
£ 'y Jamg 2 0 0@
o ® .7 e 3 382
— L1y 93 33 ~
o 02 h w® © °°F AN
® ol® N
H ) ® 57 N
E*S P ®| o \\
[ ] °® 1 \\
0.0 — | . . .
0.0 0.2 0.4 0.6 0.8 1.0

Table 1. Looking glass events in macroevolutiol.op 5%fractional species turnovémes (n = 29

event times, present 0 Ma excluded)he Phanerozoic fossil recoadd their closest mirrors. Mirror

Extinction (proportion diversity)

events have opposite dominance of species originaéisus extinction and closest reversed

magnitudes (closest points in mirroring of Fig. 3 across the identity Bo&) ranks: 9 most extreme
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Event Mirror

event
Event Time Classification Event unit Extinctions  Originations (%) Time (Ma) Classification Extinctions Originations
rank (Ma) (%) (%) (%)
1 541 Mass Radiation Cambrianstart 12 87 252 Mass Extinction 73 19
2 358 Carboniferous start 25 67 33 67 21
3 247 Middle Triassic start 30 61 443 59 30
4 460 Late Ordovician start* 11 53 157 46 8
5 125 Aptian stage start 19 53 93 51 21
6 38 Priabonian stage start 12 52 157 46 8
7 251 Triassic start 23 52 93 51 21
8 56 Eocene start 19 51 93 51 21
9 83 Campanian stage start 15 49 449 44 17
10 166 Callovian stage start 11 48 157 46 8
11 237 Late Triassic start 18 a7 449 44 17
12 303 Gzhelian stage start* 17 45 449 44 17
13 516 Nangaoian stagstart* 24 44 242 43 26
14 520 Atdabanian stage start* 13 43 449 44 17
15 298 Permian start 32 43 242 43 26
1 485 Mass ExtinctiorRadiation  Ordovician radiation 42 51 201 Mass Extinction 47 40
2 513 Middle Cambrian start* 45 44 485 MassExtinction-Radiation 42 51
1 252 Mass Extinction End Permian 73 19 358 Mass Radiation 25 67
2 33 Eocene end 67 21 358 25 67
3 382 Middle Devonian end 61 21 358 25 67
4 443 End Ordovician 59 30 247 30 61
5 66 End Cretaceous 55 29 247 30 61
6 93 Cenomanian stage enc 51 21 56 19 51
7 145 Jurassic end 49 28 251 23 52
8 201 End Triassic 47 40 485 Mass ExtinctiorRadiation 42 51
9 157 Oxfordian stage end 46 8 166 Mass Radiation 11 48
10 449 Blackriveran stage end* 44 17 303 17 45
11 242 Anisian stage end* 43 26 516 24 44
12 372 Late Devonian 42 21 516 24 44

Materials and Methods
Palaeobiological data
The raw data for our analyses were temporal occurrences of fossil species publicly recorded in the
Paleobiology Databag®BDB). These raw data are time ranges (intervals in the geologic
timescalé) at which a fossil taxon (e.g. species) was observed to occur. A given taxon (e.g. species)
present irthe database may therefore be represented by one, or more than one, observed occurrence
at one, or more than one, time interval.

Recorded ocurrencs of fossil speciesdfrom the Neoproterozoic to the presemere
downloaded from th®BDB using the temporal overlap interval of 1600a, with all default
output plus taxonomic classificatioAnalyses wereonductedat the fundamental taxonomic level
of species to avoid the potential for complicating factors of taxonomic occupancy which may result
from the use of higher taxonomic rafk€*3 PBDB data were therefoo®wnloaded and analysed
at two levels of resolutioof the taxonomic classificatiotf. 1. A taxonomically more inclusive
dataset which used unigue species names as the IDs for analyses but with PBDB taxonomic

resolution set to genus. This allows the inclusion of some fossil occurrence records which are only

19



classified to the Mel of genus (e.g. an identified name suclAeaste sp. This gave a total of
1273254fossil occurrencefor 171231species. 2. A taxonomically more exclusive dataset screened
to include only occurrences with an accepted name classified to specieadamikhea specified
phylum name. Thigave a total 0665590fossil occurrencefor 137779species. More relaxed
taxonomic restrictions therefore resulted in 48% more fossil occurrence data for machine learning
whereas more strict taxonomic restrictionswge uniform classification to speci@sd phylunevel.
Principal results were then compared between the two datasets to determine any effects from these
different datascreening protocols. This comparison showed that the main resuéisimilar for the
two datasets. Specificallthe rank orders of the magnitudeeslutionary disruptionat one million
year intervals were shown to bignificantly correlated betweethe two alternative datasets
(Spearmands rank order corr el08tH p=R.975Xxr1@%c t i on
embedding distances r0z0960,p =0.0268. The top 20% times advolutionaryrestructuring
identified were also found to haaa overlap across the two datasets of 75% for the ML spatial
embedding method and 92% for fractional turnoVéerefore, results from both datasets are
reported in the main text, with ML visualisations in the main figures showing the complete dataset
while additional results, for example shared fractions of strictly taxonomically screened species, are
reported in the text and Extended Data figures.

