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Abstract 

Transparent communication of research is key to foster understanding within and beyond 

the scientific community.  An increased focus on reporting effect sizes in addition of p-value 

based significance statements or Bayes Factors may improve scientific communication with the 

general public.  Across three studies (N = 652), we compared subjective informativeness ratings 

for five effect sizes, Bayes Factor, and commonly used significance statements.  Results showed 

that Cohen’s U3 was rated as most informative.  For example, 440 participants (69%) found U3 

more informative than Cohen’s d while 95 (15%) found d more informative than U3, with 99 

participants (16%) finding both effect sizes equally informative.  This effect was not moderated 

by level of education.  We therefore suggest that in general Cohen’s U3 is used when scientific 

findings are communicated.  However, the choice of the effect size may vary depending on what 

a researcher wants to highlight (e.g., differences or similarities). 

Keywords: statistical communication, scientific communication, effect size, statistical 

significance, Cohen’s U3, Cohen’s d   
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Beyond Reporting Statistical Significance: Identifying Informative Effect Sizes to 

Improve Scientific Communication 

Recently, social and medical sciences have begun to increasingly value open science 

practices including more transparent documentation of research, open data, and pre-registration 

(e.g., Allen & Mehler, 2018; Miguel et al., 2014; Morey et al., 2016).  While open science 

practices allow public access to research material, transparency in communicating statistical 

findings seem equally important:  clear communication allows readers a better evaluation of 

scientific findings in a more educated way.  This is especially true when research is funded by the 

general public and in times when the public is increasingly engaging in scientific projects (e.g., 

“citizen science”, Bonney et al., 2014).  Indeed, many funding bodies also require that the 

findings are disseminated in an open and transparent fashion (National Institutes of Health, 2017; 

Research Councils UK, n. d.).  However, clarity and readability of scientific texts have decreased 

in the last decades because of an increase in scientific jargon, impacting the accessibilities of 

research findings (Plavén-Sigray, Matheson, Schiffler, & Thompson, 2017).  In the present 

article, we investigate how scientific findings can be reported in a more transparent and 

informative way.   

Currently, scientific findings are predominantly presented as a variety of “there is a 

(statistically significant) difference between X and Y” or “X is associated with (or caused by) Y”.  

However, quantifying, for example, the difference between two groups or relations between 

variables by the means of effect sizes is more informative because it adds a more exact 

“numerical statement of facts” (Bowley, 1915, p. 1).  Empirical effect sizes quantify the 

estimated strength or magnitude of an effect and hence provide essential, complementary 

information that may inform decisions.  While some statistical analyses such as correlations are 

almost exclusively reported in terms of effect sizes (i.e., a correlation coefficient that informs 
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about the strength of a relation between two variables), other analyses such as group difference 

tests often lack reporting of effect sizes, despite it has repeatedly been advocated across scientific 

fields (Nakagawa & Cuthill, 2007; Sullivan & Feinn, 2012; Thompson, 2002).  For example, 

effect sizes allow to assess particular questions about group differences and are hence particular 

suitable to inform evidence-based decisions.  For clinical work in particular, (non-standardized) 

effect sizes can inform about treatment success: Whereas a treatment effects may be statistically 

significant between the treatment and control group, overall clinical benefit on the outcome may 

be negligible (Sedgwick, 2014).  These examples illustrate that there are statistical and scientific 

reasons to report effect sizes.  Moreover, we argue that effect sizes can also increase the 

transparency of scientific communication – in particular, but not exclusively with the general 

public and researchers from other fields – because they can add information about the strength of 

an effect for an observed phenomenon and hence improve the evaluation of reported findings.  

However, while various effect size measures exist and their statistical properties have been well 

investigated (e.g., Cohen, 1988; Cumming, 2014; Ruscio, 2008), it is unclear which are perceived 

as most informative.  With regards to public science communication, perceived informativeness 

of effect sizes among the general public remains to be empirically investigated.   

