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In cardiovascular studies, we often observe ordered multiple events
along disease progression, which are essentially a series of recurrent
events and terminal events with competing risk structure. One of
the main interest is to explore the event specific association with
the dynamics of longitudinal biomarkers. New statistical challenge
arises when the biomarkers carry information from the past event
history, providing feedbacks for the occurrences of future events, and
particularly when these biomarkers are only intermittently observed
with measurement errors. In this paper, we propose a novel mod-
elling framework where the recurrent events and terminal events are
modelled as multi-state process and the longitudinal covariates that
account for event feedbacks are described by random effects mod-
els. Considering the nature of long-term observation in cardiac stud-
ies, flexible models with semiparametric coefficients are adopted. To
improve computation efficiency, we develop an one-step estimator
of the regression coefficients and derive their asymptotic variances
for the computation of the confidence intervals, based on the pro-
posed asymptotically unbiased estimating equation. Simulation stud-
ies show that the naive estimators which either ignore the past event
feedbacks or the measurement errors are biased. Our method achieves
better coverage probability, compared to the naive methods. The
model is motivated and applied to a dataset from the Atheroscle-
rosis Risk in Communities Study.

1. Introduction. Identifying risk factors associated with the course of
cardiovascular disease (CVD) is of great medical interest. A main feature
of the practice presents difficulties in the estimation of the association be-
tween risk factors and CVD events. That is, a constellation of events of
different types are observed from the same subject and the occurrence of
the previous events may affect the risk of the subsequent ones through the
associated biomarkers. Specifically, a subject may experience for example
recurrent myocardial infarction(MI) and may be followed by cardiovascu-
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lar death. Events of different types occurred to the same subject can not
be simply assumed to be independent. As pointed out by Kim et al. (2012)
and Rogers et al. (2016), the risk of recurrent heart failures and myocardial
infarction are associated with that of the fatal CVD events. The successive
events are actually a nested series of competing risk events. After occurrence
of MI, as long as the subject is still under observation, he/she can possibly
encounter another MI or death in the future. The order of the recurrent
events and terminal event is informative as it reflects disease progression. It
is expected that risk factors associated with different types of events would
be different. The strength of association can also vary between recurrences.
Furthermore, it is very likely that CVD occurrences in the past can cause a
change in the profile of the associated biomarkers and the resulting changes
of the trajectory will further affect the proneness to new events in the future.
When such effect accumulates with time, the feedback from past event his-
tory gets increasingly stronger. Some clinical trial experience (Elisaf et al.,
1999; de la Sierra et al., 2010; Zhao et al., 2017) shows that the blood pres-
sure, which is an established biomarker for CVD, is influenced by prior
heart disease history. For illustration, Figure 1 depicts an example of the
heart disease event flow and the influence of past event history.

Fig 1. Example for multiple events and past event feedback in CVD.

The data we analyse in this paper are from the Atherosclerosis Risk in
Communities (ARIC) Study (Wattanakit et al., 2005), which is an ongoing
CVD surveillance study sponsored by the National Heart, Lung, and Blood
Institute. One of the objectives is to investigate associations of the levels of,
and changes in, risk factors with CVD occurrences. It is conducted in four US
communities: Forsyth County, North Carolina; Jackson, Mississippi; Subur-
ban Minneapolis, Minnesota and Washington County, Maryland. The study
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investigates various types of clinical events (e.g., hospitalized myocardial in-
farction, stroke, heart failure and fatal coronary heart disease, etc.). Events
are enumerated and validated through cohort/community surveillance and
annual follow-up. In addition, information on cardiovascular risk factors are
also collected in seven clinic examinations. The first four cohort examina-
tions were conducted three-year apart in 1987-1989, 1990-1992, 1993-1995,
1996-1998, the fifth and sixth examinations were completed in 2011-2013 and
2016-2018. And the last one is currently in progress. Existing research on the
ARIC data mostly focused on the incident heart disease events or cardiovas-
cular death. Few of these literature considered the subsequent events which
are possibly recurrent and of multi-type. However, as addressed by Ip et al.
(2015) and Rogers et al. (2016), it is the series of recurrent events and fatal
events that reflects the true CVD burden faced by an individual. Analysis
of the overall disease burden invites a new model that can address the order
and the timing of the cardiac events, as well as the correlation structure be-
tween them. Another methodological issue posed by the ARIC data is that
the biomarkers are only measured in seven repeated examinations and are
possibly error-contaminated. Even if the bias due to the imprecise and in-
termittent time-dependent covariate is corrected using existing methods, for
example the corrected score approach (Wang, 2006; Song and Wang, 2008)
or the conditional score approach (Tsiatis and Davidian, 2001), the past
event feedback through the biomarkers is still not properly addressed. It is
also worth noting that the ARIC study has been carrying out for more than
30 years. Models with time-independent regression coefficients may be too
restrictive and unrealistic due to the nature of long-term observation. And
sometimes the functional form of the relationships between event history
and the biomarkers are of interest.

The multi-state model is a well-recognized tool for analysing the ordered
multiple event data. The evolution of the CVD process can be viewed as
a stochastic process with multiple states and the transition to a new state
is made when a certain type of event is occurred, such as the occurrence
of myocardial infarction or cardiovascular death. In this paper, we focus on
Markov regression model for multi-state data, in which the dependence be-
tween future and past state transitions is fully captured by the covariate
information at current state. Some authors considered conditional Markov
model with unobserved random effects to explain the intra-subject correla-
tion between different transitions intensities. Cook et al. (2004) introduced
multivariate random effects to describe the dependence among events in
clustered progressive multi-state processes. Bedair et al. (2016) considered
a multivariate frailty model to characterize the event rate of multi-type
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recurrent event data, taking into account the dependence among differ-
ent event types. The random effects may help in understanding the de-
pendence between state transitions. However, they may not be adequate
for characterizing the dependence structure between the state transition
times (Aalen et al., 2004). As shown in the heart disease example, the dy-
namic feedbacks in the longitudinal covariate also induce association be-
tween successive events. Using dynamic covariates instead of frailty terms
allows mechanistic interpretation and makes the model easier to fit with a
counting process model and suitable intensity processes (Aalen et al., 2004;
Aalen, Borgan and Gjessing, 2008).