We note that we have not attempteduidherprocess the PBBraw data in order to
correct foranydating urcertainties or preservation bias (see €)gFutue work, for example,
focusing on specific events, might consider incorporating additional data processingietepger,
theevents which we identifgan be verified against previously recovered patterns of extinction and
radiatior?"?>2° suggesting that at the level of our analgsig data inconsistencies have not been

sufficient toobscure events of evolutionary interest
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For comparison with the new metrics generated in this satdydardiversity statistics
were calculated using the PBDB Navigator. These were the number of genera and families sampled
in geological stage time bins
Machine learning

A new machinelearning (ML)spatial embeddingnethod was applied theraw dataof
recorded occurrences d71,231fossil species in tim@ML method summary figureExtendedata
Fig. 1a). Geographic coordinates of fossil finds, which are also present PBB#, were not used
in our machine learning methodur ML method embed®ssil species within a mudtimensional
spacgwith 16 dimensionsin which interspecieslistance represents their probabilitytefporal
co-occurrence (definition, equation 1, belo@p-occurrence for a given pair of fossil species was
identified based on temporally overlapping observed occurreastandardriterion forco-
existence inime'®. This methodthereby takesigh-dimensional data (the temporal occurrences of
species in the fossil record) and progatinto a low dimensional space that aims to preserve key
aspects of that higlimensional data (specifically the probability of species@turrence)Our
methal falls within a wider class of machine learning embedding methodsting machine
learning embedding methods inclufter example nonmetric multidimensional scaling, T-
distributed Stochastic Neighbor Embeddin@NE)*®, theword2vec®” algorithm thatembed words
(in that case in a vector spaeed triple-trainedneuralnetworks®3°. ML embedding methods may
use a variety of machine learning optimisation methods (e.g. here, gradient feanerépecific
optimisation functions (here, eoccurrence probabilitytp place (ordinate) pointe.g.here,
representing fossil species) within a mualimensional spac&ome such embedding methods may
additionaly be linked withneural network methods and/or data clasaifom stepge.g. triplet
networks$®39. However, we note that this is not necessarily the case and the specific method used
here is not a neural network methadr does it involve data classificatiar the learning of a

trained model which aims to generaliseneaw datgand may therefore be subjectassociated
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methodological problems such as model overfitting on the training dajaRetther, the specti
aim of the ML methodised herés solely to embed all training data according to the specific
optimisation function used (eaccurrence probabili)y Therefore, the meaning of proximity within
our embedding is easily interpretable (asocourrence prolality) and comparable to exhaustively
calculated measures (see bridece methods below). This is in contrast to some other
multidimensional ordination methods, including machine learning methods for example the
word2vec algorithrf?, in which the reason for proximity within a constructed space may be difficult
to interpret.

The dimensionality of the embedding space (16 dimensions) was arbitrarigndhasrder
to project the high dimensional raw data to a comparatively low number of dimensions (a basic aim
of dimensionality reduction techniques), while allowing a sufficiently large number of dimensions
for the capture of biologically interesting stture in the data.

The machine learnt spatial embedding was generated uBytban program
(SupplementanfComputerCodel) implementing the following proceduréachfossil species
(which can have multiple observed occurrences in the databiide® given al6-dimensional
embedding (which is randomly initialisedWe train the embedding over 50,000 training iterations
(epochs). Within each training epoche wainthe embedding \a gradient descent on a succession of
batchega method used in many current machine learning applicatiarptimise model parameter
value$?). Each bath consists of 20,000 examples. An example is constructed by first picking a
random time windowA random time window is selected rather than a random fossil occurrence
because randomising by time windoarmalisedor variations in diversity over timeé\fter a time
window has been selectealrandom occurrends picked(whosespecies hasmbedding) from
that time window. We then randomly select whether this example will beoaatorencéor non
co-occurrence)with 50% probability. If a caccurrencénas been selectede select another

randomoccurrencdrom that time windowwhose species B@mbedding). If a co-occurrencédias

