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Abstract— There is an increasing desire to conduct autonomous
inspection of nuclear sites using robots. However, the presence
of gamma radiation in nuclear sites induces degradation in vision
sensors. In this paper, the effects of gamma radiation on a robot
vision sensor (CMOS camera) used for radiological inspection is
examined. The analyses have been carried out for two types of im-
ages at different dose rates: a) dark images b) illuminated images. In
this work, dark images and chessboard images under illumination
are analysed using various evaluation metrics to evaluate the effect
of gamma radiation on CMOS Integrated Circuit (IC) and electronic
circuitry of the sensor. Experimental results manifest significant
changes in electrical properties like the generation of radiation-
induced photo signal in sensing circuitry and radiation-induced noise affecting the visual odometry of the robot. System-
level degradation for gamma dose rates upto 3 Gy/min intensifies, making data from the imaging sensor unreliable for the
visual odometry. However, images captured for gamma dose rate upto 3 Gy/min can be used for surveillance purpose.

Index Terms— Gamma-Induced Image Degradation, CMOS Image Sensor, Robotic Inspection, Vision Sensor Degradation

I. INTRODUCTION

S INCE the inception of commercial nuclear sites, robots
have played a crucial role due to their ability to access

hazardous areas [1]. However, the catastrophic Fukushima-
Daiichi accident has created a global demand to deploy the
robots for periodic inspection of nuclear sites. Tele-operated
robots like JAEA-3 and Quinc have conducted inspection
of Fukushima facility in the past [2]. A recent attempt of
radiological monitoring of Sellafield, the largest nuclear site in
Europe, using an autonomous robot has been made [3]. The
inspection of nuclear site is a cumbersome and challenging
task which requires robots to be equipped with CMOS image
sensors to perform real-time tasks like visual odometry and
calibration.

However, the grave challenges of autonomous inspection
using vision sensors are intensified for nuclear facilities by the
presence of radioactive elements. These elements can trigger
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degradation of sensors at a rapid rate and resulting in complete
breakdown of the robot inside the site [4]. The vulnerability
of CMOS image sensors to radioactive elements stems from
the fact that the CMOS Integrated Circuit (IC) of the sensor
which consists of a pixel array, address decoders and signal
processing circuit is exposed to the precarious environment.
Extensive research has been done to evaluate the effects of
radiation on semiconductor devices [5]–[8], range finding
devices [9], [10] and acoustic sensors [11]. The evaluation of
the effect of radiation on CMOS image sensors has focused
on sensor built using radiation-hardened design [12].

The performance of cameras built using commercially
available radiation-hardened CMOS image sensors have been
evaluated under various dose rates [13], [14]. The evaluation
of effects of gamma rays on industrial camera based on CMOS
image sensors has been conducted in recent past [15]. Another
research work has focused on measuring the gamma-induced
image degradation using Commercial Off-The-Shelf (COTS)
image sensor [16]. Recent works have analysed a fixed pattern,
temporal noise degradation and total ionizing dose induced
by gamma rays, protons and neutrons in pinned photodiode
CMOS image sensors [17]–[19] giving a new direction to
the research. In some recent works, the COTS CMOS image
sensors have been used as gamma ray detector [20], [21].
Goiffon et. al [22] had discovered several original radiation
effects such as an increase in pinning voltage, decrease in
buried photodiode well capacity to name a few, when pinned
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photodiode CMOS Image sensor was exposed to 10 kGy
ionizing radiation. Another study [23] showed that radiation
exposure damages the gain brought by the epitaxial layer
thickness in pinned photo diode CMOS image sensors.

Recent advancement in imaging technologies has led to
deployment of the COTS CMOS cameras for robots due to
their low cost and weight, compact size, ease of use and com-
pact data storage [3], [24]. With the deployment of robots to
inspect nuclear sites, there exists a research gap where image
degradation analysis of COTS CMOS image sensors used as
a robot vision sensor needs to be conducted. In this work, we
aim to bridge this research gap by analysing the degradation
in dark images and images captured in illumination when the
Raspberry Pi camera (a robot vision camera) is exposed to
different dose rates of gamma radiation.

To this end, we had investigated the performance of three
such COTS CMOS image sensors under gamma radiation
exposure [25]. The three sensors analysed were: 1) Raspberry
Pi camera [26], 2) Spy Camera [27] and 3) Trust USB
Camera [28]. The experimental evaluation pointed out that
the image degradation was less in Rapberry Pi camera as
compared to other two. The reason behind better performance
of Rapberry Pi camera can be attributed to the smaller pixel
sensitive volume which in turn generates less gamma-induced
photo signal allowing better performance. Taking a step further
in this work, we measure the degradation in the images
captured by Raspberry Pi camera during exposure of gamma
radiation in detail. The main motivation behind this study is
that the Raspberry Pi camera has been used as a robot vision
sensor in the CARMA robot which had recently successfully
monitored Sellafield nuclear site [3].

The radiation environment of any nuclear site consists of
a mixture of α, β, γ and neutron emitters [29]–[31]. Gamma
rays are of particular concern due to their high penetration
power, occurrence in nuclear decay chains and high dose rates.
This is the main reason why majority of robots deployed for
inspection of the nuclear facilities have focused on γ radia-
tion [32]. In this paper, we study the degradation of Raspberry
Pi sensor due to gamma radiation in two different directions
by calculating various evaluation metrics. The first direction
deals with the effect of radiation in dark conditions and second
direction deals with the effect of radiation on captured images
in presence of light source. Both these directions illustrate
the effect of gamma radiation on the physical element of the
sensor and electronic circuitry. Furthermore, a study has been
carried out to elucidate the difference between the effects of
gamma flux and received cumulative dose on the Raspberry Pi
camera during the radiation exposure. A pertinent effort has
been made to investigate the impact of gamma radiation when
the sensor is still operational. Furthermore, a study has been
carried out to elucidate the difference between the effects of
the dose rate and the evolution of evaluation metrics with time
on the Raspberry Pi camera.