Several authors have proposed to incorporate the past event feedback
in the form of a separate covariate in the intensity model like the num-
ber of prior events or some simple functions thereof. Existing literature in-
cludes, but not limits to Miloslavsky et al. (2004), Peña (2006), Borgan et al.
(2007), Cook and Lawless (2007) and Gjessing et al. (2010). However, these
methods did not consider the underlying process in the motivating data,
where the impact of past events is mediated through biomarkers. Note that
if for example, the blood pressure levels are known at all event time points
and are exactly measured, the past event feedback shall be well reflected
by the trajectory of the blood pressure. And a marginal analysis without
specifying the probability structure of the event feedback mechanism may
still be valid. However, given the blood pressure is only measured in seven
clinic examinations, the estimators of the associations between event occur-
rences and the levels of biomarkers will be biased if the specific feedback
mechanism is not incorporated into the analysis. Dai and Pan (2018) re-
cently presented a joint model of survival and longitudinal data where the
influence of informative observation times on the longitudinal biomarker is
formulated as a function of event history. Although featuring the influence
of past event history on the biomarker trajectory, their proposed method
cannot be tailored to meet the needs of our motivating data. Treating time
to intermediate events as informative time points is more specifically suited
to analysis with a main focus on the longitudinal process, while our main
research interest is in the time-to-event process. Therefore it is essential to
develop a modelling framework which can describe the prior event feedback
as dynamics of the multi-state process.

In this paper, we propose a class of multi-state models with past event
feedback in longitudinal covariates and derive an efficient estimation method
based on the asymptotically unbiased estimating equations and the one-step
algorithm. This new methodology can fully characterize the features of CVD
progression and obtain a valid estimate of the association between risk fac-
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tors and the overall CVD burden. More specifically, the risks of the ordered
recurrent events and terminal events are modelled as state transition in-
tensity functions with true underlying time-dependent covariates and semi-
parametric coefficients. The true time-dependent covariate process follow a
random effects model that allows past event impact and the longitudinal
observations are the true values plus measurement errors. No distribution
assumption is required for the random effects. We construct asymptotically
unbiased estimating equations of the semiparametric coefficients and derive
the one-step estimators which are computationally efficient. In addition, the
asymptotic properties of the proposed estimators are derived. Using these
results, hypothesis testing or confidence interval can be easily constructed
without going to Monte Carlo resampling or bootstrap approach. The rest
of this article is organized as follows. Section 2 describes the models and the
estimation procedures. Section 3 presents the simulation study and real data
analysis is given in Section 4. The theoretical properties of the proposed es-
timators and the corresponding proofs are provided in the Supplementary
Material.

2. Models and Estimation Procedure.

2.1. The Data and Models. We first present the serial recurrent events
and terminal event in a multi-state formulation. To facilitate the descrip-
tion of the event process and the derivation of the estimation method, we
use counting process notations. The models of the event intensities and the
associated biomarker trajectories are then presented and also compared to
the existing models in literature.

Suppose that there are n independent individuals and the period of ob-
servation time is [0, L]. The event process is re-expressed in a way such that
an individual will transit to the next intermediate state when a recurrent
event occurs, or enter an absorbing state when a terminal event occurs.
A diagram that illustrates the numbering of states and possible transition
paths is presented in the Supplementary Material (Section 1). Let K be the
maximum number of recurrent events observed across all individuals. We
number the intermediate states as {0, 1, ...,K} and the absorbing states as
{K + 1,K + 2, ..., 2K + 1}. For example, being absorbed into state K + 2
indicates that an individual had previously experienced 1 transition to the
intermediate state. This is equivalent to say that a recurrent event has been
occurred to this individual before death. Let N i

k−1,k(t) denote the count-
ing process of individual i recording the transition between intermediate
states k − 1 and k before time t, for i = 1, .., n and k = 1, ...,K. Denote
N i

k−(K+1),k(t) as the counting process for the transition from an intermedi-
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ate state k − (K + 1) to a terminal state k, for k = K + 1, ..., 2K + 1. Note
that dN i

k−1,k(t) = 1 indicates that subject i experiences the kth recurrent

event at time t and dN i
k−(K+1),k(t) = 1 indicates that a terminal event is

occurred at time t after k − (K + 1) recurrent events. Let Y i
j (t) be an indi-

cator taking value 1 if subject i is at risk for the transition out of state j at
time t for j = 0, ...,K. Let Hi(t) be the history of the multi-state process
and the covariate process.

Denote Xi(t) as a covariate vector with Xi(t) = (Xi1(t), ...,Xipx(t))
T and

Wi(t) as a covariate vector with Wi(t) = (Wi1(t), ...,Wipw (t))
T. These two

sets of covariates are different in that Xi(t) have time-varying effects on
the event intensities while Wi(t) have constant effects. The components in
both Xi(t) and Wi(t) may be baseline covariate or time-dependent covari-
ate. Some of them may contain past event history information. For ease of
presentation, we incorporate the same covariates in all transition intensi-
ties. Extension to a more general case where intensities of different state
transitions depend on different covariates can be easily derived by changing
notations. Assuming multiplicative Markov models, the intensity process of
the transition to an intermediate state can be written as

λi,k(t) = lim
∆t↓0

pr
{

dN i
k−1,k(t+∆t) = 1 | Y i

k−1(t) = 1, Hi(t)
}

∆t

= Y i
k−1(t)λ

k
0(t) exp

(

ηTk (t)Xi(t) + γT
kWi(t)

)

, k = 1, ...,K.(2.1)

The intensity process of the transition to a terminal state can be written as

λi,k(t) = lim
∆t↓0

pr
{

dN i
k−(K+1),k(t+∆t) = 1 | Y i

k−(K+1)(t) = 1, Hi(t)
}

∆t

= Y i
k−(K+1)(t)λ

k
0(t) exp

(

ηTk (t)Xi(t) + γT
kWi(t)

)

, k = K + 1, ..., 2K + 1,

(2.2)

where in both models, λk
0(t) are unspecified baseline intensity functions,

Xi(t) are covariates with time-varying coefficients ηk(t) and Wi(t) are co-
variates with time-fixed coefficients γk. The above model implies that the
connection between the past and the future is given by means of the inten-
sity process, which is a function of the current levels of the risk factors and
the event history summarized at the current time. Take CVD data as an
example, the probability of the occurrence of another MI or cardiovascular
death in the future depends on the levels of the risk factors as well as prior
CVD history. Although written as functions of times, the components of the
covariate vectors Xi(t) andWi(t) can be chosen as time-dependent covariate
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or baseline covariate. An example of the time-dependent covariate is the sys-
tolic blood pressure (SBP) level that changes over time. The current level of
SBP is very likely to be associated with the instantaneous risk of developing
a CVD event. Such an association with the CVD risk may be time-varying,
which means that for example the impact of the SBP level measured 10 years
ago could be different from the impact of the same level of SBP measured
today. This is particularly important for our motivating ARIC data. Even if
the levels of SBP measured at two different time points are the same, their
effects on the CVD risks could be different, considering the long time span
of the study and the possible change of physical condition of the partici-
pants during the study. Therefore a time-dependent association described
by ηk(t) in Models (2.1) and (2.2) fits better to this real scenario. Similar
applications in CVD research can be found in Zhou et al. (2019), where the
effect of longitudinal physical fitness on CVD mortality is assumed to vary
with age.

