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Abstract

Why are bank deposits demandable when they are also negotiable? We present a

General Equilibrium model in which demandable debt exposes banks to liquidity risk

so that they can signal their types and ensure that their liabilities can circulate as a

means of payment. Banks can manage their liquidity risk by altering their deposit

rate and their lending scale. When banks are transparent, so that depositors have

homogenous information about their assets, they use only the former tool: their

lending scale is efficient, and they do not experience liquidity crisis. When banks are

opaque, so that depositors receive private signals of their quality, they inefficiently

shrink the scale of their lending. A bank’s stock of liquid assets affects its capacity

for risk taking. A “bad bank” policy can resolve liquidity crises by reducing the

opacity of the bank’s assets.
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1. Introduction

Notwithstanding several decades of research into commercial banking, no theory explains

a fundamental fact about commercial banks: namely, that a significant fraction of their

liabilities is both negotiable and demandable. Demandability places the bank in a precarious

position, because it could at any time experience a large-scale withdrawal, which would cause

a liquidity crisis. Why, then, do banks expose themselves to this risk? Following the seminal

work of Diamond and Dybvig (1983), a vast literature argues that deposit demandability

is a form of insurance that ensures that depositors will be able to satisfy an immediate

consumption need, should it arise. But this explanation ignores the fact that bank liabilities

are negotiable, so that a bank depositor could meet an immediate need for funds even if her

deposit were not demandable: instead, she could use a bank card, make a bank transfer,

or write a cheque on her account. Indeed, if depositors were to withdraw funds in response

to every stochastic consumption need as Diamond and Dybvig (1983)-style models assume,

then banks would experience a huge volume of daily withdrawals, with total value equal to

depositors’ aggregate demand for liquidity. But, in reality, the level of bank withdrawals

in normal times is very small. 1 This fact pre-dates the emergence of modern, electronic

payment systems:2 Van Dillen (1964) reports that the Bank of Amsterdam experienced no

withdrawals in the century before the Fourth Anglo-Dutch war of 1780–84.

The literature that follows Diamond and Dybvig (1983) ignores the negotiability of bank

deposits and treats bank liquidity management as an optimal liquidity risk sharing problem.

But we have already seen that this is an incorrect characterisation of real-world banking: in

normal times, withdrawals are rare so that the liquidity needs of depositors do not have a

significant effect upon bank liquidity. Our contribution is to investigate bank liquidity in a

model that incorporates negotiable bank deposits. We start by explaining why banks offer

the right to withdraw on demand when their depositors can use deposit negotiability to meet

their liquidity needs. We then examine a series of questions of natural concern to banks in

this case. First, under what circumstances will depositors exercise their rights and, hence,

expose banks to substantial withdrawal demands? Second, when do banks fail to meet those

withdrawal demands and, hence, experience liquidity crises? Third, how does the possibility

of liquidity crises affect banks’ lending decisions? Finally, we ask how regulators should

respond to bank liquidity crises. We keep depositor liquidity shocks in our model in order to

situate it in the existing literature, but liquidity risk sharing plays little role in our analysis,

1When depositors use their deposit as a means of payment, they transfer their claim to a seller of goods.
If the seller has an account at the same bank, no cash is withdrawn and the transfer is accomplished through
a series of bank ledger entries. If the seller’s account is with a different bank, the payment creates an inter-
bank liability. Even in this case, a transfer of bank cash reserves is very unusual: most inter-bank claims net
out and the creditor bank seldom demands immediate settlement of the net position, given that the position
earns inter-bank interest.

2The importance of negotiability for liquidity in general is discussed by Kiyotaki and Moore (2002).
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and our results survive even when depositors do not experience liquidity shocks.

We solve a general equilibrium model in which, at time 0 banks use their liabilities to

hire workers, who engage in long-term production. As in the classic Diamond and Dybvig

set-up, workers face uncertainty over the timing of their consumption needs. Banks may give

their liability holders the right to demand early repayment but, in contrast to Diamond and

Dybvig, we allow liability holders to respond to consumption shocks by reselling their claims

on the bank. Another difference between our analysis and Diamond and Dybvig’s is that

the banks in our model have time 0 private information about the quality of their long-term

investments. Banks that face a run in our model suspend withdrawals and suffer a loss.

Our explanation for demandable deposits rests upon the information asymmetry between

banks and depositors. We demonstrate that banks use demandable deposit contracts to sig-

nal their quality. High-quality banks promise lower long-term repayments than low-quality

banks; a low-quality bank that mimics a high-quality bank experiences a run when its type

is revealed. If the cost of liquidity crises is high enough, then in every equilibrium of our

game all banks offer demandable deposits; nevertheless, there are no runs and there is no

early withdrawal. Liquidity-shocked depositors use their bank claims to purchase consump-

tion goods. Moreover, liquidity risk does not affect lending efficiency in this model: the

second-best allocation is implemented in the competitive equilibrium despite the presence of

asymmetric information. Banks have two techniques to control the scale of withdrawals and,

hence, to avoid liquidity crises: they can reduce their lending scale, which, because they

create deposits in order to lend, shrinks their depositor base; or they can promise higher

depositor rates in order to discourage withdrawals. In our baseline model, banks use only

the second technique so that they lend at the socially optimal level.

Our model therefore yields a novel explanation for deposit demandability. Depositor

liquidity insurance derives from deposit negotiability and not from demandability. Demand-

ability emerges because there is uncertainty over bank quality, and not because depositors

face liquidity shocks: indeed, our results hold even when depositors face no liquidity risk. De-

mandability gives depositors the ability to inflict serious losses on their bank when they find

evidence of unsoundness and, hence, can be used ex ante to demonstrate a bank’s soundness.

In this version of our model banks experience no withdrawals and there are no bank

runs. This is close to our experience of normal markets, in which banks seldom face mass

withdrawals. When the cost of a liquidity crisis is lower, this model can deliver runs. With

the lower cost, the model admits a partially separating equilibrium: the highest- and lowest-

quality banks all offer the same contract, while banks of intermediate quality use their

contracts to separate. The lowest quality banks all experience equilibrium runs when their

types are revealed; the resultant costs are worth bearing because their are outweighed by

the lower long-term payments that they achieve by pooling with highest quality banks.
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The partially separating equilibrium of the previous paragraph supplies an explanation

for equilibrium depositor withdrawals, and for the scale of those withdrawals. In the partially

separating equilibrium, liquidity crises are a consequence of solvency problems, in the sense

that the deposit rate is insufficient to compensate for default risk: either a bank is solvent,

in which case none of its depositors withdraw early, or it is insolvent, in which case all of its

depositors withdraw. It follows that, in this equilibrium, a bank’s holdings of liquid assets

have no part to play in its liquidity risk management strategy.

Our baseline model yields demand deposits and liquidity crises that derive from solvency

risk. But it fails to address two important facts. First, solvent banks can experience liquidity

crises. Second, liquid asset holdings are relevant to a bank’s management of liquidity risk.

An extension to our model addresses these points.

In this extension, we assume that depositors gather information about their banks from a

variety of sources. Some banks experience an opacity shock : that is, their depositors receive

private signals of their bank’s quality. Information about opaque banks is therefore dispersed,

so that no single person has a complete picture of their quality. Depositors with bad signals

withdraw, irrespective of whether they have experienced a liquidity shock. The total scale

of withdrawals depends, first, on the size of the bank and, second, on the distribution of the

private signals.

Recall that banks in our baseline model use the deposit rate only to manage liquidity risk

so that they lend at the socially optimal scale. In our extension, banks that anticipate opacity

shocks manage liquidity risk by both raising the deposit rate and, in addition, reducing their

lending scale. Four new insights emerge from our analysis. First, liquidity risk reduces

bank efficiency: banks that anticipate opacity shocks respond by inefficiently reducing their

lending scale. The scale of this effect depends upon the bank’s stock of liquid assets. When

the stock drops to zero, banks have no appetite for risk taking; this is very inefficient.

Second, liquidity risk causes more inefficiency in lower-quality banks. The reason is that

depositors in higher-quality banks can be dissuaded from running by a smaller increase in

depositor returns: consequently, lower-quality banks reduce their scale more in response to

potential liquidity crises than do higher-quality banks.

Third, unanticipated opacity shocks cause liquidity crises. If banks do not expect their de-

positors to acquire idiosyncratic information, then they do not shrink. As a result, whatever

the distribution of depositor signals, any bank whose depositors acquire dispersed informa-

tion about its asset quality experiences a liquidity crisis. Therefore, even absent rumours and

disinformation, banks can experience liquidity crises simply because their depositors start

to gather information for themselves. Banks certainly cannot manage this type of liquidity

risk by denying their depositors information, and the appropriate response may come from

policy makers.
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Fourth, policy makers can address liquidity crises using “Good Bank/Bad Bank” policies

(“GB policies”), under which a troubled bank sells its impaired and non-performing assets

to a “Bad Bank” in exchange for safer assets, which it combines with its performing assets

to form a “Good Bank.” The Bad Bank could be a private business or a state-controlled

business. The GB policy works by reducing the opacity of bank assets, which typically also

reduces their perceived riskiness. GB policies are very widely used, but they have received

almost no academic attention. Our paper is one of the first to model GB policies. Our

analysis highlights the fact that GB policies are a response to liquidity, rather than solvency,

crises. Indeed, the GB policy can resolve liquidity crises even when assets are sold to the

Bad Bank at a discount to their fair value so that equity value is reduced.

Since Diamond and Dybvig (1983), a substantial literature studies bank contracts and

bank liquidity as liquidity risk sharing problems. A strand of theoretical literature analyses

the limitations of a Diamond and Dybvig-style contract for risk sharing when deposits are

negotiable: see Jacklin (1987), Hellwig (1994), Allen and Gale (2004), and Farhi, Golosov,

and Tsyvinski (2009). None of these papers endogenises deposit demandability. More re-

cently, Andolfatto, Berentsen, and Martin (2019) present a model in which demand deposit

contracts cannot improve liquidity sharing unless deposits are not completely negotiable. In

contrast to all of these papers, our paper is not about liquidity risk sharing; as a result, we

generate deposit demandability even when there is no impediment to negotiability.

Several authors analyse models in which bank liabilities serve as a means of payment

in general equilibrium: see, for example, Stein (2012), Gu, Mattesini, Monnet, and Wright

(2013), Jakab and Kumhof (2015), Donaldson, Piacentino, and Thakor (2018), and Wang

(2018). While they deepen our understanding of money creation, these papers are not

concerned with bank liquidity.

Calomiris and Kahn (1991) argue that demand deposits are a response to moral hazard

problems between the bank and its depositors. Diamond and Rajan (2001) explain demand-

ability as a commitment device that commits a relationship lender not to use its market

power to renegotiate its claims ex post, rather than as a signalling device. Allen and Gale

(1998) analyse a Diamond and Dybvig-style model in which runs allow for efficient risk shar-

ing. But in neither Diamond and Rajan’s model nor Allen and Gale’s are deposits a form of

money.

Bank runs are an equilibrium phenomenon in several papers. Jacklin and Bhattacharya

(1988) study information-based runs, and Chen (1999) and Chari and Jagannathan (2012)

examine panics that arise when some depositors interpret the behaviour of others as evidence

of poor fundmanentals. Like us, Rochet and Vives (2004), Goldstein and Pauzner (2005),

and Liu (2016) study models in which depositors receive private signals of fundamental

information. But none of these papers incorporates the role of bank liabilities as a means of
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payment, or examines the implications of liquidity risk for banks’ lending decisions.

2. Model

We consider an economy in which there are two types of agents: a continuum of workers

w ∈ [0, 1]× [0, 1] and a continuum of banks b ∈ [0, 1]. There is one consumption good, corn,

in the economy. Corn can be costlessly stored.

The economy lasts for four dates: t = 0, 1, 2, 3. At time 0, each worker is endowed

with one unit of labour and has a production technology that converts his time 0 labour

endowment into one unit of corn at time 1. Each bank has a time 0 endowment of G units

of corn and has a technology that converts h units of time 0 labour into Y units of corn at

time 2, where

Y = Ah, (1)

and A ∈
{
A, Ā

}
. Banks are capacity-constrained: they can use the labour endowment of at

most a measure 1 of workers, so that h ≤ 1.

The productivity parameter A is drawn from
{
A, Ā

}
, where

Ā > 1 > A+G. (2)

A realises only at time 2. The probability that a given bank has productivity Ā is given by

its type, q.It is convenient to define Ae(q) to be the expected productivity of a type q bank:

Ae(q) , qĀ+ (1− q)A. (3)

Bank types are distributed over [0, 1] with c.d.f. F (·) and realisations of A are independent

across banks. Each bank knows its own type at time 0; bank types are revealed to workers

only at time 1.

Workers can consume at time 1 or time 2. We follow Diamond and Dybvig (1983)

and assume that each worker faces a privately observed and uninsurable risk of being an

early consumer or a late consumer. Workers learn their type at time 1: the probability

that any worker is an early consumer is θ, and workers’ type realisations are independent.

Early consumers only derive utility from time 1 consumption; late consumers are indifferent

between time 1 and time 2 consumption. A worker who consumes levels of corn c1 and c2 at

times 1 and 2 achieves the following utility:

U(c1, c2) =

c1, if the worker is an early consumer;

c1 + c2, if the worker is a late consumer,
(4)
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We say that early consumers have experienced a liquidity shock.

Banks can consume at time 0 or time 2; each bank derives the following utility from

consumption levels b0 and b2 at times 0 and 2:

VB(b0, b2) = b0 + b2. (5)

At time 0, each worker can elect either to be banked or to be unbanked. An unbanked

worker uses his own technology to turn his labour endowment into one unit of time 1 corn;

a banked worker supplies his labour to a bank, which produces time 2 corn according to the

production function of Equation (1).

The relationship between a banked worker and his bank is governed by a contract

(R1, R2). The contract allows the worker to decide when he wishes to be paid by the bank:

he can opt to demand payment R1 at time 1, or R2 at time 2. For convenience, we will

sometimes refer to a single worker’s contract (R1, R2) as a unit claim. We say that a worker

who demands a time 1 payment of R1 from his bank has performed an early withdrawal ; we

say that workers who do not withdraw early elect to hold.

The contract (R1, R2) establishes a tradeable claim on the bank: a banked worker who

does not withdraw early can resell his claim to a time 2 payment. The claim trades at a

price 1/R12 for each unit of time 2 corn promised under the contract. The return on corn

that is stored from time 1 to time 2 is 1; the rate of return R12 exceeds 1 if there is excess

time 1 demand for liquidity. We therefore refer to R12−1 as the liquidity premium. As there

is no uncertainty when the time 1 market in bank claims clears (recall that q is revealed to

all workers at time 1), R12 is the same for all bank claims. In summary, banked workers at

time 1 can choose an action from the set {withdraw, hold, resell}.
Suppose that a bank has time 1 corn holding H ≤ G and that it experiences a total

withdrawal demand of Q. If Q > H then the bank is unable to meet its contractual obli-

gations in full, and we say that it experiences a liquidity crisis. When a bank experiences a

liquidity crisis, a fraction H/Q of its repayment demands are honoured. The bank’s project

then continues to time 2, when its outstanding liabilities are paid at the original contractual

rate R2. That is, the bank suspends convertibility until time 2. Banked workers who are not

paid at time 1 can still sell their claims for 1/R12, and so need not wait to consume. We

make the following assumption:

Assumption 1. Banked workers choose to withdraw at time 1 precisely when the withdrawal

value R1 exceeds the resale value p.

