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Tile-based edge caching for 360o live video
streaming
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Abstract—360o video is becoming an increasingly popular
technology on commercial social platforms and vital part of
emerging Virtual Reality/Augmented Reality (VR/AR) applica-
tions. However, the delivery of 360o video content in mobile
networks is challenging because of its size. The encoding of
360o video into multiple quality layers and tiles and edge cache-
assisted video delivery have been proposed as a remedy to the
excess bandwidth requirements of 360o video delivery systems.
Existing works using the above tools have shown promising
performance for Video-on-Demand (VoD) 360o delivery, but they
cannot be straightforwardly extended in a live-streaming setup.
Motivated by the above, we study edge cache-assisted 360o live
video streaming to increase the overall quality of the delivered
360o videos to users and reduce the service cost. We employ Long
Short-Term Memory (LSTM) networks to forecast the evolution
of the content requests and prefetch content to caches. To further
enhance the delivered video quality, users located in the overlap
of the coverage areas of multiple Small Base Stations (SBSs) are
allowed to receive data from any of these SBSs. We evaluate and
compare the performance of our algorithm with Least Frequently
Used (LFU), Least Recently Used (LRU), and First In First
Out (FIFO) algorithms. The results show the superiority of the
proposed approach in terms of delivered video quality, cache-hit-
ratio and backhaul link usage.

Index Terms—Tile-encoding, 360o live video streaming, edge-
caching, LSTM networks.

I. INTRODUCTION

In recent years, we have witnessed the emergence of live
streaming platforms such as YouTube Live, Facebook Live,
Twitch, Periscope, and Meerkat [1]. This has been fostered by
the proliferation of mobile devices that provide access to the
Internet from “everywhere”. These platforms allow attendants
of live events, e.g., games, shows, conferences, etc. to capture
them using affordable 360o cameras, and then broadcast them
to potentially millions of viewers.

To provide users an immersive experience, 360o videos
may be watched with the help of Head-Mounted Displays
(HMDs), e.g., Oculus Rift, Samsung Gear VR, and HTC Vive
[2]. In HMDs, each 360o scene is projected in the internal
part of a spherical surface [3], and a user wearing an HMD
watches only a Field of View (FoV) of the spherical scene,
known as viewport. The projected viewport is controlled by
the orientation of the viewer’s head in the x, y, and z axes, as
shown in Fig. 1.

To prevent users from experiencing motion sickness, the
mobile network’s response to the users’ head movements
should be as fast as the HMD refresh rate [4]. Considering
that the refresh rate is commonly 120Hz, the mobile network
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Fig. 1. User equipped with a Head Mounted Display, and the corresponding
video scene.

should deliver the requested viewport to the users in less
than 10msec. The end-to-end delivery delay imposes a tight
constraint that challenges mobile networks to respond to
such demands by tracking and rendering only the requested
viewport. Transmitting the whole scene could help overcome
the above limitation, as there would be no need for real-
time response to head movements. However, this is not an
efficient strategy as it requires significant bandwidth resources
due to the high resolution of 360o videos (e.g., 4K, 8K, or
higher) [5]. In addition, delivering the entire scene leads to
significant bandwidth waste since only a part of the 360o video
will be displayed. The problem deteriorates when the network
infrastructure must support a large number of users who may
want to access the requested content from various locations.

Tile-based streaming has been proposed in [3], [6], [7] to
reduce bandwidth requirements for delivering 360o videos.
In tile-based video streaming systems, the 360o videos are
encoded into independently encoded segments (see Fig. 2),
known as tiles. Further, tiles can be encoded into multiple
quality layers. The base layer which is the most important
layer offers a reconstruction of a tile at the lowest available
quality. The next layers (enhancement layers) contain informa-
tion that can progressively improve each tile’s reconstruction
quality. In order to reconstruct a tile at a requested quality
(e.g., lth quality layer), the corresponding enhancement layer
(lth enhancement layer) should be available along with all
previous enhancement layers, including the base layer. Tile
encoding facilitates streaming of only the requested viewport
in high quality to a user. To this aim, the demanded viewport is
predicted by considering past users’ navigation patterns. This
allows prefetching of the tiles corresponding to the forecasted
viewport to the user in order to meet the delivery deadlines.
The rest of the scene is still transmitted to the user, but at a
lower quality. This is needed to prevent rendering of black
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Fig. 2. Encoding of 360o videos into multiple quality layers and tiles to
facilitate rendering of the demanded viewport.

areas (i.e., areas with no content) in case of an erroneous
estimation of the demanded viewport [8].

When multiple users request various 360o videos, streaming
the requested content independently to the users leads to waste
of valuable bandwidth in the core network and the backhaul
links. To avoid such inefficient use of bandwidth resources,
edge caching has shown to be an efficient method to accom-
modate the demands of multiple users in cellular networks.
In edge caching systems, Small Base Stations (SBSs), e.g.,
pico-cells and femto-cells, are equipped with a cache where
they can store popular content files [9], [10]. The use of caches
permits to serve the content from the SBSs and limits the need
to retrieve it from distance servers through backhaul links.
Content retrieval from caches also reduces the experienced
latency. However, existing edge caching systems [11]–[13] that
exploit 360o video properties are appropriate for Video on
Demand (VoD) systems, and they cannot be trivially used for
360o live video streaming. Specifically, the works in [11]–[13]
belong to the family of offline caching schemes and require
the knowledge of the content popularity distribution.

In this paper, we propose a novel online caching framework
to support 360o live video streaming building on our early
work [14]. Similarly to [11]–[13], we exploit encoding of the
360o videos into multiple quality layers and tiles. To the best
of our knowledge, this is the first sophisticated caching scheme
that can support live streaming of 360o videos. The proposed
system aims at maximizing the overall video quality rendered
by the users, and decrease the usage of the backhaul links.
To this aim, it uses limited past observations of the users’
requests for the various 360o videos and viewports in order
to determine the optimal cache eviction/placement strategy.
When a decision is made by our system to cache a 360o video,
all the tiles of that video encoded in base quality are cached to
ensure interactivity, and a number of tiles in high quality are
also cached to enhance the quality of the demanded viewport.
The number of cached tiles in high quality at the SBSs depends
on both videos’ popularity, i.e., for the most popular videos,
more tiles are cached in high quality, as well as the tiles’
popularity, which determines which tiles are most likely to be
requested.

Our system uses Long Short-Term Memory (LSTM) net-
works, which are efficient for time series forecasting [15], to
decide which tiles of the 360o videos should be cached at the
edge caches and in what quality. LSTM networks have been
previously used for predicting video popularity [16], [17] of
traditional videos in cache networks, but they have not been
used for optimizing the cached content in cache networks for

the case of 360o videos we examine in this paper. Through the
use of the LSTM networks, the popularity of the 360o videos
and tiles for the next Group of Pictures (GOP) is predicted with
only a small error. The prediction outcomes are then used to
determine the content that should be prefetched at the SBSs
caches to enable on-time delivery of the 360o video content
to the users. We use both real and synthetic 360o video traces
to evaluate the performance of our scheme. We compare our
solution with Least Frequently Used (LFU), Least Recently
Used (LRU), and First In First Out (FIFO) algorithms, which
are commonly used to support live streaming applications.
The results show that the proposed method offers large gains
in terms of the quality of the rendered video, the cache hit
ratio, and the service cost. When users are located in the
communication range of multiple SBSs, we associate users
with multiple SBSs to further enhance the performance of all
methods. Hence, users can access content stored in multiple
caches from where they can satisfy their requests.

