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Abstract—An important part of developing a performant
assessment algorithm for post-stroke rehabilitation is to achieve
a high-precision activity recognition. Convolutional Neural Net-
works (CNN) are known to give very accurate results, however
they require the data to be of a specific structure that differs
from the sequential time-series format typically collected from
wearable sensors. In this paper, we describe models to improve
the activity recognition using the CNN classifier. At first by
modifying the Gramian angular field algorithm by encoding all
the sensors’ channels from a single time window into a single
2D image allows to map the maximum activity characteristics.
Feeding the resulting images to a simple 1D CNN classifier
improves the accuracy of the test data from 94% for the
traditional segmentation approach to 97.06%. Subsequently, we
convert the 2D images into the RGB format and use a 2D CNN
classifier. This results in increasing the test data accuracy to
97.52%. Finally, we employ transfer learning with the popular
VGG_16 model to the RGB images, which yields to improving
the accuracy further more to reach 98.53%.

Index Terms—Stroke, GMAF, CNN, Activity recognition,
Transfer learning.

I. INTRODUCTION

Rehabilitation after Stoke is a tedious and yet necessary
stepping-stone that stroke survivors need to undertake towards
recovery. Patients perform an important part of their reha-
bilitation in an outpatient environment [1] where they are
required to carry out their exercises - consisting usually of
Activities of Daily Life (ADL) [2] - and record them in order
to allow the doctor to monitor and assess their progress. To
do so, researchers have come up with applications to help
monitor and evaluate the rehabilitation process remotely and
without the therapist’s involvement using wearable sensors [3].
These devices provide a high level of portability and low-
price giving researchers and therapists a variety of possibilities
and solutions. In order to implement an intelligent assessment
system, these apparatus are used in conjunction with process-
ing algorithms in smartphones, edge-devices or even cloud
platforms*® [4] to obtain a preliminary and objective evaluation.
An important part of this assessment system is to perform an
accurate Human Activity Recognition (HAR) [5]. HAR is a
wide-ranging research that deals with classifying individuals’
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activities using data collected either remotely, such as from
radar or video, or directly from the subject’s body using
wearable sensors such as using Inertial Measurement Units
(IMU) or Electromyography (EMG) sensors.

With the objective to have the most accurate HAR, multiple
methods have been investigated starting from 1) conventional
signal processing modelling approach that seeks a mathe-
matical relationship between an activity and the different
modelling parameters, to 2) machine learning algorithms, that
extract pertinent features to allow the model to differentiate
and recognise the different activities or to more recently 3)
deep learning algorithms that are trained to recognise different
patterns to distinguish between the activities.

In the literature, the most employed approaches are done
using traditional supervised machine learning algorithms [6]—
[9] and the most popular classifiers are: support vector ma-
chines, decision-trees, K-nearest neighbor and dynamic hidden
Markov models. while these models achieve very good results,
but a drawback of these approaches are that they entirely rely
on the selection of features, meaning that a poor selection of
features will yield to a poor performing HAR model, which
will yield in its turn to a poor assessment of the exercises. This
is not desirable in post-stroke rehabilitation which requires an
accurate evaluation of the execution of the exercises.

In the recent years, with the maturity of the deep learning
algorithms, tremendous progress has been achieved in other
fields of study namely: computer vision, speech recognition
and image classification. One of the models that achieved
large success working with images are CNN algorithms. Their
architectures are analogous to that of the connectivity pattern
of neurons in the numan brain and were inspired by the
organisation of the Visual Cortex. [10]-[12]. Many outstanding
models that use CNN were developed over time, such as VGG
[13] Alex-Net [14] and ResNet [15]. These models can be
adapted to be used in other applications without the need
for fully re-training them on the new database by employing
transfer learning. Transfer learning is used to improve a learner
from one domain by transferring information from a related
domain [16].



Inspired by these developments, many approaches have been
taken in order to adapt time-series data input-structures, to
CNN-based algorithms input-requirements in order to ame-
liorate HAR accuracy. Techniques such as segmentation ap-
proaches [17] that take fixed window sizes of data, as well as
algorithms to encode the data into images i.e Gramian Angular
Field (GMAF) images introduced in [18] are investigated in
this work. GMAF has already been used for EEG classification
[19] and performed well.

The contribution of this work is that the chunks of the time-
series data collected from the different sensors are merged and
encoded in an image to allow translate the highest possible
number of characteristics in the resulting image. In the first
part, two approaches of 2D image-encoding resulting from
the GMAF transformation are presented with a comparison
with the classical windowing approach when fed to a simple
1D CNN algorithm. This improves the accuracy of the test
data from 94% for the traditional segmentation approach to
97.06%. In the second part, the 2D images are converted to
the RGB format in order to profit from the pretrained VGG
model using transfer learning which yields to improving the
accuracy even further to reach 98.53%.