Assumption 1 implies that workers never withdraw when they are indifferent between

withdrawal and resale. This reflects the fact that, in practice, banks can always increase

time 2 promised repayments by an arbitrarily small ε > 0 and so discourage early withdrawal
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by late consumers. Assumption 1 also implies that workers attempt to withdraw when R1

exceeds the resale value even in case H = 0, despite the fact that it is impossible actually

to withdraw anything when H = 0. Without this assumption, banks would be able to avoid

liquidity crises by retaining no liquid assets.

In reality, liquidity crises are very costly: they prevent socially valuable and potentially

profitable lending from occurring. We capture this effect in our model by assuming that

every bank that does not experience a liquidity crisis receives additional utility L at time

3. For convenience, we express bank utility gross of this figure: bank utility is therefore

V (b0, b2) if there is no liquidity crisis, and V (b0, b2)− L if there is a crisis.

The timeline for our model is illustrated in Figure 1.

At time 0, banks learn their type q. Banks then decide whether or not to offer a contract

to workers. We say that a bank is active if it offers a contract (R1, R2), and that it is inactive

if it does not. Workers choose whether to be banked or unbanked. Banks then decide how

much corn H to retain to time 1, and how much to consume immediately.

At time 1, bank types are revealed to workers, and liquidity shocks occur. The market

for bank claims opens. Unbanked workers and banks may sell corn for bank claims; banked

workers decide whether to demand early repayment, to resell their claim, or to hold. If a

worker demands early repayment from a bank that experiences a liquidity crisis then the

likelihood of payment reflects the bank’s corn shortfall.

Banks settle outstanding claims at time 2 and banks that did not experience a time 1

liquidity crisis receive utility L.

t = 0

Banks observe their type, q.

Banks decide whether
to be active or inactive.

Active banks offer
contracts (R1, R2).

Workers decide whether to
be banked or unbanked.

Banks choose the quantity
H of corn retained to time 1.

t = 1

Bank types q are revealed to workers.

Workers learn whether they
are early or late consumers.

The market for bank claims opens.
Banked workers choose an ac-

tion from {resell, hold,withdraw}
The market for bank claims
clears at a price 1/R12 per

time 2 promised unit of corn.

t = 2

Bank
claims
settle.

t = 3

Banks that did
not experience
time 1 liquidity
crisis receive ad-
ditional utility L.

Figure 1. Model timings. At time 0, banks learn their types and select contracts; workers decide
whether to be banked and banks decide how much corn to retain. At time 1, workers learn their
types and that of bankers; withdrawal decisions are made and the market for bank claims clears.
Bank claims settle at time 2 and banks then experience the disutility associated with liquidity
crises.
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2.1 Discussion

In practice, corporations acquire deposits, that is, bank liabilities, as a result of the double

ledger entries that occur when their banks lend them money. Corporate deposits are then

used to pay workers, who create the output that is ultimately used to repay the corporation’s

bank loans. In the interests of tractability, we fold the corporate sector into the banking

sector in our model. Hence, at time 0, banks in our model create a liability contract (R1, R2)

in order to hire workers; this liability contract can therefore be viewed as a deposit contract

and, hence, we will sometimes refer to banked workers as depositors ; accordingly, if R1 > 0,

then we will refer to R2/R1 − 1 as the bank’s deposit rate.

Our model is closely related to Diamond and Dybvig’s (1983) classic analysis. Agents in

the Diamond and Dybvig setup are endowed with real consumption goods, while our agents

have only a labour endowment at time 0. This difference is superficial: an unbanked worker

in our model produces one unit corn at time 1 which corresponds to the output from short-

term production in the Diamond and Dybvig model; similarly, banked workers in our model

correspond to long-term production in the Diamond and Dybvig setup. Early withdrawal is

a potential solution to short-term consumption shocks in both models. The key difference

between our set-up and the Diamond and Dybvig model is that, in our model, workers can

respond to a liquidity shock by reselling their deposit contract. That is, our workers choose a

time 1 action from the set {withdraw, hold, resell}, while Diamond and Dybvig’s depositors

choose an action from the set {withdraw, hold}.
Our model therefore captures an important real-life fact that is absent in many models of

demand deposits. In practice, people seldom withdraw cash to meet an unexpected liquidity

demand; rather, they use a cheque or a bank card. In other words, they use their deposit

claims as a means of payment. Hence, if banks were to set R1 = 0, they could avoid the risk

of a costly liquidity crisis without preventing depositors from satisfying early consumption

needs. In the next Section, we show that banks nevertheless offer full demandability: that

is, that the withdrawal value of equilibrium deposit contracts is equal to their resale value.

In this case, we show that, although banks are exposed to the risk of liquidity crises, they

can manage this risk by setting deposit rates at an appropriate level, so that, despite their

liquidity concerns, banks lend at an efficient scale.

3. Full demandability, lending efficiency, and liquidity concerns

We solve the model under the assumption that every active bank has scale h = 1; we demon-

strate below that this is indeed the optimal scale for active banks. We start establishing two

results that we will use in our subsequent analysis.

Lemma 1. If a bank’s deposit contract induces time 1 depositor withdrawal, then the bank
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faces a liquidity crisis. That is, if the depositors’ withdrawal right R1 exceeds the resale value

p of deposit contracts, then R1 also exceeds the bank’s time 1 liquidity stock H.

At time 1, depositors with a contract (R1, R2) receive either the contract’s resale value

p or its withdrawal value R1. If the contract is acceptable to depositors and it also induces

withdrawal, then the withdrawal value R1 must be sufficient to pay workers’ wages. But the

bank’s liquidity stock H must be no greater than G, which is less than 1, the sum required

to pay workers. A contract that induces withdrawal therefore promises more than the banks

can afford and, hence, causes a liquidity crisis.

Lemma 2. Banks default at time 2 if A = A.

We now proceed to an analysis of the time 1 and time 0 decisions of banks and their

depositors.

We write p(R2, H, q) for the time 1 resale value of a deposit contract (R1, R2) issued by a

type q bank that retains corn holding H and that does not experience time 1 withdrawal. If

A = A, then, by Lemma 2, the bank defaults; in this case, its depositors receive the entirety

of the bank’s corn production, A, plus the return AR12 that the bank earns by investing its

corn stock H at time 1. It follows that p is given by Equation (6):

p(R2, H, q) =
qR2 + (1− q)(A+R12H)

R12

. (6)

A q-bank does not experience a run if and only if the following liquidity constraint is satisfied:

R1 ≤ p(R2, H, q). (7)

When Condition (7) is satisfied, the time 1 expected income of a worker with that bank is

p(R2, H, q).

If R1 > p(R2, H, q), then a q-bank experiences time 1 withdrawal and, by Lemma 1,

suffers a liquidity crisis. In this case, a banked worker attempts to withdraw R1 at time 1.

With probability H/R1, her withdrawal demand is satisfied; with probability (1 − H/R1),

she is entitled to the time 2 payment of the contract (R1, R2) (which she may sell). That

payment is R2 with probability q; with probability 1− q, by Lemma 2 the bank defaults and

depositors receive a pro-rata share of the A return from the project, divided amongst the

1 −H/R1 remaining claimants. The time 1 value of the banked worker’s claim is therefore

given by Equation (8):

V r
W (R1, R2, q) = H +

1

R12

(
1− H

R1

)(
qR2 + (1− q)

(
A

1−H/R1

))
. (8)
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A banked worker therefore earns the following time 1 expected value from a q-bank with

contract (R1, R2) that retains corn holding H:

VW (R1, R2, H, q) =

V r
W (R1, R2, H, q), if R1 > p(R2, H, q);

p(R2, H, q), if R1 ≤ p(R2, H, q).
(9)

At time 0, workers choose between accepting a bank contract and being unbanked. Un-

banked workers have a time 0 income of 1. A banked worker with bank contract (R1, R2)

assesses posterior F(R1,R2) for the distribution of q and expects a type q bank to retain corn

holding H(q). She therefore accepts any contract in the set Θ of contracts that yields a time

0 expected payout of at least 1:

Θ =

{
(R1, R2) |

∫ 1

0

VW (R1, R2, H(q), q) dF(R1,R2)(q) ≥ 1

}
. (10)

If a q-bank’s contract (R1, R2) is accepted and it retains corn holding H, then its time 1

expected income is

VB(R1, R2, H, q) =

V nr
B (R1, R2, H, q), if R1 ≥ p(R2, H, q);

V r
B(R1, R2, H, q), if R1 < p(R2, H, q).

(11)

where, using Equation (5) and the fact that the banks defaults in the bad state,

V nr
B (R2, H, q) = (G−H) + q(Ā+R12H −R2) (12)

is the value of the bank if it does not experience a run, and

V r
B(R2, H, q) = (G−H) + q

(
Ā−

(
1− H

R1

)
R2

)
− L (13)

is the value of the bank if it experiences a run.

A contract is accepted precisely when it is in the set Θ. A q-bank therefore solves the

following maximisation problem:

max
H∈[0,G], (R1,R2)∈Θ

VB(R1, R2, H, q). (14)

An inactive q-bank earns utility maxH(G−H) +HR12 = GR12. The q-bank therefore elects

to be active if and only if the solution (R1(q), R2(q), H(q)) to Problem (14) exceeds GR12.

This requirement is equivalent to the following condition:

VB(q) = VB(R1(q), R2(q), H(q), q) ≥ GR12. (15)
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We write Q for the set of q that satisfy Condition (15). We need Q to identify the clearing

conditions for the time 1 market for bank deposits and, hence, the price R12 of liquidity.

At time 1, the demand D(R12) for corn by liquidity-shocked banked workers is given by

Equation (16):

D(R12) = θ

∫
q∈Q

VW (R1(q), R2(q), H(q), q) dF (q). (16)

Let

µ(Q) =

∫
q∈Q

1 dF (q)

be the number of banked workers. Then the mass of unbanked workers that have not

experienced a liquidity shock at time 1, and so can supply corn to the market, is (1− θ)(1−
µ(Q)); the potential supply of time 1 corn by banks is H. We write

S(R12) = (1− θ)(1− µ(Q)) +H. (17)

Lemma 3 (Market clearing condition).

1. If R12 > 1 then the clearing condition for the time 1 corn market is that S(R12) =

D(R12);

2. If R12 = 1 then the clearing condition for the time 1 corn market implies that S(R12) ≥
D(R12).

Proof. If R12 > 1, then non-liquidity shocked banked workers never consume at time 1 and

all holders of corn prefer to buy a claim to time 2 corn rather than to consume immediately

or to store their corn. In this case, the market clearing condition is that S(R12) = D(R12).

If R12 = 1, then non-liquidity shocked banked workers may opt to consume at time 1 so

that the total demand D for corn in the time 1 market may exceed D(R12); moreover, corn

holders may opt to consume or to store their corn rather than to supply it to the time 1

market so that the supply S of corn in the time 1 market may be less than S(R12). In this

case, the market clearing condition S = D implies that D(R12) ≤ S(R12).

We will search for Perfect Bayesian Equilibria of the game of this Section. As usual in

this type of game, there are many possible equilibria, and we must therefore supplement our

equilibrium definition with a condition that rules out “unreasonable” beliefs. Our task is

complicated by the fact that, when workers form a poor opinion of a bank, they simply refuse

to accept its contract; when that happens, the bank earns precisely the return achieved by

any bank that does not issue a contract and, hence, is no worse off. Standard refinements,

such as the Cho and Kreps (1987) Intuitive Criteria, therefore do not restrict the set of

possibile equilibria.

We adopt instead a slight modification of the Intuitive Criterion. Faced with an off-

equilibrium path contract (R1, R2), we assume that workers assign zero probability to any

12
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bank type q that would be worse off if the contract were to be accepted. More formally,

in equilibrium, a type q bank earns VB(q) (Equation (15)). If the off-equilibrium contract

(R1, R2) is accepted, the type q bank selects its corn holding H(R1, R2, q) to maximise

VB(R1, R2, H, q) (see Equation (11)). With this notation, our refinement reduces to a worker

belief that an off-equilibrium contract (R1, R2) was offered by a bank of type q, where

q ∈ Ψ(R1, R2) , {q | VB(q) < VB(R1, R2, H(R1, R2, q), q)} . (18)

Condition (18) boils down to a worker belief that, if a bank that offers an off-equilibrium-

path contract (R1, R2), it sincerely wishes the contract to be accepted. We therefore say

that beliefs that satisfy our refinement satisfy the sincerity criterion. Under the sincerity

criterion, workers accept an off-equilibrium-path contract (R1, R2) if and only if Ψ(R1, R2)

is non-empty and

min
q∈Ψ(R1,R2)

VW (R1, R2, H(R1, R2, q), q) ≥ 1. (19)

We are now able to define an equilibrium for the game of this Section.

Definition 1. An equilibrium for the game with q drawn from [0, 1] comprises:

1. A set Q ⊆ [0, 1] and a mapping (σ,H) : Q → <2 × [0, G] such that bank types with

q /∈ Q are inactive, and other banks offer the contract σ(q) = (R1(q), R2(q)) and retain

corn holding H(q);

2. Worker beliefs form the distribution F(R1,R2) over q given a contract offer (R1, R2);

3. A set Θ of acceptable contracts;

4. A time 1 price 1/R12 for time 2 bank claims,

such that Q, σ, H, F(R1,R2) and R12 satisfy the following conditions:

i. For each q ∈ Q, (R1(q), R2(q), H(q)) solve the q-bank’s maximisation problem (14);

ii. Q is the set of q values for which Condition (15) for banks to be active is satisfied;

iii. F(R1,R2) is derived from F and σ using Bayes’ Rule where possible;

iv. Θ is derived from F(R1,R2) using Equation (10) for the set of individually rational worker

contracts;

v. The equilibrium is robust to the sincerity criterion: for every off-equilibrium-path con-

tract (R1, R2), either

(a) No bank would be better off if its offer of (R1, R2) were accepted:

Ψ(R1, R2) = ∅; (20)
or

13
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(b) Workers strictly prefer not banking to banking with at least one bank that would be

better off if it offered (R1, R2):

min
q∈Ψ(R1,R2)

VW (R1, R2, H(R1, R2, q), q) < 1; (21)

vi. The time 1 price R12 satisfies the market clearning conditions of Lemma 3.

Before searching for equilibria of our game, we establish a benchmark second-best alloca-

tion, in which a social planner faces no information friction but is subject to a “free trade”

constraint. As Hellwig (1994), Allen and Gale (2004), and Farhi, Golosov, and Tsyvinski

(2009) show in a setting without adverse selection, the early consumers in a competitive

equilibrium with negotiable bank deposits should receive the payment that they would re-

ceive if they used their endowment for short-term production. The social planner in our

model should therefore pay each liquidity-shocked worker one unit of corn. The planner

must determine which banks should run projects, and, hence, the allocation of workers.