In summary, the contributions of our work can be summa-
rized as follows:
• the introduction of a novel online caching framework to

support 360o live video streaming. Our framework takes
into account both 360o video popularity and viewports’
popularity to decide which tiles to cache at the SBSs;

• the use of LSTM networks for optimizing cache decisions
for 360o videos in cache networks for the live streaming
case. This permits prefetching of content that is likely to
be popular in the future at the SBSs caches, and hence,
facilitates the on-time delivery of 360o video content to the
users;

• extensive evaluation of the proposed solution with respect
to various system parameters and comparisons with several
state-of-the-art schemes in order to showcase the benefits
coming from our LSTM empowered cache-assisted frame-
work.
The rest of this paper is organized as follows. In Section

II, we overview works related to 360o videos, 360o live video
streaming, and edge caching. Then, in Section III, we describe
the system setup, and afterwards, we provide the system model
in Section IV. Next, in Section V, we evaluate the performance
of the proposed scheme. Finally, conclusions are drawn in
Section VI.

II. RELATED WORK

During the past decade, the 360o video attracted significant
attention from the academic community. Different aspects of
360o video have been studied, and systems for processing and
streaming such content have been presented. For example,
authors in [18] designed subjective experiments in order to
analyze users’ navigation patterns when viewing 360o videos.
They observed that for a short time period in the beginning of
the 360o video streaming, e.g., first 30 seconds, users tend
to look around, and their attention is very low. However,
after about 1 minute, users’ attention becomes more focused.
Authors in [19] propose a solution based on MPEG DASH in
order to cope with the bandwidth limitations when streaming
360o videos at a resolution of 16K with an FoV of 4K. A
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Hadoop/Spark based transcoding solution is presented in [20]
to facilitate the delivery of high resolution 360o videos, i.e.,
8K and above. The evaluation shows that real-time transcoding
of 360o videos with a resolution of 8K, split into 8x8 tiles,
can be achieved at a rate of 99 fps. Differently from [20],
in [21], it is investigated how different parts of a 360o video
can be encoded at different qualities. To maximize the quality
of the 360o videos displayed by the users, authors in [22]
optimize the video encoding configurations so that 360o videos
are optimally encoded into multiple representations. To predict
the demanded viewports by the users in the near future, authors
in [23] present a contextual bandit algorithm. Differently
from [23], authors in [24] propose a trajectory-based viewport
prediction algorithm, aiming to predict the users’ requested
viewports in the long-term. To deal with the problem of in-
accurate distortion measurements occurring when 360o videos
are projected from the spherical domain to 2D plane, the work
in [25] proposes a method that optimizes the encoding process
based on signals’ distortion in spherical domain. The results
show that their method achieves significant coding gains in
each projection and results in large bit rate savings.

Tile-encoding has been exploited for 360o live video stream-
ing [26] in order to facilitate the delivery in high quality of
only the requested FoV. The presented live streaming platform
is supported by an architecture based on RTP and DASH. The
results made apparent the trade-off between video quality and
bandwidth usage and showed bandwidth savings of about 50%.
Differently from [26], authors in [27] proposed a multicasting
system to support 360o video live streaming. Simulations have
shown that users with low bandwidth capacities experienced
a quality gain of 3 dB, while users with high bandwidth
capacities saw a gain of 3.5-4 dBs. A live streaming system
based on MPEG media transport (MMT) is proposed in [28] to
guarantee the delivery of high-quality 360o videos to the users.
A generic measurement system is presented in [29] for collec-
tion of key performance statistics, e.g., video quality change,
rebuffering events, that is used for evaluating the performance
of live streaming platforms for 360o videos. Authors in [2]
proposed a mobile video telephony system over LTE cellular
networks that dynamically adjusts the compression strategy in
order to provide a high Quality of Experience (QoE) to the
users.

Edge caching has been proposed as an enabling technology
to support streaming of both standard videos [17], [30], and
360o videos [11]–[13], [31], [32]. In edge caching architec-
tures, SBSs cache popular content, from where users can
retrieve the requested content directly. Caching is beneficial
in terms of reducing the usage of the pricey backhaul links
[10], [33], and helps users enjoy services with less latency.
The advantages of using edge caches to store 360o videos are
demonstrated in [11], [12]. The decisions regarding where to
cache a content and from where to retrieve it are made jointly
on a per-tile and per-layer basis. Differently from [11], [12],
authors in [13] examine 360o video caching when tiles are
encoded at different resolutions, and in multiple layers. A FoV-
aware edge caching scheme is proposed in [31] which uses a
probabilistic model based on the viewing trajectories of past
requests. Differently from [31], authors in [32] propose a col-

Fig. 3. Considered live streaming architecture.

laborative FoV prediction edge caching scheme by assigning
different playback latencies to different users. The difference
in the playback latencies creates the concept of “streaming
flock”, where the statistics regarding which viewports users
are watching in the front of the flock are exploited to predict
the viewports that users will watch at the back of the flock
(at a later time instant). The above-mentioned methods [31],
[32] assume users arriving at different time instants with the
time between users’ arrivals often exceeding 20 secs, which
render them inappropriate to support live streaming with strict
requirements

III. SYSTEM SETUP

In this section, we first introduce the considered live stream-
ing architecture. Then, we discuss transcoding of 360o videos
that is needed for encoding the videos into multiple quality
layers and tiles, when this had not been done by the content
producers. Finally, we describe the considered mobile edge
network architecture, the users’ requests model, and the end-
to-end delay in mobile edge networks.

1) Live Streaming Architecture: A high-level representation
of the considered 360o video live streaming architecture is
depicted in Fig. 3. We assume multiple users (broadcasters)
that capture a 360o FoV of a scene using omnidirectional
cameras. The captured 360o videos are first transmitted to the
Live Stream server using the Real-Time Messaging Protocol
(RTMP) [34]. RTMP is selected as it can ensure low end-to-
end latency between the broadcaster and viewers. The Live
Stream server transcodes the 360o videos so that they consist
of multiple quality layers and tiles. Transcoding is needed
because the captured 360o videos from the broadcasters may
not necessarily be encoded in that format. The transcoded
video streams are transmitted to the Content Delivery Network
(CDN) using HTTP. The mobile edge servers are populated
with content from the CDN according to the proposed cache
optimization algorithm, which will be presented in Section
IV. We would like to note that this work focuses on the cache
optimization of the mobile edge caches.

2) Transcoding of 360o videos: We assume that the total
number of the captured 360o videos is V = |V|, where
V = {1, . . . v, . . . , V } stands for the set of 360o videos that
comprise the content library. The video transcoding at the
Live Stream servers is performed using H.265/HEVC, but
our scheme is compliant with other video codecs. Each video
stream is encoded into a number of L quality layers and M
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Fig. 4. Considered mobile-edge architecture.

tiles. The first quality layer is the base layer, while the rest
L−1 layers are known as enhancement layers. The acquisition
of a tile at the base quality layer offers a reconstruction of the
tile at the lowest quality, while the progressive acquisition of
up to the lth quality layer gradually enhances the quality of
that tile. As the duration of each video may vary, each video
consists of a number of GOPs, that their number depends on
the duration of each video.

3) Content Delivery Network: The CDN comprises geo-
graphically distributed servers that collaboratively cache and
distribute popular content to a global reach using high-speed
links. Each CDN server can cache a number of video files.
In a CDN, the requested content in a geographic area is
commonly served from the cache of the CDN server that
is closer to the users. In this way, the demanded content is
retrieved by the users with less latency, as their requests do
not have to be routed to the Live Stream server. The use
of CDNs significantly reduces the traffic reaching the Live
Stream server.

