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Abstract The use of statistical and AI methods in civil litigation is an area likely
to expand. As with many areas of social science, the data requirements are high but
complex, because of the complexity of the legal process and the nature of the causal
connections. This paper looks at the early stage of the process where the initial es-
tablishment of liability acts as a legal triage which affects the route through the liti-
gation process. A simple model is used in which the training set is the assessment of
the probability of liability given hypothetical scenarios in road traffic accidents. The
model is augmented by additional “weight of evidence” assessments. The model,
once built, is used as a decision support system for claim handlers on a routine ba-
sis. The methods can be seen as a way of utilising a special type of expert judgment
elicitation.
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1 Introduction

Civil litigation is a process in which decisions are made based on a combination
of empirical data and expert judgment. For example, in a case involving physical
injury, medical data will be presented together with some judgment of severity. Expert
legal judgment is needed to make decisions about whether to settle, go to court, etc.
There are also lawyers, claims handlers and other stakeholders involved. A decision
or judgment that needs to be made and which will determine the path through the
litigation process is “liability”. This determination is typically made at an early stage,
not long after “first notification”.

In some cases, the facts will, in some sense, speak for themselves. That is to say,
there is a straightforward series of logical steps that lead in a deterministic way to
an assessment of liability. In other cases, there will be judgment represented as a
probability assessment. The judgment will itself be based on various queries of the
type “what if X happened?”. Note that we make a considerable play in this paper of
the counterfactual “what if X did not happen?”.

This paper covers the case of insurance claims for vehicle accidents. The def-
inition of liability in civil cases, and road accidents, in particular, depends, in the
UK, very much on precedent. Liability is separated into four features: negligence,
recklessness, intention, and strict liability. At one end, negligence means behaviour
which essentially increases the risk of the situation. Here we may think of changing
lanes (under some conditions). It may also be that liability is shared by the insured
party and another driver. There are in addition important background concepts such
as “duty of care”, whose breach is a necessary condition for liability.

Note that liability does not suddenly imply that a driver is responsible for all
bad outcomes. In terms of the litigation, it may mean that a category of doubt has
been removed. For example, if a second driver was involved, liability may not be
attributed to that driver, eliminating the need for a tit-for-tat and possibly expensive
legal process.

A useful example of an event, X , which will lead to an assessment probability, is
“changing lanes”. One can imagine that changing lanes while driving may be a risk
factor. As liability is itself a subtle concept, the probability of liability is even more
so. There is both a future and a past element. Since the accident has happened, we
might naturally consider that liability is something associated with the period around
the time of the lane changing, or even to be part of the “intentionality” of the driver
as in the phrase “behaving recklessly”.

It is this last point that drives the modelling. This is clarified by how it is intended
to be used in the model. Expert judgment, in the case of an experienced lawyer, is used
to capture probabilities to calibrate a model which is then used by other lawyers/claim
handlers to predict/decide liability for the case in hand. This is familiar in the lan-
guage of machine learning: one set of experts provides a training set to build a model
that can then be used by others, routinely, for prediction.

In addition to the probabilistic model, the strength of the evidence is taken into
account, for example, using a photograph of the accident site, by introducing the idea
of weighting. That is to say some of the answers to a query may be supported by
stronger factual evidence. The model will include an informal representation of the
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weighting, which will have the effect of weighting parameter values in a model more
when evidence is strong and less when it is weak.

2 Expert judgment

It is notable that while the related areas of machine learning and AI gather strength,
satisfactorily extending the methods of classical statistics, so also do the techniques
for collecting and processing expert judgment. Indeed, perhaps the greatest challenge
of modern quantitative methods is to combine raw data with elicited judgment. This
is an old challenge that goes deep into the foundation of the scientific method.

Despite a widespread opinion that eliciting entities such as probability is hard,
carefully controlled methodologies have been successful and useful in risk analysis,
safety critical areas [O’Hagan et al.(2006)] [Cooke et al.(1991)] and modern Uncer-
tainty Quantification [M2D(2018)]. Risk matrices which plot probabilities against ef-
fect, for risk events, are a cornerstone of risk analysis, for example for capital projects.
This is despite the fact that the entries are often based on guesswork even often in
more formal Probabilistic Risk Analysis (PRA).

There is considerable literature on the use of probabilistic methods in forensic
science [Roberts and Aitken(2014)] [Dawid et al.(2007)]. These involve a careful un-
derstanding of the background populations and odds ratios leading to the assessment
of probabilities of guilt. The main system tool used is some causal diagram through
which conditional probabilities are propagated. As with risk analysis the tension be-
tween objective data and judgment cannot be avoided. This is particularly apparent
in court when the evidence from witnesses is weighed against physical evidence.