Clearly, if the social planner allows a bank of type q to run projects, then it must also

allow banks of type q′ > q to do so. The planner’s problem therefore reduces to the selection

of the entry threshold qc that maximises time 2 output:

max
qc

∫ 1

qc

Ae(q) dF (q) +G+ F (qc)− θ (22)

s.t. θ ≤ G+ F (qc). (23)

Condition (23) is the resource constraint that the time 1 output be sufficient to give one unit

of corn to each worker who experiences a liquidity shock.

Let

q∗ =
1− A
Ā− A

. (24)

A bank of type q∗ generates a return Ae(q
∗) = 1 from its workers and, hence, is the lowest

quality bank that meets the opportunity cost of a worker. The social planner should therefore

set qc equal to q∗ if this value satisfies the resource constraint (23); if it does not, the

constraint must bind, so that qc = F−1(θ − G). This intuitive argument can be confirmed

by solving the social planner’s problem directly. We therefore have:

qc =

F−1(θ −G), if θ > G+ F (q∗);

q∗, if θ ≤ G+ F (q∗).
(25)

We now demonstrate that, provided the cost L of a liquidity crisis is high enough, in

every equilibrium, the second-best allocation of Equation (25) is achieved, and all active

banks offer full withdrawal rights.

14
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Proposition 1 (Separating market equilibrium). Assume

L > L̂ , max((1− qc)(R12(1−G)− A), (1− qc)(R12 − A)− (R12 − 1)G). (26)

Then banks are active if and only if they have type q ≥ qc so that the second best allocation

of Equation (25) is achieved. All active banks offer contract σ(q) = (1, R2(q)), where

R2(q) =
R12 − (1− q)(A+R12H(q))

q
, (27)

so that their liquidity constraint (7) binds, and

R12 = Ae(qc). (28)

There is no withdrawal at time 1; liquidity-shocked workers use their bank contracts to buy

corn.

1. If θ > G+ F (q∗) then active banks set H(q) = G and the equilibrium is unique;

2. If θ ≤ G+ F (q∗) then active banks are indifferent over corn holdings H ∈ [0, G].

A formal proof of Proposition 1 appears in the Appendix. To understand the intuition

behind the result, suppose at first that there is a sufficiently high demand θ for liquidity to

ensure there is a positive liquidity premium R12 − 1. When this is the case, banks retain all

of their corn so as to profit from the time 1 purchase of bank claims: that is, H(q) ≡ G.

The argument then proceeds in stages as follows:

First, because the cost L of a liquidity crisis is high enough, the equilibrium contract

(R1, R2) selected by a bank of type q must satisfy the time 1 liquidity constraint R1 ≤
p(R2, G, q). Hence, for any equilibrium contract (R̂1(q), R̂2(q))q∈Q, workers obtain the resale

value: that is, VW = p(R̂2(q), G, q) (see Equation (9)).

Second, the value to workers of a given contract (R1, R2) is increasing in the quality q of

the bank that offers the contact.

Third, note that, if R2(q) is given by Equation (27), the resale value p of the contract

(1, R2(q)) is equal to 1. It follows from point two that the resale value of the same contract

would be less than 1 if it were offered by a bank of type q′ < q. Hence, no q′-bank would

offer contract (1, R2(q)) because, if it did so, it would experience a costly liquidity crisis.

Fourth, for any equilibrium contract (R̂1(q), R̂2(q))q∈Q, we must have

VW (R̂1(q), R̂2(q), G, q) = 1

for all q ∈ Q. Suppose that there were an equilibrium for which this was not the case. If

there was a ql with VW (R̂1(ql), R̂2(ql), G, ql) < 1 then the contract (R̂1(ql), R̂2(ql)) would be
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acceptable to depositors only if it was also offered by a type qh for which VW exceeded one.

The qh-bank could deviate from its equilibrium strategy by offering contract (1, R2(qh)).

Point three implies that no bank with type below qh would ever offer this contract if it

believed that the contract would be accepted. Hence, by the sincerity criterion (part (iv)

of Definition 1), workers would believe that the contract (1, R2(qh)) had been offered by a

bank of type at least qh and, because VW (1, R2(qh), qh) = 1, they would accept the contract.

This would make the qh-bank strictly better off, which cannot be possible. Hence, VW ≡ 1

in any equilibrium.

Fifth, any equilibrium must be separating. For, if two types ql < qh pool on (R1, R2) in

equilibrium, point two implies that VW (R1, R2, G, q
l) < VW (R1, R2, G, q

l), and this contra-

dicts point four.

Sixth, the liquidity constraint must bind for every active bank in equilibrium since, if it

did not for some q̂, then some banks with marginally lower type than q̂ could profitably pool

with the q̂-bank without experiencing a run. This is ruled out by point five.

Seventh, let (R̂1(q), R̂2(q))q∈Q be an equilibrium contract. Then by point six, R̂1(q) =

p(R̂2(q), G, q) for any q ∈ Q and, using points one and four,

p(R̂2(q), G, p) = VW (R̂1(q), R̂2(q), G, q) = 1.

That is, for every q ∈ Q, R̂1(q) = 1 and, re-arranging p(R̂2(q), G, q) = 1, we have R̂2(q) =

R2(q), as in Equation (27).

This argument establishes that, for high enough θ, the equilibrium is unique and that it is

separating. Hence, there is a bank quality cutoff q̂c. The marginal banker’s time 1 income is

Ae(q̂c)/R12−1 +G. Equation (28) must therefore be satisfied to render the marginal banker

indifferent between being active and not. Because R12 ≥ 1, we must have q̂c ≥ q∗. If q̂c > q∗,

then Equation (28) implies that R12 > 1. In this case, all of the available corn is consumed

at time 1 by early consumers and the resource constraint Equation (23) is binding: that is,

θ = G+F (q̂c) > G+F (q∗). If q̂c = q∗, we have R12 = 1 so that the resource constraint (23)

implies that θ ≤ G+F (q̂c) = G+F (q∗). This argument establishes that R12 > 1 if and only

if θ > G + F (q∗) so that steps one to seven above yield the unique equilibrium of Part 1 of

the Proposition; we have also demonstrated that q̂c = qc so that the second-best allocation

is achieved.

Now suppose that θ ≤ G+F (q∗). In this case, the previous paragraph’s argument implies

that R12 = 1. Banks are indifferent between corn holdings H ≤ G so that, in this case, we

do not have uniqueness of equilibrium. All other properties of the equilibrium go through as

before. In particular, every active bank’s liquidity constraint binds.

Finally, the minimum cost L̂ that supports a separating equilibrium is the one that

renders the marginal banker indifferent between offering (1, R2(qc)) and offering the contract
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(1, R2(1) = R12) that the best banker offers. That requirement yields Condition (26).

The resale value of real-life deposits is equal to the value of the depositor’s withdrawal

rights: that is, a depositor can buy the same things by writing a cheque or using a bank

card as she can if she withdraws her cash and then spends it. It is therefore desirable that a

model of bank liquidity explain this fact: it is true in our analysis because the bank’s liquidity

constraint binds. In real life, this exposes the bank to the risk of a liquidity crisis: anything

that causes a fall in the resale value of its deposits precipitates a run. Our model suggests

that banks expose themselves to this risk so as to convince depositors of their quality and

so have their liabilities accepted at time 0.

Proposition 1 demonstrates that the contract (1, R2(q)) is the unique equilibrium out-

come. We interpret this contract as a demand deposit contract, but it could be interpreted

in another way: that is, (1, R2(qc)) could be implemented in a different way. Under the

alternative arrangement, banks would issue only short-term debt one unit of which promised

a time 1 repayment R1 = 1. At time 1, they would sell a claim R2(q) to time 2 corn, either

in exchange for corn that could redeem existing short-term debt, or in exchange for that

debt. The latter exchange would then correspond to a debt roll-over by existing short-term

depositors. The choice to roll over or to redeem in this set-up is precisely equivalent to the

choice to hold on or to withdraw when the contract is interpreted as a demand deposit. In

both cases, our central point holds: banks have to expose themselves to liquidity in order to

sell their liabilities at time 0. In the absence of any time 1 security issuance costs, the two

arrangements are equivalent; with such costs, the demand deposit contact must be superior

to short-term debt issuance with roll over.

When L ≥ L̂, there are no equilibrium bank runs in Proposition 1. We now analyse the

equilibria for lower values of L. In this case, the threat of a liquidity crisis is insufficient

to dissuade low-quality banks from pooling with the highest quality banks. As a result,

low-quality banks experience runs when their types are revealed at time 1.

Proposition 2 (Partial pooling market equilibrium). Let qc = F−1(θ − G). Suppose

that 0 < L < L̂ and that qcAe(qc) ≥ 1. Then R12 > 1 and banks are active if and only if

q ≥ qc. Active banks set H(q) = G. There exist R∗2, qm, and q̄ satisfying R∗2 > R12 and

qc < qm < q̄ such that:

1. Banks with q̄ ≤ q offer contract (R1 = 1, R2 = R∗2) and do not experience time 1

liquidity crises;

2. Banks with qm ≤ q < q̄ offer the separating contract (R1 = 1, R2 = R2(q)) of equation

(27) and do not experience time 1 liquidity crises;

3. Banks with qc ≤ q < qm offer contract (R1 = 1, R2 = R∗2) and experience time 1 liquidity

crises.
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q

R2(q)R2(q)R12

R′

qc qm q̄ 1

Figure 2. Partial pooling market equilibrium. For  L ≥ L̂, active banks offer the separating
contract (R1 = 1, R2 = R2(q)). For L < L̂, equilibrium contracts are illustrated in bold: banks
with q ∈ [qc, qm) and q ∈ [q̄, 1] offer the contract (R1,= 1, R2 = R2(q̄); banks with q ∈ [qm, q̄)
offer the separating contract. The cutoff q̄ is selected to render depositors’ participation constraint
binding.

To build intuition for Proposition 2, suppose that L = L̂ so that, as proved in Proposition

1, every bank type q ≥ qc offers the separating contract (1, R2(q)). R2(q) is a declining

function of q, as illustrated in Figure 2. If L falls fractionally below L̂, then banks in a right-

neighbourhood of qc find it worthwhile to pool with the q = 1 bank. When that happens,

the q = 1 bank contract no longer satisfies the workers’ individual rationality constraint.

The bank therefore raises its contractual payment to workers slightly to a new value R′2.

The increase in the q = 1 bank’s time 2 contractual payment has two effects. First,

it renders pooling for low-quality banks less attractive, and so shrinks the measure of low-

quality banks that do so. This serves to increase the value of the q = 1 bank’s contract

to workers and, hence, slackens their participation constraint. Second, it induces banks for

which R2(q) ≤ R′2 to pool with the q = 1 bank; if they did not do so, then they would

experience pooling with low-quality banks that would violate their workers’ participation

constraints. Provided the q = 1 bank’s contract continues to set R1 = 1, any banks in a

left neighbourhood of q = 1 that pool with the q = 1 bank satisfy their time 1 liquidity

constraint. They therefore increase the value of the q = 1 bank’s contract to workers and,

once again, slacken their workers’ participation constraint. The q = 1 bank continues to raise

R2 until its workers’ participation constraint is again binding. At this point, the equilibrium

comprises a region [q̄, 1] of high-quality banks that offer contract (1, R∗2 = R2(q̄)), a region

[0, qm) of low quality banks that offer the same contract and experience a time 1 liquidity

crisis, and an intermediate region [qm, q̄) of banks that offer the separating contract (1, R2(q))

of Proposition 1.

18



BANK LIQUIDITY, BANK LENDING, AND “BAD BANK” POLICIES

Provided θ > G + F (q∗), bank entry is driven in general equilibrium by the binding

resource constraint that there be exactly enough corn to meet time 1 liquidity needs and,

hence, the threshold value qc is the same in Propositions 1 and 2. In particular, the threshold

is independent of the cost L of liquidity crises. Any incentive that a lower L gives banks

with q < qc to become active must therefore be offset by a corresponding cost experienced

by active banks. That cost must be an increase in the cost R12 of hiring workers. It follows

that R12 increases as L decreases.

This observation has policy relevance. Because banks experience costly liquidity crises

on the equilibrium path in Proposition 2, the government has an incentive to bail out failing

banks. In our model, the effect of doing so would be to set L = 0. One might expect this

policy to induce lower-quality banks to enter the market. Proposition 2 demonstrates that

this is not the case: bank entry is driven in general equilibrium by the binding resource

constraint that the the time 1 supply of corn F (qc) + G be equal to the demand θ. Hence,

setting L = 0 does not give types q < qc an incentive to enter. The only consequence

of a bailout policy is an interesting distributional effect: as we have already established,

lowering the cost L of liquidity crises serves to increase the cost R12 of hiring workers. The

government’s bailout policy therefore serves to re-distribute wealth from banks to workers.

Liquidity crises are an equilibrium phenomenon in Proposition 2. The same quantity

of resources is assigned to the banking sector as in the equilibrium of Proposition 1 but,

because banks with qc ≤ q < qm experience the costs of liquidity crises, welfare is lower.

We will that, as promised at the start of this Section, every active bank in Propositions

1 and 2 has optimal scale h = 1. The profit margin of a bank that does not experience a

liquidity crisis is independent of its scale; it therefore operates at full scale. The low-q banks

that experience a liquidity crisis in Proposition 2 could avoid the crisis by operating at a lower

scale h but, if they were to do so, they would make expected payment 1 to workers: those

banks would therefore earn no more profit than they would by offering a separating contract

and, by Proposition 2, separation is dominated by pooling and experiencing equilibrium

liquidity crises.

Proposition 2 has the advantage that it does not explain bank runs as self-fulfilling

prophecies. But the model still cannot address some important real-world problems. First,

the time 1 bank runs that Proposition 2 studies occur when a bank’s deposit rate R2/R1−1 is

insufficient to cover the risk that it defaults, so that the bank is insolvent. This is a reasonable

model of banking in normal times, when banks experience runs only if adverse information

about their solvency becomes public. The Proposition therefore cannot provide guidance

for policy makers who wish to design the best support packages for solvent banks that are

faced with liquidity crises. Second, banks do not hold liquid assets in order to manage their

liquidity risk; the only reason that they retain liquid assets is in order to exploit the liquidity
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premium. Third, liquidity risk has no effect upon the efficiency of banks’ lending scale.

Section 4 extends our model to address these lacunae.

4. Bank opacity and inefficiency caused by liquidity concerns

We now present an extension of our model in which solvent banks can experience runs.

We have in mind situations in which workers become concerned about the solvency of their

bank. Concerned workers gather information about their bank from a variety of sources. As

a result, they form heterogeneous expectations about the bank’s prospects. Some workers

have such a poor opinion of their bank that they withdraw early, and their actions have a

detrimental effect upon the bank’s prospects.