22



not been selectede pick another random time window, pick a randmrourrencérom that time
window and ensure that it does notaxur withx:. Wethencalculate the Euclidean distanch
betweerx: andx. and interpret that as a probabilistic prediction ebcourrence:

N o ho i QQ4 &HQ0why =

noh  pfp Qon @ Qo 1)

Wherea is a learned parameter of the mqoasdservediuring machine learning bell.994
for the complete dataset (ah@d.5998for the taxonomically screened dataset)

The learnt parametarcan then benterednto equation 1 to convert a learnt embedding
distanced to a corresponding eoccurrence probability.

We train the embeddings andtharametea to minimise the binary cross entropy:

0 O waé R P WAEM N whod 2

Wherep is the probability assigned by the mottedt the twagivenspecies cabccur, andy is
the ground truth label (1 when the speciescour and 0 when they do not).

We used the Adam optimiser with a learning rate of2@3r 50,000 batches.

The length of the ML training time (measured in number of training epochs) for each dataset
(realor simulated) was assessed visually and statistically wsnglisationtools provided in the
supplementary computer cofle3). These tools allow visualisation of the training error as training
proceeds, PCA visualisation of the outputbedding and statistical assessment (by visualisation and
Pearson correlation) of behaviour of the embedding under simulated secular increases in diversity
(linear or exponential).

Comparison of machine learnt spatial embeddingo pre-existing methods

This method of ML spatial embedding has some commonalities with previous methods for
analysing biological abundance, diversity and temporalaourrence, including eoccurrence
diversity assessmént®and network analysi$(e.g. utilisation of species amcurrence

information) as well as nemetric multidimensional scaling (e.g. representation of intepecies
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variation wihin multi-dimensional spaces) but has additional advantagevolutionaryanalyses
over time. These methodological advantagebide: 1. The meaning of intetaxon distances
(probability of species coccurrence)2. Gonsequent opportunities to perfonaw quantitative tests
of macroevolutionary hypothese&s Provision ohumanreadable data visualisations, faciliet
new datadriven insights4. Robustness to potential problems of data sampling, crucially including
secular variations in fossil prasation potential through time (which show complex relationships
with palaeediversity that may impact detection or interpretation of evolutionary tf&nés
Capacityto analysanacroevolutionargtructure across continuous time seriesgt specifiedime
increment €.g. 1million years) This isin contrast, for example, to standard withim diversity
countingin comparatively large, discrete time bins (e.g. geological stajesh are in the order of
tens of millions of yearswhere increasing bin size is known to impact detection of evaohlutyo
phenoment.
Comparison of machine learnt spatial embeddingo alternative methods
For comprison to the ML embedding meth{akscribed above), a simpler method was

implemented (Supplementary Computer Code 5) which applied principal component analysis
directly to vectors of the times at which fossil species were observed to Besumethod first
takes the raw fossil occurremdata and encodes this as an array of time vectors. Here, each species
has one vector of times at which it is recorded to occur (1) or not occur (0) according to the raw
observed occurrences. The method then applies a principal component analysistalitieetig time
vectors so that each fossil species is placed into a PCA projection with 16 comjooreptsrable
with our main ML embedding method which uses 16 dimensions for the embedding space).
Graphical output and code to generate this is provid&lipglementary Computer Code 5.
Validation of machine learntfossil embeddings

The measures ohacroevolutionarglisruption used in this study were designed to be

independent of background trends in diversity (which have themselves been extensivelyatadesti
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using other methods such as raw diversity andlgsid diversity subsamplif). The measures used
here are therefore normalised for diversity. Diversity normalisation is performed for the exhaustively
calculated shared fraction gieciesbetween timeby using overall diversity as the denominator
(see methods section below for further detallsyersity normalisation was also incorporated into
the ML spatial embedding method, for example by initially sampling data from timestteher
species to avoid excessive weight from high diversity times. However, variation in diversity through
time might potentially have unforeseen impaots themachine learningrocess and outputshich
arein general highiydata drivenTherefore, m order to validate oumethodsof machine learning for
furtherevolutionary analysesve used computer simulations to tést sensitivity of the generated
measures tochanges in coccurrence structuneersusseculawvariation in diversitySupplementary
Conputer Code 3)We show usingcomputersimulaed data with a known distribution (linear or
exponential diversity increase, Extended data Fieg)lthat ceoccurrencebased spatial embedding
allows the generation of comparative measureigh are sensitive to shifts in speciesacurrence
but are comparatively unaffected by background tramdsversity (which muld themselvesccur
either due to genuine changesiandiversity or samplingariation). Specifically, given appropriate
ML training time, Pearson correlation indicated no significant correlation between a simulated linear
diversity increase and the mean embedding distance between species simulated at successive times (
=0.1311 p =0.1936 Extended Data Fig.bid). A simulated exponential diversity increase produced
a weak, though significant, negative trend across successive timex2i761,p =7.58E05,
Extended Data Fig.etg), which can be removed by subtraction of treamembedding path.