The different regression coefficients for different transitions means that the
magnitude of the dependence of CVD risk on the levels of risk factors may
vary across recurrence. In some real applications, the number of observed
events may be too small for estimation at a later stage (when the number of
recurrence is greater than some values). As suggested by Yang et al. (2017)
and Cook and Lawless (2007), we can either treat the subsequent events for
some large values of k as censored or combine them into one strata and
assume that they share the same intensity functions. As for the proportion
of observations being censored or combined into one strata, we suggest try-
ing different values and compute the corresponding prediction errors using
the formulas in Section 5.3 of the Supplementary Material. The one that
minimizes the prediction errors may indicate a best fit of the data.

Let NE
i (t−) =

∑K
k=1N

i
k−1,k(t−) denotes the number of recurrent events

that subject i has experienced over [0, t). For the covariates Xi(t) andWi(t),
we assume that their true trajectories are generated from the following
stochastic process

Xir(t) = fXr

(

t,NE
i (t−)

)T
βXir, r = 1, ..., px,

Wis(t) = fWs

(

t,NE
i (t−)

)T
βWis, s = 1, ..., pw,(2.3)

where βXir is a cXr-dimensional random effects, βWis is a cWs-dimensional
random effects and fXr , fWs are known generic functions. We assume
that fXr(·) and fWs(·) satisfy the conditions such that the transition in-
tensity process shall not explode. Details of the conditions can be found in
Gjessing et al. (2010). Model (2.3) suggests that the event feedback is man-
ifested through NE

i (t−) and its impact on the biomarker trajectory varies
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among individuals. One example of the past event information is the total
number of previous events min{NE

i (t−), K0}, truncated at a chosen number
K0. A small number of K0 can prevent the value of the intensity process
going to infinity. For example K0 was chosen to be 5 in an asthma exac-
erbations study (page 196, Cook and Lawless (2007)). Other forms of past
event information include I

(

NE
i (t−) > 0

)

which implies whether there is
prior disease history and NE

i (t−)/t which is the average rate of past events.

Model (2.3) is flexible because no distribution assumptions are imposed
on the random effects. In addition, it is capable of handling various types
of covariates. For example, by setting Xir(t) = βXir0 + βXir1 t + · · · +
βXira t

a + βXir(a+1) N
E
i (t−) we have a time-dependent covariate of which

the trajectory is a linear trend of time and the accumulated number of
past events. And choosing Xir(t) = βXir0 gives us a baseline covariate.
Therefore fXr and fWs provide various combinations of the time trajectory
and the event feedbacks. In practice, the choice of their functional forms
is usually not self-evident or may be far from obvious, but may be sug-
gested by biological understanding or biological hypothesis (Fisher and Lin,
1999). When the real application lacks prior knowledge of the generic func-
tions, one may adopt flexible polynomial or fractional polynomial func-
tions of time for a nonparametric approximation. For example by setting
Xir(t) = βXi0 + βXi1t

2
ij + βXi2t

2
ijln(tij) + βXi2I(N

E
i (tij−) > 0) + ǫXij

, we
have a longitudinal model that is a FP (2, 2) fractional polynomial functions
of time plus the past event feedbacks. More discussion about this issue can
be found in Section 5.

Note that when K = 0 (i.e. there are no recurrent events), and when
the term NE

i (t−) vanishes from Model (2.3), the modelling framework de-
generates to a standard survival model with time-dependent covariates as
discussed in Song and Wang (2008) and Song et al. (2017).

2.2. The Estimating Equations and Computation Procedure. In practice,
the inference procedure is complicated by the fact that the true values of
the covariates Xi(t) and Wi(t) are not observed at every event time point.
Also the time-varying effects of the covariates cannot be directly estimated
as they are essentially infinite dimensional parameters. For the first issue,
a popular method is to perform a two-stage analysis in which the values
of the time-dependent covariates at all event time points are estimated and
incorporated in the intensity functions. Then the bias due to the use of the
estimated values are corrected using some estimating equation approach.
There has been considerable methodological development including the con-
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ditional score approach and the corrected score approach mentioned in Sec-
tion 1. We develop our estimation procedure based on an extension to the
corrected score approach. For the second issue, there has been enormous de-
velopment on survival analysis with time-varying coefficient (Cai and Sun,
2003; Song and Wang, 2008; Song et al., 2017). The kernel smoothing ap-
proach is widely used due to its simplicity and easy interpretation. However
for the estimation of the semiparametric parameters, the nonparametric co-
efficients are usually estimated locally in the first step given the values of the
parametric coefficients. And then the estimated nonparametric coefficients
are plugged in the model and the parametric coefficients are estimated glob-
ally in the next step. These two steps are then iterated until convergence.
Such full iterations between the nonparametric step and parametric step are
computationally intensive and the expressions of the estimators are usually
complicated. Therefore, we derive an one-step estimator of the semipara-
metric coefficients which are computationally efficient and concise.

Suppose for each component of the covariates, we observe a vector of lon-
gitudinal data Xir = (Xi1r, ...,XimXirr)

T instead of the true values of Xir(t)
at each time point t for r = 1, ..., px. Similarly, Wis = (Wi1s, ...,WimWiss)

T is
recorded instead of Wis(t) for s = 1, ..., pw . Assuming that the measurement
errors are additive, the relationship between the observations and the true
covariate process can be described as follows

Xijr = Xir(tij) + εXijr, i = 1, ..., n; j = 1, ...,mXir ; r = 1, ..., px,

Wijs = Wis(tij) + εWijs, i = 1, ..., n; j = 1, ...,mWis; s = 1, ..., pw,(2.4)

where εXijr and εWijs are mutually independent. εXijr are independent

across r with εXijr
iid
∼ N(0, σ2

Xr) and εWijs are independent across s with

εWijs
iid
∼ N(0, σ2

Ws). We assume that the observation time points tij and
the measurement errors are non-informative about the multi-state process.
We also assume that the measurement errors are independent of the true
covariate process, the state transition times and the censoring time. In our
real analysis, the covariates of interests are not all observed with errors.
Model (2.4) is also able to handle covariates that are exactly observed. For
example, additionally assuming mXir = 1 and εXijr = 0 leads to a precisely
measured baseline covariate.

Based on model (2.4), the least squares estimates X̂i(t), Ŵi(t) and their
conditional variance-covariance matrices ΣXi(t), ΣWi(t) can be easily cal-
culated and are presented in the Supplementary Material (Section 2).