If there is a single most challenging issue in these causal analyses, it is that of
counterfactuals. The problem can be expressed simply in terms of controlled experi-
ments. Consider a drug trial. If a patient is administered a drug, then there does not
exist a clone of the patient who does not get the drug but gets a placebo. In a court if
a witness says: “I hit him back because he hit me” we cannot turn the clock back and
create a situation in which the antagonist does not strike our witness. In both exam-
ples we do not have access to the counterfactual. In a laboratory physical experiment
we can (almost) create a clone, by carefully controlling the test environment. One
process gets an intervention while an (almost) identical process (or the same process
at a later time when the intervention has been removed), does not get the intervention.
Without the ability to do controlled experiments there would be no science. In the so-
cial sciences a raft of methods has been introduced to mimic controlled experiments.
These are sometimes called natural experiments [Craig et al.(2017)], and measure an
average effect via randomisation or matching methods. In the latter case, a person
well-matched on a number of factors with the patient who gets the drug is a sort of
clone [Rubin(1980)].

This paper concerns civil litigation in which judgments and insurance payouts
are made without going to court. An early judgment of liability will lead to one route
through the litigation process, non-liability to another.

We try to put together the idea of elicitation and counterfactuals mentioned above.
A simple term for such idea would be a “counterfactual query”. Work by [Abell(2004)]



4 Wen Zhang et al.

has described the value of such queries, in the context of eliciting narratives, even
when the counterfactual event may not have actually have occurred. We may ask our
witness above: “would you still have hit him if he had not hit you”. Of course, this
raises other issues such as trust and realism. Although the lack of realism or artificial-
ity of counterfactuals has been criticised, we claim that counterfactual queries should
be awarded status comparable with any elicitation of expert judgment. The fact that
the question is conditional should not of itself undermine its status. Expertise must
often include expertise related to causation itself. In a civil litigation context, a finding
of liability by a judge must necessarily include a finding that causation is satisfied.

In this paper we have elicited judgments concerning the probability of being liable
for an accident, when a preceding event has or has not occurred. This is somewhat
unorthodox in the sense that liability is hard to locate during the narrative of events,
but as we hope to show the querying is a most effective method for pre-screening
cases.

In a physical experiment with many (possibly) causal variables it is costly, but
often possible, to test with multiple combinations. Such experiments are called facto-
rial experiments [Box et al.(2005)]. An example is a choice experiment for attributes
in quality improvement, marketing and policy formation [Li et al.(2013)]. Here we
carry out what is often called a “one-factor-at-a-time” experiment. It will be com-
bined with a simple mathematical model which allows prediction in the multi-factor
case. Even though querying is only one query at a time, the model predicts well into
the multiple factor case. An analogy would be a drug trial with multiple drugs. When,
say, two drugs are investigated but never give together, a model may still predict the
effect quite well if both drugs are used at the same time unless there are serious hid-
den synergies (interactions). If a patient takes say ten drugs then it is likely that no
clinical trial has been carried out with combinations of all ten drugs.

3 Workshops and background

3.1 Workshops

The development of the model required a number of workshops to answer some basic
questions. These established quite soon the dichotomy between a logical situation in
which lawyers or claim handlers expressed a high degree of certainty and those which
required more probabilistic judgment. This dichotomy is reflected in the models. The
issue of changing lanes before an accident happens is used both to ask key questions
and capture the basic technical facts. Importantly, two parties are involved when a
road accident occurs, namely the insured party and the third party. The purpose of
the model is to predict whether a party is at fault by asking both of them a series of
questions. All possible results of the prediction are summarised in Table 1. For each
party, there are three possible results, fault, not fault and no decision, depending on
their answers to the questions.

From the case handlers’ viewpoint, when a party changed lanes certain facts will
be taken into consideration when deciding whether the party is at fault: why did the
party change lanes; did he/she changed lanes because of mechanical failure; was there
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Table 1 All possible prediction results

Insured Third Party
Fault Fault
Fault Not Fault
Fault No Decision
Not Fault Fault
Not Fault Not Fault
Not Fault No Decision
No Decision Fault
No Decision Not Fault
No Decision No Decision

some physical impairment; was the impairment due to a legitimate or illegitimate
reason?

The claim handlers found it challenging to suggest weightings of facts (or evi-
dence) when a party has changed lanes. Since the probability of fault where there is a
lane change lane is thought to be higher, it was decided to use a deterministic model
to predict liability without using weightings of facts or evidence. We refer to this as
Model 1.