The remainder of the paper is organised as follows. Section
II provides an overview of the background studies in this area.
This is followed by a discussion on experimental realisation in
Section III. The analysis of dark images is presented in-detail
in Section IV. In Section V, we analyse the images captured in

presence of light source. The conclusion of the investigative
study is presented in Section VI.

II. BACKGROUND STUDIES

A nuclear environment exhibits several characteristics like
a variable radiation field, unstructured and potentially un-
predictable physical environments, extreme environmental
conditions (high temperature, pressure, steam, dust, non-
homogeneous illumination) and limited communication band-
width. These characteristics pose significant challenges to
sensors, especially, to CMOS image sensor which assists robot
to interpret its environment.

A. Robotic Inspection of Nuclear Sites

The history of the deployment of ground-based robots for
radiological inspection resonates with the occurrence of three
major nuclear accidents: 1)Three Mile, 2) Chernobyl and 3)
Fukushima Daiichi. The need for inspection of nuclear site
became an imperative, after first nuclear power plant disaster
of Three Mile in 1979. This resulted in deployment of the
first ever radiation survey robots like ROVER, LOUIE I and
LOUIEE II, which were remotely-operated in the basement of
nuclear facility after four years following the accident [33].
Even though these robots had their own limitations centering
around autonomous navigation and failure recovery, they are
still lauded as a landmark in the nuclear industry.

Seven years later, the catastrophic accident of Chernobyl
initiated the immediate response in the form of deployment of
two tele-operated robots (STR-1). However, sensors deployed
in both the robots were rapidly disabled by the presence of
radioactive substances [34]. Since then, steadfast technological
advances have resulted in the development of sophisticated
robots with latest sensors which have successfully made in-
roads into fields like transportation, industry and medicine.
However, the Fukushima accident in 2011 demonstrated that
our current robots have not reached required standard of
deployment in such extreme environments.

The robotics community dealt with this setback by modi-
fying many robots and making them tailor-made for radiation
inspection like JAEA-3 and Quince [2]. These tele-operated
robots infused confidence in research industry and saw a
series of robots like RICA [Robot d’Inspection pour Cellules
Aveugles] [35] and co-robots developed by Georgia Institute
of Technology [36] performing radiation survey with the help
of human input.

However, the Fukushima Daiichi accident unveiled the spe-
cific requirement which robotic technology needs to meet for
deployment of robots in nuclear facility. The main requirement
was autonomous inspection of site in minimum time using
machine vision sensors. A major milestone to meet this
requirement was the development of CARMA (Continuous
Autonomous Radiation-Monitoring Assistance) [3] in 2018
for autonomous radiation inspection of Sellafield, the largest
nuclear site of Europe.
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B. Effects of Gamma Radiation on Robot Vision Sensors
Robot vision sensors, CMOS devices, are an integral part

of image capturing subsystem of robot. Gamma ray induces
total ionising dose which affects CMOS and semiconductor
electronic materials as well as a variety of other materials
used in the robot [32]. A particle radiation incident on any
semiconductor surface deposits energy which creates electron-
hole pairs in the semiconductor. The most notable effects occur
in insulator in the semiconductor like gate or field oxides in
CMOS devices. In the electron-hole pair, the low mobility of
holes allows them to exit the insulator, slowly as compared
to electrons. With passage of time and accumulated dose, this
behaviour of holes allows positive charge to build up.

The oxide trapped charges invoke a series of changes in the
electrical property of the sensors, for instance generation of
increased leakage current in CMOS transistor. COTS robot
vision sensors along with lenses contain signal processing
electronics, communication ports and voltage regulation. The
Raspberry Pi camera is an excellent choice for robot vision
sensors used in radiological inspection as it contains minimal
signal processing circuitry, making it less vulnerable to change
in electrical characteristics [25]. The effect of gamma radiation
on Raspberry Pi sensors is a combination of the radiation
effects on the CMOS IC and electronic circuitry. Field re-
ports from Fukushima Daiichi nuclear facility have shown
the presence of gamma radiations with dose rate upto 6.5
rad/hour (0.0011 Gy/min), with the anticipation of higher dose
rates near the reactor [37]. According to the measurements
performed in 2017 at the crippled Fukushima Power Plant, the
gamma dose rate in the contaminated vessel of the reactor were
close to 9 Gy/min [38]. The studies [39], [40] conducted at
the Chernobyl nuclear site provide an approximate measured
radiation levels in the vicinity of the main damaged reactor
of the Chernobyl Nuclear Power Plant immediately after the
accident. The gamma dose rate were as high as 5 Gy/min close
to the reactor core, and fell to 2.5 mGy/min in the nearby
concrete mixing unit.

Therefore, we analyse the degradation upto 4 Gy/min un-
der two circumstances: dark images and light images. The
dark images allow us to calculate metrics like the gamma-
induced photo signal which is the leakage current reflecting
the leakage mechanism occurring in the sensing element. The
radiation effect is analysed for images captured in presence of
light source by evaluating the image quality and handcrafted
features reflecting the changes induced in sensing element and
electronic circuitry by gamma radiation.

III. EXPERIMENTAL REALIZATION

A. Experimental Setup
1) Dalton Cumbrian Facility (DCF): A Co− 60 self shielded

irradiator located at the DCF, Cumbria, UK [41] was used to
conduct γ radiation experiments. The maximum dose rate of
680 Gy/min can be provided by this γ radiation source [41].
However, the absorbed dose rate can be varied from 400
Gy/min to approximately 4 Gy/min using the distance from
the source to the Device Under Test (DUT). It can be further
reduced to 0.06 Gy/min with attenuation. These characteristics

render the facility suitable for experimentation under a range
of dose rates. Figure 1 illustrates the experimental setup
employed in this research work.