Let γ = {γ1, ...,γ2K+1} and η(u) = {η1(u), ..., η2K+1(u)}. Assuming that
the values of the time-dependent covariates are all known in Models (2.1) and
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(2.2), the log-partial likelihood function l (γ, η(u)) can be written as in (2.5).
Taking the first derivative of the log-partial likelihood leads to the score
function. For example, the score functions of the recurrent event parameters
γk given ηk(u) can be easily derived as in (2.6). Solving the score functions
gives us a valid estimate of the parameters. However when the values of the
time-dependent covariates are unknown, simply replacing the true values of
the time-dependent covariates by their least squares estimates will lead to a
biased estimating equation. For example, the expectation of the numerator
in (2.6) is shown in (2.7) where the bias terms involving ΣXj(u) and ΣWj(u)
are introduced.

l (γ, η(u))

(2.5)

=

K
∑

k=1

n
∑

i=1

[

∫ L

0

(

ηTk (u)Xi(u) + γT
kWi(u)

)

− log





n
∑

j=1

Y j
k−1(u) exp

(

ηTk (u)Xj(u) + γT
kWj(u)

)



 dN i
k−1,k(u)

]

+
2K+1
∑

k=K+1

n
∑

i=1

[

∫ L

0

(

ηTk (u)Xi(u) + γT
kWi(u)

)

− log





n
∑

j=1

Y j
k−(K+1)(u) exp

(

ηTk (u)Xj(u) + γT
kWj(u)

)



 dN i
k−(K+1),k(u)

]

.

U(γk)
(2.6)

=
n
∑

i=1

L
∫

0



















Wi(u)−

n
∑

j=1
Y j
k−1(u)Wj(u) exp

(

ηTk (u)Xj(u) + γT
kWj(u)

)

n
∑

j=1
Y j
k−1(u) exp

(

ηTk (u)Xj(u) + γT
kWj(u)

)



















dN i
k−1,k(u),

k = 1, ...,K.

E

{

Ŵj(u) exp
(

ηTk (u)X̂j(u) + γT
k Ŵj(u)

)

∣

∣Xj(u),Wj(u)
}

(2.7)

= (Wj(u) +ΣWj(u)γk) exp
(

ηTk (u)Xj(u)− 1/2ηTk (u)ΣXj(u)ηk(u)

+ γT
kWj(u)− 1/2γT

kΣWj(u)γk

)

.
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In addition to bias correction, we also need to approximate the time-
varying coefficients ηk(t) with local polynomials. For k = 1, ..., 2K + 1, let

ηk(u) ≈ ηk(t)+η′k(t)(u−t) with η′(t) = ∂η(t)/∂t. Denote bk =
(

ηTk (t), η
′
k
T(t)

)T
.

Let γk(t) denote the local estimators of the time-independent coefficients in
the nonparametric step. Note that they are not the final estimates. To keep
our notations simple, we omit the argument t in γk(t) when introducing

the estimating equations in the nonparametric step. Let αk =
(

bT
k ,γ

T
k

)T
.

Define A ⊗ B as the Kronecker product of matrices A and B throughout
the paper. Let blkdiag(A,B) denote a block diagonal matrix with the main
diagonal blocks A and B. Let h be the bandwidth, H = diag (Ipx, hIpx),
ut = (1, u−t)T, Xi(u, t) = ut⊗Xi(u), ΣXi(u, t) = utu

T
t ⊗ΣXi(u), Zi(u, t) =

(

XT
i (u, t),W

T
i (u)

)T
, ΣZi(u, t) = blkdiag(ΣXi(u, t), ΣWi(u)) and Kh(u −

t) = K(u−t)/h, where K(·) is the kernel function. Let a⊗0 = 1, a⊗1 = a and
a⊗2 = aaT for a general vector a. To preserve predictability which is essen-
tial for the derivation of the theoretical results, we only use the information
before time t to estimate Xi(t) and Wi(t). Let mXir(t) be the number of
observations before time t for the rth component in Xi(t) and mWis(t) be
the number of observations before time t for the sth component in Wi(t).
Let Ii(t) = I(mXir(t) ≥ cXr, mWis(t) ≥ cWs : r = 1, ..., px; s = 1, ..., pw)
be an indicator function which takes value 1 if the number of longitudinal
observations from individual i before time t is sufficient for the estimation of
βXir and βWis. Denote Yi(t) = I(Ci ≥ t), where Ci is the censoring time of
the ith individual and Yi(t) = 1 if a subject is still under observation at time
t. Together with the state transition at risk process Y i

j (t) in Section 2, we

can define the overall at risk process Ȳ i
j (t) = Ii(t)Yi(t)Y

i
j (t) for j = 0, ...,K.

The whole estimation procedure includes two steps. In the first step we
estimate both the time-varying coefficients and the constant parameters in
a local estimating equation. The estimators of the constant parameters are
not efficient because the estimating equation only use a local subset of the
data. Therefore in the next step, we construct a global estimating equation
of the constant parameters with the time-varying coefficients substituted by
their local estimates. The estimating equation is global in the sense that it
utilises the whole data set. Unlike the profile method, the estimates of the
time-varying coefficients being substituted in the second step are treated
as constants instead of functions of the constant parameters. With the as-
sumption about the bandwidth and using the order of convergence of the
local estimator, it can be shown that the global estimator of the constant
parameters achieves the optimal convergence rates. Details of the algorithm
and its application in other models can be found in Carroll et al. (1997);
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Cao and Yao (2012); Huang and Yao (2012).
In what follows, we use the subscript NP to represent the nonparametric

estimate and use the subscript P to refer to the parametric estimate. Func-
tions with subscript k ranging from 1 to K indicate quantities involved in
the estimation of recurrent event parameters and those with subscripts k
ranging from K+1 to 2K +1 correspond to the terminal event parameters.
To remove the bias according to the result in (2.7), we define the following
functions of which the expectations equal to the numerator and denominator
in a standard score function of the log-partial likelihood with true covariate
values. For l = 0, 1, 2, let

S
(l)
NP,k(αk, u, t) =n−1

n
∑

j=1

Ȳ j
k−1(u)

(

Ẑj(u, t)−ΣZj(u, t)αk

)⊗l

× exp

(

αT
k Ẑj(u, t)−

1

2
αT

kΣZj(u, t)αk

)

, k = 1, ...,K,

S
(l)
NP,k(αk, u, t) =n−1

n
∑

j=1

Ȳ j
k−(K+1)(u)

(

Ẑj(u, t)−ΣZj(u, t)αk

)⊗l

× exp

(

αT
k Ẑj(u, t)−

1

2
αT

kΣZj(u, t)αk

)

, k = K + 1, ..., 2K + 1.