4) Mobile Edge Network: We consider a mobile edge net-
work architecture as the one depicted in Fig. 4. This network
consists of N Small Base Stations (SBSs), i.e., microcells, and
a Macrocell Base Station (MBS). Let N = {1, . . . n, . . . , N}
be the set of the N SBSs, and N + 1 represent the MBS.
The MBS is connected with the CDN through a high capacity
backhaul link, i.e., optical fiber, while the connection of
the SBSs with the CDN is established through the MBS
by millimeter-wave links. For notational convenience, let the
augmented set NB = N∪N+1 denote the set that includes all
the SBSs along with the MBS. The communication ranges of
the SBSs are represented by the set P = {p1, . . . pn, . . . , pN},
with pn being the communication range of the nth SBS. We
denote the communication range of the MBS by pN+1. All
SBSs are within range of the MBS; otherwise, they would not
have access to the backhaul of the MBS. The cache capacity
of the n ∈ N SBS is denoted by Cn ≥ 0, ∀n ∈ N .

5) Users: In the considered network architecture, we con-
sider U users that form the set U = {1, . . . u, . . . , U}. Users
may be located in the overlap of the coverage areas of multiple

SBSs, as shown in Fig. 4. When this happens, users may
be associated with any of these SBSs. For each user, the
primary SBS is the one that has the maximum signal-to-
interference-plus-noise ratio (SINR). The association of a user
with multiple SBSs enables requested tiles that are not cached
at the primary SBS but are stored in the cache of one (or
more) of the other SBSs the user resides to be delivered to
the user from these caches. We assume that time is slotted
in T time slots. In each time slot t ∈ T , the request of user
u ∈ U for a GOP of a 360o video v ∈ V is denoted as wt

u.
Let Wu = {w1

u, . . . , w
t
u, . . . , w

T
u } be the set which contains T

consecutive requests from user u ∈ U . Hence, each request is
indexed by the time slot t, which corresponds to the currently
displayed GOPs. This removes the need to associate requests
with the GOP index of each video.

6) End-to-end delivery constraint: The end-to-end delay
captures the overall delivery delay a user experiences. It is
the time elapsed from when users request the data until the
data is delivered to them. This delay depends on the location
of the SBS from where the requested content is retrieved. Let
dn be the delay needed to transmit one Mbit from the cache of
the nth SBS to a user within the SBS communication range.
Similarly, let dN+1 be the delay needed to transmit one Mbit
that is fetched from the backhaul of the MBS to a user. In order
to guarantee the timely delivery of the tiles of each GOP to
the users, the following constraint should be met:∑

n∈NB

∑
l∈L

∑
m∈M

ovglm · dn · ynvglm ≤ tdisp, ∀v ∈ V, g ∈ G (1)

The parameter ovglm in (1) denotes the size (in Mbits) of the
mth tile of the lth quality layer of the gth GOP of the vth
360o video. The variable ynvglm takes the value 1 when the
the mth tile of the lth quality layer of the gth GOP of the vth
360o video is delivered on time to the uth user from the nth
SBS (n ∈ N ) or the MBS (n = N +1), and 0 otherwise. The
parameter tdisp corresponds to the time needed for each GOP
to be displayed.

IV. SYSTEM MODEL

1) Caching Entity (CE): We consider that each SBS is
equipped with a CE, as shown in Fig. 5. This entity is responsi-
ble for deciding which 360o videos and tiles should be cached
at each SBS. Each caching entity is composed of a number
of modules, e.g., User Requests Processor, User Requests
Forecasting, Feature Updater, etc., that their operation will be
discussed later.

2) Users Request Processor (URP): The URP module is
responsible for decomposing the user requests wt

u, t ∈ T , u ∈
U as follows. If a viewport consists of k tiles, each user request
wt

u is decomposed into k + 1 requests wt
u,i, as shown in Fig.

6. The first request wt
u,0 is for receiving all the tiles of the

requested 360o video at the base quality. The rest k requests
{wt

u,1, . . . , w
t
u,i, . . . , w

t
u,k} are for receiving each of the k tiles

of the requested viewport in high quality. This decomposition
provides to our system the flexibility to decide which 360o

videos (all tiles at the base quality) should be cached to ensure
interactivity, and which tiles of these videos should be cached
in high quality to enhance the quality of the rendered video.



5

Fig. 5. Flow of operations in a caching entity.

Fig. 6. Decomposition of user request wtu into k + 1 requests.

Let the set Wt
u = {wt

u,0, w
t
u,1, . . . , w

t
u,i, . . . , w

t
u,k} describe

these k + 1 requests.
3) Feature Updater (FU): The FU module is responsible

for updating features related to the requests for the various
360o videos and tiles. Specifically, this module calculates in
each time slot t ∈ T , the number of times each request (for
receiving either a 360o video at the base quality or a tile of
a viewport in high quality) was encountered. The computed
features are transferred to the Feature Database module, where
this information is stored.

4) Feature Database (FD): The FD module stores the
features computed by the FU module regarding the number
of times the various 360o videos (all tiles at base quality) and
tiles (in high quality) were requested at an SBS.

5) Users’ Requests Queue (URQ): After the decomposition
of each user request into multiple requests by the URP module,
the decomposed requests are directed to the URQ module. This
module applies a technique called request coalescing [35].
According to this technique, when multiple requests for the

same content arrive simultaneously at an SBS, the first request
is prioritized for processing, while the rest of the user requests
are held in a queue for later processing. This mechanism is
needed because many people are watching the same content
almost simultaneously in live streaming scenarios. Without
such mechanism, in case a requested content is not cached
at the SBS, a cache miss will occur for all the user requests
for that content. This would cause all the traffic related to that
content to be redirected to the origin CDN or even the Live
Stream server, which in turn could cause the crashing of these
servers.

6) Content Prefetcher (CP): Due to the end-to-end delay,
SBSs cannot respond instantly to the users’ head movements
and transmit the demanded tiles by the users. This is avoided
by using the CP module. Specifically, when the CP module
receives requests Wt

u for the various 360o videos (in base
quality) and tiles (in high quality) from the URP at the time
slot t, it decides what content should be prefetched for the
various 360o videos and tiles for the next time slot t + 1.
Let the set Zt+1

u = {zt+1
u,0 , z

t+1
u,1 , . . . , z

t+1
u,i , . . . , z

t+1
u,k } denote

the content that will be prefetched to the users regarding the
time slot t+1. Enabling prefetching allows the timely delivery
of the content to the users. To decide which content should
be prefetched, we use the Last Sample Replication (LSR) [8]
algorithm. This algorithm was chosen because it has minimal
computational overhead and hence is appropriate for real-time
applications as the one we examine here. The use of a more
advanced prediction algorithm would improve the delivered
quality, however, it would not change the derived conclusions
regarding the ability of the LSTM network to predict content
popularity evolution. According to LSR, when the CP module
receives a user request wt

u,i at time slot t, the content zt+1
u,i that

is decided to be prefetched for the time slot t+1 is considered
to be the same with the request wt

u,i. For the sake of simplicity,
we assume that for the first time slot, the content that will be
prefetched to the users is the requested content.
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7) Cache Query (CQ): The CQ module examines whether
the content indicated by the CP module is already cached
at the SBS. When this content is cached at the SBS, it is
served to the users locally from the Cache Storage (CS) of
the SBS. Differently, when the content indicated by the CP
module is not available at the SBS, the Information Exchange
(IE) module is activated to check whether a neighboring SBS
can serve it to the user. This happens when the user is within
the communication range of the neighboring SBS. In case
the content is cached at a neighboring SBS, and the user is
associated with that SBS, the content is delivered to the user
from that SBS. Finally, when the content indicated by the
CP module is not cached at any neighboring SBS the user is
associated with, the content is fetched at the SBS through the
backhaul of the MBS, from where it is served to the user.

8) Cache Storage (CS): The CS module is responsible for
storing the 360o videos at the base quality and the tiles of the
cached videos in high quality. Each SBS has a separate cache
storage module with capacity Cn, where n is the SBS node
index.