We propose that science communication can be improved by reporting effect sizes that 

are perceived as informative.  It has been criticized that the common practice in science 

communication of only reporting findings as (statistically) significant fails to inform readers 

about the magnitude of an effect (Nakagawa & Cuthill, 2007; Sullivan & Feinn, 2012; 

Thompson, 2002).  More specifically, mere significance statements seem often not very 

informative and not easy to interpret.  For instance, the general public as well as the majority of 

members of the academic community struggle to define and interpret (statistical) significance 

statements (Haller & Krauss, 2002; Hoekstra, Morey, Rouder, & Wagenmakers, 2014; 
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Tromovitch, 2015).  In fact, one study found that only a marginal fraction of a representative 

sample provided a correct definition of the term “significance” (Tromovitch, 2015).  Further, 

another study found that only 3% of researchers correctly rejected six false statements about 

confidence intervals (Hoekstra et al., 2014).  Thus, science communication that merely focuses 

on statements of statistical inference likely suffers from common misconceptions around p-values 

and related estimates.  

Furthermore, inaccurate or careless reporting from researchers and universities can also 

lead to statistical miscommunication.  For example, a substantial part of newspaper articles was 

found to incorrectly report or exaggerate findings in health-related sciences.  The origin of this 

miscommunication were often based on exaggerations of statistical findings in university press 

releases (Cooper, Lee, Goldacre, & Sanders, 2012; Sumner et al., 2014).  Moreover, the way 

scientific findings are presented can lead to biases.  For example, when psychological findings 

are presented alongside with extraneous neuroscientific information, the findings appear to be 

more convincing (Baker, Ware, Schweitzer, & Risko, 2017; Im, Varma, & Varma, 2017).  Hence, 

these examples illustrate that science communication can be distorted by potential conflicts of 

interest including the promotion of an institution or one’s own research.  Statistical significance 

statements can lend themselves to be misused in this way because they do not provide a measure 

of magnitude about an effect and thus prevent a direct comparison to other evidence.    

Communicating scientific findings clearly and transparently can prevent misconceptions 

and thus detrimental consequences across a range of behavior.  For instance, patients may reject 

treatment because of false beliefs (Marshall, Wolfe, & McKevitt, 2012; Nicoll et al., 1993), 

misperceptions of climate change have been linked to failed behavioral adjustments in reducing 

carbon emissions  (Bain, Hornsey, Bongiorno, & Jeffries, 2012; Spence, Poortinga, Butler, & 

Pidgeon, 2011).  Taken together, risk perceptions of the general public are at particular risk to be 
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biased in consequence of misleading science communication.  That is, the likelihood of 

incidences are often misestimated which can lead to inadequate decision making and behavior 

(Lichtenstein, Slovic, Fischhoff, Layman, & Combs, 1978; Thomson, Önkal, Avcioğlu, & 

Goodwin, 2004).  As a response to those misunderstandings and misperceptions several 

guidelines have been developed (Brown University Science Center, 2014; Science Media Center, 

2012).1   

These examples illustrate why clear and transparent science communication is at the heart 

of good science communication.  We believe that one important step forward in this direction is 

communicating results by the means of effect sizes (cf. also Lakens, 2013), which would be 

beneficial for the communication of scientific findings in press releases, newspapers, and 

scientific abstract.  We therefore suggest that easy-to-understand effect sizes should be reported 

in addition to a mere statement that differences have been found.  We expect that this will help 

improving the understanding between members of the scientific community as well as the dialog 

with members of the general public.  Transparency and openness is associated with increased 

trust (cf. Norman, Avolio, & Luthans, 2010; Schindler & Thomas, 1993), which we deem 

particularly important in times of “fake news” and as skepticism framed science negligence that 

can put public approval and funding at risk (Nurse, 2006).   In three studies, we explore which 

effect size is rated as more informative, also compared to a significance condition and the Bayes 

Factor, using within-subject designs.   

 
1 We believe that adding easy to understand effect sizes increases transparency and offers less ground for a 

vague and biased interpretation of the findings.  However, we do not believe that this will eliminate biases in the 
presence of ideological polarizations, because misperceptions are often driven by powerful ideological believes 
which “override” information and education (Kahan, Peters, Dawson, & Slovic, 2013).  
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The Present Research 

In the present research, we compared the perceived informativeness of various ways how 

scientific findings can be communicated.  Specifically, we compared several often-used statistics 

and effect sizes as well as some less frequently used ones.  These were embedded in a text extract 

of results from a fictitious study and presented to participants.  We did not have any a priori 

hypotheses which statements would be perceived as more or less informative and hence 

employed an explorative design.  To investigate whether participants’ ratings varied as a function 

of educational level (Studies 1-3) or statistical experience and knowledge (Study 1), we explored 

the data differences between both low and high educational levels and low and high statistical 

experience of participants.  We define informative as expressing the magnitude of an effect in a 

comprehensible fashion. 