Given the variance of the measurement errors, the local estimating equations
of αk can be written as

UNP,k(αk) =(nH)−1
n
∑

i=1

L
∫

0

Kh(u− t)Ȳ i
k−1(u)







Ẑi(u, t)−
S
(1)
NP,k(αk, u, t)

S
(0)
NP,k(αk, u, t)







dN i
k−1,k(u), k = 1, ...,K,

UNP,k(αk) =(nH)−1
n
∑

i=1

L
∫

0

Kh(u− t)Ȳ i
k−(K+1)(u)







Ẑi(u, t)−
S
(1)
NP,k(αk, u, t)

S
(0)
NP,k(αk, u, t)







dN i
k−(K+1),k(u), k = K + 1, ..., 2K + 1.(2.8)

In practical applications, we can substitute σ2
Xr and σ2

Ws with their con-
sistent estimates, e.g. the moment estimator based on all longitudinal data
and the theoretical properties of our proposed estimating equations remain
valid. Replacing the unknown functions ηk(u) with their local estimates
η̂k(u) ≡ b̂k, the constant parameters γk can be estimated in the following
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parametric step. For l = 0, 1, 2, let

S
(l)
W,P,k(γk, ηk, u) = n−1

n
∑

j=1

Ȳ j
k−1(u)

(

Ŵj(u)−ΣWj(u)γk

)⊗l
exp

(

ηTk (u)X̂j(u)

−
1

2
ηTk (u)ΣXj(u)ηk(u) + γT

k Ŵj(u)−
1

2
γT
kΣWj(u)γk

)

,

k = 1, ...,K,

S
(l)
W,P,k(γk, ηk, u) = n−1

n
∑

j=1

Ȳ j
k−(K+1)(u)

(

Ŵj(u)−ΣWj(u)γk

)⊗l
exp

(

ηTk (u)X̂j(u)

−
1

2
ηTk (u)ΣXj(u)ηk(u) + γT

k Ŵj(u)−
1

2
γT
kΣWj(u)γk

)

,

k = K + 1, ..., 2K + 1.

The global estimating equations of γk can be written as

UP,k (γk, η̂k) = n−1
n
∑

i=1

L
∫

0

Ȳ i
k−1(u)







Ŵi(u)−
S
(1)
W,P,k(γk, η̂k, u)

S
(0)
W,P,k(γk, η̂k, u)







dN i
k−1,k(u),

k = 1, ...,K,

UP,k (γk, η̂k) = n−1
n
∑

i=1

L
∫

0

Ȳ i
k−(K+1)(u)







Ŵi(u)−
S
(1)
W,P,k(γk, η̂k, u)

S
(0)
W,P,k(γk, η̂k, u)







dN i
k−(K+1),k(u),

k = K + 1, ..., 2K + 1.
(2.9)

The global estimators attain the optimal convergence rates as shown in the
technical proof in the Supplementary Material (Section 6).

3. Simulation. We conducted extensive simulations to assess the per-
formance of our proposed model and estimation method. Four scenarios
were considered. Scenario I considered an example with moderate censor-
ing rate and a reasonable number of longitudinal observations measured at
irregular intervals. Different distributions of the random coefficients in the
longitudinal model were considered. The influence of sample size was also
evaluated. Scenario II considered a case where there were at most 5 longi-
tudinal observations for each time-dependent covariate. The first four mea-
surements were made at regular time intervals and the last measurement
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was taking at a much longer interval. This setting mimicked the cohort
surveillance examination cycles in the ARIC study. Scenario III aimed to
illustrate the performance of our proposed estimator when there was actu-
ally no dynamic feedback in the system that generated the event data and
longitudinal data. Scenario IV investigated the performance of our proposed
estimator when the generic functions of the longitudinal data process were
incorrectly specified. The multi-state models that generated the event times

in all scenarios were λi,k(t) = λE
0 (t) exp

(

ηE(t)Xi(t) + γE1Wi1 + γE2Wi2(t)
)

for k = 1, ...,K and λi,k(t) = λD
0 (t) exp

(

ηD(t)Xi(t) + γD1Wi1 + γD2Wi2(t)
)

for k = K + 1, ..., 2K + 1. Here we assume that the baseline intensity
functions and the regression coefficients are the same across transitions to
the intermediate states (indexed by E), and the baseline intensities and
regression parameters are also shared across transitions to the terminal
states (indexed by D). This is to mimic the models in the real analysis.
The estimating equations can be similarly derived with some straightfor-
ward algebra and are presented in the Supplementary Material (Section
3). Multi-state event data were simulated using nested series of compet-
ing risks experiments and details for generating such data can be found
in Beyersmann et al. (2011). The baseline intensity functions were chosen
as λE

0 (t) = 2.5, λD
0 (t) = 0.1 + t1/2. The maximum follow-up time was 1.

Censoring times were generated from a uniform distribution U [0, 3] and
truncated at 1, leading to a censoring rate around 45%. The true values
of the coefficients were ηE(t) = −sin(πt), ηD(t) = log(0.6t+0.4), γE1 = 0.6,
γE2 = 0.4, γD1 = 0.3, γD2 = 0.5. The baseline covariate Wi1 was sam-
pled from a Bernoulli distribution with probability 0.5. The observations of
the time-dependent covariates were generated from the longitudinal mod-
els Xij = βXi0 + βXi1tij

1/2 + βXi2 log
(

NE
i (tij−) + 1

)

+ εXij and Wij2 =
βWi0+βWi1tij+βWi2min

(

NE
i (tij−), 5

)

+εWij. We took log-transformation
and truncation of the past event feedbacks to avoid explosions as discussed
in Section 2. In Scenario III where there was no past event feedback in the
true longitudinal process, we set βWi2 = βXi2 = 0 for all i. The variances of
the measurement errors εWij and εXij were set as 0.1.

In each scenario, the sample size was chosen as 500 and simulation re-
sults were based on 500 Monte Carlo replications. The Epanechnikov kernel
function K(t) = 0.75(1 − t2)I(|t| ≤ 1) was used throughout the simula-
tions. The unknown functions and coefficients in all scenarios were esti-
mated in four ways: (i) Our proposed estimator (DC) where D is short
for dynamic feedbacks and C for bias correction; (ii) the naive estimator
that ignores the dynamic feedbacks (NaivD); (iii) the naive estimator us-
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ing least squares estimate of the random coefficients without correcting bias
(NaivC) and (iv) the ideal estimator (I) that assumes the random coeffi-
cients βXi and βWi to be known at each time point. All of the aforemen-
tioned estimators were computed with the one-step algorithm. The NaivD
estimates were calculated assuming longitudinal models without event feed-
backs Xij = βXi0 + βXi1tij

1/2 + εXij and Wij2 = βWi0 + βWi1tij + εWij . For
each simulation, we calculated the following summary statistics for the con-
stant parameters: the difference between the average of the estimates and
the true parameter (Bias), the Monte Carlo standard deviation (SD), the av-
erage of the estimated standard error (SE), and the 95% empirical coverage
probability (CP). The performance of the local estimator was evaluated at 50
equally spaced grid points, using bandwidth h = 0.05 and h = 0.1. We chose
such small values of the bandwidths because the theoretical results require
the nonparametric estimates to be undersmoothed. Details can be found in
the Supplementary Material (Condition B, Section 6.2). The average of the
estimates, the 95 % pointwise confidence bands and the pointwise coverage
probabilities were calculated at each grid point. For better presentation the
span of the vertical axis in all plots of the pointwise coverage probabilities
of ηD(t) is restricted to [0.7, 1] because the coverage rates by different esti-
mators vary only over this small range. In addition, we mark the bias and
coverage probabilities of the proposed DC estimator and NaivD estimator
in bold in all tables to highlight the difference of the performance. To save
space, the two simulation studies investigating the effect of sample size and
random effect distribution in Scenario I, and all the simulation results in Sce-
nario III and Scenario IV are given in the Supplementary Material (Section
4).

