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COMPUTATIONAL INTENTION*

Abstract. The core entities of computer science include formal languages, spec-
ifications, models, programs, implementations, semantic theories, type inference
systems, abstract and physical machines. While there are conceptual questions
concerning their nature, and in particular ontological ones (Turner 2018), our
main focus here will be on the relationships between them. These relationships
have an extensional aspect that articulates the propositional connection between
the two entities, and an intentional one that fixes the direction of governance.
An analysis of these two aspects will drive our investigation; an investigation
that will touch upon some of the central concerns of the philosophy of computer
science (Turner 2017).
Keywords: intention, specification, correctness, verification.

Specifications and Programs

Program specifications1 say what a computer program is intended to do.
But we need to distinguish between the propositional content of a “speci-
fication”, and the intentional act of taking something to be a specification.
To explain this remark consider the standard definition of the greatest com-
mon divisor.

A number z is the greatest common divisor of two numbers x, y if z di-
vides both and is the biggest one that does.

More formally, the greatest common divisor maybe defined by the following
predicate calculus expression.

1. Gcd(x, y, z) .
= D(z, x) ∧D(z, y) ∧ (∀w.(D(w, x) ∧D(w, y))→ w ≤ z).

where D(z, x) states that z divides x. By itself, this is a logical definition
pure and simple i.e., it is a description of a relationship between three num-
bers. Its standard role is mathematical in that it forms a starting point for
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mathematical investigation. But as it stands this is not a specification of
anything. It makes no reference to anything outside itself. It only does so
when an agent takes it to have normative governance over an algorithm
or program. For example, it may be taken to have governance over the
following program (Fig. 1) written in the WHILE programming language
(Hennessy 2020).

var x,y,r: Num

begin

read x,y;

r:=x mod y;

while r notequal 0 do

x:=y; y:=r; r:=x mod y

od; write y

end.

Fig. 1

This is the intentional part of the relationship between definitions and
programs. It informs us that the definition is to act as a specification of
the program: it determines the nature of the relationship as one of gover-
nance.
Notice that it does not spell-out the exact form of the propositional

relationship between the two; it does not tell us what it is for a program P to
behave in accord with the definition. This is given by the following condition
of correctness.

2. ∀x : Num.∀y : Num · ∀z : Num · P (x, y, z)→ Gcd(x, y, z).

Here the program P is semantically understood as a relation between inputs
and outputs. This is the statement of accordance or correctness: the in-
put/output behavior of any such program must agree with the defini-
tion Gcd.
How is (2) established? Presumably, by a formal proof that links the

proof theory for the WHILE programming language to the proof the-
ory of the logical language. One such approach is given by Hoare logic
(Hoare 1970). Potentially, this delivers a formal proof of (2) for Euclid.
So, in this case the relationship is a mathematical one.
In summary, one relationship between logical definitions and programs

is that of specification. This has both an intentional aspect (the intentional
act of taking the logical definition to have normative governance over the
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program) and an extensional one (the conditions of correctness). While this
is a toy example, the conceptual points remain intact even when the com-
plexity of the two players (definitions and programs) is increased.
This is our first instance of a relationship between two central compu-

tational notions (logical expressions and programs) that is fixed by taking
the former to be a specification of the later2.

Verifying Programs

In practice, programs are seldom proven correct. In practice, programs
are subject to experimentation. How exactly? Through the implementation
of the WHILE programming language, Euclid maybe treated as a physical
device that is subject to physical investigation. Any run of the Euclid pro-
gram will generate a physical process that should return some output for
given inputs. Under this interpretation, the program Euclid is no longer
treated as a mathematical object but is replaced by a physical device: the
device generated at run time by the implementation. Experimentation then
takes the following form: we run the program and see if it behaves as pre-
dicted by (1, 2).
However, there are hidden assumptions here. On the face of it, by do-

ing this, we are not testing the physical correlate of Euclid but the whole
system including the compilers, interpreters, operating systems and hard-
ware. Running the program invokes the whole software and hardware sys-
tem.
We might attempt to isolate any individual program by taking the sup-

porting implementation and system to be itself correct. While some of this
might in principle be proven correct, this cannot apply to the whole system.
There will always be some physical residue that has to be verified as correct
(Fetzer 1988). But assuming that we have such a verification for the con-
taining system, we may proceed as if we are examining the correctness of
the Euclid program itself.
The logical assertion is still taken to be the specification of this physical

device and to have governance over it. Assertions (2) is then taken to refer to
the physical device Π that is generated as the run-time correlate of Euclid.