4.1 Model extension

To capture our intuition, we allow banks to have two informational types, τ ∈ {O, T}.
A bank’s informational type captures the likelihood that a concerned depositor will find

additional information about the bank’s solvency if she goes looking for it. Transparent

banks (τ = T ) are identical to the banks modeled in Section 3; nothing other than q can

be discovered about their asset values. In contrast, each of the workers that banks with an

opaque bank (τ = O) receives a signal s at time 1 that is drawn from an atomless distribution

on [0,∞). s has distribution function F̄ if A = Ā and F if A = A; the corresponding density

functions are f̄ and f . The likelihood ratio

m(s) =
f(s)

f̄(s)
(29)

is monotonically decreasing from ∞ to 0 over [0,∞), so that a smaller s corresponds to a

higher likelihood that A = A and a lower asset value.

To summarise, at time 1, all information about the quality of transparent banks is com-

mon knowledge, while some information about opaque banks is private. Each depositor in

an opaque banks is therefore worried about what other depositors know, and about how they

will act given their information.

The informational and quality types τ and q are iid across banks. Ex ante, any bank is

transparent with probability ζ.

A bank knows its informational type at time 0; it is revealed to workers at time 1. Section

6.1 considers an extension in which no bank believes at time 0 that it might be opaque at

time 1, so that opacity shocks are unanticipated.

After signals are revealed, workers decide whether to withdraw their corn, to resell their

deposit, or to hold their deposit. We make one further modification to our model: after
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workers make their withdrawal/resale/hold decision and any trading orders have been placed,

immediate revelation of each bank’s productivity shock A ∈
{
A, Ā

}
occurs with probability

e before the market for deposits opens and clears.

We assume throughout this Section that the cost L of a liquidity crisis so high that no

bank wishes to incur it. One of the major consequences of opacity is that opaque banks

might elect to reduce their investment scale in order to manage their liquidity risk. We write

h ∈ [0, 1] for a bank’s investment scale. In previous sections, because the unique equilibrium

implemented the second best, each active bank found it optimal to set h = 1; in constrast,

we will exhibit equilibria in this Section for which h < 1 for opaque banks. We rule out the

possibility that banks could use h to signal their type q by assuming that h is not observed

by workers at time 0, although they learn it a time 1.

In summary, the game of this Section has the following time t = 1 stages:

1. Banked workers observe their bank’s quality q and scale h. Every bank’s informational

type τ is publicly revealed;

2. A fraction θ of workers experience a liquidity shock and so must consume early;

3. Depositors in opaque banks receive independent draws s from the appropriate signal

distribution for their bank;

4. Bank depositors decide whether to withdraw, resell, or hold their contracts;

5. Each bank’s productivity shock A ∈
{
A, Ā

}
is publicly revealed with probability e;

6. The market for bank deposits clears.

Our analysis rests upon the assumption that depositors have heterogenous beliefs. We

therefore require that information contained in private signals not be completely shared

before the investors make decisions and trade their bank claims. Hence, we assume that

the aggregate quantity of bank contracts that are offered for sale at time 1 is not publicly

observed by buyers.

4.2 Worker and banker decisions and equilibrium definition

We now define an equilibrium for the game of this Section. For a given contract (R1, R2),

workers assess a distribution over bank types q and τ . We define Θ to be the set of contracts

that satisfy the worker’s participation constraint in equilibrium.

Throughout this Section, we assume that all banks retain corn holding H(q) = G. This

assumption significantly reduces the notational overhead in our presentation, and it is harm-

less: as we demonstrate below, opaque banks strictly prefer to hold corn at time 0, and

transparent banks are at least indifferent between holding and consuming corn.
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4.2.1 Transparent bank’s decision

We first consider the decision problem for a transparent bank. If the bank defaults at time

2, each of its workers receives

RT
2 =

hA+R12G

h
. (30)

Hence, similarly to Equation (6), the resale value of a worker’s claim on a transparent bank

is

pT (R2, h, q) =
1

R12

[
qR2 + (1− q) min(R2, R

T
2 )
]

. (31)

By assumption, L is so large that the bank will always select a contract to ensure that the

following time 1 liquidity constraint is satisfied:

pT (R2, h, q) ≥ R1. (32)

Because the liquidity constraint (32) is always satisfied, the time 1 expected income that a

banked worker derives from a contract with a transparent bank is

V T
W (R1, R2, h, q) = pT (R2, h, q). (33)

If a bank offers contract (R1, R2) and the offer is accepted, then the banker earns the

following expected income:

V T
B (R1, R2, h, q) = h

(
Ae(q)

R12

− V T
W (R1, R2, h, q)

)
. (34)

The bracketed term in this expression is the banker’s profit margin. Multiplying this by the

banker’s operating scale h yields V T
B . Given a set Θ of contracts that workers will accept, the

banker therefore finds (RT
1 (q), RT

2 (q)) and hT (q) to solve the following optimisation problem:

(RT
1 (q), RT

2 (q), hT (q)) ∈ arg max
(R1,R2)∈Θ, h∈[0,1]

V T
B (R1, R2, h, q), (35)

subject to the liquidity constraint Equation (32). We write

V T
B (q) = V T

B (RT
1 (q), RT

2 (q), hT (q), q) (36)

for the optimal value of a transparent bank of type q.

Note that no active transparent bank will choose h so as to make RT
2 > R2, because,

by Equation (31), the workers would then earn a payoff R2/R12, which does not depend on

h; the bank’s profit margin would therefore be independent of h, and, if that margin were

positive, it would therefore increase h until it ceased to be risk-free.
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4.2.2 Opaque bank’s workers

We now consider workers with opaque banks. By Bayes’ Law, an opaque bank depositor

with signal s assesses the following success probability for a type q bank:

η(s, q) =
q

q + (1− q)m(s)
. (37)

By our assumptions on the likelihood ratio m(s), η(s, q) increases from 0 to 1 as s increases

from 0 to ∞.

With probability 1− e, the quality of a bank’s assets is not publicly revealed at time 1;

let pO be the price at which an opaque bank worker can then sell his contract.

With probability e, the quality of the bank’s assets is revealed at time 1. Should this

happen, the time 2 payoff of a worker’s bank contract is R2 in case A = Ā. In case A = A,

we write RO
2 for a worker’s expected payoff from a unit of deposit. A contract-holder in an

opaque type q bank who decides to resell his deposit after receiving a signal s therefore earns

the following expected income:

V O
r (s, q) = e

η(s, q)R2 + (1− η(s, q))RO
2

R12

+ (1− e)pO. (38)

Note that each banked worker takes RO
2 and pO as given and, hence, views V O

r as a strictly

increasing function of his signal s. It follows that there exists a signal sr ≥ 0 such that

vOr (s, q) < R1, and, hence, workers prefer withdrawal to resale, if and only if s < sr.

We can characterise RO
2 in terms of the threshold sr. Similarly to the transparent bank

case, no opaque bank will ever select its scale h so small that it has any surplus funds in

the bad state. At time 2, there are h(1− F (sr)) contracts outstanding and the value of the

bank’s assets is hA+ (G− hF (sr)R1)R12. It follows that

RO
2 =

hA+ (G− hF (sr)R1)R12

h(1− F (sr))

=
RT

2 − F (sr)R1R12

1− F (sr)
, (39)

where the second line follows from Equation (30). Note that RO
2 is decreasing in sr if

R1R12 > RT
2 . For a given success state repayment R2, the value of the opaque bank contract

is therefore lower when more depositors withdraw at time 1. Time 1 withdrawal therefore

imposes a negative externality upon workers that do not withdraw.

If the contract-holder opts to hold his deposit to time 2 then his expected income is

V O
h (s, q) =

η(s, q)R2 + (1− η(s, q))RO
2

R12

. (40)
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s

Withdraw

Withdraw

sr sh

Resell

Holdθ̃ = 0: no shock

θ̃ = 1: liquidity
shock

Figure 3. State space partition for opaque bank depositors. Depositors that experience a
liquidity schock withdraw their funds when s < sr and otherwise resell their contracts. Depositors
with no liquidity shock withdraw if s < sr and resell if sr ≤ s ≤ sh; they hold their deposits if
s > sh.

The depositor prefers holding his contract to resale precisely when V O
h (s, q) ≥ V O

r (s, q).

This requirement is equivalent to the requirement that s ≥ sh, where

V O
h (sh, q) = pO. (41)

Note that sh must exceed sr: a depositors who wishes to hold his contract clearly prefers

not to withdraw early.

Lemma 4 summarises the above discussion:

Lemma 4 (State space partition). There exist sr ≥ 0 and sh > sr such that:

1. Depositors that experience a liquidity shock withdraw their funds when s < sr and

otherwise resell their contracts;

2. Depositors with no liquidity shock withdraw if s < sr and resell if sr ≤ s ≤ sh; they

hold their deposits if s > sh.

Figure 3 illustrates the state space partition described in this Lemma.

The time 1 price of deposits is determined by the size of the shaded re-sale region. We

denote by Ω the event that a particular depositor finds himself in this region:

Ω =
{
ω|θ̃ = 1 ∧ s > sr

}
∪
{
ω|θ̃ = 0 ∧ s ∈ [sr, sh]

}
. (42)

We write

qΩ = P
[
A = Ā|ω ∈ Ω

]
. (43)

Then

p =
qΩR2 + (1− qΩ)RO

2

R12

. (44)

Equations (41) and (44) yield Equation (45):

qΩ = η(sh, q). (45)
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Equation (45) has a simple intuition. The right hand side is an average success probability

given that the signal falls in the Resell region of Figure 3; the left hand side is the success

probability given that s = sh. In other words, the line s = sh can be thought of as passing

through the “centre of gravity” for the probability mass in the Resell region.

Using Bayes’ Law,

qΩ = P
[
A = Ā|ω ∈ Ω

]
=

q

q + (1− q)P[ω∈Ω|A=A]

P[ω∈Ω|A=Ā]

. (46)

Hence, using Equations (37), (45) and (46), we have

m(sh) =
P[ω ∈ Ω|A = A]

P[ω ∈ Ω|A = Ā]

=
θ(1− F (sr)) + (1− θ)(F (sh)− F (sr))

θ(1− F̄ (sr)) + (1− θ)(F̄ (sh)− F̄ (sr))
. (47)

Equation (47) defines a function sh(sr) that relates the thresholds sr and sh. The intuitive

interpretation of s = sh as a line passing through the centre of gravity for the Resell region of

Figure 3 suggests that sh is increasing in sr; it is easy to use the Implicit Function Theorem

to demonstrate that this is the case.

This discussion enables us to characterise the withdrawal threshold in the subgame that

starts at time t = 1:

Lemma 5 (Characterisation of the withdrawal threshold). The withdrawal threshold

in the subgame that starts at time t = 1 has a functional form sr(R1, R2, h, q) that is deter-

mined as follows:

1. Suppose that

R1 > e
RT

2

R12

+ (1− e)V O
h (sh(0), q), (48)

where RT
2 is given by Equation (30). Then sr(R1, R2, h, q) > 0; it is implicitly deter-

mined by the following equation:

R1 = eV O
h (sr, q) + (1− e)V O

h (sh(sr), q). (49)

2. If Condition (48) is violated then sr(R1, R2, h, q) = 0.

Proof. We prove the result by demonstrating that sr > 0 if and only if Equation (48) is

satisfied. sr > 0 if and only if depositors who receive the signal s = sr are indifferent between

withdrawing and holding. It follows that, at a positive threshold signal sr, V
O
r (sr, q) = R1:
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that is,

R1 = eV O
h (sr, q) + (1− e)pO. (50)

Combining Equations (41) and (50) gives us Equation (49). Substituting sh(sr) into Equation

(49) yields the equilibrium value sr(R1, R2, h, q). Because s′h(sr) > 0, the right hand side of

Equation (49) must exceed its value when sr = 0; that value is given by the right hand side

of Equation (48). That is, Equation (49) can hold when sr > 0 if and only if Equation (48)

holds.

4.2.3 Opaque bank’s decision

We now present the opaque bank’s optimisation problem. Recall that any depositor in a

type q opaque bank who receives a signal s < sr(R1, R1, h, q) withdraws her funds. The type

q opaque bank’s time 1 liquidity constraint is therefore as follows:3

hF (sr(R1, R2, h, q))R1 ≤ G. (51)

Now let V O
W,s(R1, R2, h, q) and V O

W,ns(R1, R2, h, q) be the expected value to a worker of a

contract (R1, R2) with an opaque bank of scale h and type q in the respective cases where

the worker is, and is not, liquidity shocked. Both expectations are assessed at time 1, before

the signal s is revealed. Lemma 4 implies that

V O
W,s =

∫ sr

0

R1dF̃ (q) +

∫ 1

sr

V O
r dF̃ (q); (52)

V O
W,ns =

∫ sr

0

R1dF̃ (q) +

∫ sh

sr

V O
r dF̃ (q) +

∫ 1

sr

V O
h dF̃ (q). (53)

The worker will be liquidity shocked with probability θ and she therefore assesses expected

value V O
W (R1, R2, h, q) for her contract, where

V O
W (R1, R2, h, q) = θV O

W,s(R1, R2, h, q) + (1− θ)V O
W,ns(R1, R2, h, q). (54)

An opaque type q bank whose contract offer (R1, R2) is accepted earns the following

expected income from operating at scale h:

V O
B (R1, R2, h, q) = h

(
Ae(q)

R12

− V O
W (R1, R2, h, q)

)
. (55)

Given a set Θ of contracts that workers will accept, the banker therefore selects (RO
1 (q), RO

2 (q))

3For any s, F (s) > F̄ (s), so that the liquidity constraint in the good state is slacker than in the bad
state.
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and hO(q) to solve the following optimisation problem:

(RO
1 (q), RO

2 (q), hO(q)) ∈ arg max
(R1,R2)∈Θ, h∈[0,1]

V O
B (R1, R2, h, q), (56)

subject to the liquidity constraint Equation (51). We write

V O
B (q) = V O

B (RO
1 (q), RO

2 (q), hO(q), q) (57)

for the optimal value of an opaque bank of type q.

4.2.4 Market clearing conditions

Finally, we discuss market clearing conditions. At time 1, a measure ζ of banks is transparent.

Each transparent q-bank has hT (q) banked workers. A fraction θ of those workers is liquidity

shocked; those workers sell their contracts for corn. The total demand for liquidity from

workers with transparent banks therefore amounts to

ζθ

∫
QT

V T
W (RT

1 (q), RT
2 (q), hT (q), q)hT (q) dF (q).

Similarly, the expected liquidity demand over all possible signals s of a liquidity-shocked

worker with an opaque bank is given by V O
W,s, defined in Equation (52). The total demand

for liquidity from workers with opaque banks therefore amounts to

(1− ζ)θ

∫
QO

V O
W,s(R

O
1 (q), RO

2 (q), hO(q), q)hO(q) dF (q).

The total time 1 demand for liquidity is therefore

D(R12) = θ

(
ζ

∫
QT

V T
Wh

T dF (q) + (1− ζ)

∫
QO

V O
W,sh

O dF (q)

)
, (58)

where we suppress dependencies in the interests of clarity.