In Study 1, we used the medium effect size within social psychology of r = .21 (Richard, 

Bond Jr., & Stokes-Zoota, 2003) and transformed it into five other effect sizes: Cohen’s d, 

Cohen’s U3, probability of superiority (Ruscio, 2008) which is a generalization of the common 

language effect size (McGraw & Wong, 1992), the overlapping coefficient (Inman & Bradley, 

1989), and partial eta square.  The R codes for computing the first four effect sizes can be found 

in the Appendix.  All effect sizes were selected based on how popular we perceived them to be in 

the psychological literature (Cohen’s d and eta square), whether we judged them as appropriate to 

express between-subject differences, and whether we were familiar with them.  Two effect sizes 

express the difference (or overlap) in terms of variation (Cohen’s d and partial eta square), 

whereas the remaining three expressed the difference in percentages.  Moreover, we added the 

definition of the Bayes Factor with a fictitious value of 20 and, for obtaining a baseline rate, the 

default way of presenting scientific findings in terms of significance statements (see Table 1 for 

illustrations).  We focused on two independent groups, because this research design is very 
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common, and most effect sizes have been developed to express the between-group differences.  

In other words, all such between-group comparisons can be expressed in either of those ways 

(assuming the assumptions such as normality and variance homogeneity have been met).   

Study 2 replicates Study 1 in a different country and also tests whether participants 

understand research findings that are presented as “different” in a similar and accurate way.  That 

is, whether participants are able to estimate the effect size by only reading that two groups are 

different from each other; heterogeneous responses would highlight the need to report 

informative and clear effect sizes.  Study 3 replicates Studies 1 and 2 using abstract examples. 

We have not conducted an a priori power analysis because the aim was to get first 

estimates of the informativeness of effect sizes.  After data collection and analysis, we conducted 

a sensitivity analysis to demonstrate that our sample sizes are more than sufficient to detect small 

effects using G*Power (version 3.1.9.2; Faul, Erdfelder, Buchner, & Lang, 2009) for a within-

subject comparison of the informativeness of two effect sizes.  Assuming a power of .80 and an 

alpha of .05 (two-tailed), a sample size of 297 (as used in Study 1) would be enough to detect an 

effect of dz = 0.16, a sample size of 149 (Study 2) an effect size of dz = 0.23, and a sample size of 

206 (Study 3) an effect size of dz = 0.20.2  

Items for all studies were part of a larger survey that was irrelevant to the present research 

question.  We report how we determined our sample size, all data exclusions, and all 

manipulations.  The data and code to reproduce statistical analyses have been made publicly 

available on the Open Science Framework: https://osf.io/9vqyn/  

 
2 Taking the 21 comparisons into account (Sidak-correction, see below), the alpha-level decreases to .00244. 

With this alpha-level, the effect sizes for the three studies remain in the small-to-medium range: dzs = .23, .32, .27. 
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Study 1 

Method 

Participants.  Data were collected online on Prolific academic in November 2016 from 

300 participants, who reported to live in the United Kingdom.  Three participants were excluded 

from data analysis because they failed both included attention-check items.  The mean age of the 

remaining 297 participants was 39.81 years (SD = 12.59, range = 18 - 68), with 58.59 percent of 

the participants being women.  One-hundred thirty-one participants had at least graduated from a 

university, while the remaining 166 had a lower education level.  One-hundred ninety-one 

participants had no statistical training, 93 a bit, and 13 a lot. 

Material and Procedure. To measure the informativeness of effect sizes, we created a 

fictitious and slightly abstract example of a between-subject design.  We first explained to the 

participants that an effect was found in a study which can be expressed in different ways.  