2’ ∀x : Num.∀y : Num · ∀z : Num ·
∏
(x, y, z)→ Gcd(x, y, z).

However, there is a significant difference: this is an empirical assertion that
refers to a physical device and, consequently, cannot be established by math-

21



Raymond Turner

ematical proof; it can only be established by experimentation employing
the implementation as the tool of investigation.
Depending on how we interpret the program we get different notions of

correctness: a mathematical notion and an empirical one. But these different
interpretations are fixed by the same intentional attitude: the definition (1)
is given normative governance over the program. If we intend to prove that
the abstract program satisfies (2) then we shall be engaged in a mathe-
matical activity; if we assume that we are dealing with a physical device
generated by the implementation, then we are engaged in an empirical one.
While this is a significant difference, both interpretations take the defini-
tion (1) as a specification with normative governance. But there is another
intentional option.

Theories of Programs

Assume that we do not understand the WHILE language. Imagine that
we come across the text of Euclid scribbled on a piece of paper, and are
intrigued by it. Consequently, we pose the question: “what does it do?”.
We search online to locate an implementation of the language and run
the program on a series of different inputs. Subsequently, we formulate
the hypothesis that the program computes the Gcd. The definition (1) is
now acting not as a specification but as a theory of what the program
does.
In this scenario, Euclid is again treated as an empirical device that

is subject to physical investigation, and once again the relationship be-
tween (1) and the program is still governed by (2’), but now there is a differ-
ent justification for it. On this scenario Gcd is seen as a theory of the program
in the sense that it makes predications about the behavior of the program.
In other words, we are using the word “theory” in one of the standard senses
given to it by the philosophy of science (Winther 2016).
So while the two correctness conditions make the same extensional de-

mands on the relationship between definition and program, there is a signif-
icant intentional difference between the specification and theory scenarios.
As a theory of the Euclid program the assertion (1) can be wrong: if we run
the program and it does not satisfy (2’) then we will conclude that (1) is not
a correct theory. Moreover, as a consequence, we will not change the pro-
gram Euclid as we would have in the specification scenario. The program
is the thing that is fixed. If there is disagreement, it is (1), the theory of
the program, that is subject to revision.
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When there is discord between (2’) and Euclid different paths are fol-
lowed.
• In the specification scenario, when (2’) fails, we keep (1) but change
Euclid;

• In the theory scenario, when (2’) fails, we keep Euclid but change (1).
There is a fundamental difference between the theory and specification sce-
narios: what governs what is different and, when accordance fails, what gets
revised is different. While the extensional relationship of accordance (2’) is
the same, the intentional aspects are orthogonal to each other.
There is some analogy here with the concepts of illocutionary force and

semantic content (Alston 200). In this distinction the semantic content of
a sentence, the proposition expressed by it, is independent of any illocu-
tionary uses made of it. For example, the bare proposition may be used as
an assertion, a question of an imperative. Likewise, the propositional con-
tent of Gcd is independent of its use. It may be employed as a definition, its
initial employment, in which case it is employed for mathematical purposes.
It maybe used as a specification, in which case it an has engineering function
that forms part of the design process for programs. Or it maybe employed
as a theory of what a given program does. This adds another dimension to
the proposition/illocutionary force duality.

Intentional Shift

The construction of software and hardware systems is complex and the
specifications often vague and ill-defined. Nevertheless, the logical relation-
ship between specification and artifact remains the same: specifications have
normative force over the construction of the artifact. However, in the bigger
enterprise of software development, the path to formulating a specification
is itself a complex intentional activity. It involves interaction with clients
and stakeholders in order to formulate the requirements of any software or
hardware system. It involves a process of building a “theory” of the clients
requirements. Such activity might begin with some preliminary theory of
the requirements. Focus groups and interviews might be used to abstract
such. But whatever techniques are employed, the important point is the na-
ture of the activity: it is a process of theory construction that is tested and
revised until there is some stability and agreement. The intention is to get
an abstract characterization of the clients demands. If we get it wrong, it
does not correctly capture the demands, we revise the theory. Again, this is
an empirical enterprise.
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As we have seen, theory construction is a very different activity to the
process of employing a specification as a normative guide to the construc-
tion of a software system; a guide that provides the criteria of correctness
and malfunction. However, once stabilized a theory, obtained by an analysis
of the clients requirements, maybe used as a specification for the construc-
tion of a software system that meets the clients demands. At this point
an intentional shift occurs: what starts as an empirical proposition, sub-
ject to revision, is baptized as a specification that fixes the correctness of
any potential system. It is, as Wittgenstein puts it, “hardened into a rule”
(Wittgenstein 1978).