The absorbed dose rates were measured using a Radcal
Corporation Accu-Dose+ base unit equipped with a 10× 6−
0.18 ion chamber (S/N 47-0458). The absorbed dose rate was
measured by placing the dose sensor right in front of the
camera (in the irradiation cavity) and the measurement of the
absorbed dose was carried out for a very small duration of
gamma exposure (1 minute). This allows us to calculate the
absorbed dose rate for the CMOS camera. The dose sensor was
then removed from the cavity for the radiation experiment. The
absorbed dose during the experiment can be easily calculated
by multiplying the measured dose rate with the irradiation
time.

The cavity at DCF is equipped with five lead attenuator
blocks placed adjacent to each other in front of the source.
Each block reduces the gamma flux by 2 times. The experi-
ments related to the dark image analysis presented in Section
IV are performed with all the attenuators in place. Dose rates
were varied by changing the position of the cameras with
in the cavity. For the images captured in presence of light
source, the cameras were fixed to the cavity door and the
chessboard image was pasted on the attenuator block. For these
experiments, the dose rates were ramped up by removing the
attenuator blocks while the cameras kept at fixed position as
elucidated in Figure 2.

Fig. 1: Experimental Setup at DCF, UK

2) Test samples: The sample used in this experiment is a
Raspberry Pi Camera which is a low cost COTS CMOS image
sensor. For each experiment, different Raspberry Pi cameras
have been utilized to ensure reliability of the results. However,
for the first half of the experiments, the cameras are covered
with black tape to capture the dark images. *†

For the images captured in presence of light source, a
chessboard of 12 × 12 squares was used as an object of
interest for the capture depicted in Figure 3. ‡ It was placed
at a maximum distance (width of the cavity - 20 cm) from
Raspberry Pi camera in the cavity. Chessboard images are used
widely for assessing image quality, calibrations of commercial
cameras and mapping the target site [42]–[44].

*R1, R2, R3, R4, and R5 are the camera samples irradiated to a
cumulative dose of 100 Gy at fixed dose rates of 0.55 Gy/min, 1.34 Gy/min,
2 Gy/min, 3 Gy/min, and 4 Gy/min, respectively.

†R6 is the camera sample irradiated to a cumulative dose of 250 Gy in
varying dose rate cycles.

‡C1, C2, and C3 are the camera samples irradiated to a cumulative dose
of 100 Gy at fixed dose rates of 0.73 Gy/min, 1.46 Gy/min, and 2.92 Gy/min,
respectively.
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(a) Ḋ = 0.73 Gy/min

(b) Ḋ = 1.46 Gy/min

(c) Ḋ = 2.92 Gy/min

Fig. 2: Measurement setup for dose rate degradation analysis
of chess board images where A1, A2, A3, A4, A5 are the

attenuation blocks (lead blocks), C1, C2, C3 are the
un-irradiated cameras utilized for the different dose rate
experiment, Rs is the radiation source which consists of
three cobalt rods, Img is the 12 × 12 chess board image.

The extension ribbon cable (2 m long) of the camera was
used to place the camera control unit (Raspberry Pi board)
outside the cavity to prevent it from being irradiated. During
the experiment, the camera was accessed and controlled with
software from within the Python programming language using
the Pi Camera application programming interface (API). Raw-
data format images were processed on the Raspberry Pi with
a Python script utilizing the NumPy library and saved in the
NumPy file format. The pre-processed raw images were later
transferred to a separate computer and read into MATLAB
with a NumPy data format reader. Further processing was
accomplished using MATLAB. To the best of author’s knowl-
edge, we ensured that the images are captured without any
pre-processing like “dark level correction”, that takes place
in the Image Signal Processor (ISP) of the Raspberry Pi’s
Graphical Processing Unit. Furthermore, a conscious effort
has been made to disable the automatic gain control feature of
the camera sensor while capturing the images by setting the
camera exposure in ‘off’ mode (through Pi Camera).

Fig. 3: Chessboard captured without any radiation

IV. ANALYSIS OF DARK IMAGES

A. Evaluation Metrices
The characterization of the image sensor follows a stan-

dard procedure of measuring the sensor output in both com-
plete dark and under illumination source. In our previous
research [25], we had measured the dark response of three low
cost CMOS cameras: 1) Raspberry Pi, 2) Trust USB Camera
and 3) Spy Camera. The image degradation in the later two
cameras Trust USB and Spy was more as compared to the
Raspberry Pi camera. Therefore, in this work, we evaluate the
image degradation of Raspberry Pi camera in detail in com-
plete dark mode. To evaluate the degradation corresponding
metrics for the dark condition has been described as follows.

1) Pixel Saturation Factor (PiSF): PiSF is the fraction of the
sensor pixels that have pixel value greater than the threshold
value (50% of the saturation value) and can be mathematically
formulated as:

z = 0.5× saturation value

P iSF =
number of pixel with value ≥ z

total number of pixels
(1)

The reason behind selecting the specific threshold value of
50% is that (i) it coincides with the threshold value generally
used for binarization of images [45], and (ii) It helps in
evaluation of pixel charge induced by the radiations.

2) Gamma-induced Photo Charge (DN) and Gamma-
induced Photo Signal (DN/s): Gamma-induced charge is the
charge developed in the photosensitive device under dark
conditions when the camera is exposed to gamma radiations.
The source of this charge is the electrons released as a
result of interaction of gamma radiations with silicon. The
charge developed for a particular camera exposure time can be
evaluated from the captured dark images using the following
equation:

µq =
1

LB

L−1∑
l=0

B−1∑
b=0

Imgq[l][b] (2)

where, µq is the mean gamma induced charge, Imgq is
the mean of η number of dark frames captured at a particular
exposure time, and L×B is the resolution of the mean captured
frame.

The amount of gamma-induced charge in the photosensi-
tive device increases with the increase in the camera expo-
sure/integration time. Therefore, an important metric is the rate
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at which gamma induced charge increases with the increase in
exposure time. This metric is termed as gamma-induced photo
signal. The methodology to evaluate the mean gamma-induced
signal is presented in Section IV-B.