Participants were asked how informative they found each possibility of expressing the same 

effect.  Hence, our operational definition of informativeness concerns the comprehensibility of 

different statements.  Participants were then told that “a researcher has compared women and 

men with regard to an important personality characteristic and needs your help to find the clearest 

and most informative way to report her findings.  For this task, it is irrelevant whether women or 

men score higher.”  Participants were asked to first read all randomly presented possibilities 

before rating how informative they find each of them (see Table 1 for all the possibilities).  

Responses were given on a 7-point scale ranging from 1 (Extremely uninformative) to 7 

(Extremely informative).  Thus, the informativeness of each item was measured. 

Education was measured using a 7-point scale ranging from 1 (Illiterate) to 7 (Profession 

or honours).  Statistical familiarity was measured with 8-items by asking participants how 

familiar they are with various statistical tests and effect sizes, including two-sample t-tests, 
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correlation, Bayesian statistics, and multiple regression.  Familiarity responses were given on a 5-

point scale ranging from 1 (Not familiar at all) to 5 (Extremely familiar).  We computed the mean 

across all 8-items to obtain an overall statistical familiarity score.  The overall familiarity was 

low (M = 1.63, SD = 0.70).  Additionally, we asked whether participants “had statistical training 

(e.g., at school, university, or during job training)?”  Responses were given on a 3-point scale: 1 

(no), 2 (a little), and 3 (a lot).  Statistical familiarity correlated with statistical training, r(295) = 

.53, p < .001. 

Data analysis 

Data were analyzed with a series of two-way mixed ANOVAs to test for interactions with 

educational level and statistical familiarity, and a repeated measures ANOVA.  In a next step, we 

performed a series of equivalence tests (Lakens, 2017) to test which way of phrasing scientific 

findings are practically equivalent, i.e. whether an effect of a smallest effect size of interest can 

be rejected.  As the smallest effect size of interest (SESOI), we used Cohen’s d = 0.30.  In other 

words, if the upper or lower tail of a 90%-confidence interval of a paired Cohen’s d does not 

surpass |0.30|, we consider two statements as equivalent, because the standardized mean 

difference would then be too small to be relevant.  We chose a Cohen’s d of 0.30 because we 

wanted to be able to reject small/marginal effects which we judged to be less interesting in this 

exploratory study. We use the term small/marginal effect in a relative sense: 25% of the effect 

sizes reported in psychological literature are smaller than d = 0.30 (25th to 75th percentile: 0.29-

0.96; Figure 3a in Szucs & Ioannidis, 2017).  

In other words, if a Cohen’s d of 0.30 was found for a difference in informativeness 

ratings between two statements, it would mean that only 61% of the people would rate one effect 

size to be more important than the other, whereas 39% would still rate the other one to be more 

important.  Although we acknowledge that small effect sizes should not be neglected, in the 
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present exploratory work we were more interested in larger effects.  The assumptions of the two-

way mixed model and repeated measures ANOVAs (e.g., sphericity) were met in all studies. 

Results  

Moderation analyses. First, we tested whether educational level, statistical familiarity, 

and statistical training would interact with how informative the various response options are 

perceived.  Level of education and statistical training did not result in a significant interaction in a 

two-way mixed ANOVA with education or statistical training as between-subject factors and the 

seven statements as within-subject factor (Fs < 1.60, ps > .14).  However, statistical familiarity 

did interact with the within-subject-factor informativeness, F(6, 1716) = 3.80, p = .001, ��
� = .01.  

As expected, the within-subject factor statements was also significant, F(6, 1716) = 56.43, p < 

.001, ��
� = .16.  Cohen’s d and the Bayes Factor were judged to be more informative by people 

with more statistical experience, but the informativeness-order of the seven items still remained 

the same for both levels of statistical experience.  Hence, we collapsed across all groups and 

focus on the overall statistics.3   

Informativeness of statements. Table 1 shows all statements ranked by their 

informativeness, including pairwise comparisons (Sidak corrected).  Of interest, the default 

statement was rated as most informative, although it did not differ significantly from Cohen’s U3 

and the probability of superiority.  The two least informative items were the Bayes Factor and 

Cohen’s d.   