The reminder of the paper is organised as follows: in section
II, the dataset utilised is presented with the pre-processing
done consisting of the segmentation (subsection II-A) and the
encoding of the resulting chunks into images (subsection II-B).
After that a description of the classifiers used and the results
are presented in section III: The 1D CNN model with 2D
images in part III-A, and the 2D CNN model, transfer learning
in part III-B. Finally we conclude the paper in the section IV.

II. DATASET AND PRE-PROCESSING

In this work, the smartphone-based recognition of human
activities and postural transitions dataset from Reyes-Ortiz et
al [20] is used. It contains data from experiments that were
carried out with a group of 30 volunteers within an age bracket
of 19-48 years who performed a protocol of ADL. In this
paper six dynamic activities from the dataset were included:
walking, walking up, walking down, sit to stand, stand to
sit, laying. The reasons for choosing these activities are that
post-stroke patients are required to perform them in their
daily lives. In addition, the quantity of data for the different
activities are very close allowing to build a more accurate
model less prone to bias. Besides some of these activities
are very similar and hard to differentiate which will be a
good challenge for our algorithms. The data is comprised of
tri-axial linear acceleration and 3-axial angular velocity at a
constant frequency of SOHz using the embedded accelerometer
and gyroscope in a smartphone. The dataset is organised in
two folders the first contains unprocessed raw data and the
second contains preprocessed data (denoised and decomposed
in different time windows and features). In this work, only the
raw data were considered.

A. Data windowing

After the data of the different activities were loaded into
different frames of data, each element at a particular time
was labeled depending on which activity was performed. After
that, a sliding window method has been employed in order
to prepare the data for further processing. A sliding window
converts sequential data into different chunks of data with
a fixed size in order to be used in algorithms that require
the data to be of a specific structure. In this work, a sliding
window of 4 sec (4 sec x 50 Hz = 200 data elements) was
chosen to decompose the dataset into different windows of
the same size. The label for each data chunk was chosen to
be the label that is most recurrent within the segment. Since
the activities were performed sequentially, an activity might
be cut when composing the different windows. To remedy to
this issue, an overlap of 2 sec was introduced, which means
that adjacent windows share 50% of the data. The resulting
windows are matrices with fixed sizes 200 x 6 with the
six columns corresponding to the triaxial accelerometer and
gysroscope. Fig 1 shows how a sliding window operates.

Fig. 1: Sliding window to decompose the dataset.

B. Encoding IMU data into 2D images using Gramian Angu-
lar field

A GMAF is a novel technique to encode time series data
into images, it employs the polar-coordinates representation of
the data written in a matrix form called the Gramian matrix
where each element is either the summation (GASF) of the
cosines of the angles or difference (GADF). The advantage
of using such a mapping is that it maintains the temporal
dependency, the reason is time increases as the position shifts
from top left to bottom right. The steps to encode the times
series data into images using GAF are given bellow:

o First data should be normalised to the range [0,1] using
the linear normalisation equation 1:
. x; — min(X)

TiT maz(X) —min(X) M

o After that, the resulting time series data is mapped into
its polar coordinates representation using equations 2, 3

¢ = arccos(€;), -1 <a; <1,4;, € X 2)
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Fig. 2: Encoding a window of the IMU data into gramian images.

o Finally we either sum (GASF) or differentiate (GADF)
the angles to construct our Gramian matrix as shown in
4, 5 respectively:

GASF = cos(¢; + ¢;)
T
XX 1% W1

i xS O

Where I is the unit vector after the transformation to polar
coordinates, X the elements of the time series X, and ¢ the
time subscript.

The approach taken in this paper is encoding each window
of data presented earlier into separate 256 x 256 images. Fig
2 shows an example of a window of data encoded in GASF
and GADF.

“4)

III. CLASSIFICATION AND EXPERIMENTAL RESULTS

In this section we construct the different models for the
activity recognition using different classifiers’ architectures
and different time-series data representations and discuss the
results obtained. In subsection III-A we employ the 2D size
images from the GMAF transformations (subsection II-B) and
the windows from the segmentation (subsection II-A) to feed a
1D based CNN classifier, while in subsection III-B we convert
the previous images from (subsection II-B) to RGB format
and use a 2D CNN based classifier as well as the VGG_16
pre-trained model employing transfer learning technique and
compare the overall results.