9) Content Retrieval (CR): The CR module is responsible
for the delivery of the content to the users. This module
retrieves the content either through: a) the CS module, when it
is cached at the SBS, or b) the Retrieval from Backhaul (RFB)
module that retrieves the content from the backhaul, when it
is not cached at the SBS.

10) Information Exchange (IE): The communication of an
SBS with its neighboring SBSs is done through the IE module.
In particular, in case of a cache miss for a content at an SBS,
the SBS checks whether that content may be served to the
user from a neighboring SBS. The communication between
the SBSs is accomplished by millimeter-wave links through
the MBS. The delay needed for the above communication is
captured by the delay parameter dn. Recall, that this parameter
denotes the delay needed to deliver one Mbit from the nth SBS
to a user.

11) Retrieval from Backhaul (RFB): The RFB module is
responsible for retrieving the content that will be prefetched
to caches of the SBSs through the backhaul. After retrieving
the content by the RFB module, its popularity is estimated by
the Popularity Forecasting module. Also, a decision is made
at the Caching Decision module about whether to cache that
content.

12) Popularity Forecasting (PF): The PF module at each
time t performs forecasting of the popularity of the content
that will be prefetched for the time slot t+1. Specifically, the
PF module uses a window of h time slots in order to estimate
popularity trends of the content that will be prefetched to the
users, and cache at the SBSs content that will be popular. To
this aim, it uses the features (number of requests per video
and per tile) stored at the FD module regarding the previous
h − 1 time slots along with the current time slot t ∈ T . Let
us denote by λtn,v,0 the popularity of the 360o video v ∈ V
(base quality) at the SBS n ∈ N in the time slot t ∈ T .
Similarly, let λtn,v,m stands for the popularity of the tile m ∈
M of the video v ∈ V at the SBS n ∈ N , where M =
{1, . . . ,m, . . .M}. The popularities λtn,v,0, λ

t
n,v,m are defined

as the number of times each request (for either a 360o video

at the base quality, or a tile of a viewport in high quality) was
encountered. The popularity features were not normalized, as
the total number of requests is not known in advance. However,
had the normalization of the popularity features in the range
[0, 1] been possible, it would not affect the performance.

One way to predict these popularities would be to use
Recurrent Neural Networks (RNNs), as they are effective
for time series data forecasting [36]. However, simple RNNs
cannot capture long-term dependencies, as they lack control
structures, which causes the norm of gradients to decay
or explode during training [37]. To overcome this problem,
LSTM networks have been proposed [38], which are a special
type of RNNs able to learn long-term dependencies. Inspired
by [16], we use an LSTM network for the forecasting of
the popularity of the content retrieved by the RFB module.
The LSTM network takes as input the features of a content
regarding the previous h− 1 time slots along with the current
time slot t, and outputs the estimated popularity for the content
for the time slot t + 1. The LSTM is initially pre-trained
offline (warm-up phase) with historic data profiles using the
backpropagation through time method in order to find a good
starting point for its weights. Then, these weights are used for
the popularity prediction of the content retrieved by the RFB
module.

13) Caching Decision (CD): The CD module makes deci-
sions regarding whether to cache the retrieved content by the
RFB module. To this aim, it uses the popularities predicted by
the PF module.

Let us denote the total number of cached 360o videos
at the SBS n ∈ N at the base quality as bn, and the
total number of cached tiles in high quality as fn. In addi-
tion, let the forecast popularities of the cached 360o videos
at the base quality at the time slot t + 1 form the set
Bn,t+1 = {Bn,t+1

1 , . . . , Bn,t+1
i , . . . , Bn,t+1

bn
}, and the forecast

popularities of the cached tiles in high quality form the set
Fn,t+1 = {Fn,t+1

1 , . . . , Fn,t+1
j , . . . , Fn,t+1

fn
}.

When the content that will be prefetched to a user is
cached locally or at a neighboring SBS the user resides, it
is delivered to the user from the SBS which possesses it.
In such case, no cache update decision is made by the CD
module. In a different case, the content is retrieved by the
RFB module, and a decision is made about whether to cache
it. Specifically, first a decision is made about whether to cache
at the SBS the prefetched content zt+1

u,0 regarding the 360o

video indicated by the CP module (when it is not cached).
Let the predicted popularity by the PF module for the zt+1

u,0

be λt+1
n,v,0. The prefetched content zt+1

u,0 will be cached at the
SBS in the place of the ith cached 360o video at the base
quality if λt+1

n,v,0 > Bn,t+1
i , where Bn,t+1

i = min(Bn,t+1).
Next, in case the 360o video is cached at the base quality,
a decision about whether they should be stored at the CS
module is made for each one of the tiles in high quality
{zt+1

u,1 , . . . , z
t+1
u,i , . . . , z

t+1
u,k } that are not cached. Specifically,

if the predicted popularity by the PF module for the tile zt+1
u,i

is given by λt+1
n,v,m, the tile zt+1

u,i will be cached in the place
of the jth cached tile in high quality if λt+1

n,v,m > Fn,t+1
j ,

where Fn,t+1
j = min(Fn,t+1). However, if the initial decision
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Algorithm 1 Caching decisions using forecast popularities
1: Offline Phase
2: Pre-train the LSTM network with historic transition pro-

files, using the backpropagation through time method
3: Online Phase
4: for each time slot t do
5: for each user u do
6: for each user request wt

u,i, i ∈ {0, 1, . . . , k} do
7: if zt+1

u,0 (all tiles at base quality) are not cached
then

8: if λt+1
n,v,0 > Bn,t+1

i and min(Bn,t+1) = Bn,t+1
i

then
9: Cache zt+1

u,0 in place of the ith cached 360o

video at base quality
10: end if
11: end if
12: if zt+1

u,0 (all tiles at base quality) are cached then
13: if zt+1

u,i (tile in high quality) is not cached then
14: if λt+1

n,v,m > Fn,t+1
j and min(Fn,t+1) =

Fn,t+1
j then

15: Cache zt+1
u,i in place of the jth cached tile

in high quality
16: end if
17: end if
18: end if
19: end for
20: end for
21: end for

regarding the request zt+1
u,0 was to not cache it, no further cache

update decision is made, and none of the content requests
{zt+1

u,1 , . . . , z
t+1
u,i , . . . , z

t+1
u,k } regarding the tiles in high quality

are cached. The aforementioned cache update decision process
is summarized in Algorithm 1. It takes place at the CD module
using the forecast popularities provided by the PF module.

Following the above workflow, the cache is populated with
the most popular 360o videos at the base quality. Tiles in
high quality are cached only for the videos with cached base
layer tiles. The number of cached tiles in high quality for
each cached 360o video depends on videos’ popularity, i.e.,
the more popular is a 360o video, the more tiles are cached at
the SBSs. Hence, for the least popular videos, a small number
of tiles or even no tiles may be cached at the SBSs. This
provides our scheme greater flexibility in deciding how many
tiles to cache per video, helps increase the cache hits, and
enhances the quality of the displayed video, as we see in the
next section.

It is worth noting that our system forecasts the evolution
of the popularities of all the cached items to be requested,
i.e., sets Bn,t+1 and Fn,t+1 at each time slot. This can be

TABLE I
NOTATION

Symbol Physical Meaning
N Set of Small Base Stations
NB Set of SBSs and MBS
V Set of 360o videos
G Set of GOPs
L Set of quality layers
M Set of tiles
U Set of users
T Set of time slots
δvglt Distortion reduction from obtaining the tile vglt
ovglt Size of the tile vglt
Cn Cache capacity of the SBS n
tdisp Time duration of a GOP

effectively implemented online without the cache size being a
limiting factor. This is because the predictions are made at the
SBSs, which can be equipped with GPUs and make predictions
in the order of µsecs, as was also shown in [17]. Furthermore,
LSTM training is performed in the warm-up phase (e.g., off-
peak hours), which further lowers the cost of deploying LSTM
networks in practical systems.