The amount of charge induced in camera sensor for any
arbitrary exposure time texp can be equated as:

µtexpq = µ0 + µstexp (3)

where, µs is the mean gamma-induced signal, and µ0 is the
mean gamma-induced charge for zero exposure time. However,
it is not possible to capture a frame with zero exposure
time. Therefore, it is common to use the frame captured at
the smallest possible exposure time to evaluate µ0 (For our
experiment minimum exposure time was 10 ms).

3) Photogenerated Noise (PN): PN is essentially the noise
level during the irradiation in dark conditions. The source of
this noise are the photo generated electron-hole pairs due to
the exposure of camera to radiation. It can be calculated by
evaluating the variance of temporal signal over a series of
frames for individual pixel and then by taking the average of
all the pixels, which identifies the noise over the image [46]:

σ2y,dark =
1

KN

K∑
j=1

N∑
i=1

(Pij −M)2 (4)

PN = σy,dark (5)

where K and N represent the total number of acquired frames
and total number of pixels per frame, respectively. Pij is the
jth pixel value from ith frame and M is the mean value of
all the jth pixels of N frames.

4) Dynamic Range (DR): DR is the ratio of the pixel
saturation level (µsat) and the noise floor (Photogenerated
noise), as given by Equation 6.

Dynamic Range (dB) = 20 log
µsat
PN

(6)

B. Evaluation Methodology
We capture a set of η number of frames under dark condi-

tions§ at different exposure times (varying between 10 ms and
1300 ms). This process is performed for images captured with
and without radiation exposure. For each exposure time, we
calculate a mean dark frame. This is followed by calculating
parameters specified in Section IV-A using mean dark frame
computed for each exposure rate. The parameters like PiSF,
µq , DR, are computed using Equations 1, 3, 6, respectively.
However, for gamma-induced photo signal, we compute the
mean response (Imgζ−Imgζ′ )

(δtexp)
. Imgζ and Imgζ′ are the images

captured at two different exposure times 10 ms and 1300 ms,
respectively, and δtexp is the difference between two exposure
times, i.e. 1290 ms. The photogenerated noise is computed
using Equation 5 utilizing the images captured at smallest
integration time (10 ms).

Algorithm 1 elucidated the evaluation methodology used
to evaluate the parameters of dark images. Five distinct dose
rates (0.55 Gy/min, 1.34 Gy/min, 2 Gy/min, 3 Gy/min, and 4

§In our experimental setup, η is considered between 5 to 10

Gy/min) experiments were performed to analyse the effect of
gamma dose rate on the degradation of the mentioned metrics.
For each dose rate experiment, a new un-irradiated camera was
used to rule out any pre-experiment absorbed dose effect. The
five different cameras (R1, R2, R3, R4, and R5) used in the
experiments were all irradiated separately. For each dose rate
experiment, dark images were captured (during irradiation) at
the instant the cameras had been exposed to gamma dose of
100 Gy. Such scheduling ensures consistency of analysis as
the metrics were evaluated using images captured from five
different cameras irradiated to same dose of 100 Gy at five
different dose rates.

Algorithm 1: EVALUATION OF DARK IMAGES
Input:
1. Img = {Img1, . . . , Imgη} : Set of Dark Images;
2. χ : set of dose rate at which images are caputured;
Output: Evaluation metrices

1 for each dose rate in χ do
2 Calculate mean dark frame for each exposure time
3 METRIC CALCULATION
4 Calculate PiSF,µq , DR using Equation 1, 3, 6;
5 Calculate gamma-induced photo signal by computing

mean response
(Imgζ−Imgζ′ )

(δtexp)
;

6 Calculate the Photogenerated noise from Equation 5
using the images captured at smallest integration time
(10 ms);

C. Results and Analysis

The evaluation of our metrics addresses four different
directions: 1) Pixel distribution, 2) Gamma-induced photo
charge, 3) Temporal variance and 4) Gamma-induced signal
evolution with time. The results for each direction is discussed
as follows.

1) Pixel distribution: In this analysis, we look at the three
evaluations 1) histogram distribution, 2) PiSF and 3) Dark
Images. Figure 4 depicts the histogram distribution plot of
the sensors’ pixel values. The histogram distribution indicates
the percentage of fractional pixel value with respect to the
normalised pixel value. This representation facilitates the
evaluation of the charge developed in the sensor after exposure
to various levels of the gamma doses. A threshold of 50% of
the saturation value is used to gauge the induced pixel charge.
In normal condition, all sensor pixels have pixel value less than
the threshold value. An instant image degradation is observed
due to induction of gamma ray photo charge upon exposure
of camera to the gamma radiations. The extent of induced
charge depends on the gamma dose rate. For example, 8%
of the pixels exceed the 50% saturation threshold at dose
rate of 0.55 Gy/min. This number increases from 26% and
47% at dose rates of 1.34 Gy/min and 3 Gy/min, respectively.
Furthermore, similar analysis can be performed for different
threshold values.

Figure 5 shows PiSF plot as function of the gamma radiation
dose rate. PiSF is a linear function of the dose rate with a
slope of 16% per Gy/min. It implies that all the image pixel
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Fig. 4: Histogram distribution for cameras R1, R2 and R4
exposed to different gamma dose rates

(Absorbed dose=100 Gy, texp = 1300 ms)

values will exceed the threshold value if subjected to gamma
radiation of dose rate greater than or equal to 6.25 Gy/min.

Fig. 5: PiSF v/s Dose Rate for cameras R1, R2, R3, R4 and
R5 (Absorbed Dose = 100 Gy, texp = 1300 ms)

Figure 6 depicts the dark images captured by Raspberry
Pi cameras when exposed to gamma radiation (for exposure
time of 1300 ms). The cameras are irradiated to the same
dose of 100 Gy, but at different dose rates. A gradual increase
in the image pixels with very high gamma-induced charge is
observed with increase in dose rate.