Additional exhaustive calculatisof the shared fraction of fossil species between time
windowsfacilitated further validatioof, and comparison witithe machindearnt spatial
embedding¢Extended Data Fig2b-€), as well asadditional evolutionary analyse3ootstrap

analyses$upplementary Computer Cofledetails below) were used to test whether the ML
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methods were methodologically and statistically robust across multiple subsamples of the fossil
occurrence dataset (gives size and properties).
Brute-force cooccurrence computations

For comparison with the ML spatial embedding distantesgsures of proportionate species
co-occurrencéetweertimes were calculated using a brfivece algorithm(Supplementary
Computer Code), implementing the following procedure. For each tiimaake an array of species
occurrences at that time In this case, a given species is considered present at a givenftirise
within the time range of fossil occurrences of that species observed in the datéliasendt O
tmax Wheretmin is the minimum observed age of occurrence of the specidsamthe maximum).
For the subsequent tintemake an array of spes occurrences. Calculate the fraction of
occurrencesghat are shareldetweert; andt. (sharedraction= intersection/union)Thefraction of
species that were different was then calculated as the fractional symmetric difference = symmetric
difference/mion or 11 shared fractionlf two comparedimes have exactly the same set of species
existing the shared fraction of species will equalfleither originations or extinctions occur,
causing sets of species to differ between two compared times atieel $faction of species between
these times will fall. If the sets of species occurring at two compared times are entirely different, the
shared fraction of species between times will equal zero.

The fraction of fossil species shared between any two times is closely conceptually related to
the ceoccurrence probability: both measure the extent and pattern of tempoedwoence
(between times or between species across time, respechuétiiey provide complementary
advantages, respectively for the simultaneous visualisation@@arence structur@patial
embeddingyersus exhaustive calculation and simplicity of interpretgsbared fractions)
Drill plots and turnover event thresholding

Proportions of species originating versus going extinct at 1 My time increments were

calculated and plotted (Fig, Bxtended Data Figt) using aPython program (Supplementary
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Computer Code4)Ve present a new type o fExtgnded Datawigurec h w
4) for focal times. These compare stratigraphic ranges of all species occurringanitMey time

window afterthe focal time, vertically sorted into originations, extinci@md crossing ranges.
Comparisons of event types in these analysethresholdbased classification into three types:

mass extinctions, mass radiations and mixed mass extirretiitations.To classify eventsjrkst the
analyses identify all turnovemties, at which there are any speciations or extinctions observed in the
datasetwithin 1 My (<= 0.99 My)of the considered timgupplementary Computer Code We
thencalculate the proportions of tlecurringspecieswithin this time windowwhich are

originatingor going extinct. Each turnover event is then classified as to whether a selected threshold
is exceeded by the proportion of extinctiamy (in which case it is therefore classified as a mass
extinction), radiationsnly (classifiad as a mass radiation) or both extinctions and radiations (it is
classifiedasa mixed mass extinctieradiatior).

The identification of turnover evenits these analysas, thereforejnvariant to theentry/exit
threshold used. What catentiallychang withan increasdthreshold is the classification of these
events as either a mass extinction, mass radiation or a mixed [éigemés 3 and Extended Data Fig.

4 use a species entry/exit threshold of 42% which was selected in order to highlight the most extreme
5% of turnover timegdefined as the toH% of the 600 times included in this analy5i% of the 600
included times equals 30 and the corresponding speaiey/exit threshold of 42% is required to

return30 most extreme fractional turnover timesr comparison, Extended Data F3ggshows a

lower species entry/exit threshold of 30% which highlights a greater number of turnoveitises

30% threshold waselected as notable based on observation of theaddtas is the level above

which all observed turnover events involved both extinction and origination. Choosing a higher
entry/exit threshold (e.g. >42%) for included times corresponds to readihigylodr

extinction/origination percentages from Fig. 3 to restrict consideration to a smaller number of

turnover times. For example, another interesting threshold is the top 5% of the 222 identified times
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of turnover (out of 60@otaltimes included in ths analysis). This equals 11 times, which requires a
53% entry/exit thresholdndreturns the 10 most extreme times shown on F{gith event
classification unchanged except for 0 Ma, which does not pass the 53% entry thrésbahkb
entry/exit threshal returns the 13 most extreme times shown on Fig. 3.