The key notation of our problem is summarized in Table I.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
online edge cache-assisted framework to support 360o live
video streaming. For all the schemes under comparison, when
users reside within the transmission range of multiple SBSs,
they can be associated with any of these SBSs. This allows
users to obtain their data from neighboring SBSs that possess
the requested content when it is not available at the primary
SBS. We should note that when the users’ requests arrive at
an SBS, the cache update decisions are made at that SBS
regardless if the users obtained their data from a neighboring
SBS or the backhaul.

A. Simulation Setup

The schemes under comparison, as well as the proposed
scheme, are described below:

1) Least Frequently Used (LFU): In this scheme, the net-
work operator keeps track of the number of requests that
occurred for each cached 360o video and tile in high
quality of each GOP. When a request for the gth GOP
of a 360o video arrives at an SBS, the LSR algorithm
is used to decide which content should be prefetched as
follows: a) if no tiles of the GOP g+1 are cached at the
SBS, all the tiles of the GOP g+1 of the 360o video that
was requested the least frequently will be evicted from the
SBS cache. Then, the tiles indicated by the LSR algorithm
will be cached in the corresponding places of the evicted
tiles; b) if the tiles of the GOP g + 1 are already cached
at the base quality, but some (or all) of the requested tiles
in high quality are not cached, the cached tiles in high
quality that were requested the least frequently will be
evicted, and the requested tiles that were not cached will
be stored in the place of the evicted tiles.
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2) Least Recently Used (LRU): In this scheme, the network
operator keeps track of how recent are the requests that
occurred for each cached 360o video and tile in high
quality of each GOP. When an SBS receives a user
request for the GOP g of a 360o video, according to
the LSR algorithm: a) if no tiles of the GOP g + 1 are
cached at the SBS, all the tiles of the GOP g + 1 of the
360o video that was requested the least recently will be
evicted from the SBS cache. Then, the tiles indicated by
the LSR algorithm will be cached in the corresponding
places of the evicted tiles; b) if the tiles of the GOP g+1
are already cached at the base quality, but some (or all)
of the requested tiles are not cached in high quality, the
cached tiles in high quality that were requested the least
recently will be evicted, and the requested tiles that were
not cached will be stored in their places.

3) First In First Out (FIFO): In this scheme, the network
operator keeps track of when the requests for each
cached 360o video and tile in high quality of each GOP
happened. For a user request for the GOP g of a 360o

video, according to the LSR algorithm: a) if no tiles for
the GOP g + 1 are cached at the SBS, all the tiles of
the GOP g + 1 of the 360o video that was requested the
earliest will be evicted from the cache at the SBS. Next,
all tiles of the viewport predicted by the LSR algorithm
for the GOP g+1 will be cached at the SBS; b) if the tiles
of the GOP g+ 1 are already cached at the base quality,
but some (or all) of the requested tiles in high quality are
different from the tiles of the viewport indicated by the
LSR, the cached tiles in high quality that were requested
the earliest will be evicted, and the requested tiles that
were not cached will replace these tiles.

4) Proposed Scheme: In the proposed scheme, the caching
decisions are performed following the cache update
framework described in Section IV. The proposed scheme
uses popularity forecasting to decide with what content
to populate the SBSs caches and how to update them.
When a decision is made to cache a video at an SBS, all
the tiles in base quality are cached in it. Also, for each
GOP, a number of tiles that depends on their popularity
are cached in high quality.

As is obvious from the description of the schemes under
comparison, an item of the g+1 GOP under decision is always
replacing another cached item of the GOP g+1. This approach
was followed in order to allow all the GOPs of popular 360o

videos to remain in the cache for their whole video length. This
permits users to watch popular videos at a later time instant
by accessing the cached content (VoD case). Besides, evicting
items corresponding to past GOPs would be possible, however
such a strategy would introduce unnecessary complexity, as
the entire cache space for multiple GOPs should have been
examined.

It should be noted that for the schemes under comparison,
when an update decision is made base layer tiles of a 360o

video replace the base layer tiles of another video. The same
happens to the tiles of these videos in high quality. However,
in this case, the removed tiles may belong to more than one

videos. Hence, similarly to our scheme, LFU, LRU, and FIFO
can cache an arbitrary number of tiles in high quality.

For all the conducted experiments, unless otherwise speci-
fied, we assume a cellular network with N = 3 SBSs and an
MBS covering the area of all SBSs. The coverage range of
each SBS is pn = 200m, and the coverage range of the MBS
is pN+1 = 2000m. The cache capacity of the SBSs is set to
be enough to cache 10% of the 360o videos content library.
This space is calculated assuming that for each GOP of each
cached 360o video, all the tiles at the base quality along with
the tiles of one viewport in high quality are cached at the SBS.
However, as we have already mentioned, for all schemes, the
number of tiles in high quality that will be cached for each
360o video depends on the corresponding caching policy of
each scheme.

We consider that the total number of users is U = 540, who
are randomly placed in the coverage area of the SBSs. The
delay at which data is delivered from the cache of the users’
primary SBS is dnu = 1/14 sec/Mbit. The delay at which
data is delivered from the cache of an SBS that is not the
primary one to a user equals to dnu = 1/13 sec/Mbit. When a
request for a 360o video at base quality or tile in high quality
is not cached at any of the SBSs the user resides, the delay
needed to deliver that request from the backhaul equals to
d(N+1)u = 1/2.9 sec/Mbit.

The content library contains V = 100 videos. Each 360o

video has a duration of 300 GOPs, with each GOP lasting
tdisp = 1 sec. Each GOP of the 360o videos is encoded in
M = 12 tiles and L = 2 quality layers, while the size of each
viewport is 4 tiles. The considered viewports are depicted in
Fig. 7. The bitrate of the base layer is 2 Mbps, while the bitrate
of the enhancement layer is 12 Mbps. The distortion reduction
achieved by acquiring the base layer of a tile is δvg1m = 30
dB, while the distortion reduction achieved by obtaining the
enhancement layer of a tile is δvg2m = 10 dB. Although in
this paper the 360o videos are encoded into the same number
of layers and tiles, and tiles’ layers are encoded at the same
bitrate, the proposed system could be extended to deal with
tiles of different sizes. For example, a tile may be cached
in the place of more than one cached tiles if the popularity
of the former tile is higher than the sum of the popularities
of the latter set of tiles, which should be next evicted. This
approach was not implemented as our paper aims at showing
the benefits coming from the exploitation of advanced coding
tools for caching 360o videos and the use of LSTM networks
to predict popularity trends. The evaluation of our framework
for the case of tiles with different sizes is part of our future
work.

We assume that the popularity of the 360o videos through
the GOPs varies with the time. At any given moment, users
may stop watching a 360o video to view another. To this
aim, we assume that for the first GOP, the users’ requests
for the various 360o videos are decided by sampling a Zipfian
distribution [39] with shape parameter ηv = 1. Hence, the
probability of a 360o video to be selected is given by:

pv =
1/vηv∑
v∈V 1/vηv

(2)
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Fig. 7. Illustration of the considered viewports constructed from various tiles.

To capture the evolution of the popularity of the 360o

videos with the time, inspired by [40], we assume that the
probability of a user to stop watching a 360o video at the
GOP g ∈ {2, . . . , G} follows a Weibull distribution. Further,
following assumptions made in [40], the 360o videos that com-
prise the content library belong to one of 14 video categories,
e.g., News, Sports, Education, etc., with equal probability. The
Weibull distribution parameters for each video category can
be found in [40]. For each GOP, when users stop watching
a 360o video, the probability of selecting a different video to
watch follows again a Zipfian distribution with the same shape
parameter as the original video dataset.