A. 2D models

The model used for the classification comprises two 1D
CNN layers, supported by a dropout layer for the regularisation
of the data, then a pooling layer. The reason for defining two
CNN layers is to give the model a good chance of learning the
features from the input. In order to avoid over-fitting of the
data resulting from the fast learning of the CNNs a dropout
layer is utilised. After the CNN, the features are flattened
to a 64 nodes vector and goes through a fully connected
layer that provides a buffer between the learnt characteristics
and the classification. This model uses a standard tuning of

64 parallel feature-maps and a kernel size of 2. The three
discussed methods in subsections II-A and II-B were used as
inputs to this classifier namely: the windowing method, the
GASF and the GADF as shown in Fig 3.

The results of decomposing the dataset are 7474 different
windows of data of 200 samples for the six sensors-axes (7474
x 200 x 6). The encoded images resulting from the Gramian
transformation are 7474 of 256 x 256 different images. 80%
of the data (5980) were used for training the model while 1494
where used for testing. To evaluate the techniques, the model
was used in three separate parts, one for each input technique.

The models were trained for 250 epochs on an 17 CPU
6700T 16GB Ram and the results are shown in Fig 4.

o The window-CNN model (Fig 4a) reaches a maximum
accuracy of 95.42% for training and 94% for the testing,
this model seems less prone to over-fitting as the accura-
cies seems to stabilise at the same time after 130 epochs
at around 94%. This model though starts learning slowly
with a training precision of 37.5% and a testing precision
of 72.31% at the origin. The average learning time was
740 ps per sample.

e The GASF-CNN model (Fig 4b) reaches a maximum
training accuracy of 98.81% and testing accuracy of
97.06% but it seems to start overfitting after 30 epochs.
The accuracies seem to stabilise at an accuracy of 98.54%
for training and 96.25% for validation. The model also
start learning quickly with a training accuracy of 69.46%
at the origin and 87.29% for the testing. The average
training time was 770 ps by sample.

« Finally, the GADF-CNN model (Fig 4c) reaches a max-
imum training accuracy of 99.38% and testing accuracy
of 97.06%, this model seems to start overfitting after
35 epochs. The accuracies seem to stabilise at 98.43%
training and 96.19% for validation were obtained. This
model though starts learning very quickly with a training
precision of 71.47% and a testing precision of 89.23%
at the origin. The average learning time was 820 us per
sample.

e 75 time chunks from the overall 1494 were miss-
classifed in the window-CNN (Fig 4d) model. It confuses
38 walking up activities for walking down and 37 walking
down for walking up.

o For the GMAF models, 44 miss-classifications for both
models were recorded. The GSAF_CNN (fig 4e) confused
40 walk-ups for walk-downs while the GDAF_CNN (Fig
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Fig. 4: Accuracies and confusion matrices of the different 2D methods

4f) miss-classified 36 walking for walking-down.

B. RGB models

The 2D: 128 x 128 GMAF images were converted to the
128 x 128 x 3 RGB format in order to investigate their
performances using:

The first model comprises 2 layers of 2D CNN 64-nodes
supported by dropouts to reduce over-fitting. the learned
features are flattened and then filtered out through a 64-nodes
vector to finally going through the Softmax classification layer.

This model uses a standard tuning of 64 parallel feature-maps
and a kernel size of 2 x 2.

In the second model transfer learning is used by employing
the popular VGG16, which is a 16-layer network built by
Oxfords Visual Geometry Group (VGG) [13]. It was pre-
trained on 1,000,000 images dataset from ImageNet and
achieved state-of-the art results . It contains 16 hidden layers
composed of convolutional layers, max pooling. One extra
Softmax 6 layers classification layer was added at the top for
our classification.
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As for the 2d models, 80 percent of the data (5980) were
used for training the model while the 1494 where used for
testing. To evaluate the techniques, the model was used in
four separate structures (depending on the two inputs and the
two classifiers) as shown in Fig 5. Fig 6 shows the models’
accuracies when trained for 250 epochs on Google colab GPU
16GB Ram.

e The CONV2D_GSAF model performs relatively badly
(Fig 6a), it reaches a maximum accuracy of 89.53% for
training and 95.45% for the testing, this model seems less
prone to over-fitting as the accuracies seems to stabilise
at the same time after 120 epochs around the accuracies
given before. This model though starts learning slowly
with a training precision of 41.80% and a testing preci-
sion of 47.96% at the origin. The average learning time
was 22.33 ms per sample.

o The CONV2D_GDAF model (Fig 6b) reaches a maxi-
mum training accuracy of 97.98% and testing accuracy of
97.52% but it seems to start overfitting after 120 epochs.
The validation accuracy seem to stabilise at an accuracy
of 95.65% while the training keeps increasing above
97.98% . The model also start learning quickly with a
training accuracy of 55.88% at the origin and 68.16%
for the testing. The average training time was 42 ms by
sample.