Let

µ = ζ

∫
q∈QT

hT (q)dF (q) + (1− ζ)

∫
q∈QO

hO(q)dF (q) (59)

be the total mass of banked workers. Then there is a mass (1−θ)(1−µ) of unbanked workers

at time 1 who have not experienced a liquidity shock and, hence, can supply corn to the

market. The potential supply of time 1 corn by banks amounts to G. Hence, as in Equation

(17), the time 1 supply of liquidity is

S(R12) = (1− θ)(1− µ) +G. (60)
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4.2.5 Equilibrium definition

Finally, we have the following analog to Lemma 3:

Lemma 6 (Market clearing condition).

1. If R12 > 1 then the clearing condition for the time 1 corn market is that S(R12) =

D(R12);

2. If R12 = 1 then the clearing condition for the time 1 corn market implies that S(R12) ≥
D(R12).

We can now present the formal definition of equilibrium for the game of this Section.

Once again, we examine equilibria that are robust to our sincerity criterion. The criterion

is slightly harder to apply, because workers form beliefs over a bank’s type q and also over

its information type τ ; we explain its meaning in the following Definition.

Definition 2 (Equilibrium with opaque banks). An equilibrium for the game with q

drawn from [0, 1] comprises:

1. Sets Qτ ⊆ [0, 1] for τ ∈ {T,O} and mappings στ : Qτ → <2 and hτ : Qτ → [0, 1]

such that τ banks with type q /∈ Qτ are inactive; other τ banks are active and offer the

contract στ (q) = (Rτ
1(q), Rτ

2(q)) and operate at scale hτ (q);

2. Worker beliefs for the distribution F(R1,R2) over (q, τ) given a contract offer (R1, R2);

3. A set Θ of acceptable contracts;

4. A time 1 price 1/R12 for time 2 bank claims,

such that στ , F(R1,R2) and R12 satisfy the following conditions:

i. For each q ∈ QT , (RT
1 (q), RT

2 (q)) and hT (q) solve problem (35) and, for each q ∈ QO,

(RO
1 (q), RO

2 (q)) and hO(q) solve problem (56);

ii. Qτ is the set of q values for which V τ
B (q) ≥ G;

iii. F(R1,R2) is derived from F and σ using Bayes’ Rule where possible;

iv. Θ is the set of all contracts whose expected value to workers using F(R1,R2) is at least 1;

v. The equilibrium is robust to the sincerity criterion: for every off-equilibrium-path con-

tract (R1, R2), either

(a) No bank could increase its expected income by offering (R1, R2); or

(b) If there are banks that could increase their expected income by offering (R1, R2), then

workers accepting that contract from at least one of those banks would be strictly

worse off than an unbanked worker;

vi. The time 1 price R12 satisfies the market clearing conditions of Lemma 6.
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4.3 Withdrawal externalities

Proposition 3 (Information harms depositors). Let (R1, R2) and h be a bank contract

and operating scale that satisfy Equation (48). Then V T (R1, R2, h, q) > V O(R1, R2, h, q):

that is, the value to depositors of a transparent bank with contract (R1, R2) and scale h

exceeds the value to depositors of the corresponding opaque bank.

The proof of Proposition 3 appears in the Appendix. Ceteris paribus, each depositor

benefits from having more information. But the equilibrium effects of information revelation

are damaging. When all depositors receive a signal and Equation (48) is satisfied, Lemma

5 implies that sr > 0, so that some depositors withdraw their funds early. As a result, the

value of the bank’s time 2 claim in the bad state of the world is lower. Prices reflect this

fact and all depositors lose out. We therefore identify a negative pecuniary externality that

one depositor’s withdrawal imposes on others. This effect is in the spirit of Diamond and

Dybvig (1983), where anticipation of this type of effect can result in equilibrium bank runs.

However, in Diamond and Dybvig’s analysis, the withdrawal externality need not occur in

equilibrium, and it is triggered only when depositor beliefs are coordinated by a sunspot.

The withdrawal externalities of Proposition 3 are not sunspot phenomena, and, when they

occur, they are a deliberate consequence of each bank’s contract choices.

Proposition 3 has a counter-intuitive implication. It implies that the value of a bank’s

contracts could be strictly decreasing in the amount that the contract promises. Specifically:

Corollary 1. V O
W is strictly decreasing in R1 at R1 = e

RT
2

R12
+ (1− e)V O

h (sh(0), q).

Corollary 1 has a simple intuition. Increasing the promised time 1 repayment can make

early withdrawal more attractive for workers and, hence, can trigger the externality of Propo-

sition 3.

4.4 Liquidity and efficiency

In our set-up, banks do not retain liquidity reserves in order to insure their worker’s liquidity

shocks. As we demonstrated in Section 3, banks use demand deposits in order to signal their

types. Depositors use the time 1 market for bank liabilities to satisfy their liquidity needs

and, to the extent that banks retain liquid reserves, they do so in order to exploit the time

1 liquidity premium by buying other banks’ liabilities.

We now adopt the following assumption:

Assumption 2 (Depositors do not experience liquidity shocks).

θ ≡ 0. (61)
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Assumption 2 renders the complex equilibrium of this Section tractable. In light of the

above observations, this simplification, in ruling out depositor liquidity shocks, does not

affect the economic rationale for demand depositors or for bank liquidity reserves.

Lemma 7 presents two properties of equilibria under Assumption 2:

Lemma 7 (Equilibrium properties without liquidity shocks).

1. R12 = 1, so that there is no time 1 liquidity premium;

2. sh = sr, so that no worker re-sells an opaque bank contract at time 1.

The intuition for part 1 of the Lemma is straightforward: when θ ≡ 0 there is no time 1

demand for liquidity and, hence, the liquidity premium is zero. The intuition for part 2 can

be understood by considering Figure 3, which illustrates the case where θ = 1 with positive

probability. In this case, the time 1 value of a bank contract reflects the fact that every

banked worker in the shaded region sells his contract. Non liquidity-shocked workers with

s = sh are indifferent between selling at this price and holding their contract. When θ ≡ 0,

the shaded region now includes only workers for whom s ∈ [sr, sh]. Bank contracts are priced

at the average signal s ∈ [sr, sh]. Workers at the higher end of this range believe that their

contracts have a higher value and are therefore unwilling to sell. A standard unravelling

argument implies that all workers with s ∈ [sr, sh] also hold and, hence, that sr = sh.

The fact that sh = sr implies that the right hand side of Equation (48) is equal to RT
2 .

Hence, sr > 0 if and only if R1 > RT
2 .

Lemma 8 (Opaque contract value). If a type-q opaque bank’s liquidity constraint is sat-

isfied, then

1. If R1 ≥ RT
2 , then

R1 = η(sr, q)R2 + (1− η(sr, q))R
O
2 ; (62)

2. For all values of R1:

V O
W (R1, R2, h, q) = R1 + (1− q)f(sr)(R1 −RO

2 )H(sr); (63)

= R1 + qf̄(sr)(R2 −R1)H(sr), (64)

where the net chance of gain H(sr) of the contract (R1, R2) is as follows:

H(sr) =
1− F̄ (sr)

f̄(sr)
− 1− F (sr)

f(sr)
> 0. (65)

Equations (63) and (64) each expresses the value V O
W of an opaque bank’s contract to

its workers as the sum of two terms: the base value R1 that the workers extract from their

contract through early withdrawal, and the additional sum they earn in case they do not
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withdraw. A worker who holds onto his contract earns an expected income q(R2−R1) from

doing so in case Ã = Ā, and an expected loss (1 − q)(R2 − R1) in case Ã = A. A worker

with signal sr must be indifferent between withdrawing and not withdrawing, and this fact

implies that the expected gain and loss have a fixed ratio, f(sr)/f̄(sr). We therefore define

the normalised gain from holding onto an opaque bank contract to be q(R2 − R1)f̄(sr) =

(1− q)(R1−RO
2 )f(sr): that is, the normalised gain is obtained by multiplying the expected

profit or loss by the appropriate signal pdf, evaluated at the threshold sr.

Equations (63) and (64) state that the expected value of holding onto an opaque bank’s

contract is equal to the normalised gain from doing so, multiplied by the factor H(sr). H(sr)

is the difference between the probabilities that holding onto the contract generates a gain

and a loss for the worker, scaled by the normalisation factor f(sr) or f̄(sr); we refer to

it as the contract’s net chance of gain. Note that the monotone likelihood ratio property

guarantees that the net chance of gain, which is equal to the difference between two inverse

harzard rate ratios, is positive. Lemma 8 therefore states that the expected value of an

opaque bank’s contract to its workers is equal to the withdrawal value R1 plus the product

of the normalised gain from retaining the contract and their net change of gain when they

do so.

Lemma 9 (Withdrawal threshold). Let

χ(s) ,
1− F (s)

m(s)
(66)

Then, in any equilibrium in which R1 > RT
2 , sr is determined by Condition (67):

χ(sr) =
1− q
q

R1 −RT
2

R2 −R1

. (67)

Obviously, χ(0) = 0 and χ′(0) > 0. Moreover, we have lims→∞ χ(s) = 0: to see this, note

that χ(s) ≥ 0 and that the inequality in Equation (65) can be written as 1− F̄ (s)−χ(s) > 0,

so that lims→∞ χ(s) ≤ 0. It follows that χ(s) is not monotonic. These remarks motivate the

following definition:

Definition 3. The stable region for χ(sr) is the right neighbourhood of 0 in which χ(sr) is

increasing in sr.

For the remainder of this Section, we restrict our attention to equilibria in the stable

region; within that region, there can be at most one equilibrium for any R1, R2, and h.

In general, Equation (67) has multiple solutions sr. The multiplicity arises because of the

withdrawal externality identified in Proposition 3: when a small number of withdrawals is

expected, the value of holding a contract is high so that the number of withdrawals is indeed
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sr

χ(sr)

1−q
q

R1−RT
2

R2−R1

∣∣∣
h=ĥ

1−q
q

R1−RT
2

R2−R1

∣∣∣
h=ĥ+∆

ŝr

E

E ′

Figure 4. The stable region for χ(sr). Condition (67) states that the equilibrium E is at the

intersection of χ(sr) and 1−q
q

R1−RT
2

R2−R1
. Increasing h to h+ ∆ moves the latter curve up to the dashed

curve and the new equilibrium, with a correspondingly higher withdrawal threshold sr, is at point
E′.

small; in contrast, when a high number of withdrawals is expected, the value of holding a

contract is lower and a high number of withdrawals therefore occurs.

The stable region is illustrated in Figure 4. Condition (67) is satisfied at the equilibrium

point E, where h = ĥ and sr = ŝr. Increasing h raises the right hand side of the expression

and, hence, increases the cutoff point sr, as illustrated in the Figure. Consider an agent

with signal ŝr when h is ĥ, and suppose that h increases to ĥ + ∆ while R1 and R2 remain

unchanged. If every agent continues to believe that sr = ŝr, then the agent with s = ŝr

expects to earn less in case his project fails. He therefore strictly prefers to withdraw.

Agents with lower signals similarly continue to prefer to withdraw and, hence, the threshold

value for withdrawal increases. That is, dynamic adaptation moves the cutoff point sr in the

right direction. In this sense, equilibria are stable when χ(sr) is increasing in sr. If χ(sr)

were decreasing in sr, then equilibria would be dynamically unstable in that adaptation of

this type could never converge to the equilibrium sr.

Lemma 10 (Acceptable contracts). In any equilibrium, any contract with R1 ≥ 1 is

acceptable to workers. That is,

{(R1, R2)|R1 ≥ 1} ⊆ Θ. (68)

Proof. By the Sincerity Criterion, when L is high no bank offers a contract that would induce

a liquidity crisis if it were accepted. Hence, workers will always be able to withdraw at time

1 if they choose to. It follows that the value to workers of any contract is no less than R1.

When R1 ≥ 1, Equation (68) follows.
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For the remainder of this Section, we restrict ourselves to equilibria in which

Θ = {(R1, R2)|R1 ≥ 1} . (69)

We determine bank strategies in any equilibrium that satisfies Equation (69) and then

demonstrate that the equilibrium is robust to the Sincerity Criterion. First, note that, when

any R1 ≥ 1 is acceptable, no bank offers a contract with R1 > 1. That is:

R1 = 1. (70)

Second, we can characterise the set of active bank types:

Lemma 11 (Active bank types). In equilibria that satisfy Equation (69), the set Qτ of

active bank types is equal to [q∗, 1] for both τ = T and τ = O.

Proof. We first show that Qτ ⊆ [q∗, 1]. This is true because, for a given τ , a type q bank

is active only if it earns a non-negative profit margin from hiring workers: this statement is

equivalent to the requirement that qĀ+ (1− q)A ≥ V τ
W ≥ 1. That is, the bank is active only

if q ≥ q∗.

We now show that [q∗, 1] ⊆ Qτ . To show this, we demonstrate that banks with q ≥ q∗ are

willing to offer the risk-free contract R1 = R2 = 1. A bank can offer this contract if its scale

h is sufficiently small to guarantee that (Ah+G)/h ≥ R1. This requirement is equivalent to

Condition (71):

h ≤ hf ,
G

1− A
. (71)

The type q bank earns profit margin qĀ+ (1− q)A− 1 from the risk-free contract, which is

positive if q > q∗, as required.

Consider the contract choice of a transparent bank. It follows from the proof of Lemma

10 that the value to workers of any acceptable contract is at least 1. Hence, the best that any

bank can do is to offer a contract with value 1 to workers and to run at full scale: h = 1. A

transparent bank can achieve this by setting h = 1 and offering the contract σ(q) identified

in Proposition 1 and operating at full scale:

(R1, R2) = (1, R2(q)) =

(
1,

1− (1− q)(A+G)

q

)
. (72)

An opaque bank cannot offer the contract in Equation (72): its liquidity constraint would

be violated if it did so. To see this, observe that, by Equation (64), the liquidity constraint

implies V O
W > 1. We have V T

W = 1, so that V O
W > V T

W if the opaque bank’s liquidity constraint

is satisfied; by Proposition 3, this is impossible. This argument suggests that the liquidity

constraint for opaque banks binds; Lemma 12 confirms that this is the case.
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Lemma 12 (Opaque bank liquidity constraint binds). If h > hf then, in any equilib-

rium for which R1 = 1, the liquidity constraint Equation (51) binds:

hF (sr) = G. (73)

We can now characterise the signal threshold sr below which depositors withdraw as a

function of the equilibrium project scale h:

Lemma 13 (Equilibrium withdrawal threshold). The equilibrium withdrawal thresh-

old sr is given by Equation (74):

sr(h) =

0, if h ≤ hf ;

F−1(G/h), if h > hf .
(74)

Proof. Recall from the proof of Lemma 11 that hf is the maximum bank scale at which

banks can offer a riskless contract to workers. Hence, when h ≤ hf , R1 = R2 = 1 and we

have R1 ≤ RT
2 /R12. Then, by Lemma 5, we must have sr = 0.

If a bank sets h > hf then, by Lemma 12, the bank’s liquidity constraint must bind.

Hence, sr = F−1(G/h).

Lemma 14 (Opaque bank value). The value of an opaque q-bank of scale h to its workers

is given by Equation (75):

V O
W (h, q) =

1, if h ≤ hf ;

1 + (1− q)
(

1− A
1−F (sr(h))

)
γ(sr(h)), if h > hf .