3.1. Scenario I, Setting 1. The longitudinal measurement times were
tij = (0, 0.05, 0.09, 0.15, 0.2, 0.3, 0.4, 0.5, 0.9) and observations were made
until the occurrence of terminal event or censoring. We first considered
βXi generated from a normal distribution with mean (1,−0.2, 0.3), variance
(0.5, 0.01, 0.05) and correlations corr(βXi0, βXi1) = 0.2, corr(βXi0, βXi2) =
0.8, corr(βXi1, βXi2) = 0.6. βWi were sampled from a normal distribution
with mean (1,−0.5, 0.2), variance (0.4, 0.01, 0.05) and correlations corr(βWi0,
βWi1) = 0.2, corr(βWi0, βWi2) = 0.8, corr(βWi1, βWi2) = 0.6. About 75%
subjects had at least one recurrent event, among which the average number
of recurrent events was 2.5 per subject. Table 1 gives the estimates of the
time-independent parameters.

From Table 1, we can see that our proposed estimation procedure performs
well. The DC estimators of the time-independent parameters γE,1, γE,2,
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γD,1 and γD,2 are unbiased and the 95% empirical coverage probabilities are
close to the nominal value. Estimates based on different bandwidth values
are similar. For γE,2 and γD,2 which are the coefficients of the longitudinal
covariates, the naive estimators are substantially biased and their coverage
probabilities are below the nominal value. The naive estimators seem to yield
unbiased results for γE,1 and γD,1, which are the coefficients of the baseline
covariates. This is expected because the past event feedback impacts the
time-dependent covariates more than the baseline covariates and also the
baseline covariates are assumed to be exactly observed. Thus using naive
methods have limited impact on the estimation of γE,1 and γD,1.

Figures 2 - 3 present the true and fitted curves of the time-varying co-
efficients and it can be seen that the fitted curves based on our proposed
method show a close agreement with the true functions. The proposed DC
estimators outperform the naive estimators in terms of the 95% pointwise
coverage probabilities.

Table 1

Simulation results in the case of normal random effects with 45% censoring rate and
sample size n=500.

γ
DC
E,1 γ

DC
E,2 γ

NaivC
E,1 γ

NaivC
E,2 γ

NaivD
E,1 γ

NaivD
E,2 γ

I
E,1 γ

I
E,2

h=0.05
Bias 0.0077 0.0065 0.0057 -0.0618 0.0038 -0.0212 0.0061 -0.0021
SD 0.0788 0.0380 0.0785 0.0333 0.0746 0.0332 0.0674 0.0307
SE 0.0764 0.0369 0.0762 0.0318 0.0724 0.0324 0.0686 0.0310
CP 0.9420 0.9300 0.9440 0.5180 0.9360 0.8760 0.9540 0.9640

h=0.1
Bias 0.0073 0.0062 0.0056 -0.0617 0.0036 -0.0214 0.0060 -0.0021
SD 0.0786 0.0379 0.0785 0.0333 0.0745 0.0331 0.0674 0.0307
SE 0.0762 0.0367 0.0762 0.0318 0.0723 0.0323 0.0686 0.0310
CP 0.9420 0.9320 0.9420 0.5160 0.9360 0.8740 0.9520 0.9640

γ
DC
D,1 γ

DC
D,2 γ

NaivC
D,1 γ

NaivC
D,2 γ

NaivD
D,1 γ

NaivD
D,2 γ

I
D,1 γ

I
D,2

h=0.05
Bias 0.0005 0.0119 0.0030 -0.0600 -0.0055 -0.0395 0.0010 0.0023
SD 0.1258 0.0585 0.1226 0.0486 0.1240 0.0566 0.1223 0.0528
SE 0.1266 0.0578 0.1226 0.0479 0.1251 0.0530 0.1227 0.0518
CP 0.9560 0.9360 0.9560 0.7580 0.9540 0.8500 0.9520 0.9480

h=0.1
Bias 0.0010 0.0120 0.0038 -0.0595 -0.0050 -0.0390 0.0017 0.0027
SD 0.1255 0.0584 0.1225 0.0486 0.1238 0.0566 0.1222 0.0527
SE 0.1263 0.0576 0.1225 0.0479 0.1248 0.0529 0.1226 0.0518
CP 0.9560 0.9340 0.9560 0.7640 0.9540 0.8540 0.9520 0.9480
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Fig 2. Estimation of ηE(t) in the case of normal random effects with 45% censoring rate
and sample size n=500.
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Fig 3. Estimation of ηD(t) in the case of normal random effects with 45% censoring rate
and sample size n=500.

3.2. Scenario II. In this scenario, we evaluate the performance of our
proposed estimating procedure when the longitudinal observations of the
time-dependent covariate are sparse, which is the case of the ARIC study.
The longitudinal measurements were taken at t = (0, 0.125, 0.25, 0.375, 0.875).
The range of grid points in this scenario was set as [0.25, 1] considering the
fact that all subjects in the simulated data set had less than 3 longitudinal
observations before t = 0.25. Specifically, the smoothing windows of any
grid point t < 0.25 contained very few data that was feasible for estimation
and hence the nonparametric estimate before t = 0.25 might not be reliable.
The selected range of the grid points did not influence the estimation of the
constant parameters because the local estimates at event times earlier than
0.25 were not used in the global estimating equation anyway. The rest of
the simulation setup was the same as in Scenario I.

As shown in Table 2, we can see that the proposed DC estimators out-
perform the other two naive ones in terms of the 95% coverage probabilities.
Figures 4 - 5 also show that the proposed method achieves satisfactory per-
formance regarding the pointwise 95% coverage probability. Although the
absolute bias of the estimators of the time-independent parameters and time-
varying effects using the proposed method are slightly larger than those using



MODELING PAST EVENT FEEDBACK 19

the naive method which ignores the past event feedbacks. This should be
evaluated together with the scale of the standard errors of both estimators.
It can be seen from Table 2 that the standard errors of the proposed DC
estimators are larger than the NaiveD estimators. From Figures 4 - 5, we can
also find that the confidence bands of the proposed DC estimators are wider
than those of the NaiveD estimators. Therefore the performance measures
should be considered jointly and we can see that the proposed estimators
actually achieve better coverage probabilities than the naive estimators.