2) Gamma-induced Photo Charge: The charge induced in
the camera sensor under dark conditions when exposed to
gamma radiation is known as gamma-induced photo charge.
We analyse gamma-induced photo charge generated over the
cross sectional area of our dark images. Figure 7 shows the
gamma radiation-induced image degradation across the rows
and columns of the dark images. A cross-section of 500 x 500
pixels from the centre of the image is selected for analysis.
Figure 7(a) and Figure 7(b) depict the gamma-induced photo
charge response of the central row and column vectors of the
selected cross section for different dose rates. Furthermore,
Figure 7(c) shows the gamma-induced photo charge of the row
and the column vectors (at dose rate of 4 Gy/min) mapped on
the same plot. Two observations evident from these plots are
as follows:

1) The mean gamma-induced photo charge of the row and
column vectors and its variation across the image pixels
increases with increase in dose rate.

2) The gamma-induced charge variation across the column
vector is more compared to row vector in the dark
images as depicted in Figure 7(c).

Now, we analyse the image degradation by looking at the
temporal variance in signal in form of PN.

3) Temporal variance: In this section, we analyse the image
degradation in light of three parameters related closely to
temporal variance 1) PN, 2) Pixel saturation (µsat) and 3) DR.
Figure 8(a) shows the PN of the sensor plotted for different
dose rates. The PN increases with increase in the dose rate. The
increase is observed to be approximately proportional to the
square root of the dose rate. Figure 8(b) shows the normalized
photogenerated noise (to pre-radiation value) of the sensor in
log scale plotted for different dose rates. The noise floor is at
0 dB before exposure to gamma radiations. It increases with
increase in the dose rate reaching approximately 25 dB at
dose rate of 4 Gy/min. The increase in the noise floor plays
a significant role in the degradation of parameter DR, that is
analysed further in Figure 9.

Figure 9 depicts the effect of the gamma radiations on
DR, PN and saturation output of the camera sensor when
exposed to different gamma dose rates. The saturation output
is the mean pixel saturation value represented in the log scale.
The PN increases and the saturation output decreases with
the gamma exposure as depicted in Figure 9. This eventually
results in the reduction of the DR. Apart from an initial
steep drop, the dynamic range reduces fairly linearly with the
increase in the dose rate. The drop of 33.18 dB is observed
in DR. DR is an important parameter of commercial cameras,
particularly in context of producing high contrast images, as it
represents the camera’s ability to reliably produce the brightest
and darkest portions of the image.

Though the analysis presented so far provide useful insight
into the gamma-induced image degradation of the camera,
there are several important aspects that need to be explored:
(1) Evolution of the gamma-induced signal with time, and (2)
Whether the gamma-induced signal is more sensitive to the
radiation flux or the cumulative gamma dose? To explore these
aspects, we analyse the evolution of gamma-induced signal in
dark images with time.

4) Gamma-induced signal evolution with irradiation time :
The analysis so far mainly presents the effect of dose rate
on the gamma-induced signal at a specific instant during the
gamma irradiation. In this section, we analyse the evolution of
the induced signal over the duration of the gamma irradiation
with an intent to elucidate the difference between the gamma
flux and absorbed cumulative dose effects. An experiment
is performed to facilitate the said objective. A un-irradiated
Raspberry Pi camera (R6) is exposed to a total dose of 250 Gy
in five radiation cycles. Radiation cycles here refer to periods
of constant dose rate gamma irradiation (of the same camera).

The dose rate during the first and fifth cycle is 2 Gy/min.
The dose rate during the second and fourth cycle is 3 Gy/min.
The dose rate during the third cycle is 4 Gy/min. The radiation
exposure time duration during each cycle (25 mins for Cycle
1 and Cycle 5, 16.7 mins for Cycle 2 and Cycle 4, and 12.5
mins for Cycle 3) is set such that the camera receives the
same dose of 50 Gy through out. The evaluation methodology
discussed in Section IV-B is utilized to measure the gamma-
induced signal at different points during the radiation cycles.
Figure 10(a) shows the evolution of the induced signal over the
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(a) (b) (c) (d)

Fig. 6: Dark images captured using the Raspberry Pi camera a) R1 exposed to gamma dose rate 0.55 Gy/min b) R2 exposed
to gamma dose rate 1.34 Gy/min c) R3 exposed to gamma dose rate 2 Gy/min d) R5 exposed to gamma dose rate 4 Gy/min

(Absorbed dose = 100 Gy, texp = 1300 ms)

(a) (b) (c)

Fig. 7: Gamma-induced charge with respect to (a) row index for dark images obtained using cameras R2, R3, R4 and R5 (b)
column index for dark images obtained using cameras R2, R3, R4 and R5 (c) row and column index for dark images

obtained using camera R5. (Absorbed dose=100 Gy, texp=1300 ms)

radiation cycles. It is to be noted that there is a small window
of 5 mins on the timeline at start of each cycle. This window
represents the time when the radiation is off and setup is done
for a dose rate measurement as discussed in Section III-A.

The following three important observations are noted from
the Figure 10(a):

1) The gamma-induced signal appears to be more sensitive
to the gamma photon flux as compared to cumulative
radiation dose. This observation is consistent with earlier
results reported in [16]. In this work, it was observed
that the degradation of images captured during exposure
of constant dose rate was more due to initial dose in
comparison to the cumulative dose rate.

2) The induced signal in each cycle follows the pattern of
the dose rate i.e. it increases from Cycle 1 to Cycle 3
and reduces in both the cycles, Cycle 4 and Cycle 5.

3) The mean induced signal is slightly higher in Cycle 5,
as compared to Cycle 1 despite the fact that camera
is exposed to the same gamma dose rate in both the
remaining cycles. The same is true for two cycles, Cycle
2 and Cycle 4, respectively.

The above mentioned observations are elucidated more clearly
in Figure 10(b). The reason for this increase is the additional
dose received by the camera between the Cycle 1 and Cycle
5 and Cycle 2 and Cycle 4.