For simulation purposes, we generate viewports’ requests
according to realistic navigation patterns obtained by the
dataset described in [41]. To this aim, we randomly sample 10
different videos from the dataset, and for each sampled video
we obtain 30 trajectories. To assign these trajectories to the
considered user requests, we mapped with uniform probability,
the 100 videos that comprise the content library to one of the
10 sampled videos. Then, for each user request for a specific
360o video, according to its mapped index, we assigned with
uniform probability one of the 30 available trajectories for that
video.

B. LSTM Neural Network training

We consider a deep LSTM network comprised of four
layers. The input layer gets as input a 3D tensor with shape
(samples, time-steps, 1), with “1” indicating the number of
features in our system and “time-steps” the number of previous
time slots considered for making the predictions. The feature
component of the 3D sensor is set to 1, as there is only one
feature for each one of the considered time-series. The input
vector in the proposed system consists of different time-series
of different objects. It is worth noting that the LSTM network’s
input is fed with the evolution of each content’s popularity
for each content retrieved by the RFB module, and not with
the sequence of the users’ requests. Each of the two hidden
layers of the LSTM network has 100 LSTM cells, and the
output layer is a dense layer with 1 unit. The deep LSTM
network is implemented with the open-source library Keras
in Python. The hidden layers have as activation function the
ReLu function, and the employed optimizer is Adam. The
LSTM network is initially pre-trained (warm-up phase) with
2000 samples of historic data profiles, as explained in Section
IV. Each sample represents the evolution in the popularity

0 10 20 30 40 50

Epoch

0

50

100

150

200

250

300

L
o
s
s

Train

Validation

Fig. 8. Evolution of the loss function (estimation error of content’s popularity)
of with respect to epoch’s number using LSTM networks.

of a 360o video (i.e., tiles in base quality) or a tile in high
quality over h = 10 consecutive time slots (time-steps). The
LSTM is pre-trained using a batch size of 300 samples for 50
epochs using MSE as the loss function between the predicted
popularities (outputs of the LSTM) and the actual popularities.
The historic data profiles are split into a training set and
validation set, where the training set contains 90% of the
historic data profiles, and the validation set the rest 10%. After
the pre-training of the LSTM, the trained weights are used
by the PF module to forecast the future content popularities
(online phase of Algorithm 1). Specifically, during the time
slot t, for each content retrieved by the RFB module, the
features regarding the h − 1 = 9 previous time slots along
with the current time slot t are given as an input to the LSTM
network, while its output is the predicted popularity at the
time slot t + 1. During the online phase, the weights of the
LSTM network are updated every 20 time slots. This is done
by randomly sampling 100 samples from the FD module and
training the LSTM network with that samples for 20 epochs.
From Fig. 8, we can note that the MSE loss during the training
of the employed LSTM decreases with the number of epochs
in both training and validation sets. We can also see that the
loss function converges to zero after only a few epochs, which
means that the LSTM network can predict the popularity of
the content that is prefetched to the caches of the SBSs with
a small error.

C. Parameter Analysis

1) Cache Size: We first study the impact of the cache size
on the overall quality of the rendered viewports. To this end,
we vary the cache capacity Cn in the range [5, 25]% of
the content’s library size. We can note from Fig. 9 that the
proposed scheme outperforms the schemes under comparison
significantly in terms of the overall quality of the rendered
viewports in all the range of cache sizes. Specifically, for small
cache sizes, i.e., 5%, the performance gap between the pro-
posed scheme and the LFU, LRU, and FIFO is approximately
1.7 dB, 2.1 dB, and 2.2 dB, respectively. For large cache
size values, i.e., 25%, this gap grows to about 2.8 dB, 2.9
dB, and 3 dB, respectively. This performance gap is attributed
to the fact that the proposed scheme achieves a better cache
hit ratio compared to its counterparts, as is evident from Fig.
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Fig. 9. Y-PSNR of the rendered viewports with respect to the cache size for
all the schemes under comparison.
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Fig. 10. Cache Hit Ratio with respect to the cache size for all the schemes
under comparison.

10. Specifically, the performance gap between the proposed
scheme and the LFU, which is the second best performing
scheme in terms of the cache hit ratio for small cache sizes
(e.g., 5-10%) is about 9%. When the cache size takes large
values, i.e., 25%, this gap closes to about 5%. This is because
as the cache size increases, more content can be cached at
the SBSs, and all schemes benefit from the additional cache
space. The proposed scheme achieves the highest cache hit
ratio due to the use of the LSTM network, which can help
accurately predict the popularity evolution of the content that
will be prefetched to the SBSs caches. Due to the increased
cache hit ratio in the proposed scheme, more tiles are delivered
in high quality to the users from the caches of the SBSs at a
small delay. Thus, it is more likely a greater number of tiles
in high quality to be delivered in total from the caches of the
SBSs along with the backhaul of the MBS to the users under
the tight end-to-end delivery constraint.

2) Video popularity distribution: In Fig. 11, we investigate
the impact of the users’ requests for the various 360o videos
on the quality of the rendered viewports. To this aim, we vary
the Zipf shape parameter ηv in the range [0.8, 1.6]. As we can
see, an increase in the Zipf shape parameter ηv leads to an
increase in the overall quality of the rendered viewports for
all the schemes. This is because as the parameter ηv increases,
the video popularity distribution gets steeper, and a smaller
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Fig. 11. Y-PSNR of the rendered viewports with respect to the Zipf shape
parameter of the 360o videos for all schemes under comparison.
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Fig. 12. Cache Hit Ratio with respect to the Zipf shape parameter of the
360o videos for all schemes under comparison.

number of 360o videos becomes more popular. As a result,
the overall cache efficiency increases, as shown in Fig. 12.
Thus, more tiles will be served directly from the caches of the
SBSs at a small delay, allowing more tiles to be served in total
to the users under the end-to-end time constraint. Similarly
to the previous comparison, the superiority of the proposed
scheme regarding the overall cache hit ratio is attributed to
the accurate prediction of the popularities of the content that
is prefetched to the SBSs caches, using LSTM networks. As
the value of the shape parameter increases from 0.8 to 1.6, the
performance gap between the proposed scheme and the LFU
widens from 1.9 dB to about 3.7 dB. Similar observations can
be made by comparing the proposed scheme with the LRU
and FIFO schemes.

3) Viewports popularity distribution: To examine the im-
pact of the viewports’ popularity on the overall quality of the
rendered viewports, we assume that the viewports’ popularity
follows a Zipf distribution with shape parameter ηp. We vary
the shape parameter ηp in the range [0.5, 2.5], while we keep
the cache capacity constant at Cn = 10%. The performance
of all the schemes under comparison is shown in Fig. 13. We
can note that an increase in the value of the shape parameter
ηp leads to an increase in the overall quality of the rendered
viewports for all the examined schemes. This is attributed to
the fact that as the shape parameter ηp increases, the requests
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Fig. 13. Y-PSNR of the rendered viewports with respect to the Zipf shape
parameter of the viewports for all schemes under comparison.
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Fig. 14. Cache Hit Ratio with respect to the Zipf shape parameter of the
viewports for all schemes under comparison.

for the viewports become less diverse, and a smaller number
of viewports is more popular. This leads most of the requests
for tiles in high quality to be served from the SBSs while
respecting the end-to-end constraint. Overall, the cache space
is better used, as is evident from Fig. 14. For small values of
ηp, i.e., ηp = 0.5, the performance gap between the proposed
scheme and the LFU, LRU, and FIFO schemes is about 1.1 dB,
1.2 dB, and 1.3 dB, respectively. When the shape parameter
ηp is large, i.e., ηp = 2.5, the performance gap between the
proposed scheme and the LFU, LRU, and FIFO grows to about
1.8 dB, 2.4 dB, and 2.8 dB, respectively.