The additional simulation studies in the Supplementary Material evaluate
the impact of the random effect distribution, sample size, existence of event
feedback and the misspecification of the generic functions. It is found that
our estimating procedure provided similar results under a different random
effect distribution setting. The performance of the proposed method also
improved with a larger sample size. When there is no event feedback in the
true model, our approach gives results comparable to those based on meth-
ods using a perfect model for the data. In addition, when the functional
form of the longitudinal process is misspecified, the performance of the pro-
posed estimators is still satisfactory and outperform the naive estimators.
Taken together, our method is reliable and provides better results than other
methods in many different scenarios.
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Fig 4. Estimation of ηE(t) in the case of sparse longitudinal observations.
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Table 2

Simulation results in the case of sparse longitudinal observations.

γ
DC
E,1 γ

DC
E,2 γ

NaivC
E,1 γ

NaivC
E,2 γ

NaivD
E,1 γ

NaivD
E,2 γ

I
E,1 γ

I
E,2

h=0.05
Bias 0.0070 0.0323 -0.0369 -0.1001 -0.0099 -0.0239 -0.0028 -0.0007
SD 0.1185 0.0633 0.1017 0.0416 0.0912 0.0409 0.0700 0.0324
SE 0.1196 0.0618 0.1046 0.0407 0.0887 0.0383 0.0683 0.0308
CP 0.9512 0.9146 0.9248 0.3089 0.9411 0.8821 0.9431 0.9451

h=0.1
Bias 0.0031 0.0297 -0.0372 -0.1001 -0.0109 -0.0241 -0.0033 -0.0006
SD 0.1148 0.0610 0.1016 0.0416 0.0904 0.0404 0.0697 0.0320
SE 0.1150 0.0599 0.1048 0.0407 0.0883 0.0380 0.0683 0.0308
CP 0.9451 0.9207 0.9228 0.3089 0.9390 0.8841 0.9431 0.9512

γ
DC
D,1 γ

DC
D,2 γ

NaivC
D,1 γ

NaivC
D,2 γ

NaivD
D,1 γ

NaivD
D,2 γ

I
D,1 γ

I
D,2

h=0.05
Bias -0.0023 0.0264 -0.0071 -0.1223 -0.0088 -0.0503 0.0008 -0.0026
SD 0.1453 0.0748 0.1325 0.0493 0.1328 0.0567 0.1268 0.0509
SE 0.1479 0.0754 0.1362 0.0505 0.1317 0.0556 0.1228 0.0516
CP 0.9573 0.9451 0.9573 0.3150 0.9512 0.8130 0.9431 0.9533

h=0.1
Bias -0.0022 0.0256 -0.0063 -0.1219 -0.0086 -0.0498 0.0015 -0.0019
SD 0.1443 0.0740 0.1322 0.0492 0.1322 0.0565 0.1265 0.0507
SE 0.1471 0.0748 0.1361 0.0505 0.1313 0.0553 0.1227 0.0516
CP 0.9553 0.9492 0.9593 0.3191 0.9512 0.8232 0.9431 0.9573
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Fig 5. Estimation of ηD(t) in the case of sparse longitudinal observations.
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4. Real Analysis. In this section, we applied our proposed model and
estimation procedure to the data set from the ARIC study. We investigate
the effect of SBP level and baseline risk factor on time to recurrent MI and
death in White male participants living in Washington County and Subur-
ban Minneapolis, who had no prior coronary heart disease history. We chose
this subgroup of participants because the risk factors for CVD differ con-
siderably by race and gender (Kim et al., 2012) and also we excluded those
participants with previous coronary heart disease events because the form
of past event feedback adopted in this real data analysis was an indicator
function of whether there were previous MI events. We restricted our atten-
tion to the event times and follow-up data until 2011 because there were
few events after this time point. Participants with missing values in baseline
covariates were also excluded. This sample included 2932 subjects with 876
fatal events and 482 recurrent events. The number of participants who had
at least one recurrent event is 379. Among these participants, the maximum
number of recurrent events observed per subject is 6 and the average number
is around 1.27. Around 30% participants experienced the fatal event.

We fitted Models (2.1-2.2) to the time-to-event data, and additionally
assume that all transitions related to the recurrent events are modelled
with the same baseline intensity functions and parameters, and all terminal
events share the same baseline intensities and regression coefficients. This
is because the average number of MI occurrences was small among those
subjects who had recurrent events. Therefore all the recurrent events are
combined into one strata, and so are the terminal events. Nevertheless, the
progression feature of the disease can still be reflected in the event feedbacks.
The time scale we used is the time since the participant entered the study.
We considered a longitudinal covariate SBP (in 50mmHg) and the following
baseline covariates: age (in years); baseline level of high-density lipoprotein
cholesterol (HDLC, in mmol/L); indicators for diabetes (1 for fasting glu-
cose ≥ 126 mg/dL and 0 otherwise), indicators for hypertension medication
(1 for hypertension lowering medication within past 2 weeks at baseline ex-
amination, and 0 otherwise) and smoking (1 for current smoker at baseline
examination and 0 otherwise). Among them, age was divided by 10 and SBP
measurements were divided by 50. All event times and longitudinal observa-
tion times were divided by 365. To determine the time-varying/independent
structure in the multi-state models, we ran a preliminary analysis in which
the coefficients of all covariates were treated as time-dependent and were
estimated non-parametrically. The results suggested that the coefficients of
SBP, HDL-cholesterol and hypertension medication did not change much
over time. In addition, the effect of SBP on time to recurrent MI and the
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effect of HDL-cholesterol on time-to-death were not significant over most of
the follow-up time. Hence the coefficients of these three covariates were cho-
sen to be time-independent and the others were chosen to be time-varying
effects. As for the longitudinal covariate, we fitted the following model to
the SBP measurements

(4.1) Wij = βXi0 + βXi1tij + βXi2I
(

NE
i (tij−) > 0

)

+ εXij .

This model implies that the intercept of the SBP trajectory changes after
the first MI occurrence. The form of the longitudinal model was chosen
according to the spaghetti plot of SBP shown in the Supplementary Material
(Section 5). It can be seen that the levels of SBP seem to change with the
occurrences of MI. In addition, there are substantial heterogeneities in the
patterns of the individual trajectories, suggesting the use of random effects
to characterize the variation across subjects.