It is as if we had hardened the empirical proposition into a rule. And now we
have, not an hypothesis that gets tested by experience, but a paradigm with
which experience is compared and judged. And so a new kind of judgement.
RFM, VI-22.

What was before a theory of the clients demands, a empirical hypothe-
sis, has been transformed into something that has normative force. Such
accounts are of course idealizations where ‘idealization’ is the process by
which scientific models and theories assume facts about the phenomenon
being modeled that are strictly false but make theories easier to formulate
and explore. When it is determined whether the phenomenon approximates
an ‘ideal case,’ then the model or theory is applied to make a prediction
based on that ideal case.
In our case, the process of shifting between one stance and another

may continue throughout the software construction process, but the central
conceptual point concerns the distinction between theory construction and
specification as intentional attitudes, and the fact that the same proposi-
tional content can shift its intentional status between theory and specifica-
tion.

Machines

This distinction between theory construction and specification is im-
portant for another topic in the philosophy of computer science, and this
concerns the relationships between abstract and physical machines. We may
adopt either of the following intentional attitudes to the relationship be-
tween abstract and physical machines.
• The abstract machine might be taken as a representation of the physical
one.
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• The abstract machine might be taken as a specification of the physical
one.

Consider the first. Here the abstract machine must somehow represent
the physical device. This is the perspective adopted in (Horsman 2014).
It is based upon is the central notion of representation between models and
physical systems used in physics (Horsman 2014).

The key to the interaction between abstract and physical entities in physics
is via the representation relation. This is the method by which physical sys-
tems are given abstract descriptions: an atom is represented as a wave func-
tion, a billiard ball as a point in phase space, a black hole as a metric tensor
and so on. That this relation is possible is a prerequisite for physics: without
a way of describing objects abstractly, we cannot do science. ... We argue that
a ‘computer’ is a physical system about which we have a set of physical theories
from which we derive both the full representation relation and the dynamics.

Representation begins with a physical machine P which has physical states
and physical operations linking them. The objective is to represent this with
an abstract machine A with corresponding abstract states and operations.
The heart of the representation is a function

F : A⇒ P

that for each (e.g. binary) operation o of the physical machine, associates
an operation p of the abstract one such that the following holds.

F (p(a, b)) = o(F (a), F (b))

In addition, we need to ensure that the physical machine is completely
represented in the sense that all its states are represented. Thus, we require
the function to be surjective.
All this is in harmony with one version of the so-called Simple Mapping

Account of physical computation (SMA) (Putnam 1980, Piccinini 2015, Pic-
cinini 2016).

There is a mapping from the states of the abstract system A to the states of
the physical system P, such that the state transitions between the abstract
states mirror the state transitions between the physical ones.

This is correctness condition for the abstract machine to represent the phys-
ical one. Intentionally, the physical device is in charge i.e., if there is a dis-
parity between the two, the abstract machine gives way: it must be modified.
It is the physical system that we attempting to represent.
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The second intentional stance is that of specification. Characterizing
the correctness of a physical artifact relative to its specification poses
the question “does a given physical device satisfy a given specification?”.
If the artifact does not satisfy the specification, we reject the artifact not
the specification. Here the representation relation operates in the opposite
direction. The objective is to represent or implement the abstract machine
with a physical one. Hence the function goes from the physical machine to
the abstract one. Consequently, we require a surjective function

G : P ⇒ A

that for each operation p of the abstract machine, there is an operation o
of the physical one such that the following holds.

G(o(a, b)) = p(G(a), G(b))

This is in harmony with the second version of the Simple Mapping Account.

There is a mapping from the states of the physical system P to the states
of an abstract system A, such that the state transitions between the physical
states mirror the state transitions between the abstract states.

All this ensures that the physical system behaves in a way that is in accord
with the abstract one. Here, where there is discord, we change the physical
implementation.
These two scenarios are mirror images of each other and are distin-

guished by the direction of governance. Consider the question “What is
a physical computation?” (Piccinini 2015). Which of these two scenarios
addresses this question?