4) SBS Radius: To understand the impact of users’ as-
sociation with multiple SBSs on the overall quality of the
rendered viewports, we vary the SBSs radius pn in the range
[200, 300]m. As the radius of the SBSs increases, the overlap
between the coverage areas of the SBSs also increases. This
results in more users being within the transmission range
of multiple SBSs, and hence being able to be associated
with multiple SBS. For the sake of completeness, we also
examine the case where users are assigned only to the SBS
with the maximum SINR. In such a case, the increase of the
transmission range of the SBSs from 200m to 300m does not
affect the overall rendered quality of the viewports because
users are always assigned to the same SBSs regardless of
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Fig. 15. Y-PSNR of the rendered viewports with respect to the cache size
for various SBSs communication ranges.
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Fig. 16. Cache Hit Ratio with respect to the cache size for for various SBSs
communication ranges.

the increase in the SBSs’ transmission range. The simulation
results are depicted in Fig. 15. As we can see, an increase
in the radius of the SBSs leads to an increase in the overall
quality of the rendered viewports due to the increase of the
cache hit ratio achieved because users will be associated with
multiple SBSs (see Fig. 16) for all cache sizes. As expected,
when users are assigned to the SBS with the maximum SINR,
the overall quality of the rendered viewports is lower compared
to its counterparts. This is due to the fact that users are
associated with only one SBS from which they can download
their data.

5) Backhaul Usage: In Fig. 17, we examine the backhaul
usage of the MBS with respect to the cache size of the SBSs
for all the schemes under comparison. To this aim, we vary
the cache capacity of the SBSs in the range [5, 25]% of the
content library. We can observe that an increase in the cache
size of the SBSs leads to a decrease in the backhaul usage
of the MBS for all schemes. This is because as the cache
size increases, most of the demanded content is cached at the
SBSs. As a result, more user requests will be served directly
from the SBSs caches with no need to use the MSB’s backhaul
to fetch content from the core network. We can further note
that as the cache size of the SBSs increases from 5% to
25%, the performance gap in terms of the backhaul usage
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Fig. 17. Backhaul usage with respect to the Cache Size for all schemes under
comparison.

between the proposed method and the LFU scheme closes
from about 20.2 GB to about 16.7 GB. This is attributed to
the fact that as the cache size increases, more content will be
delivered to the users from the caches of the SBSs in both
cases. Similar conclusions can be drawn when comparing the
proposed scheme with the LRU and FIFO schemes.

VI. CONCLUSION

In this paper, we proposed an edge caching system to
support live streaming of 360o videos in mobile networks.
The 360o videos are encoded in multiple tiles and layers to
have higher flexibility in deciding what content to cache at the
SBSs. Our framework predicts the evolution of the popularity
of video tiles in future GOPs using LSTM networks. The
popularity estimates are then used to decide the cache updates
at the SBSs and enable prefetching of the content so that it is
available on time to the users. To further enhance our proposed
method’s performance, the potential association of users with
multiple SBSs was exploited by allowing users located in
the overlapping coverage areas of the SBSs to have access
to all the caches of these SBSs at the cost of an increased
communication delay. We tested our scheme for both real and
synthetic navigation patterns and compared it with the LFU,
LRU, and FIFO schemes. The results showed significant gains
for the proposed methods over the schemes under comparison
at affordable complexity. These gains were observed in terms
of the overall quality of the rendered viewports, the cache hit
ratio, and the backhaul usage. This is due to the fact that
the majority of the demanded content is acquired through
the SBSs, and the use of backhaul links is scarce. The
evaluation also showed that LSTM networks accurately predict
the evolution of tiles’ and videos’ popularities helping the
proposed system make the most out of content prefetching
and SBSs caching.

REFERENCES

[1] K. Bilal and A. Erbad, “Impact of multiple video representations in live
streaming: A cost, bandwidth, and QoE analysis,” in Proc. of IEEE Int.
Conf. on Cloud Engineering (IC2E’17), Vancouver, BC, Canada, Apr.
2017, pp. 88–94.

[2] X. Xie and X. Zhang, “POI360: Panoramic mobile video telephony over
LTE cellular networks,” in Proc. of the 13th Int. Conf. on Emerging
Networking EXperiments and Technologies (CoNEXT ’17), Incheon,
Republic of Korea, Dec. 2017, pp. 336–349.

[3] A. T. Nasrabadi, A. Mahzari, J. D. Beshay, and R. Prakash, “Adaptive
360-degree video streaming using layered video coding,” in Proc. of
IEEE Virtual Reality (VR’17), Los Angeles, CA, USA, Mar. 2017, pp.
347–348.

[4] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski, “Viewport-
adaptive navigable 360-degree video delivery,” in Proc. of IEEE Int.
Conf. on Communications (ICC’17), Paris, France, May 2017.

[5] W.-C. Lo, C.-L. Fan, J. Lee, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“360 video viewing dataset in head-mounted virtual reality,” in Proc. of
the 8th ACM on Multimedia Systems Conf. (MMSys’17), Taipei, Taiwan,
2017, pp. 211–216.

[6] S. Rossi and L. Toni, “Navigation-aware adaptive streaming strategies
for omnidirectional video,” in Proc. of IEEE 19th Int. Workshop on
Multimedia Signal Processing (MMSP’17), Luton, UK, Oct. 2017.

[7] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj, “HEVC-
compliant tile-based streaming of panoramic video for virtual reality
applications,” in Proc. of ACM on Multimedia Conf. (MM’16), Amster-
dam, Netherlands, Oct. 2016, pp. 601–605.

[8] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai, “A two-
tier system for on-demand streaming of 360 degree video over dynamic
networks,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 1, pp. 43–57, March 2019.

[9] T. X. Vu, S. Chatzinotas, and B. Ottersten, “Edge-caching wireless
networks: Performance analysis and optimization,” IEEE Trans. on
Wireless Communications, vol. 17, no. 4, pp. 2827–2839, Apr. 2018.

[10] J. Poderys, M. Artuso, C. M. O. Lensbl, H. L. Christiansen, and J. Soler,
“Caching at the mobile edge: A practical implementation,” IEEE Access,
vol. 6, pp. 8630–8637, 2018.

[11] P. Maniotis, E. Bourtsoulatze, and N. Thomos, “Tile-based joint caching
and delivery of 360o videos in heterogeneous networks,” in Proc. of
IEEE 21st Int. Workshop on Multimedia Signal Processing (MMSP’19),
Kuala Lumpur, Malaysia, Sep. 2019.

[12] ——, “Tile-based joint caching and delivery of 360o videos in het-
erogeneous networks,” IEEE Trans. on Multimedia, vol. 22, no. 9, pp.
2382–2395, Sep 2020.

[13] G. Papaioannou and I. Koutsopoulos, “Tile-based caching optimization
for 360o videos,” in Proc. of the 20th ACM Int. Symp. on Mobile Ad Hoc
Networking and Computing (Mobihoc’19), Catania, Italy, July 2019, pp.
171–180.

[14] P. Maniotis and N. Thomos, “Smart caching for live 360o video
streaming in mobile networks,” in Proc. of IEEE 22st Int. Wkshp on
Multimedia Signal Proc. (MMSP’20), Tampere, Finland, Sep. 2020.

[15] J. Brownlee, “How to develop LSTM models for time series forecasting,”
2020. [Online]. Available: https://machinelearningmastery.com/how-to-
develop-lstm-models-for-time-series-forecasting

[16] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang,
“Making content caching policies “smart” using the deepcache frame-
work,” SIGCOMM Comput. Commun. Rev., vol. 48, no. 5, pp. 64–69,
Jan. 2019.