We used adaptive bandwidth to estimate the time-varying coefficients be-
cause the event times are non-uniformly distributed. The idea is that we use
a fixed quantile of total number of event times to estimate the local param-
eters at every grid point and the size of the local window varies with the
density of the observed event time points. Details of bandwidth selection can
be found in the Supplementary Material (Section 5). The time-varying coef-
ficients were estimated at 50 equally spaced grid points. For comparison, we
estimate the coefficients under two models. The estimation results using our
proposed models assuming past event feedback in the longitudinal covariate
are reported under the full model and those from the models assuming no
event feedback are reported under the reduced model.

The estimated constant effects of SBP, HDL-cholesterol (HDL-C) and hy-
pertension medication (HypMed) are displayed in Table 3. It can be seen
that the sign of the estimated effects are the same comparing the results
based on the full model and the reduced model. Being taken hypertension
lowering medication was associated with an increase in the hazard of death
and this effect was significant at the 95% confidence level. On the other
hand, HDL-cholesterol had protective effect against recurrent MI, which
means that an increase in the level of HDL-cholesterol would reduce the
risk of MI recurrences. Current level of SBP was not significantly associ-
ated with the risk of death and recurrent MI. The estimated associations
between the current level of SBP and the risk of recurrent MI and death are
negative, which is counterintuitive to what we would expect: as higher level
of blood pressure is usually associated with greater risk of cardiovascular
events. Under our modelling framework, the current level of SBP is essen-
tially a sum of the baseline SBP (βXi0 in (4.1)), the change of SBP levels
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since baseline examination (βXi1tij in (4.1)) and the MI occurrence history
(βXi2I

(

NE
i (tij−) > 0

)

in (4.1)). The random slope βXi1 represents the rate
of change of SBP. Therefore the negative association between the current
level of SBP and the risk of CVD events may be explained by a negative
effect of the baseline SBP on the CVD risk, or a negative association be-
tween the rate of change of SBP and the CVD risk, or a combination of the
both. A previous statistical analysis of the ARIC data (Barrett et al., 2019)
has similar findings. Using two-stage method and joint modelling approach
on the full ARIC data set, they found that the rate of change of SBP is
negatively associated with the risk of incident CVD event. That is to say, a
positive slope of the SBP level leads to a lower risk of CVD event.

Figures 6 - 7 present the estimates of the time-varying effects of age,
diabetes and smoking. All of the three risk factors were significant for both
types of events over most of the time span. Age and smoking were positively
associated with the risk of MI occurrences and these effects increased along
time. It can be seen from Figure 6 that the estimated effects of age and
smoking at early time points under the full model are different from those
obtained from the reduced models. This discrepancy might be explained by
the different event time data involved in the estimating equations under full
model and reduced model, especially for equations evaluated at the first
few grid points. As shown in Figure 7, age, diabetes and smoking were all
positively associated with time-to-death. The estimated coefficients of these
factors obtained from the full model and reduced model are similar.

Comparing the results obtained from the full model and the reduced
model, it is found that the estimated effects of the longitudinal SBP lev-
els are quite different. The standard errors of our proposed method are
larger. This is related to the model complexity as our proposed model takes
into account the past event feedbacks and the reduced model assumes a
simple linear trajectory of time for the longitudinal data. The estimation
results of other baseline variables such as HDLC, hypertension medication,
age, diabetes and smoking from the full model and the reduced model are
more similar. This is expected because the past event feedback impacts the
longitudinal covariates more than the baseline covariates. Though there is
medical evidence supporting the existence of past event feedback in SBP
(Section 1) and the preliminary longitudinal data analysis also shows that
the fixed effects of the event feedback are significant (Supplementary Mate-
rial Section 5), model selection methods that compare different longitudinal
models would be useful to provide further statistical evidence. This remains
an open research question.
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Table 3

Estimated parameters and standard errors for the ARIC data.

Full model Reduced model
SBP HDL-C HypMed SBP HDL-C HypMed

Recurrent MI
Est -0.5248 -1.1622 0.2607 -0.0859 -1.1254 0.1723
SE 1.7465 0.2377 0.3604 0.2130 0.2197 0.1499

Death
Est -0.5453 0.1172 0.3829 -0.1090 0.1202 0.3004
SE 2.8472 0.1191 0.1162 0.1207 0.1140 0.0807
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Fig 6. Estimation of time-varying effects of age (10 years), diabetes and smoking on time
to recurrent MI for the ARIC data.
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Fig 7. Estimation of time-varying effects of age (10 years), diabetes and smoking on time
to death for the ARIC data.

5. Discussion. This paper presented a class of multi-state models to
estimate the time-varying/independent associations between covariates and
time-to-events in the presence of past event feedback. If covariates are mea-
sured exactly at each event time point, there shall be no extra effort to
address the past event impact as they are directly reflected in the precise
values of the measurements. However in practice, some covariates are mea-
sured at intermittent time points and are subject to measurement errors,
which makes it difficult to take into account the past event impact. To tackle
this problem, we proposed to model the trajectory of the time-dependent
covariate with past event history.

The proposed estimation method relies on the assumption that the generic
functions of the trajectories of the time-dependent covariates are known.
While in practice some applications may lack the theories or background
knowledge to determine the true forms of model. One option is to con-
sider using flexible polynomial or fractional polynomial functions of time
as a nonparametric approximation. We have shown via a simulation study
that a linear mixed effects model of time and past event feedbacks pro-
vides a reasonable approximation to the true nonlinear trajectories and the
performance of the proposed estimators are still satisfactory. The results
are presented in Section 4.4 in the Supplementary Material. The theoreti-
cal properties of such nonparametric approximation remains unknown and
would be an interesting topic.

The proposed models also assume that the set of covariates with time-
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varying effects can be predetermined. However in practical applications, it
is likely that data of a large number of variables are collected but which co-
variates have null, constant or time-varying effect remains unknown. Though
preliminary analysis treating all covariates nonparametrically with graphi-
cal check can help identify some patterns of the coefficients, a more formal
method could be considered. For example, the model structure selection ap-
proach in Yan and Huang (2012) or Xiao, Lu and Zhang (2016) might be
employed to develop a simultaneous time-varying/independent effects selec-
tion and estimation method.

Our estimation procedure only uses longitudinal measurements before a
given event time point. When the repeated measurements are sparse or the
observation times are very irregular, the performance of the proposed es-
timators could be influenced as demonstrated in simulations. Therefore, a
more efficient method that utilizes all the longitudinal information from the
same subject is required. Huang, Hwang and Chen (2016) has proposed to
use Monte Carlo error augmentation procedure to utilize the entire longitu-
dinal information and provided the theoretical properties of the estimators.
Cao et al. (2015) developed a kernel weighted score function to tackle the
sparsity problem of the longitudinal covariates in the proportional hazards
model. These methods provide insights for solutions when the the longitudi-
nal data are sparse. Methods that work with multi-state event and dynamic
longitudinal covariates will be considered as future topics.
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