Table 1 

Descriptive and inferential statistics, alongside brief definitions of the effect sizes 

 
3 We also performed a series of equivalence tests, comparing pairwise the participants scoring higher on 

each of the three moderators with those scoring lower on them, while correcting for multiple comparison (21 
comparisons, Sidak correction). None of the comparisons was equivalent. 
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Statistic/Effect 

size 

Definition M (SD) 

Default The difference between men and women was statistically 
significant.a 

4.71 
(1.62) 

Cohen’s U3 67% of the members of one group (i.e., either women or men) 
score higher than the mean of the other group (i.e., either women 
or men).b 

4.50 
(1.52) 

Probability of 
Superiority 

There is a 62% chance that a person selected at random from one 
group (i.e., either men or women) will have a higher score than a 
person selected at random from the other group.c 

4.39 
(1.55) 

Overlapping 
coefficient 

The overlap of the responses given by men and women was 83%. 
a,d 

4.18 
(1.65) 

Partial eta square The proportion of variance explained by group membership is 
4%. This means that whether a person is male or female explains 
4% of the individual differences on the personality measure. 
a,b,c,d,e 

3.76 
(1.66) 

Bayes Factor The Bayes factor is 20, indicating that the data are at least than 
20 times more likely under the assumption that men and women 
are different than under the assumption that they are equal. a,b,c,d,e 

3.26 
(1.77) 

Cohen’s d The difference between men and women was Cohen’s d = .43, 
with Cohen’s d being the difference in the two groups' means 
divided by the average of their standard deviations. a,b,c,d,e 

3.03 
(1.84) 

Note. Same superscript indicates significant differences between two statements at p < .05 (Sidak 

corrected).  For example, all statements with the superscript a are significantly different from each other at p < .05. 

Effect sizes and equivalence tests. Table 2 shows pairwise comparisons of the 

informativeness of all statements.  As effect sizes for the pairwise comparisons we report 

Cohen’s U3s and Cohen’s ds, including Sidak-corrected confidence intervals.  We also report 

Cohen’s d for the respective effects because of its convenience in computing equivalence tests 

(Lakens, 2017) and because of its widespread use in the scientific literature.  We found effect 

sizes that ranged from negligible to medium-to-large (0.07 < d < 0.71).  For example, for the 

comparison between the default way of reporting findings as “statistically significant” and 

Cohen’s U3 we found Cohen’s dz = .10 (99.5%-CI [-.13, .33], Cohen’s U3 = 54).  Next, we 

tested whether the three statements that were rated as most informative can also be considered as 
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statistically equivalent.  We therefore computed the Sidak corrected confidence intervals that 

were corrected for three comparisons.  The obtained confidence interval for the comparison of the 

top two rated statements, the default statement and Cohen’s U3, was statistically equivalent, 

96.5%-CI [-.07, .28].  Here the numbers in the squared brackets express the lower and upper 

equivalence bounds in units of Cohen’s d.  Also, Cohen’s U3 and the probability of superiority 

were equivalent, 96.5%-CI [-.10, .25].  The confidence interval for the default statement and 

probability of superiority, however, remained undetermined because its CI extended slightly 

beyond the upper equivalence bound of 0.30, 96.5%-CI [-.01, .34].  

Table 2 

Cohen’s U3s and Cohen’s ds of pairwise comparisons with confidence intervals 

 1 2 3 4 5 6 

1. Default       

2. Cohen’s U3 54,  

.10 [-.13, .33] 

     

3. Probability of Superiority 57,  

.17 [-.07, .40] 

53,  

.07 [-.16, .31] 

    

4. Overlapping  

coefficient 

60,  

.24 [.01, .48] 

57,  

.17 [-.07, .40] 

54,  

.10 [-.13. .33] 

   

5. Partial eta square 66,  

.41 [.18, .64] 

66,  

.43 [.19, .66] 

63,  

.33 [.09, .56] 

59,  

.22 [-.02, .45] 

  

6. Bayes Factor 73,  

.62 [.38, .86] 

73,  

.61 [.37, .85] 

71,  

.54 [.30, .78] 

67,  

.43 [.20, .67] 

60,  

.25 [.01, .48] 

 

7. Cohen’s d 76,  

.71 [.47, .95] 

76,  

.70 [.46, .94] 

73,  

.62 [.38, .86] 

71,  

.56 [.32, .79] 

64,  

.35 [.12, .59] 

56,  

.14 [-.09, .38] 

Note. The first number in each cell is Cohen’s U3 in percent, followed by Cohen’s d. Numbers in brackets 

refer to lower and upper limit of 99.5%-confidence interval (Sidak corrected Cis of Cohen’s d for 21 comparisons).  