Semantic Intention

The λ-calculus was introduced in the 1930s by Alonzo Church (Church
1941) as a way of formalizing the concept of effective computability. We shall
use the calculus to further illustrate our notion of intentional stance, but
this time applied to the relationship between different mathematical sys-
tems. In particular, we employ the different ways of defining the λ-calculus
to illustrate how our notion of intentional stance.
The language of the calculus is given by a recursive definition as follows.

t ::= x|λx.t|tt
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The terms of the language are either variables (x), lambda abstracts (λx.t)
or applications of one term to another (tt′).
In standard texts, the calculus is determined or defined by rules of

computation, the central one being the rule of β-reduction given as follows,
where � indicates reduction. The rule allows the replacement of the left
hand side ((λx.t)s) by the right hand side (t[s/x]) where the latter denotes
the substitution of the term s for the variable x in the term .t

(λx.t)s � t[z/x]

Computation proceeds by using the β-rule to reduce lambda terms. When
such computations terminate, we reach the result of the computation – its
normal form. This is an idealized version of a programming language and
its underlying concept of computation. Some theoretical computer scientists
and logicians would see this as defining the actual calculus i.e., the rules
define the calculus as a mathematical system.
Others do not. Instead, they take set-theoretic models to fix matters,

where such models are by now various. There are even models constituted
by the recursively enumerable sets. But the original lattice theoretic model
was based upon a complete lattice that was isomorphic to its own continuous
function space (Scott 1980).

D ∼= [D ⇒ D]

This enabled the semantic account of the calculus to be given as follows –
where e is a function that maps variables to the domain of the model, and
where e[d/x] is the modification of e that maps x to d.

[[x]]e = e(x)

[[λx.t]]e = f where f(d) =[[t]]e[d/x]

[[tt′]]e =[[t]]e([[t′]]e)

This semantic definition makes sense because under the isomorphism the
function f may be considered as an element of the domain, and for appli-
cation any element of the domain may be considered as a function so that
it may be applied to any other element. However, the technical details need
not detain us. The question we need to ask is “what governs what?”
From the perspective of the calculus itself, any model must make

the rules of reduction sound in the sense that, under the semantic interpre-
tation, each side must denote the same element of the domain of the model.
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It would not be a model if it did not respect the rules of the formal calculus.
This is an operational view that puts the formal calculus in the driving seat.
Dana Scott, the inventor of the domain theoretic models, seems to have

taken the models as having semantic governance (Scott 1980). Seemingly,
the calculus cannot stand as a mathematical theory without a set-theoretic
model. The existence of such a model is taken as a hygiene test for such
formal theories. They guarantee its consistency and, without the latter3,
they would need to be modified. The models are the source of meaning-
fulness, and the language of the calculus is only a way of talking about
the real objects that occupy the model. This puts the models in charge.
Underlying this is the belief that set-theory provides the ultimate founda-
tions for mathematics. This is often coupled with a realist view of set-theory
(Turner 2007).
In this case, the underlying intentional stance reflects a deep rooted

philosophical difference.

Dominant and Submissive

Our relationships consist of dominant/submissive pairings. All the ex-
amples chosen have been taken from the computational arena. But the phe-
nomenon is much wider.
The function and the structure of technical artifacts, from the philos-

ophy of technology (Kroes 1998, Kroes 2012), is an instance of this domi-
nant/submissive pairing where the functional definition of the artifact has
normative governance over its structural description. The function lays out
the conditions of correctness; it is a specification of the artifact. On the other
hand, the structural description describes the artifact as a physical object.
Dominant/submissive pairings can also be found throughout mathe-

matics and logic. One example concerns the semantic definition of first-
order predicate logic coupled with any axiom/proof system for the later.
Here the truth-conditional semantics for predicate logic is dominant over
the proof theory. The correctness conditions are provided by the sound-
ness and completeness results. If the axiom system does not satisfy these
demands, it is a candidate for change.
Other instances come from the philosophy of science (Frigg 2018).

We have already discussed a very special instance of theory construc-
tion. But the notion of intentional stance has much wider application
to the philosophy of science where the construction of theories and models
is at the heart of matters (Winther 2016, Frigg 2018).
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All of these are instances of our dominant/submissive paradigm. A little
reflection should locate many others. Indeed, such intentional concerns have
played little role in the philosophies of mathematics, science and engineering.

N O T E S
* Written as part of “PROGRAMME” ANR project: What is a program? Historical

and philosophical perspectives.
1 (Turner 2015)
2 This analysis is inspired by the two aspects on intention mentioned by David Pears in

his essay on the private language argument in (Pears 2006).
3 In the case of the Lambda Calculus, the Church-Rosser theorem provides a form of

consistency proof.
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