o The VGG_GSAF model (Fig 6¢) reaches a maximum
training accuracy of 100% and testing accuracy of
98.46%, this model seems to start overfitting after 115
epochs. The accuracies then decrease to accuracies of
98.73% training and 97.59% for validation. This model
though starts learning very quickly with a training preci-

sion of 58.86% and a testing precision of 85.08% at the
origin. The average learning time was 73 ms per sample.

o Finally, the VGG_GDAF model (Fig 6d) reaches a max-
imum training accuracy of 100% and testing accuracy of
98.53%, this model seems to stabilise after 120 epochs
at 100% training and 97.86% for validation. This model
though starts learning very quickly with a training preci-
sion of 69.41% and a testing precision of 90.23% at the
origin. The average learning time was 79 ms per sample.

o For the 2D CNN models, 68 and 37 miss-classifications
were recorded for the 2D_GSAF (Fig 6e) and 2D_GDAF
(Fig 6f) models respectively. The first one mostly con-
fuses walking up and down but also some sit to stand
and stand to sit activities. the second one is more ac-
curate only miss-classifying some walking up and down
activities.

o For the VGG models, 19 and 22 miss-classifications for
the VGG_GSAF (6g) and VGG_GDAF (6h) models were
recorded respectively. The VGG_GSAF) confused 15
walk-ups for walk-downs while the VGG_GDAF miss-
classified 20 walking for walking-down.

To summarise, the four RGB_based models give even better
accuracies than the the 2D models. Using GSAF and the
CNN_2D improved the accuracy of the windowing method by
approximately 1.45% for the validation data, and decreased the
training data by 5.89% for training data but took much longer
for training. The reason for that is that the windows of data
were encoded to 128 x 128 images and then to RGB 128 x
128 x 3 images.

Using GADF and the CNN_2D improved the windowing
accuracy 3.56% for the validation data, and 2.52% for training



epoch

10
— 101 —
training —— faining . B e syt Training WW,N—\W
09 test test et test |
09 i L !
039
0.8
z 08 Iy
% 07 g % 08
8 ¥ b
06 07
07
05
06
06
0.4
0 50 100 150 200 50 [} 50 100 150 200 250 0 50 100 150 200 250
epoch epoch epoch
(a) CONV2_GSAF (b) CONV2_GDAF (c) VGG_GSAF
Walk Walk
-400
100 | — training Wﬂw— 400
test Walking up Walking up
095{ J
f - 300 i
090 walking down walking down 00
z
£ oss Sit to Stand - 200 Sit to Stand L 200
d
080 Stand to Sit Stand to Sit
100 - 100
075
Laying Laying
070 Lo o
= 2 3 Es 2
] 50 100 150 200 250 g ES 2 ° s
K] £ g
H

Walking up
walking down

(d) VGG_GDAF

(e) CONV2_GSAF

-500
Walk

Walking up

walking down

Sit to Stand

Stand to Sit

Laying

Sit to Stand
Stand to Sit
Laying

o
5
2
=
T
=

walking down

(g) VGG_GSAF

Sit to Stand
Stand to Sit
Sit to Stand
Stand to Sit

S
2
]
=
£
]
B

(f) CONV2_GDAF

500

Walk
-400
Walking up
walking down
Sit to Stand

Stand to Sit

Laying

Sitto Stand
Stand to Sit
Laying

I~
5
2

=
]

=

walking down

(h) VGG_GDAF

Fig. 6: Accuracies and confusion matrices of the different RGB methods

data, nevertheless the required time for training was slower
than the GSAF_CNN2D (almost double). On an other hand
the VGG models gave the best results overall, it improved
the windowing accuracy 4.58% for the training data for both
GSAF and GDAF, and 4.46%, 4.53% for the test data accuracy
for GSAF and GDAF respectively. The time used for the
training was the slowest among all models.

IV. CONCLUSION

This paper presented three different ways to adapt time
series data from IMU sensors to CNN, and benefit from the
tremendous accuracies this classifier provided in the other
domains, in order to improve the activity recognition process
in the assessment of rehabilitation. The contribution of this
work consists of the way the data are structured before being
fed to the classifier, the six different streams of data coming
from the the triaxial gyroscope and the triaxial accelerometer
were extracted using a sliding 2D window of a fixed length,
these 2D windows were then encoded to different 2D images
using GAF transformation which allows to map all the char-
acteristics from the different sensors axes in one image. The

accuracy of the test data improved from 94% for the traditional
segmentation approach to 97.06%. The 2D images were then
converted to RGB in order to profit from some popular pre-
trained models using the transfer learning, and it improved
the model performance even further to reach 98.53%. As
future work, an IoT system based on these models will be
implemented to permit real-time monitoring of the data for
the post-stroke patients. The models could also be fine-tuned
in order to achieve even better precision.
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