[17] C. Zhang, H. Pang, J. Liu, S. Tang, R. Zhang, D. Wang, and L. Sun,
“Toward edge-assisted video content intelligent caching with long short-
term memory learning,” IEEE Access, vol. 7, pp. 152 832–152 846, 2019.

[18] H. Huang, J. Chen, H. Xue, Y. Huang, and T. Zhao, “Time-variant visual
attention in 360-degree video playback,” in Proc. of IEEE Int. Symp. on
Haptic, Audio and Visual Environments and Games (HAVE’18), Dalian,
China, Sep. 2018.

[19] L. Bassbouss, S. Pham, and S. Steglich, “Streaming and playback of
16K 360o videos on the web,” in Proc. IEEE Middle East and North
Africa Communications Conf. (MENACOMM’18), Jounieh, Lebanon,
Apr. 2018.

[20] Y. Kim, J. Huh, and J. Jeong, “Distributed video transcoding system for
8k 360o VR tiled streaming service,” in Proc. Int. Conf. on Information
and Communication Technology Convergence (ICTC’18), Jeju, South
Korea, Oct. 2018, pp. 592–595.

[21] Y. Li, J. Xu, and Z. Chen, “Spherical domain rate-distortion optimization
for omnidirectional video coding,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 29, no. 6, pp. 1767–1780, 2019.

[22] C. Fan, S. Yen, C. Huang, and C. Hsu, “On the optimal encoding ladder
of tiled 360 videos for head-mounted virtual reality,” IEEE Trans. on
Circuits and Systems for Video Technology, pp. 1–1, 2020.

[23] J. Heyse, M. T. Vega, F. de Backere, and F. de Turck, “Contextual
bandit learning-based viewport prediction for 360 video,” in Proc. of



13

IEEE Conf. on Virtual Reality and 3D User Interfaces (VR’19), Osaka,
Japan, Mar. 2019, pp. 972–973.

[24] S. Petrangeli, G. Simon, and V. Swaminathan, “Trajectory-based view-
port prediction for 360-degree virtual reality videos,” in Proc. of IEEE
Int. Conf. on Artificial Intelligence and Virtual Reality (AIVR’18),
Taichung, Taiwan, Dec. 2018, pp. 157–160.

[25] Y. Li, J. Xu, and Z. Chen, “Spherical domain rate-distortion optimization
for omnidirectional video coding,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 29, no. 6, pp. 1767–1780, Jun. 2019.

[26] M. Jeppsson, H. Espeland, C. Griwodz, T. Kupka, R. Langseth,
A. Petlund, P. Qiaoqiao, C. Xue, K. Pogorelov, M. Riegler, D. Johansen,
and P. Halvorsen, “Efficient live and on-demand tiled HEVC 360 VR
video streaming,” in Proc. of IEEE Int. Symp. on Multimedia (ISM’18),
Taichung, Taiwan, Dec. 2018, pp. 81–88.

[27] R. Aksu, J. Chakareski, and V. Swaminathan, “Viewport-driven rate-
distortion optimized scalable live 360o video network multicast,” in
Proc. of IEEE Int. Conf. on Multimedia Expo Workshops (ICMEW’18),
San Diego, CA, USA, Jul. 2018.

[28] Y. Hu, S. Xie, Y. Xu, and J. Sun, “Dynamic VR live streaming over
MMT,” in Proc. of IEEE Int. Symp. on Broadband Multimedia Systems
and Broadcasting (BMSB’17), Cagliari, Italy, Jun. 2017.

[29] X. Liu, B. Han, F. Qian, and M. Varvello, “LIME: Understanding
commercial 360o live video streaming services,” in Proc. of the 10th
ACM Multimedia Systems Conf. (MMSys ’19), Amherst, Massachusetts,
Jun. 2019, pp. 154–164.

[30] C. Ge, N. Wang, W. K. Chai, and H. Hellwagner, “QoE-assured 4K
HTTP live streaming via transient segment holding at mobile edge,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 8, pp.
1816–1830, Aug. 2018.

[31] A. Mahzari, A. Taghavi Nasrabadi, A. Samiei, and R. Prakash, “FoV-
aware edge caching for adaptive 360o video streaming,” in Proc. of the
26th ACM Int. Conf. on Multimedia (MM’18), Oct. 2018, pp. 173–181.

[32] L. Sun, Y. Mao, T. Zong, Y. Liu, and Y. Wang, “Flocking-based live
streaming of 360-degree video,” in Proc. of the 11th ACM Multimedia
Systems Conf. (MMSys’20), Jun. 2020, pp. 26–37.

[33] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the
wireless edge: design aspects, challenges, and future directions,” IEEE
Communications Magazine, vol. 54, no. 9, pp. 22–28, Sept. 2016.

[34] X. Lei, X. Jiang, and C. Wang, “Design and implementation of streaming
media processing software based on rtmp,” in Proc. of 5th Int. Congress
on Image and Signal Processing (CISP’12), Chongqing, China, Oct.
2012, pp. 192–196.

[35] [Online]. Available: https://engineering.fb.com/ios/under-the-hood-
broadcasting-live-video-to-millions/

[36] T. Ergen and S. S. Kozat, “Online training of LSTM networks in
distributed systems for variable length data sequences,” IEEE Trans. on
Neural Networks and Learning Systems, vol. 29, no. 10, pp. 5159–5165,
Oct 2018.

[37] N. M. Vural, S. Ergut, and S. S. Kozat, “An efficient and effective
second-order training algorithm for LSTM-based adaptive learning,”
2019. [Online]. Available: http://arxiv.org/abs/1910.09857

[38] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[39] L. Alexander, R. Johnson, and J. Weiss, “Exploring zipf’s law,” Teaching
Mathematics and Its Applications: Int. Journal of the IMA, vol. 17, no. 4,
pp. 155–158, Dec 1998.

[40] E. Baccour, A. Erbad, A. Mohamed, K. Bilal, and M. Guizani, “Proactive
video chunks caching and processing for latency and cost minimization
in edge networks,” in Proc. of IEEE Wireless Communications and
Networking Conf. (WCNC’19), Marrakesh, Morocco, Apr. 2019.

[41] F. Duanmu, Y. Mao, S. Liu, S. Srinivasan, and Y. Wang, “A subjective
study of viewer navigation behaviors when watching 360-degree videos
on computers,” in Proc. of IEEE Int. Conf. on Multimedia and Expo
(ICME’18), San Diego, CA, USA, July 2018.

Pantelis Maniotis received his diploma in Electri-
cal and Computer Engineering from the Aristotle
University of Thessaloniki in 2015 and his PhD
from the School of Computer Science and Electronic
Engineering at the University of Essex in 2020. His
interests fall in the areas of multimedia technologies,
wireless communications, Virtual and Augmented
Reality, edge caching, and machine learning.

Nikolaos Thomos (S’02-M’06-SM’16) is an Asso-
ciate Professor at the University of Essex, UK and
the deputy director of research at School of Com-
puter Science and Electronic Enineering. Previously,
he was senior researcher at the Ecole Polytechnique
Fédérale de Lausanne (EPFL), and the University
of Bern, Switzerland. He received the Diploma and
Ph.D. degrees from Aristotle University of Thessa-
loniki, Greece in 2000 and 2005 respectively. He is
an elected member of IEEE MMSP Technical Com-
mittee (MMSP - TC) for the period 2019 - 2022. His

research interests include machine learning for communications, multimedia
communications, network coding, information-centric networking, source and
channel coding, device-to-device communication, and signal processing. He
received the highly esteemed Ambizione career award from Swiss National
Science Foundation (SNSF) in 2008.