But, on the other hand, the claim handlers were able to suggest a list of evidence
for the no changing lane’s scenario and to provide to respective evidence “weight-
ings”. The models were divided into four cases, with Model 1 giving the deterministic
case and Models 2, 3, 4 the probabilistic version. Here is a summary of the relevant
queries:

Model 1: Did the party change lanes?
Model 2: Was the party doing the right thing in the right place?
Model 3: Was the party driving appropriately for the conditions?
Model 4: Should they be aware of the other vehicle?

The next step is to transform the facts into a series into questions, under each
model type. These questions are representative of the facts and used to ask the users,
insured party and third party (or their solicitors). Forms were filled in accordingly.

From the workshop, we understand some groups of factors are relatively impor-
tant when deciding whether the party is at fault when not changing lanes. We had a
discussion with these five claim handlers, who helped to determine that the relative
weight of model 2, 3 and 4. How these weights enter the model is discussed in Section
5.2.

4 Model

First, there is the Model 1, the deterministic model. This may also be called a rule-
based model and points to the distinction, already mentioned, in this and other studies
between models which are based only on logical principles and which form a tree
with logic gates at each level, and probabilistic model. Second, is a basic probability
model where the elicited probabilities described above provide the training set from
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the model. A similar hybrid model has been proposed by [De Caigny et al.(2018)],
where they argue that different models constructed on segments of the data rather
than on the entire dataset lead to better predictive performance, which also applies
to our problem. Third, the weight of evidence is used, in two different ways, to the
parameters in the basic model.

4.1 Deterministic model

In practice, lawyers/claim handlers are almost certain that changing lanes will result
in being at fault, subject to some rare exceptions such as mechanical failure. There-
fore, we will ask the party “did you change lanes” first, if the answer is “Yes”, we
proceed through a logical tree which results in a decision: at fault or not at fault.
This tree is presented in Figure 1. Depending on the party’s answer of “Yes”(‘Y’),
“No”(‘N’), “Don’t know”(‘D’) to three levels of questions, the deterministic model
will help to decide whether the party is at fault or not. The questions are used here
as generic: “Q1” to “Q3” (due to confidentiality reasons). It should be noticed that
there are only two results in the deterministic model, either at fault or not, which is
different from those of the probabilistic models, where “unknown” is applicable. This
is again, on the grounds that the “change lanes” questions will almost decide whether
the party is at fault or not.
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Q2 Q2 Q2 

Q3 Q3 Q3 

D 
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N 

N Y D 
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Fig. 1 Deterministic model
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4.2 Basic probabilistic model

Given that the output of the predictive model is binary: liable/not liable, it seems
natural to introduce a logistic regression model, which is very prevalent in both
mainstream statistics and modern machine learning. It is used in medicine to pre-
dict mortality and in credit risk assessment. Our approach is somewhat different. We
do not have a large training data set which would allow a logistic model within the
Generalised Linear model category. Our model is an “empirical” logistic regression
in which the raw elicited probabilities are used directly. Moreover, possessing the
counter-factual allows us to think of the set up as a kind of experiment in which, as
explained one factor (query) is varied at a time, with the implication that the other
factors as not varied, modelled here by being set to zero.

Assume we have k factors that will affect the response determination, such as
“indicate before”. We will construct a prediction model:

y(x) = log
(

p(x)
1− p(x)

)
= θ0 +θ1x1 +θ2x2 + ...+θkxk + ε (1)

where p(x) is the probability of being at fault at x = (x1, . . . ,xk), where x j = 1 when
query is “yes”, x j = −1 when the query j is “no” (counterfactual) and x j = 0 when
the answer for a neutral situation, for j = 1, . . .k. The response values are the elicited
probabilities pi for query i, i = 1, . . . ,N, where, typically, N = 3k,

The predicted probability for a given query answers is given by inverting the
logistic

p̂i =
exp(ŷi)

1+ exp(ŷi)
,

where the predictor of yi(x) is the raw least squares predictor at the i-th configuration
x(i) = (x1i, . . . ,xki):

ŷi = θ̂0 + θ̂1x1i + . . .+ θ̂kxki.

4.2.1 The role of θ0

The simplicity of the model means that the value θ0 automatically corresponds to the
neutral case when all xi = 0. That is y(0, . . . ,0) = θ0 so that

p(0, . . . ,0) =
exp(θ0)

1+ exp(θ0)
.

The orthogonality of the “design” gives

p̂(0, . . . ,0) =
exp(θ̂0)

1+ exp(θ̂0)
,

where

θ̂0 =
1
N ∑y(xi),
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the sample mean of the yi. Again, one of the nice features of the model, which is a
consequence of the orthogonality mentioned above is that this does not depend on
any other parameter estimates.