Study 2 

The results of Study 1 revealed that some ways of expressing scientific findings are 

perceived as more informative than others (see Table 1).  For example, Cohen’s U3 was judged 
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to be more informative than Cohen’s d.  However, it was surprising that the default version was 

rated as more informative than many effect sizes.  Given that the default version is likely to be 

more familiar to most participants, this finding can be due to a variant of the mere exposure effect 

(Montoya, Horton, Vevea, Citkowicz, & Lauber, 2017; Zajonc, 1968).  We therefore tested in 

Study 2 whether the default version would still be rated as more informative when aligned with 

an effect size.  To test whether our findings would conceptually replicate in another English-

speaking country, this sample was limited to participants who reported to live in the United States 

of America (USA).   

Additionally, we asked participants how large they estimate gender differences for 

anxiousness and care orientation.  We were mainly interested whether the effect estimates are 

more homo- or more heterogeneous, irrespective of whether the effect estimate was accurate or 

not. A heterogeneous interpretation of effect sizes would indicate that people understand the 

results differently and thus emphasize the need to report informative effect sizes to ensure that 

people can interpret the findings similarly and do not over- or underestimate the effect size.   

Method 

Participants.  Data were collected online in July 2017 from 156 participants who 

reported living in the USA.  Participants were recruited via Mturk.  Seven participants were 

excluded from data analysis because they responded to all items too fast (see below for a more 

detailed justification).  The mean age of the remaining 149 participants was 33.70 years (SD = 

11.56, range = 18 - 79), with 62 being women (41.61% with one missing value).  One-hundred 

eight participants (72.48%) had at least graduated from a university (55.36% with a Bachelor and 

18.12% with a Master or doctorate degree), while the remaining 40 (26.85%) reported to have a 

lower education (one missing response).   
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Material.  Initially, participants were informed that they would be presented with 

findings of several studies.  In the part of the survey relevant to the present study, participants 

responded to three items, which were presented on separate screens.  The first two items aimed to 

estimate how homogeneous and accurately participants understood two statements from scientific 

studies that were extracted from meta-analyses which were presented as large studies, whereas 

the third item was an extension of the item with seven response options used in Study 1.  The first 

item informed participants that a large study which “included around 40,000 people” has “found 

that women are more anxious than men.”  Participants were asked to rate on a slider measure 

from 50 to 100 percent how they understand the finding, using Cohen’s U3 as an effect size: 

“Specifically, what percentage of women is more anxious than the average men?  Choosing 50% 

would suggest that both women and men are equally anxious (which isn't what the study has 

found).  In contrast, choosing 100% would mean that all women are more anxious than the 

average men.”  This item is based on the meta-analysis of Feingold (1994), who has found a sex 

difference of around U3 = 61% (d = .29).  The second item was the same as the first item, except 

that we used an example from the meta-analysis of Jaffee and Hyde (2000), who found that 

women had a stronger care orientation than men (U3 = 61%, d = .28).  The wording was the 

same, except that we replaced anxious with care and added the definition of the care orientation 

of Jaffee and Hyde: “maintaining relationships, responding to the needs of others, and a 

responsibility not to cause hurt” (p. 703).   

Item 3 was the same as in Study 1, except that each of the seven statements that contained 

fictitious examples started with the default version (e.g., “The difference between men and 

women was statistically significant.  Specifically, the overlap of the responses given by men and 

women was 83%”).  The default version was the same as in Study 1.  The order of the seven 
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statements was randomized.  Education level was measured with a one-item scale ranging from 1 

(Did not attend school) to 6 (Master’s degree or higher). 