(75)

where

γ(s) , m(s)(1− F̄ (s))− (1− F (s)). (76)

Proof. If h ≤ hf then the bank offers the risk-free contract R1 = R2 = 1 and V O
W = 1. The

result when h > hf follows by substituting sr = F−1(G/h) into Equation (63).

Note that sr is discontinuous at hf , because limh↓hf sr = F−1(1 − A) > 0 = limh↑hf sr.

Nevertheless, V O
W is continuous at hf , because limh↓hf V

O
W (h) = 1.

We write

πO(h, q) , Ae(q)− V O
W (h, q) (77)

for the profit margin of an opaque q-bank with scale h. Observe that Ae(q) is increasing in

q and that, by Equation (75), V O
W is decreasing in q; hence, for a given scale h, the profit

margin is increasing in q.

34



BANK LIQUIDITY, BANK LENDING, AND “BAD BANK” POLICIES

The opaque q-bank’s problem is therefore

max
h∈[0,1]

V O
B (h, q) , h× πO(h, q). (78)

The profit margin πO(h, q) is equal to Ae(q) − 1 for any h ≤ hf and, hence, an opaque

bank never selects h < hf . The optimal size h therefore lies between hf and 1. Lemma 15

identifies the tradeoff that an opaque bank faces within this range.

Lemma 15 (Liquidity risk management tradeoff). For any h ∈ (hf , 1],

∂

∂h
πO(h, q) < 0; (79)

∂2

∂h∂q
πO(h, q) > 0. (80)

Opaque banks can manage liquidity risk in two ways: they can reduce their lending

scale (and, hence, the scale of their liabilities), or they can increase their deposit rate. The

first result in Lemma 15 demonstrates that opaque banks face a trade-off between these

approaches. For a given profit margin πO, profit is increasing in scale. But, by Lemma 15,

the profit margin is a decreasing function of bank scale. This result is driven by the fact

that, as banks become larger, the threshold sr must drop to prevent liquidity crises. The

bank lowers sr by persuading depositors with weak signals not to withdraw; the only way

to accomplish this is by increasing the deposit rate and, hence, lowering the bank’s profit

margin.

Lemma 15 also demonstrates that ∂2

∂h∂q
πO > 0, so that increased scale harms profit

margins less for higher quality banks. This result suggest that higher types should operate

at a greater scale. This intuition is confirmed by Proposition 4:

Proposition 4 (Opaque bank scale). The equilibrium scale at which an opaque bank op-

erates is a weakly increasing function of its quality:

dhO

dq
≥ 0.

There exist q̂, q̃ with 1 > q̂ > q̃ > q∗ such that hO(q) = 1 for q ∈ [q̂, 1] and hO(q) = hf for

q ∈ [q∗, q̃].

For q close to 1, opaque banks have a high profit margin and the marginal cost that

they experience from an increase in h is low. They therefore operate at full scale, so that

hO(q) = 1 when q > q̂. For q close to q∗, the marginal cost of increasing h is high and profit

margins are low so that, as in the statement of the Proposition, banks elect not to increase

their scale beyond the risk-free scale hf when q ∈ [q∗, q̃].
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The first best allocation is for each type with q > q∗ to run its project to full scale

with h = 1. Proposition 4 shows that liquidity concerns lead some banks to operate at an

inefficiently low scale. Moreover, the level of inefficiency induced by liquidity problems is

greater the lower the bank’s type and the lowest quality banks shrink to the risk-free scale

hf .

The risk-free bank scale hf = G/(1 − A) is proportional to G, which suggests that the

quantity of liquid assets is a key determinant of the efficiency of the equilibrium. Proposition

confirms this intuition.

Proposition 5 (Liquid assets necessary). For any q < 1, the scale of an opaque q-bank

shrinks to zero as the bank’s liquidity stock G tends to zero: limG↓0 h
O(q) = 0.

The intuition behind Proposition 5 is straightforward. If a bank has a very small endow-

ment G of liquid assets, then it can accommodate very little withdrawal. It therefore avoids

taking any risks at all. As a result, banks with q < 1 become vanishingly small as G shrinks

to zero. Banks for which q = 1 assume no risk and, hence, do not alter their size in response

to changes in G.

Note that G has two roles in our model. It represents both the bank’s stock of liquid

assets, and also its stock of safe assets. This is the reason that the safe bank size hf tends

to zero as G tends to zero. In a more general model that separated safe assets from liquid

assets, bank size would shrink to the risk-free scale (which could exceed zero) as the stock

of liquid assets dropped to zero.

The opaque bankers’ total loss of risk appetite when the stock of liquid assets drops to

zero is inefficient. That inefficiency is entirely a consequence of the heterogeneous beliefs

of opaque bank workers, which separate the bank’s liquidity concerns from its solvency

concerns. In contrast, transparent banks of any type q > q∗ operate at full scale: i.e., with

h = 1. That is, transparent banks do not experience the efficiency loss that affects opaque

banks. This is because transparent bank illiquidity is entirely a consequence of insolvency:

that is, transparent banks experience a mass withdrawal only if they are insolvent.

Our analysis thus far describes bank strategies and their properties. To demonstrate that

these strategies form an equilibrium, it remains to show that they are robust to the Sincerity

Criterion. Any equilibrium contract with R1 ≥ 1 is acceptable, so we need only consider

off-equilibrium contracts with R1 < 1. Lemma 16 demonstrates that all such contracts are

ruled out by the Sincerity Criterion.

Lemma 16 (Sincerity criterion with opaque bank types). Let (R∗1, R
∗
2) be a contract

with R∗1 < 1. Either

1. No bank would earn a higher-than-equilibrium profit if its workers accepted contract

(R∗1, R
∗
2); or
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2. There exists a bank type for which (R∗1, R
∗
2) generates a higher-than-equilibrium profit,

and the value to whose workers of (R∗1, R
∗
2) is less than one.

The first condition in Lemma 16 would ensure that no bank offered (R∗1, R
∗
2); the second,

that workers can legitimately form beliefs under which they never accept an offer of (R∗1, R
∗
2).

5. Interbank liquidity provision

The threat of withdrawals in excess of their liquidity endowment leads opaque banks to

reduce their lending scale. In this Section, we consider the effectiveness of interbank liquidity

markets in addressing this problem. An opaque bank experiences a time 1 liquidity demand

of hF̄ (sr)R1 in good states, and of hF (sr)R1 in bad states. If it were to cover the shortfall

between this figure and its corn endowment G, then its total demand for interbank liquidity

would reveal its type. Banks with low productivity would then fail. Note that it cannot be

optimal for good state banks to borrow the same amount as bad state banks. The reason is

that, were they to do so, they would be valued at the average of good and bad state banks; a

good state bank will therefore borrow only what it needs, which is hF̄ (sr)R1−G. It follows

that, in our model, interbank lending cannot help banks to address liquidity problems. The

reasoning suggests the more general result that interbank markets can help to resolve bank

liquidity problems precisely when, as in the Diamond and Dybvig (1983) model, liquidity

demands occur in response to random events that reveal nothing about bank quality.

6. Policy: Good-Bank/Bad-bank

Policy interventions that are designed to help banks with severe liquidity or solvency prob-

lems to operate effectively fall into one of two categories. The simplest is an equity injection,

typically funded by taxpayers. An alternative approach is a Good Bank/Bad Bank policy

(hereinafter, “GB policy”). According to Faucette, Cunningham, and Loegering (2009), the

aim of this policy is to replace some of a troubled bank’s assets with assets that are in some

sense of a higher quality. More precisely, the troubled bank first separates its balance sheet

into a “Bad Bank,” whose assets are the troubled bank’s non-performing and impaired as-

sets; and a “Good Bank, that has the remaining assets. The Bad Bank is then sold: the

buyer could be another private business, an entity created and managed by the state, or

a firm created and owned by the original shareholders. The Bad Bank is usually sold at

a discount. The consideration paid for the Bad Bank’s assets replaces those assets on the

Good Bank’s balance sheet; that consideration is usually cash but it could be another type

of safe asset. In probably the largest scale of application of the GB policy, the Chinese prime

minister Zhu Rongji in 1999 set up four asset management companies to be paired with the
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four largest commercial banks of China4. Each of the four banks replaced 1.4 trillion RMB

of impaired assets with a profile of 580 billion RMB of cash and 820 billion RMB of the long

term debt of the paired asset management company.5

If the GB policy replaces risky impaired assets with safe assets, then one might ask if a

GB policy succeeds for the same reason that deposit insurance does. However, the GB policy

is distinguished from deposit insurance because, as we will show, the GB policy’s success

rests not upon the fact that the replacement assets are safe but, rather, because they are less

opaque than the assets that they replace. Moreover, a GB policy is substantially distinct

from an equity injection, because GB policies frequently involve below-market price asset

sales and, hence, impose losses upon bank shareholders. This fact suggests that GB policies

are intended to resolve liquidity, rather than solvency problems.

We develop these ideas in two ways. First, we consider unforeseen opacity shocks; second,

we examine the use of GB policies in situations where opacity shocks arise with a rationally

anticipated probability.

6.1 Unforeseen opacity shocks

In this Section, we consider a situation in which all banks believe at time 0 that liquidity

crises are a measure zero event, and then consider the appropriate policy response when

a crisis occurs. This is arguably a reasonable way to think about the 2007–08 financial

crisis, which appears to have come as a complete surprise to the vast majority of market

participants.

We model this situation by assuming that all banks assign zero probability at time 0

to the event that they are opaque. When these beliefs obtain, Proposition 1 implies that

every bank of type q ≥ q∗ writes contract (1, R2(q)) with its depositors and operates at

scale h = 1. Assume now that a fraction 1 − ζ of banks experience an opacity shock at

time 1: that is, each of their workers receives a signal s drawn from distribution F̄ or F , as

discussed in Section 4.1. That is, while some workers remain comfortable that their banks

have high-quality investments, others experience unanticipated doubts.

As in Section 4.2.2, every worker whose signal s is below s∗r(q) , sr(R1 = 1, R2(q), h =

1, q) withdraws from its bank at time 1. Provided the bank satisfies its liquidity constraint,

sr is determined by Lemma 9. Our first result is that every risky bank that experiences an

opacity shock then experiences a liquidity crisis.

Proposition 6 (Opacity shocks cause liquidity crises). Any bank with q < 1 that ex-

periences an unanticipated opacity shock also experiences a liquidity crisis: that is, for every

4Those banks are Bank of China, China Construction Bank (in combination with China Development
Bank), Industrial and Commercial Bank of China and Agricultural Bank of China.

5See https://www.zhihu.com/question/21501374/answer/18458290. The source is in Chinese, but can
be read with the aid of Google Translate.
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q < 1, G < F (s∗r(q)).

Workers with a signal s of the quality of their bank form a posterior assessment η(q, s)

of its success probability. This is lower than their prior q if and only if s < m−1(1). The

fraction F (m−1(1)) of depositors whose updated opinion is pessimistic could be very small.

But early withdrawals by those depositors imposes a withdrawal externality on every other

depositor, as in Proposition 3. Proposition 6 demonstrates that the effect of this externality

is to cause a liquidity crisis for all banks with q < 1 that experience an unanticipated opacity

shock, no matter how small is the fraction m−1(1) of pessimistic depositors.

The runs identified in Proposition 6 occur because the opacity shock is unforeseen. When

bankers believe themselves to be transparent, they operate at the maximum scale h = 1.

Operating at this scale renders any risky bank fragile: if only a small fraction of its workers

are concerned about the soundness of their bank, their withdrawal is sufficient to trigger a

liquidity crisis. This mechanism is consistent with the experience of the 2007–08 Financial

Crisis, which had its genesis in relatively small numbers of liquidity demands on highly

levered banks.

We now show how banks that experience an unanticipated liquidity shock can be helped

by a GB policy that replaces some of their opaque assets with assets of the same quality

q. Critically, depositors have no heterogenous signals regarding the replacement assets (that

is, the replacement assets are transparent) and, hence, they will not trigger withdrawals. It

follows that, if every asset in the liquidity-shocked bank were replaced, the liquidity crisis

would be prevented and, hence, that there is some minimum scale of asset replacement that

ensures that the scale of depositor withdrawal is no larger than G.

The GB policy diversifies the liquidity-shocked bank’s assets and so reduces the risk to

which its depositors are exposed. But there would be no run if every asset were replaced with

transparent assets of the same quality and, in this case, there would be no diversification

and no risk reduction. It follows that the GB policy does not work because it reduces risk,

but because it reduces opacity. In other words, the GB policy relies upon a different mech-

anism than deposit insurance. However, as a practical matter, it is probably impossible to

replace opaque assets with transparent assets whose quality q is the same. Consequently, the

replacement assets are typically safer than the opaque assets and, in practice, implementing

a GB policy serves to reduce the riskiness of the opacity-shocked bank.

In light of this argument, we analyse a GB policy that replaces opaque assets with safe

assets, such as government debt, that a government can easily create. Under the policy, the

government is willing to acquire the type q bank’s assets, paying for each unit of assets with

a safe asset with payout δAe(q), for some δ ≤ 1. The government’s GB policy reduces the

bank’s risk and, hence, even when δ = 1, it shifts value from the bank, which is a residual

claimant, to its depositors, who hold a concave claim on the bank’s assets. If the GB policy
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is effective, it cannot be because it enhances the bank’s equity value. Transparent banks,

which do not face liquidity crises, will therefore never avail themselves of the government’s

offer.

A type q opaque bank will swap some of its assets only if it is able to avoid a liquidity

crisis. We write s∗ for the maximum withdrawal that a bank can accommodate:

s∗ , F−1(G). (81)

The type q opaque bank therefore opts to exchange the minimum volume of assets x(q) that

reduces the threshold sr at least as far as the cutoff s∗. If no x(q) ≤ 1 lowers the threshold

far enough, then the GB policy does not prevent runs in type q banks.

Lemma 17 establishes the optimal exchange policy for opaque banks under the GB policy.

Lemma 17 (Optimal opaque bank exchange policy). The minimum volume of assets

x(q) that an opaque bank can exchange under the GB policy in order to avoid a liquidity

crisis is given by Equation (82):

x(q) = (1− χ(s∗))
1−G− A
δAe(q)− A

. (82)

A type q opaque bank can use the GB policy to avoid a crisis if and only if x(q) < 1, in which

case it exchanges x(q) of its assets for safe assets. Every opaque bank can avoid a liquidity

crisis if and only if Condition (83) is satisfied:

δ ≥ δ , (1− χ(s∗))(1−G) + χ(s∗)A > A. (83)

As δ < 1−G < 1, a GB policy can prevent bank runs from occurring even when it reduces

bank equity. It does so by resolving depositors’ liquidity concerns. After swapping x units

of its project, a type q bank earns (A+G) +x(δAe(q)−A) in the bad state. This expression

is increasing in x, and higher bad state payments reduce the workers’ incentive to withdraw

early. Depositors with higher quality bankers require a smaller transfer to maintain their

confidence and, hence, x′(q) < 0.