V. ANALYSIS OF IMAGES IN PRESENCE OF LIGHT
SOURCE

For our intended application of autonomous inspection of
nuclear sites, the robot vision sensor (CMOS image sensor)
will capture images in presence of illumination, most of
the time image will have inhomogeneous illumination [47].
Therefore, after evaluating the images in dark conditions, we
perform the analysis of image degradation in condition of
light. For this analysis, we do not cover Raspberry Pi camera
with the black tape and assess the quality of captured images.
For each experiment at different dose rate, a new Raspberry
Pi camera is used. The quality assessment is performed by
analysing captured chessboard images.

A. Evaluation Metrics

While inspecting the nuclear site, robot intends to use
images captured by CMOS image sensor for various purpose.
We have identified two main purpose of captured images: 1)
surveillance, 2) navigation. If the images captured are used
for the purpose of surveillance, their image quality needs to
be assessed. For the purpose of navigation, we need to asses if
the radiated images can be used as an input for navigation by
the robot. In order to pursue our aim of image quality analysis,
we select standard metrics that resemble human visual system
closely for evaluation. Since the field of view change for
every dose rate, all the selected metrics are full reference
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(a) Photogenerated noise with respect to dose
rate

(b) Normalized photogenerated noise in log
scale with respect to dose rate

Fig. 8: Photogenerated noise as function of dose rate when
cameras R1, R2, R3, R4 and R5 are exposed to γ radiation

(Absorbed dose=100 Gy, texp = 1300 ms)

Fig. 9: Evaluation metrics variation for dark images captured
by cameras R1, R2, R3, R4 and R5 at different gamma dose

rates (Absorbed dose = 100 Gy, texp = 1300 ms)

images metrics, i.e., degradation quality of the radiated image
is analysed in comparison to image without radiation exposure.
The image without radiation exposure is known as a ‘reference
image’, Iref . Both, the reference image and radiated image
have same field of view. The full-reference image quality
metrics evaluated are described below.

1) Peak Signal to Noise Ratio (PSNR) : PSNR is the ratio
of maximum signal power to power of radiation noise. The
signal refers to the reference image, Iref and noise refers to
the radiated image, Ir. It is calculated using mean squared
error (MSE) which is defined as:

MSE =
1

LB

l−1∑
i=0

b−1∑
j=0

[Iref [i][j]− Ir[i][j]]2 (7)

(a) Evolution of gamma-induced signal with ir-
radiation time

(b) Simultaneous mapping of induced signals in
the same dose rate cycles during the gamma
irradiation

Fig. 10: Evolution of gamma-induced signal during
irradiation of camera R6 across the radiation cycles

PSNR = 20log(Iref )− 10log(MSE) (8)

where Iref has a resolution of size L × B. Lower PSNR
indicates higher radiation degradation. The parameter PSNR
varies between ∞ to 0. So, the PSNR value for the non-
irradiated camera (0 Gy/min) will be ∞. When the camera
becames non-operational then the PSNR value will be 0.

2) Structural Similarity Index (SSIM): This metric aims to
replicate human visual system which assess the quality of
image based on its sensitivity to difference in structure.
The quality of any image is assessed by comparing three
components: 1) luminance (l), 2) contrast (c), and 3) structure
(s). SSIM for a reference image Iref and radiated image Ir is
calculated as:

SSIM(Iref , Ir) = [l(Iref , Ir)]
α[c(Iref , Ir)]

β [s(Iref , Ir)]
δ

(9)
where α, β, δ are parameters which define relative importance
of the three components. Higher the radiation degradation,
lower is the SSIM value. The value of SSIM parameter varies
between 0 and 1. The value of SSIM parameter for non-
irradiated camera (0 Gy/min) will be 1. The SSIM parmeter
will attain value 0 when the camera becames non-operational
due to the absorbed dose.

3) Entropy: Entropy of any image indicates the statistical
measure of randomness and is helpful in characterizing texture.
An entropy of an image (I) can be defined as :

H(I) =
256∑
n=1

pn(I)log2(pn(I)) (10)
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The entropy evaluation metric E for reference image Iref and
radiated image Ir can be defined as:

E(Iref , Ir) =
H(Iref )

H(Ir)
(11)

Higher the radiation induced noise in the images, higher is
the entropy evaluation metric E value. The value of entropy
value metric E varies between 1 and ∞. The value of metric
E for non-irradiated camera (0 Gy/min) will be 1. The metric
will be ∞ when the camera becomes non-operational due to
absorbed dose.

4) Handcrafted Feature Matching Decline (HFMD): Hand-
crafted features are still deployed by robots as a fundamental
method for visual odometry to estimate their locations. When
the process of determining position and orientation of robot
is carried out by analysing images, it is called as visual
odometry [48]. In literature, many handcrafted feature-based
methods have been proposed which extract features from
images and match them with earlier images to estimates its po-
sition [49]. Features are set of interest points in images which
are invariant to geometric and photometric changes such that
even when the robot captures image from different viewpoints
and illumination conditions the interest points are repeatable
and can be easily matched from the original image. When
the robots will be deployed in the nuclear site, the images
captured by CMOS image sensors will have radiation induced
noise. Our aim is to evaluate how radiation noise affects the
handcrafted features, for this purpose we use an evaluation
metric which measures decline in matching of handcrafted
features. Since, we have used a chessboard as an image of
interest we use the popular Harris feature detectors [50] as
an handcrafted feature detector. We use RANSAC [51] for
outliers identification among the detected feature matches. The
percentage of feature matching decline after radiation exposure
is evaluated using following equation:

HFMD =
Mref −Mr

Mref
(12)

where Mref is the number of feature matches between a
reference image with itself, and Mr is the number of features
matches between the reference image and the radiated image.
The value of HFMD parameter varies between 0 and 1. The
value of metric HFMD for non-irradiated camera will be 0.