To improve the data quality, unrealistic fast responders were excluded.  Given that the 

text for the first item consisted of 87 words, the text for item 2 of 113 words, and the total text for 

item 3 of 352 words, we felt that the responses of participants who answered within a few 

seconds are not interpretable.  Specifically, data of 15 participants who responded in less than 15 

seconds on the first, 14 participants on the second item were excluded. Further, data of 22 

participants who responded in less than 30 seconds on all 7 sub-items were excluded.  That is, the 

means across all 7 response options for the 22 participants were more similar than for the 

remaining participants.4  This procedure let to the exclusion of all responses of 7 participants, and 

a partial exclusion of another 15 participants.  The data analyses followed the same pattern as 

Study 1. 

Results 

Moderation analyses. First, we tested whether there were differences in educational level 

for all three items separately.  However, we neither found significant differences in how large 

participants estimated the difference between men and women for anxiousness and care (ts < 

1.53, ps > .13), nor did this response interact with the seven response options of item 3,F(4.51, 

595.02) = 0.56, p = .71.5  

Heterogeneity in interpretation of findings. Responses to item 1 and 2 suggest that the 

responses were quite heterogeneous.  The dispersion as quantified by the standard deviation and 

 
4 Also, because our cut-off criteria are somewhat arbitrary, we have also uploaded the dataset containing the 

responses of all participants prior to any exclusion (see above for the link).  The pattern of results barely changed 
without the exclusion.  However, the answers of fast responders are not interpretable. 

5 Also, for this analysis we performed a series of equivalence tests, comparing pairwise lower with higher 
educated participants, while correcting for multiple comparison (9 comparisons, Sidak correction). None of the 
comparisons was equivalent, indicating that the sample was likely underpowered to provide evidence for statistical 
equivalence for a range of small effects (Cohen’s d = -0.3 – 0.3).  
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interquartile range (IQR) was substantial for both items, SD1 = 11.11, IQR1 = 60 - 78.5, SD2 = 

12.07, IQR2 = 60 - 81.5, indicating that responses varied largely across participants.  Further, 

participants overestimated the gender differences.  Two one-sample t-tests against the correct 

response of U3 = 61 revealed that participants overestimated the gender differences for anxiety, 

M = 67.94, t(140) = 7.41, p < .001, and care, M = 72.31, t(140) = 11.13, p < .001. 

Informativeness of statements. Table 3 show that Cohen’s U3 was rated as most 

informative, followed by the probability of superiority and the overlapping coefficient.  Cohen’s 

d and the default version were rated as least informative.  Table 3 also shows pairwise 

comparisons of the informativeness of all statements.  As effect sizes for the pairwise 

comparisons we report again Cohen’s U3s and Cohen’s ds, including Sidak-corrected confidence 

intervals.  The effect sizes range from negligible to large (0.01 < d < 0.80).  Figure 1 displays the 

distribution of the responses to all seven statements including boxplots.   

 Table 3 

Cohen’s U3s and Cohen’s ds of pairwise comparisons with confidence intervals 

 M (SD) 1 2 3 4 5 6 

Cohen’s U3 5.22 (1.35)a       

Probability of 

Superiority 

4.82 

(1.49)a,b  

61, .27  

[-.07, .62] 

     

Overlapping 

coefficient 

4.40 (1.62)a,c 66, .41,  

[.06, .76] 

59, .22  

[-.13, .56] 

    

Partial eta square 4.25 

(1.55)a,b,d 

70, .52  

[.17, .88] 

61, .29  

[-.06, .64] 

53, .08  

[-.27, .43] 

   

Bayes Factor 3.72 

(1.80)a,b,c,d 

76, .72  

[.36, 1.07 

69, .50  

[.15, .86] 

63, .33  

[-.02, .67] 

62, .30  

[-.05, .65] 

  

Cohen’s d 3.51 

(1.85)a,b,c,d 

79, .80  

[.44, 1.16] 

72, .59  

[.24, .94] 

65, .38  

[.02, .72] 

66, .41  

[.06, .76] 

55, .13  

[-.21, .48] 

 

Default 3.50 

(1.77)a,b,c,d 

78, .76        

[.41, 1.12] 

72, .59  

[.23, .94] 

66, .41  

[.06, .76] 

62, .29            

[-.05, .64] 

54, .09           

[-.25, .44] 

50, .01         

[-.34, .35] 
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Note. Same superscript indicates significant differences between two statements at p < .05 (Sidak 

corrected).  First number in each cell from column 3 onwards is Cohen’s U3 in percent, followed by Cohen’s d. 