6.2 Anticipated opacity

We now return to the version of our model introduced in Section 4.1, in which every bank

knows at time 0 whether or not it will be opaque at time 1, although neither this fact nor the

bank’s type is revealed to workers until time 1. In this case, Propositions 4 and 5 demonstrate

that opaque banks operate at an inefficiently low scale in order to avoid bearing any risk

when the stock G of liquid assets is small enough. We demonstrate that a GB policy can
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address this inefficiency.

Under the GB policy of this Section, the government allows type q banks to swap their

projects at time 1 for Ae(q) units of safe assets. The existence of this scheme is common

knowledge at time 0. If a risk-free bank swaps x units of its project for the safe asset, then

its scale hf solves A(hf − x) + xAe(q) +G = hf . That is, the risk-free scale after swapping

x units is

hf (x) =
G+ x(Ae(q)− A)

1− A
. (84)

Note that hf (x) is increasing in x.

When a bank exchanges x units of its project for safe government assets, the value to

workers of an opaque type q bank changes from the expression in Equation (75) to the

following value:

V W
O (h, x, q) ,

1, if h ≤ hf (x);

1 + (1− q)
(

1− Ah+x(Ae(q)−A)
h−G

)
γ(sr), if h > hf (x).

(85)

A type q opaque bank’s profit margin when it exchanges x units of its project is

πO(h, x, q) , Ae(q)− V W
O (h, x, q), (86)

and the bank maximizes hπO(h, x, q). Lemma 18 identifies conditions under which the GB

policy increases opaque bank scale and, hence, increases efficiency.

Lemma 18 (Efficiency conditions for GB policy). In the stable region where χ(s) is

increasing, ∂h
∂x
> 0 whenever h(x, q) < 1.

Suppose that a type q opaque bank swaps a quantity

xsafe(q) ,
1−G− A
Ae(q)− A

of its assets. Then, because A(1− xsafe(q)) + xsafe(q)Ae(q) +G = 1, the bank can operate at

full scale without assuming any risk and, as a result, all inefficiency is eliminated. Hence, if

the supplySsafe of safe assets is large enough, the GB policy can eliminate all inefficiency. If,

instead,

Ssafe < (1− ζ)

∫ 1

q∗
xsafe(q) dF (q),

then access to the GB policy must be rationed. We now investigate the efficiency of using

competitive bids to allocate access to the policy.

Let hO(x, q) be the scale chosen by a type q opaque bank that expects to swap x units

of its project under the GB policy. The associated efficiency improvement is (h(x, q) −
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h(0, q))(Ae(q)− 1). The optimal allocation x∗(q) of safe assets therefore solves the following

problem

max
x:[q∗,1]→[0,1]

∫ 1

q∗
(h(x(q), q)− h(0, q))(Ae(q)− 1) dq (87)

s.t. (1− ζ)

∫ 1

q∗
x(q) dq ≤ Ssafe.

It is obvious that, if h(0, 1) = 1 so that the type q opaque bank operates at the efficient

scale without any intervention, then the optimal allocation x∗(q) to the q bank under the

GB policy is zero.

Suppose that the state uses competitive bids to set the unit price µ for safe assets under

the GB policy. The opaque bank’s choice x(µ, q) solves the following problem:

arg max
h, x

h
(
Ae(q)− V W

O (h, x, q)
)
sr=F−1(G/h)

− xµ.

The equilibrium premium µ∗ is determined by the clearing condition (88):

(1− ζ)

∫ 1

q∗
x(µ, q) dF (q) = Ssafe. (88)

Lemma 19 establishes that it may be inefficient to allocate access to the GB policy in

this way:

Lemma 19 (Competitive access to safe assets may be inefficient). Let

µ̂ , max
q∈[q̂,1]

∂πO

∂x
(1, 0, q) = max

q∈[q̂,1]
(1− q)γ

(
F−1(G)

) Ae(q)− A
1−G

. (89)

Then, if µ∗ < µ̂, under a competitive market allocation of safe assets under the GB policy,

x(µ∗, q) > 0 for q in a non-empty interval (q1, q2) ⊂ [q̂, 1]. As x∗(q) = 0 for all q ≥ q̂, it

follows that a competitive market allocation of the GB policy is inefficient when µ∗ < µ̂.

Proof. A type q opaque bank swaps x > 0 units of its assets for the safe asset if the resultant

increase in its profit margin exceeds the marginal cost. That is, if hO(q)∂π
O

∂x
(hO(q), 0, q) > µ∗.

For q > q̂, we have hO(q) = 1; this is equivalent to the requirement that ∂πO

∂x
(1, 0, q) > µ∗. If

µ̂ > µ∗, then the result follows immediately.

7. Conclusion

This paper addresses three important questions related to bank liquidity. First, why do banks

expose themselves to the risk of costly liquidity crises when their depositors can respond to
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consumption shocks by selling their claims? Second, given the negotiability of bank deposits,

why do banks face withdrawal demands? Third, how should banks manage this liquidity

risk, and how could regulators help them?

We present a general equilibrium model in which bank liabilities operate as a means of

payment, and in which banks nevertheless fund themselves using demand deposits. Our work

deviates from previous treatments of this topic, because demand deposits are not necessary

for depositor liquidity insurance in our model. Banks are of uncertain quality in our model

and, as a result, workers may be unwilling to accept bank liabilities as wage payments. Banks

resolve this problem by granting the right to withdraw on demand. In short, banks elect to

expose themselves to the risk of a costly liquidity crisis in order to signal their types and,

hence, to ensure that their liabilities circulate.

Our analysis of withdrawal volumes considers first normal times, when depositors all have

the same information about their banks. In this case, banks can manage their liquidity risk by

selecting an appropriate deposit rate; there are few withdrawals, and banks do not experience

liquidity crises. In normal times, then, liquidity concerns have minimal implications for the

operation and efficiency of banks.

We also consider a scenario in which depositors in some banks receive heterogenous

signals of bank type. Depositors with a bad signal withdraw from the bank even if they

have not experienced a consumption shock. If banks anticipate this effect, then they adopt

two techniques to manage liquidity risk: as they do in normal times, they alter their deposit

rate; and, in addition, they may lower their investment level. Liquidity risk in this scenario

therefore has a real effect upon bank efficiency; the effect is most pronounced for the lowest

quality banks, which experience the largest scale reduction. This analysis demonstrates the

importance of each bank’s stock of liquid assets: if that stock drops to zero, then the bank

loses its capacity to take any risks. If, on the other hand, banks fail to anticipate that their

depositors will receive heterogeneous signals of bank quality, then they do not make the

necessary operational adjustments to their deposit rates and investment scale; as a result,

they experience costly equilibrium liquidity crises.

When liquidity crises occur in our model, they can be resolved using a Good Bank/Bad

Bank policy (“GB Policy”), under which risky assets are shifted from troubled banks into

a new “Bad Bank” and are replaced with safe assets; the restructured troubled bank is

referred to as a “Good Bank.” GB Policies are commonly used in practice, but ours is the

first theoretical explanation of their effectiveness. GB policies work by reducing the opacity

of the Good Bank, and so ameliorating the depositors’ incentive to run.
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ON LINE APPENDIX

Proof of Lemma 1

A deposit contract (R1, R2) is acceptable to workers if and only if

max(R1, R2/R12) ≥ 1. (90)

If R2/R12 < 1, then R1 ≥ 1 > H and the result is proved. Now suppose that R2/R12 ≥ 1.

Withdrawal occurs if and only if R1 exceeds the price p that would obtain conditional upon

no withdrawal. That price is as follows:

p = min

(
R2

R12

,
qR2 + (1− q)(A+R12H)

R12

)
= min

(
R2

R12

, q × R2

R12

+ (1− q)× A+R12H

R12

)
= min(1, q + (1− q)H)

≥ H.

Hence, if R1 > p, so that withdrawal occurs, we must have R1 > H.

Proof of Lemma 2

First, consider the case where there is no time 1 withdrawal and, hence, no time 1 liquidity

crisis. The bank’s time 2 asset value in this case is A + HR12. The bank therefore defaults

if and only if Condition (91) is satisfied:

A+HR12 < R2. (91)

The resale value p of the contract is no greater than R2/R12 and the no withdrawal condition

is that R1 ≤ p, so that R1 ≤ R2/R12. The contract (R1, R2) is acceptable if and only if

R2/R12 = max(R1, R2/R12) ≥ 1. Then, because R12 ≥ 1 and, by Assumption (2), A+G < 1,

we must have

A+GR12 ≤ (A+G)R12 < R12 ≤ R2.

It follows that

A+HR12 ≤ A+GR12 < R2,

which implies Condition (91).

Now consider the case where depositors withdraw at time 1, so that the bank experiences

a liquidity crisis. A fraction H/R1 of depositors successfully withdraw in this case, so that
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the bank’s total time 2 obligation is (1−H/R1)R2. We prove that

A < (1−H/R1)R2.

Because the time 2 contract payoff is no larger than R2, the time 1 contract value can

be no larger than

(H/R1)×R1 + (1−H/R1)×R2/R12.

If the contract is acceptable, then this value cannot be less than 1. It follows that

(1−H/R1)R2 ≥ (1−H)R12 ≥ 1−H ≥ 1−G > A.

Proof of of Proposition 1

We exhibit the elements defined in parts 1–4 of Definition 1 and then demonstrate that they

satisfy conditions i–vi of the Definition. We then demonstrate that the equilibrium is unique.

The set Q of part (1) of the Definition is [qc, 1]. Workers form beliefs for the worker type

q that offered a contract (R1, R2) as follows. First, if (R1, R2) = (1, R2(q)) for some q, then

workers believe that the contract was offered by a q-bank. Second, if the off-equilibrium

contract has R1 ≥ 1 then the workers assume that q = 0. Third, if R1 < 1 then the workers

assume that q satisfies p(q) = R1.

The set Θ of acceptable contracts is the set of contracts that yields a time 0 expected

payout of at least 1 using the beliefs of the previous paragraph. The liquidity premium is

given by Equation (28).

Part (i) of the equilibrium definition requires that equilibrium contracts maximize banker

payoffs given Θ. Because p(q, R2(q)) = 1, the q-banker’s equilibrium strategy does not induce

a run. If the q-bank deviates to the equilibrium strategy of a qh > q bank, then, because

p(q, R2(qh)) < 1, the q-bank experiences a time 1 run. The most profitfable way for a banker

to induce a run is by offering the contract (1, R2(1)) = (1, R12), and the qc-bank has the most

to gain by doing so. But, by Equation (26), L exceeds the value L̂ that renders the qc-bank

indifferent between offering (1, R2(1)) = (1, R12) and offering (1, R2(qc)). Hence, no bank

profits by mimicking a higher type. The q-bank would not experience a run if it offered the

contract for a lower type, but it would thereby earn a lower expected income. If the bank

deviated to any contract with R1 6= 1 then our assumptions on worker beliefs guarantee that

it would receive no deposits and, hence would be worse off.

For part (ii), a q-bank elects to be active precisely when Ae(q)/R12 + G − 1 ≥ G. This

is true precisely when q ≥ qc, where qc satisfies Equation (28).

Part (iii) of the definition is obviously satisfied. For part (iv), Θ = {(R1, R2) |R1 > 1 &

R1R12 ≤ R2} ∪ {(1, R2(q))}. Part (v) requires the equilibrium to be robust to the Sincerity
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Criterion. For any contract with R1 > 1, Ψ(R1, R2) = ∅. Recall that, for R1 < 1, workers

believe that R2(q) = R1; this q is in Ψ(R1, R2) and, with this bank, workers earn expected

income R1 < 1. Finally, qc is defined to ensure that the market clears.

Uniqueness is established using the argument in the body of the text.

Proof of Proposition 2

Suppose that L < L̂ and that the q = 1 bank offers a contract with R2 = R12. Then, because

L < L̂, a bank with q very close to qc offers to pool with the q = 1 bank. As a result, the

depositor IR constraint is violated. The q = 1 bank must therefore offer a contract (R1, R
∗
2)

for some R∗2 > R12.

Suppose now that a bank with q < 1 can pool with the q = 1 bank without experiencing

a time 1 liquidity crisis. Such a bank will always opt to pool. It is identified by the condition

R1 < p(q, R∗2), which reduces to the following condition:

q ≥ q̂(R1) =
R1R12 − (A+R12G)

R∗2 − (A+R12)
. (92)

Banks for which q < q̂(R1) experience a time 1 liquidity crisis if they pool with the q = 1

bank. They must therefore choose between separation without a liquidity crisis and pooling

with a liquidity crisis. They elect to separate if and only if V r
B(R∗2, q) ≤ V nr

B (R2(q), q); this

reduces to the following condition on q:

q ≥ qm =
R12(1−G)− A− L
R∗2(1−G)− A

. (93)

For q < qm banks prefer pooling with high type banks to separation. In turn, they prefer

pooling to withdrawal from the banking market precisely when V r
B(R2∗, q) > R12G; this is

equivalent to the following condition on q:

q ≥ qc =
L+R12G

Ā− (1−G)R∗2
. (94)

Note now that, if L = L̂ and R∗2 = R12, banks at q = qc are indifferent between banking

and not banking, and are also indifferent between separating and pooling, so that qm = qc.

Increasing R∗2 above R12 increases qc and lowers qm, and so reduces the volume of low types

that pool with the high type bank.

Lemma 20. R∗2 is never raised so high that qm = qc.

Proof. If this were the case then the expected depositor income from investment in a high-

type bank would be (θ/R12 + 1− θ)R∗2, which, because R∗2 > R12, exceeds the income θ +
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(1 − θ)R12 that a worker earns from being unmonitored. This contradicts the requirement

that depositor IR constraints bind in equilibrium.

Lemma 21. R1 = 1 for high bank types.

Proof. Suppose that the depositor IR constraint binds for some R1 > 1. Lowering R1 slightly

reduces q̂(R1) without altering qc or qm. This serves to raise the average quality of banks in

the pool and so slackens the IR constraint; the high type bank can then increase its welfare

slightly by selecting a lower R∗1.