AMIi rroro events of macroevolutionary restr.
the Red Queen hypothesis as il ooki ng gl asanongthe events clgssifiade r e i
using the extinction/origination threshold procedure described above. First, those eve#is with
origination >% extinctionwere mirrored over the identity line (ean Fig. 3 where % extinction =
% originatior), by temporatly swapping the x and y axes. The closest mirror events were then
identified as those events from oppositdvesof theoriginal distribution which had the lowest
Euclidean distance after mirroring. These mirror events are, therefore, thoseavemuaist
comparable in scale but with opposite dominance of radiation versus extinction.
Comparison of brute-force co-occurrencemeasuresto pre-existing methods

The shared fraction of fossil species between compared times (shared fraction =
intersection(t1,t2)/nion(t1,t2)) can be conceptually related (Extended Data/kig). to the fraction
of surviving species (sumor fraction = intersection(t1,t2)/t1), a core concept of standard survivor
analyses ey The main advantage, for the purposes of this stofihe ceoccurrence measures
used here (e.g. shared species fraction) is teaetheasurspick up the effect of any new species
originations that have occurred ehy.time t2. This facilitates the comparison of the parafiects
of extinction andadiation within a unified measuremdramework. It also facilitates time
symmetric comparisons e.g. to measure the-dfbm shared fraction of species looking back in
time from a given start time or event (Fig,d. More broadly, he shared specidésction between
times also linkgnathematicallyto the ecological concept of spatial beta diversity (with beta diversity
measures usually considering variation in species composition between spatial $amples

Decay-clock calculations
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Thetime-to-time average sp@sco-occurrence probabilgsfrom the ML analyses and
exhaustively calculated fractions of species shared between timesagttsed to calculate the
time tooverthresholddecay in species eaccurrence (Supplementary Computer Code 2). For the
time range in whichthere was continuous occurrence data in the datasb&2(Ma), ths time to
evolutionary decay was calculatint each base time, &tMy increments, looking backwards in
time, as follows. First, for each base time, a time series was considered which inclgdeatei|
times within the total time range for this analysis (e.g. for base time 252 Ma, the considered time
series would b€53-532 Ma). Then, the values of the ML-oocurrence probability and fraction of
shared species were extracted that compared the given base time to each timenipénedime
series. The time takealong thegiventime seriesfor co-occurrence to dmy to the threshold value
was then recordedhis is counted as the time vector position such that a dzgely time of 1
means that oveihreshold decay has occurred after 1 and within 2 million y&aesmean of this
decay value was then reported tas average decastock time) across the considered time$82
Ma). A number of thresholds were used in this calculation. The main analyses use a decay threshold
of 0.1, corresponding to <=10% species shared between considered timéisteEholdvalueof
0.1 was selected because iaiw-level cutoff that remais comparatively representative of species
in aggregatéand so will not belriven, for exampleby longlived singleton species as a-aiff of
zero might be)For comparison, a threshold @6 wasalsoused, which represents a hEdé for
species caccurrenceas well as a lower threshold of 0.05.

To give a worked example tiedecayclock calculation, consider base time 251 Ma
(immediately after the erBermian mass extinction apprimately252 Ma). For the next few
compared times, the fractions of spedkared with the base time 251 Fli@for 251 Ma (identity),

1; 252 Ma, 0.21; 253 Ma, 0.0B6or a threshold of 0.1hé decayclock time for 251 Ma is therefore
reported ad million yearssinceby 253 Ma (.e. within 2 My years) fewer than 10% of species are

shared with 251 Ma.
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Geographic range of the analyses

Ouranalyses use all global fossil occurrenaaorded in the PBDBNd evaluate temporal
co-occurrence onlyequation 1) While it would be theoretically possible to extend our ML method
to consider geographic locatiofwithin an extended definition of emccurrencg consideration of
time alonehas a number of advantages in the context of the present study. First, the examination of
patterns of decay in emccurrence through time has not previously been investigated, whereas
ecological patterns in spatidhscture have been extensivelydied e.g. Secondpy defining co
occurrence basesblelyon time(and not geographic locationje retain alose conceptual
connection between our néML distancaneasures anelxhaustively calculatestatistics on the
proportion of species sharadrosgimes(as described aboveyhich aid validation and
interpretaton of the machine learning. Third, by focussing purely on time there is an additional
mathematical connection from these new statistics (machine learaekladstively calculatédo
fundamental measures of species survigaldescribed above and showrExtended Data Fig.a
C).
Bootstrap analyses