B. Evaluation Methodology
We capture a set of η number of frames under illumination

source¶. The chessboard of 12 × 12 is placed at end of the
cavity (pasted on attenuator) such that field of view of the
Raspberry Pi camera covers the entire chessboard. This is fol-
lowed by calculating parameters specified in Section V-A us-
ing set of captured chessboard frames. Parameters like PSNR,
SSIM and Entropy are computed using Equations 8, 9 and 11,
respectively. However, to compute HFMD, first we detect
Harris corner feature detector points F = {f1, f2, . . . , fm}
in both reference image and radiated image and match these
detected points. Now, for a given distance, using the RANSAC

¶In our experimental setup, η is considered between 5 to 10

methodology, we determine set of outliers. Finally, using
Equation 12 we compute HFMD parameter. The experiments
are performed at three distinct dose rates (0.73 Gy/min, 1.46
Gy/min, 2.92 Gy/min) to analyse the effect of gamma dose rate
of images. For each experiment, a new un-irradiated camera
was placed in the cavity to rule out any pre-experiment dose
rate effect. The three different cameras (C1, C2 and C3)
used in the experiments were all irradiated separately. Since,
all the evaluation parameters required a reference image for
calculation, a pre-radiated image was captured before each
camera was exposed to radiation. The radiated image was
captured after each camera had been exposed to 100 Gy.

As shown in Algorithm 1, we have calculated the above
mentioned parameters for each distinct dose rate.

Algorithm 2: EVALUATION OF IMAGES IN PRES-
ENCE OF LIGHT SOURCE

Input:
1. Imgr = {Img1r , . . . , Imgηr } : Set of Images captured in
presence of light ;
2. Imgref : pre-radiated image;
3. χ : set of dose rate at which images are caputured;
Output: Evaluation metrices

1 for each dose rate in χ do
2 METRIC CALCULATION
3 Calculate PSNR, SSIM, Entropy using Equation 8, 9, 11;
4 Determine Harris feature points for reference image

FImgref and radiated image FImgr .
5 Match the harris points in reference image with radiated

image. Remove the outliers in the matches using
RANSAC.

6 Calculate the HFMD parameter using Equation 12;

C. Results and Analysis
The evaluation of our metrics for images captured in pres-

ence of light source can be characterised in two categories:
1) Image Quality Analysis (IQA) and 2) Handcrafted Feature
Analysis (HFA). The results obtained for each category are
discussed in detail in the following sub-sections.

1) IQA: In the first category, the main aim is to analyse the
image quality of radiated images for the purpose of surveil-
lance. Since, the field of view and illumination condition
change at every dose rate, we look at three full reference
metrics 1) PSNR, 2) SSIM and 3) Entropy. Since, all three
IQA metrics are full reference, this implies that to compute
these three metrics we need two images: 1) Reference Image
(Iref ) captured when image sensor is not subjected to any
radiation and 2) Radiated Images (Ir) when the image sensor
is subjected to gamma radiation at certain dose rate. Both the
images Iref and Ir are captured in the same environmental
settings. Images obtained with and without γ radiation of dose
rate 2.92 Gy/min are illustrated in Figure 11.

Figure 12(a) depicts the PSNR with respect to varying dose
rate. This representation facilitates evaluation of image quality
in terms of corrupting radiation induced noise. Higher values
are indicative of better quality of image. The PSNR value
across varying dose rate is indicative of the fact that PSNR
value decreases with increase in dose rate. This implies that,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3050168, IEEE Sensors
Journal

10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

(a) (b)

Fig. 11: Chessboard images captured using camera C3 with
and without γ radiation (a) Pre-radiated image captured

before camera C3 is exposed to 2.92 Gy/min (b) Radiated
image when camera C3 is exposed to 2.92 Gy/min.

(Absorbed dose = 100 Gy, texp = 1300 ms )

as the dose rate increases, the radiation induced noise also
increases. Similarly, we analyse the SSIM parameter with re-
spect to dose rate. Figure 12(b) illustrates that SSIM decreases
with increase in dose rate. Higher SSIM parameter is indicative
of less noise. This reinforces our previous observation that if
the sensor is exposed to higher dose rate, the image captured
has higher induced radiation noise.

To establish this further, we evaluate the image quality
at different dose rate using entropy. Entropy is a statistical
measure of randomness. Lesser value of entropy metric E is
indicative of better quality of image. Figure 12(c) shows that
as the dose rate increases, the entropy metric E increases.
This elucidates that with the increment in dose rate the image
quality decreases indicating that higher dose rate exposure
results in the decline of image quality. However, the CMOS
image sensor was operational for all the dose rates with
absorbed dose of 100 Gy. Previous studies [16] have found
CMOS image sensor to be operational till the absorbed dose
of 1549 Gy when radiated with a constant dose rate of 0.5
Gy/min. The radiated images are found useful for the purpose
of surveillance till absorbed dose rate of 500 Gy. To gauge
the usefulness of the image, the image quality was quantified
using parameter PSNR and SSIM which were measured as
4.7 dB and 0.2, respectively. In our experiment for different
dose rates, the value of PSNR parameter varies between
17.0711 dB - 14.3798 dB. The value of SSIM parameter
varies between 0.5756 - 0.1872. Entropy however, has not
been used in literature as parameter to measure degradation
due to gamma rays but fast neutron [9]. Entropy was a
good measure of degradation in case of fast neutron as the
radiation noise appeared in form of temporal blobs increasing
the randomness in image. In the experiment, we found out
that the entropy evaluation metric E varied between 1.0128
- 1.0317, not showing a substantial variation as the image
degradation increased with increase in the dose rate. From
the evaluation of all the three image quality parameters, we
can conclude that for the dose rates relevant for inspection of
nuclear site, the images captured by the robot using CMOS
image sensor for surveillance purpose are useable.

After evaluating IQA metric, we evaluate whether images
can be used as visual input for navigation by analysing HFA
parameter.