Proof of Proposition 3

We start by establishing an expression for V O
W . We can write

vV O
W = qV̄ O

W + (1− q)V O
W , (95)

where v̄o is the value of the opaque bank conditional upon A = Ā and vO is its value

conditional upon A = A. We can further break these expressions down as follows:

v̄o = θv̄os + (1− θ)v̄ons; (96)

vo = v0
s + (1− θ)vons, (97)

where the s and ns subscripts denote the respective events that the depositor experiences,

and does not experience, a liquidity shock. We have

v̄os = F̄ (sr)R1 + (1− F̄ (sr))

(
e
R2

R12

+ (1− ep
)

; (98)

v̄ons = F̄ (sr)R1 + (F̄ (sh)− F̄ (sr))

(
e
R2

R12

+ (1− e)p
)

+ (1− F̄ (sh))
R2

R12

. (99)

vos = F (sr)R1 + (1− F (sr))

(
e
RO

2

R12

+ (1− e)p
)

+ (1− F (sh))
RO

2

R12

; (100)

vons = F (sr)R1 + F (sh)− F (sr))

(
e
RO

2

R12

+ (1− e)p
)

+ (1− F (sh))
RO

2

R12

. (101)

To avoid notational clutter, we write ηh for η(sh, q) so that, using Equation (41), we have

p =
R2 − (1− ηh)(R2 −RO

2 )

R12

. (102)

Substituting Equation (102) into Equations (98) and (99) yields the Equations (103) and
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(104):

v̄os =
R1

R12

− F̄ (sr)

(
R2

R12

−R1

)
− (1− F̄ (sr))(1− e)(1− η)

(R2 −RO
2 )

R12

; (103)

v̄ons =
R1

R12

− F̄ (sr)

(
R2

R12

−R1

)
− (F̄ (sh)− F̄ (sr))(1− e)(1− η)

(R2 −RO
2 )

R12

. (104)

Similarly, substituting Equation (39) for RO
2 and Equation (102) for p into Equations

(100) and (101) yields the following expressions for v0
s and vons:

vos =
hA+GR12

hR12

+ η(1− e)(1− F (sr))
R2 −RO

2

R12

; (105)

vons =
hA+GR12

hR12

+ η(1− e)(F (sh)− F (sr))
R2 −RO

2

R12

. (106)

Combining Equations (103), (104), (105) and (106) with Equations (96) and (97) yields

Equations (107) and (108):

v̄o =
R2

R12

− F̄ (sr)

(
R2

R12

−R1

)
− (1− e)(1− η)

R2 −RO
2

R12

[
θ(1− F̄ (sr)) + (1− θ)(F̄ (sh)− F̄ (sr))

]
; (107)

vo =
hA+GR12

hR12

η(1− e)R2 −RO
2

R12

[θ(1− F (sr)) + (1− θ)(F (sh)− F (sr))] . (108)

Substitute Equations (107) and (108) into Equation (95) to get

vo =
1

R12

(
qR2 + (1− q)

(
hA+GR12

h

))
− qF̄ (sr)

(
R2

R12

−R1

)
+ (1− e)R2 −RO

2

R12

[
θ(η − q) + q(1− η)(F̄ (sr)− (1− θ)F̄ (sh)

−η(1− q)(F (sr)− (1− θ)F (sh)] (109)

Substituting Equations (36), (37) and (47) into this expression and performing lengthy

manipulations yields the following expression:

vo = vt − qF̄ (sr)

(
R2

R12

−R1

)
− (1− e)θ q(1− q)

q + (1− q)m(sh)

2(F (sr)− F̄ (sr))

θ(1− F̄ (sr)) + (1− θ)(F̄ (sh)− F̄ (sr))
. (110)
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The second term in this expression is at most zero; the third is negative for θ > 0 because

the monotonicity of m implies that F > F̄ .

Proof of Corollary 1

When R1 = RT
2 , sr = 0 so that there is no equilibrium withdrawal and V T

W = V O
W . If R1

increases marginally then the value V T
W of a transparent bank does not change; by Proposition

3 V O
W must decrease.

Proof of Lemma 7

For part 1, note from Equation (16) that D(R12) = 0 when θ = 0 so that, using Equation

(17), S(R12) ≥ G > D(R12). By part 1 of Lemma 6, R12 cannot be greater than 1 and,

hence R12 = 1.

For part 2, when θ = 0, by Equation (47) we have

m(sh) =
F (sh)− F (sr)

F̄ (sh)− F̄ (sr)
. (111)

If sh > sr, then, by Cauchy’s Mean Value Theorem, there exists ξ ∈ (sr, sh) such that

m(sh) = f(ξ)/f̄(ξ) = m(ξ). But m is strictly monotonically decreasing and, hence, ξ = sh,

which contradicts the assumption that sh > sr. It follows that sh = sr.

Proof of Lemma 8

The first part follows from Lemma 7 and Equation (49) when θ ≡ 0.

For the second part, note that we can write

V O
W = R1 + q(1− F̄ (sr))(R2 −R1)− (1− q)(1− F (sr))(R1 −RO

2 ). (112)

That is, at time 1, a worker with an opaque bank will earn R1 from withdrawing his income,

plus any additional income he earns in case he does not withdraw (recall from Lemma 7

that he never sells his contract when θ ≡ 0). With probability q, Ã = Ā, in which case his

probability of non-withdrawal is 1− F̄ (sr), he earns an additional income of R2−R1 relative

to the case where he withdraws; with probability 1− q, Ã = A, in which case his probability

of non-withdrawal is 1− F (sr), he loses R1 −RO
2 relative to the case where he withdraws.

Now note from Equation (62) that η(sr, q)R1 = (1 − η(sr, q))R
O
2 , and, using Equation

(37) to substitute for η,
f(sr)

f̄(sr)
=

q(R2 −R1)

(1− q)(R1 −RO
2 )

. (113)
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Substituting Equation (113) into Equation (112) yields Equations (63) and (64).

Proof of Lemma 9

Equations (30), (39), and (62) yield

R1 =
(1− F (sr))η(sr, q)

1− η(sr, q)F (sr)
R2 +

1− η(sr, q)

1− η(sr, q)F (sr)
RT

2 , (114)

from which the following equation follows:

1− η(sr, q)

1− η(sr, q)F (sr)
=
R2 −R1

R2 −RT
2

. (115)

Substituting for η(sr, q) in Equation (115) yields the following expression:

1− η(sr, q)

1− η(sr, q)F (sr)
=

(1− q)m(sr)

q(1− F (sr)) + (1− q)m(sr)
. (116)

Using Equation (116) and setting R1 = 1 yields Equation (67).

Proof of Corollary 15

Because h > hf ,

∂

∂h
πO(h, q) = − ∂

∂h
V O
W (sr, q) =

∂

∂sr
V O
W (sr, q)×

dsr
dh

.

We have

∂V O
W

∂sr
= (1− q)

−Af(sr)

(1− F (sr))2
γ(sr) + (1− q)

(
1− A

1− F (sr)

)
γ′(sr);

this expression is negative, because γ′(sr) = m′(sr)(1 − F (sr)) < 0. Moreover, dsr
dh

=

− 1
f(sr)

G
h2
< 0. It follows that ∂

∂h
V O
W (h, q) > 0 and, hence, that ∂

∂h
πO(h, q) < 0.

Finally,

∂2

∂h∂q
πO(h, q) =

( −Af(sr)

(1− F (sr))2
× γ(sr) +

(
1− A

1− F (sr)

)
× γ′(sr)

)
× dsr
dh

.

This expression is positive because each of its factors is negative.
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Proof of Proposition 4

We first prove that the optimal size an opaque bank is weakly increasing in its type q.

Suppose that q′ < q and that the corresponding optimal opaque bank sizes h′ and h satisfy

h < h′. We derive a contraction. By Lemma 15, πO(h, q) is supermodular, from which

Expression (117) follows:

πO(h, q′)× πO(h′, q) > πO(h, q)× πO(h′, q). (117)

However, because h and h′ are optimal,

hπO(h, q) ≥ h′πO(h′, q)

h′πO(h′q′) ≥ hπO(h, q′).

It follows that

πO(h, q)πO(h′, q′) ≥ πO(h, q′)πO(h′, q).

which contradicts Expression (117).

To prove the rest of the proposition, it suffices to show that q̂ , inf{q|hO(q) = 1} < 1

and that q̃ , sup{q|hO (q) (q) = hf} > q∗. To that end, observe that, with V O
W (h, q) given

by Equation (75) and πO(h, q) given Equation and (77), the derivative of the bank’s profit

V O
B with respect to h is ∂

∂h
V O
B (h, q) = Ae(q)− 1− (1− q)φ̃(h), where

φ̃(h) ,

(
1− A

1− F (sr)

)
× γ(sr)

+ h

((
1− A

1− F (sr)

)
× (−γ′(sr)) +

A

(1− F (sr))2
f(sr)γ(sr)

)
F (sr)

f(sr)
,

where sr depends upon h as in Equation (74) and, because sr → F−1(1 − A) as h ↓ hf ,
sr(hf ) = F−1(1 − A). It is easy to see that φ̃(h) is continuous in [hf , 1] and, hence, both

φmin , minh∈[hf ,1] φ̃(h) and φmax , maxh∈[hf ,1] φ̃(h) exist, and are finite.

If Ae(q) − 1 − (1 − q)φmax > 0, then ∂
∂h
V O
B (h, q) > 0 for all h ∈ [hf , 1] and, hence, the

optimal size for this type is h = 1. It follows that inf{q|hO(q) = 1} ≤ inf{q|Ae(q)− 1− (1−
q)φmax > 0} < 1.

If Ae(q) − 1 − (1 − q)φmin < 0, then ∂
∂h
V O
B (q) < 0 for all h ∈ (hf , 1] and, hence, the

optimal size for this type is h = hf . Because Ae(q
∗) = 1, it follows that sup{q|hO(q) =

hf} ≥ sup{q|Ae(q)− 1− (1− q)φmin < 0} > q∗.
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Proof of Proposition 5

Suppose that, for some q′ < 1, limG↓0 h
O(q′) = h′ > 0. As hf = G/(1 − A), we must have

hO(q′) > hf for small G and, hence, by Lemma 13, sr(h
O(q′)) = F−1(G/h). It follows that

limG→0 sr(h
O(q′)) = 0. Hence, using the equilibrium condition Equation (67), limG→0(R1 −

RT
2 )/(R2 −R1) = limG→0(R1 − (A+G/hO(q)))/(R2 −R1) = 0. Because R2 is bounded, we

must have limG→0(Ā+G/hO(q′)) = R1 = 1; this contradicts the fact that, if limG→0 h
O(q) =

h′ > 0, then limG→0(A+G/hO(q)) = A < 1.

Proof of Lemma 16

Note that, because no worker can generate higher product than Ā, (R∗1, R
∗
2) can generate

higher-than-equilibrium profits for a bank only if R∗2 < Ā. Moreover, no worker would accept

contract (R∗1, R
∗
2) if R∗2 < 1. We can therefore restrict our attention to contracts (R∗1, R

∗
2)

with R∗1 < 1 and 1 ≤ R∗2 < Ā.

Given any contract (R∗1, R
∗
2) that satisfies these conditions, let

q′ ,


R∗

1−A
R∗

2−A
, if R∗1 > A;

q∗/2, otherwise.

We show that type q′ transparent banks earn a higher-than-equilibrium profit from contract

(R∗1, R
∗
2), and that their workers earn less than 1 from this contract.

By definition, q′R∗2 +(1−q′)A ≥ R∗1 if R∗1 ≤ A and otherwise q′Ā+(1−q′)A = R∗1, so that

a type q′ transparent bank’s liquidity constraint is satisfied if it offers contract (R∗1, R
∗
2) and

consumes its corn stock G at time t = 0. The value of (R∗1, R
∗
2) to the workers in this case is

V T
W = q′R∗2 + (1− q′)A = max(R∗1, 0.5× q∗R∗2 + (1− 0.5× q∗)A) < 1. The result is therefore

proved if the type q′ transparent bank’s payoff from (R∗1, R
∗
2) exceeds its equilibrium payoff.

The q′-bank’s payoff if it offers contract (R∗1, R
∗
2) and consumes its corn stock G at time

0 is Ṽ T
B = Ae(q

′) − V T
W + G. Its equilibrium profit is V T

B (q′) = max(Ae(q) − 1, 0) + G.

Ṽ T
B (q′)− V T

B (q′) = min(1− V T
W , Ae(q

′)− V T
W ) = min(1− V T

W , q
′(Ā−R∗2) > 0.

Proof of Proposition 6

Suppose that there exists a q < 1 with G ≥ F (s∗r(q)) so that opaque type q banks do not

experience a liquidity crisis. When θ ≡ 0, Lemma 9 implies that s∗r(q) is determined by the

following equation:
1− q
q

1−RT
2

R2 − 1
=

1− F (sr)

m(sr)
.
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In this case, we have R2 = (1−(1−q)(A+G))/q and RT
2 = A+G, so that (1−RT

2 )/(R2−1) =

q/(1− q), so that
1− F (sr)

m(sr)
= 1. (118)

Recall from Lemma 8 that the net chance of gain H(s) = 1−F̄ (s)

f̄(s)
− 1−F (s)

f(s)
> 0. Hence

(1− F (s))/m(s) < 1− F̄ (s) ≤ 1, which contradicts Equation (118).

Proof of Lemma 17

Suppose that a type q bank swaps x units of its project under the GB policy and so avoids

a run. Its bad state repayment absent withdrawal is then RGB
2 , (1 − x)A + xδAe(q) + G.

We can substitute RGB
2 for the bad state payment absent withdrawal RT

2 in Equation (67)

for the withdrawal threshold sr as follows:

χ(s∗) =
1− q
q

1−RGB
2

R2(q)− 1

=
1− (A+G)− x(δAe(q)− A)

1− (A+G)
.

Equation (82) follows immediately. Opaque type q banks can avoid a liquidity crisis if and

only if x(q) ≤ 1. It is easy to see that x′(q) < 0; all banks can therefore be saved precisely

when x(q∗) ≤ 1, which is true if and only if Condition (83) is satisfied.

Proof of Lemma 18

πO = Ae(q)− V O
W (h, x, q). A type q opaque bank therefore solves the following problem:

max
h∈[0,1]

V O
B (h, x, q) , h× πO(h, q). (119)

The type q opaque bank’s first order condition is

πO(h, x, q) + h
∂πO

∂h
(h, x, q) = 0. (120)

Differentiating with respect to x yields

∂h

∂x
= −

∂πO

∂x
+ h∂

2πO

∂h∂x

2∂π
O

∂h
+ h∂

2πO

∂h2

. (121)

The second order condition for the bank’s maximisation problem is that the numerator of

this expression be negative. Hence, ∂h
∂x
> 0 if the numerator is positive.
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We have
∂πO

∂x
= (1− q)Ae(q)− A

h−G
γ(sr) > 0.

so that
∂2πO

∂h∂x
= −(1− q)Ae(q)− A

h−G

(
γ(sr)

h−G
+ γ′(sr)

F (sr)

hf(sr)

)
Substituting G = hF (sr) gives us

∂2πO

∂h∂x
= −(1− q)Ae(q)− A

h−G

(
(−γ′(sr))

F (sr)

f(sr)
− γ(sr)

1− F (sr)

)
.

Substituting this expression gives us the following value for the numerator of Equation (121):

∂πO

∂x
+ h

∂2πO

∂h∂x
= (1− q)Ae(q)− A

h−G
F (sr)

[
(−γ′(sr))

1

f(sr)
− γ(sr)

1

1− F (sr)

]
.

This expression is positive, and, hence, ∂h
∂x

, precisely when the square bracketed term is

positive. That is, precisely when

− d

dsr
[log(sr)− log(1− F (sr))] > 0.

This is equivalent to the requirement that log(γ(sr)/(1−F (sr))) be decreasing in sr, or that

m(sr)
1−F̄ (sr)
1−F (sr)

− 1 = 1−F̄ (sr)
χ(sr)

− 1 be decreasing in sr. That condition is satisfied throughout

the stable region, in which χ(s) is increasing.
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