There are two further suggestions. The first is to set θ0 = 0. In legal terms, this
is to say that in the absence of information, it is natural or fair to set the probability
of liability equal to one half. The second is to make a “by hand” adjustment. That
is, take the θ0 = 0 in the base model but add in a known adjustment post hoc; an
additional calibration based on the raw data, to improve outcomes; what might be
called a “tuning parameter”.

5 Model with evidence strength

5.1 Basic weighting

A separate analysis leads to a measure of the weight of evidence. An item in this
analysis may be evidence from CCTV, telematics and vehicle history. The strength of
different types of evidence is different. The relative strength of evidence is collected
from experienced lawyers/claim handlers and then averaged.

Assume that the insured party collected Q items of evidence in total and define
the strength of the qth evidence as eq

1; third party collected P items of evidence in
total and the strength of the pth evidence as ep

2 . The total evidence strength for the
insured party and the third party is E1 and E2 respectively. The evidence weight for
the insured party win is calculated as

win =
E1

E1 +E2
, (2)

where, as mentioned, E1 = ∑
Q
q=1 eq

1 and E2 = ∑
P
p=1 ep

2 . Combining evidence weight
with θ̂ , we now have a weighted models ŷ to predict liability

ŷ(x,win) = θ̂0 +(θ̂1x1 + . . .+ θ̂kxk)win.

The probability that the insured party is at fault is then

p̂(x,win) =
exp(ŷ(x,win))

1+ exp(ŷ(x,win))
,

The probability that the third party is at fault can be calculated similarly. Although
this weighting method is a somewhat ad hoc, shrinkage of an estimator towards some
prior value is a familiar method in statistics. It is of some interest here that shrinkage
is towards the neutral value of θ̂0. We should also note that the linear model(s) given
in (2) can be replaced by a non-linear model, which we consider deals better with
small and large values. These details are omitted.



Title Suppressed Due to Excessive Length 9

5.2 Sub-model weighting

In the previous subsection, a single w is applied to all the terms in the logistic model,
except θ̂0. A somewhat different kind of weighting is also applied, which reflects
the relative importance of Models 2, 3 and 4. To recall, in the overall combinations
of models, there are a number of initial steps. The first is to ask if the party denies
changing lanes, if ’yes’, the deterministic model will be used to predict. If ’no’, the
probability model is used. In our additional weighting, each of the Models 2, 3 and
4 is allocated a different weighting. It seemed natural to apply the weighting directly
to the predicted probabilities.

Thus, for every sub-model, we calculate the probability that the party under con-
cern is at fault the analysis in section 4.2. Define weights W = (W2,W3,W4) and
p̂i(x,W ), i = 2,3,4 as the prediction from Models 2, 3 and 4 respectively. The com-
bined predicted probability is given by

p̂(x,W ) =W2 p̂2(x,W )+W3 p̂3(x,W )+W4 p̂4(x,W ) (3)

The values of the weights were elicited following further special workshops ded-
icated to this task. In the absence of evidence, either party (insured, third party) the
probability is assigned to 1

2 which in the model is equivalent to θ0 = 0 as explained
in subsection 4.2.1.

6 Validation

We test the performance of the model by comparing its predictions with that of sub-
jects. Nine claim handlers were each asked a variety of questions according to the
routes to Model 1 (deterministic) or Models 2 ,3, 4 (probabilistic).

The respondents were asked to decide whether the insured party was at fault (1),
not at fault (-1), neutral (0), and the same for the third party. The model prediction was
similar: 1 if the prediction p̂i > 0.5, -1 if p̂i < 0.5 and 0 if p̂i = 0.5. In addition, the
third set of data, which is referred to informally as the “truth”, are decisions made by
the respondents after have received a full set of data. Thus there are three sets of data
(i) respondent, (ii) model and (iii) “truth”. Each data set consists of 225 two-entry
vectors with entries ±1 or zero.

In assessing how well the model performs, we compare the initial respondent
with the truth and the model with the truth. We denote the u, v as the prediction
result for the insured party and third party, which is 1 if the predicted result is same
as the truth and 0 otherwise; and r,m, t refers to the case of the respondent, model
and truth and i for the ith entry. Since there are three possible prediction results, we
decided against the more familiar ROC curve and F-score. Instead, we use accuracy,
Hamming distance, which is the number of positions at which the corresponding
symbols are different, and L1 distance to measure the performance. The four scores
we have for the claim handler’s prediction are

1. S1: prediction accuracy for the insured party, calculated as
∑

225
i=1 ui

r

225
;
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2. S2: prediction accuracy for the third party, calculated as
∑

225
i=1 vi

r

225
;

3. S3: Hamming distance;
4. S4 = ∑

225
i=1(|ui

r−ui
t |+ |vi

r− vi
t |), L1 distance.