(a) PSNR with respect to dose rate

(b) SSIM with respect to dose rate

(c) Entropy with respect to dose rate

Fig. 12: IQA metric with respect to dose rate when cameras
C1, C2 and C3 are exposed to varying γ radiation dose rate

(Absorbed dose = 100 Gy, texp = 1300 ms).

2) HFA: Handcrafted features play an important role in
visual odometry, allowing robot to estimate its location. In this
section, we analyse the effect of radiation in terms of matches
of handcrafted features in the images captured when the
sensor is exposed to γ radiation. Since, the object of interest
captured is a chessboard, we use Harris feature detector to
identify feature points in the image captured. As evident from
Figure 13(a), the detected Harris feature points in the image
consist of corner points in the chessboard images along with
feature points in the wires placed in the background.

We perform similar operations using detected Harris feature
points for radiated images. Figure 13(b) shows Harris feature
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(a) Pre-radiated image with Harris feature points

(b) Harris feature points in image radiated at
dose rate 2.92 Gy/min

Fig. 13: Harris feature points detected for images captured
using camera C3 with and without gamma radiation exposure

points for image captured when the sensor is exposed to γ
radiation of 2.92 Gy/min. We observe from Figure 13 that the
radiation induces salt and pepper noise in images degrading
the quality. This proves to be adversarial for Harris feature
detection to identify feature points in the images. For the
robot to estimate its position, the Harris features detected
in the reference images should be repeatable in the radiated
image. However, due to radiation noise instead of identifying
the corners of chessboard as features, the radiation noise is
identified as Harris feature.

Fig. 14: HFMD metric with respect to dose rate when
cameras C1, C2 and C3 are exposed to varying γ radiation

dose rate (Absorbed dose = 100 Gy, texp = 1300 ms).

After detecting Harris feature points in both reference
images and radiated images, we match the features detected
in both the images. The outliers in the feature matches are

eliminated using RANSAC algorithm. Finally, we analyse
Harris feature points matching decline in terms of evaluation
metric ‘HFMD’ calculated using Equation 12. Figure 14
depicts the variation of HFMD with respect to dose rate. We
observe that HFDM parameter varies between 0.9744-0.9959
for the dose rate varying between 0 to 3 Gy/min. To the best of
author’s knowledge, no such work targeting analysis of feature
matching decline due to gamma radiation has been done. But,
the parameter of feature matching decline has been used for
the matching images with perturbation [52]. However, it was
pointed out in [52] that if the feature matching parameter
decline by 92.37% the loop closure using Harris feature in
SLAM (ability of robot to recognize previously visited place)
fails completely. This allowed us to conclude that the radiated
images cannot be used as an input for the purpose of visual
odometry.

VI. CONCLUSIONS AND FUTURE WORK

This study investigates the gamma-induced image degrada-
tion in the Raspberry Pi camera, a robot vision sensor, for
dose levels realistic for the inspection of non critical areas of
nuclear site environment. However, similar total ionizing dose
levels (100Gy - 1kGy) can be found in medical and space
applications [53]. The inaccurate sensing due to the absorbed
dose rate present significant challenges to robot’s long term
autonomy in gamma radiation field. Our previous studies had
elucidated that Raspberry Pi camera was able to perform better
than its counterpart COTS robot vision sensors. The less image
degradation is observed in CMOS image sensor with smaller
pixel sensitive volume which is responsible for reduction in
gamma-induced photo signal. This finding motivated us to
further analyse the degradation of Raspberry Pi camera under
various evaluation metrics.

The relevant evaluation metrics were calculated first for dark
images captured at different dose rates. The evaluation metrics
could be categorised in four classes: 1) Pixel Distribution, 2)
Gamma-induced photo signal, 3) Temporal Variance and 4)
Gamma-induced signal evolution with irradiation time. After
evaluating the dark images, we computed the degradation
in images captured when Raspberry Pi is exposed to light
source. To make the experiment more realistic, we captured
the image of chessboard as it is used by robot as an object for
calibration and other visual odometric operations. There were
two main objectives of analysing the degradation of images
captured in light source. The first aim was to gauge the image
quality for surveillance purpose and second aim was to assess
whether radiated images can be used for the purpose of visual
odometry. The image degradation analysis was classified in
two classes: 1) Image quality and 2) Handcrafted features. The
two diagnosis methodologies to evaluate the radiation induced
image degradation allowed us to conclude that when the sensor
is exposed to radiation upto 3 Gy/min, the images can be
used for surveillance purpose. However, with the decline in
HFMD parameter, radiated images cannot be used for visual
odometry as handcrafted features are no longer repeatable.
These parameters are indicative of faulty localisation, allowing
the robot control system to know when to stop trusting the
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images captured by robot vision sensor based on radiometric
reading.

This evaluation can allow generation of future mitigation
strategies such as radiation noise removal which will allow
adjustment of the images captured by robot according to a pre-
programmed pattern. Based on the observations of the experi-
ments carried out in this paper, it will be worthwhile to explore
the following aspects in the future radiation experiments.

1) The analysis of the dark images captured during the
radiation cycles provides insights into the radiation-
induced signal and noise. However, these effects are not
permanent and are observed only during the duration of
the radiation cycles. The dark images may be captured
between the radiation cycles in the future experiment.
The analysis of these images will provide insights into
the parameters more relevant to sensor health such as
dark charge, dark current, and read noise.

2) The sensor parameters listed above may be measured
for different absorbed doses. The evaluation of healing
of these parameters with time and post radiation cycles
may be conducted for different cumulative doses.

3) Finally, the temperature of the camera sensor may be
monitored over the duration of the experiment as it can
effect both the radiation-induced signal and the dark
current. However, the monitoring of temperature during
the radiation cycle will be cumbersome as the reliability
of the temperature sensor may be compromised due to
the exposure to gamma radiations.

These findings will be useful in understanding vulnerabil-
ities and failure points of other CMOS image sensors which
have similar operating system and supporting signal processing
electronics.
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