To test whether the ML methods were methodologically and statistically robust across
subsamples of the fossil occurrence dataset a bootstrap procedure was implemented (Supplementary
Computer Code 6). The ML éradding analysis was repeated ol@bootstraptechnical)
replicatewith an embedding rutime of 3 days on a GPU computer clustegch sampling 80% of
the171,231 species from the complete datasetorder to analyse the stability of the embeddings
across ML retraining on these bootstrap data samples, sixty reference fossils were randomly selected
for comparison oémbedding positions across the bootstrap replicates. These reference fossils were
organised into triplets, each of which contained 3 members designated A, B and C. The distances in
each learnt embedding between fossils A,B and A,C within each triplet were then compared across

bootstrap replicates, using the melififerences andatiosbetveenthese distances and their standard
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deviations. In order to select reference fossils, 20 reference times were first randomly sampled from
the total range of times (at 1 My increments) at which fossils were observed to occur in the complete
dataset. Refrence fossils were sampled such that all 3 members of a given triplet were observed to
occur within 30 My ofa givenreference time. This sampling processs used in order to ensure that
compared fossils within a tripletccurred, relative to each othwiithin the time range over which
the main analyses indicatad average coccurrence probability above zero (witteandecay to
co-occurrence probability <=0.1 observed by 30 My for the complete dafaket)s the
approximatdime range §verageobsevedfor the complete daset) over which we expect
embedding distances to be comparatively tightly constrained by obseroedwoences.
Statistical and visualisation analyses

Further visualisations and statistical analyses were produced using the bé¢daing
distances and exhaustively calculateglasuresf speciexco-occurrence. Embedding distances and
sharedspeciedractions were compared between successive times at 1 My increments for the time
interval over which there was continuous dadaerage within the fossil occurrence dataset (from
532 Ma with numbers of species per time window d¥1§ for the complete dataset andy for the
strictly taxonomically screened datas@tjne-to-time comparisons were conducted for all possible
pairwise combinations of time windows @fMy duration. Here, as above, the occurrence time for
each species wasimmarised athe timerange midpoint across observed occurrences in the

database.
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Extended Datalegends

Extended Data Figure 1a, Graphical summary of the machine learning methodb-g,

Computer simulations of secular variation in diversity, testing effects ormeasures of ce
occurrence structureused in this study b-d, Linear ande-g, exponential diversity increase
(Supplementary Computer Codg b, e, Heatmap visualising the machine learnt spatial embedding
distance betweemeanspecies locations differenttimes: yellow, closest; purple, farthestf, Plot

of embedding distams between successive timesg, Plot offirst two principal component axes

from the 16dimensional spatial embeddingL training times were 3000 training epochs.
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Extended Data Figure2. a, Bootstrap dataresampling results.b-e, Shared fraction of species
betweensuccessiveéimes (b, d) versusmeanembedding distance ¢, €. a, Differences in
embedding distances for 60 reference fossils, compared within 20 A, B, C oy@ets8technical
replicates obootstrap datae-samping and ML embedding trainingerror bars showtandard
deviation of the distancabsolutéA-B) - absolut¢A-C): mean0.77. We expect the embedding
distances to be comparatively stable within the time range over whiatcoorence probability is
within theevolutionarydecay rangéobserved to benean30 My for caoccurrence probability to
reach 0.1 in the complete datasbt)d Fraction ofspecieswvhich are shared between successive
times calculated exhaustively from raw species time ranges (histogpeended Data Figsa). c, e
the distance in the ML spatial embedding betwaeanspecies locations at successive times.
Compared times are at increments &L b, ¢, Complete fossil ocavence datased, e,
Taxonomically screened dataséertical lines indicate the 5% most significant times of fractional
species turnover (Fig. Extended Data Figl): mass extinctions (red), mass radiations (blue), mixed

massextinctionradiations (magenta).
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Extended Data Figire 3. Proportions of species originating versus going extincl My
increments from 600 to 0 Ma with a threshold of 30% species entry/exit thresholdggesg This
threshold highlights the top 66 times of turnover from 222 total turnover times identified among 600

timesincluded in the analysi€olours as for Fig. 3.

36



37