The same scores are calculated for the model’s prediction. For S1 and S2 we give
the proportion S1 = 1 values, for S3 and S4 the average values, noting that the maxi-
mum are 2 and 4 respectively. Table 2 presents how many cases that the respondent
(claim handler) and model have made a correct decision for the insured and the third
party respectively. The result scores are given in Table 3.

Table 2 Validation results

Insured T hird party
Respondent 205 216
Model 223 224

Table 3 Validation results scores

S1 S2 S3 S4 1−S3 1−S4
Respondent 0.911 0.960 0.064 0.113 0.936 0.887
Model 0.991 0.996 0.007 0.007 0.993 0.993

It can be seen that the model performs better than human respondents with all
measures, especially the L1 distance score. This distance is of importance in practice
because it measures how far the predicted result is from the truth, a large distance
usually brings a high cost.

7 Implementation

Combined the deterministic and probabilistic model, a decision support system is
built for liability identification in a road traffic accident. The system is designed to be
used by a claims handler or lawyer with knowledge of the facts of the case. This sec-
tion illustrates the implementation of this decision support system and some details
are concealed due to confidential reasons.

A model-based decision support system typically has three parts. Working back-
wards, a decision environment is support by the output of a models which in turn is
calibrated with data generated by some kind of observational study or experiment.
There may also be places in the model where expert judgement can be included.
In additional once the system is built there will be stakeholders, who are not usu-
ally those who calibrated the system who are the ”users”, who are essentially the
decision-maker in the specialised decision environment, in this case the legal or in-
surance environment.

The opening action of the user is to complete a set of questions on-line via an
interface. The first question is ”Did the party change lanes?”. Depending on the user’s
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answer to each question, the user will answer more than a dozen questions. These
results are then stored in a database displayed where 0 to 3 denote the answer of ’No’,
’Yes’, ’Unknown’ and ’Blank’ to different questions. The data is then input into the
combined model, which generates a recommendation. Both parties’ probability of
being at fault and final recommendation based on inputs. The result is posted back
into the database, for future use, e.g., model improvement. A separate process then
generates an email to the user, stating which party is at fault, or no decision, based
on available information. Figure 2 is an example result email. The four main stages
of the process are accompanied by user interface, which are simply given in outline
in Figure 3.

Fig. 2 Example result email

The architecture is chosen for a number of reasons. First, an online form is rel-
atively straightforward to build and integrate into other systems; second, a simple
architecture will be easy to maintain; third, the user interface can be easily accessed
and understood, maximising the reach of the researched model; finally, sending the
user output via email means that no systems integration is required at the end of the
process, further increasing maintainability and reducing the cost of deployment.

Several key design considerations flow from the statistical model that the decision
support tool had to reflect. First, the questions provided in the user interface had to
reflect those in the tested model. Any material changes to the question set compared
to the test set would require the model’s accuracy to be reconfirmed. Also, from a
user perspective, there is a fatigue effect to completing a form that is unnecessarily
long. This must be set against the need to collect enough information for the model to
function. To balance these consideration, further work is being carried out to ascer-
tain where groups of questions can be aggregate into a small number, even a single
question. The data based referred above will be used to do the necessary clustering
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Claim handler/Lawyer
(User)

Complete online 
questions

Data is stored and 
processed in a 

database via MS SQL 
Server

Both parties’ 
probability of being at 

fault is calculated 
based on the proposed 

model

A recommendation 
email is generated

Fig. 3 Framework of the decision support system

analysis. This enabled a reduction in the length of the user-facing questionnaire with-
out any impact on the results generated.

8 Conclusion

This project can be considered as a proof of concept in a highly technical and sen-
sitive area, where professional judgment plays a central role. The early assessment
of liability is a critical part of civil litigation and was selected as being amenable
to simple statistical modelling built on careful elicitation experiments, and nuanced
with judgments about the quality of evidence of different types. Early trials have
proved successful and should give confidence that lessons have been learned which
may contribute to the growing awareness of the need for more quantitative methods,
to save cost to stakeholders in an equitable and validated fashion. Future research
could examine how does the selection of the base parameter θ0 will affect the result,
automatic selection of weightings while larger dataset is available and how does the
system perform accordingly.
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