Numbers in brackets refer to lower and upper limit of 99.5%-confidence interval (Sidak corrected CI of Cohen’s d 

for 21 comparisons).  

 

Figure 1. Violin plots with boxplots (bold line in each violin is the median).  

Note. The wider a violin plot is on a specific point of the y-axis, the more people have chosen this response.  

For example, most participants rated the informativeness of Cohen’s U3 with 5 or 6 and very few with 1, 2, or 3.  

The box of the boxplots shows in which range 50% of the data falls; below the box are 25% of the responses and 

above the box another 25%.  The line in bold print represents the median. U3: Cohen’s U3, PS: Probability of 

Superiority, OVL: Overlapping Coefficient, p.eta: partial eta square, BF: Bayes Factor, d: Cohen’s d. 

Study 3 

Studies 1 and 2 used gender differences as an example.  This might have caused 

participants to rely on their gender stereotypes and rate numerically larger effect sizes as more 

informative than those with smaller ones, because they were expecting larger gender differences.  
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Thus, we decided to replicate our findings using an abstract example where it was unlikely that 

we would tap into social stereotypes.    

Method 

Participants.  Data were collected online on Prolific academic in November 2018 from 

231 participants, who reported to live in the United Kingdom.  Twenty-five participants were 

excluded from data analysis because they failed a simple attention-check item (see below).  The 

mean age of the remaining 206 participants was 38.49 years (SD = 13.25, range = 20 - 73), with 

64.08 percent of the participants being women.  One-hundred seven participants had at least 

graduated from a university, while the remaining 97 had a lower education level.  The present 

study was collected together with another study in which the persuasiveness of arguments either 

in favor or against Brexit were investigated.  The median completion time was 15 minutes (911 

seconds). 

Material. We presented the same items in a randomized order we used in Study 2 with 

the only difference that we replaced women and men with Group A and Group B.  For example, 

the instructions now stated: “Imagine, a researcher has compared two groups with regard to an 

important personality characteristic and needs your help to find the clearest and most informative 

way to report her findings. Let us call the groups Group A and Group B. Let us assume that the 

members of Group A score on average higher than those of Group B.  Below are seven 

possibilities…”.  The item for Cohen’s U3 stated: “The difference between Group A and Group 

B is statistically significant. 67% of the members of Group A score higher than the mean of 

Group B.”    

To test whether participants paid sufficient attention to the items we asked on the next 

page of the online survey: “Which of the two groups scored on average higher in the preceding 

example?” Twenty-five participants incorrectly said Group B and were therefore excluded.  
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Additionally, we asked participants whether they managed to understand the seven items.  

Responses were given on a 7-point scale ranging from 1 (“understood none of the seven 

possibilities”) to 7 (“understood all seven possibilities”).  We forgot to include the response 

option “understood two of the seven possibilities”.  

Results 

Moderation analyses. First, we tested whether there were differences in educational level 

and how many items participants understood.  This was done again using a mixed ANOVA with 

the seven statements as the within-subject factor and one of the two moderators as between-

subject factor.  We neither found a significant interaction for education, F(18.66, 914.30) = 1.46, 

p = .106 nor how well they understood the items in general, F(27.60, 896.42) = 1.02, p = .44.  

Thus, we collapsed across all groups. 

Informativeness of statements. Table 4 show that Cohen’s U3 was rated as most 

informative, followed by the probability of superiority and the default option.  The Bayes Factor 

and Cohen’s d were rated as least informative.  Table 4 also shows pairwise comparisons of the 

informativeness of all statements.  As effect sizes for the pairwise comparisons we report again 

Cohen’s U3s and Cohen’s dzs, including Sidak-corrected confidence intervals.  The effect sizes 

range from negligible to large (0.00 < dz < 0.80).  Overall, 150 participants rated Cohen’s U3 as 

more informative than Cohen’s d, whereas only 32 participants rated d as more informative than 

U3 (the remaining 24 participants rated both effect sizes as equally informative). 

 

 

 
6 Again, we performed a series of equivalence tests, comparing pairwise lower with higher educated 

participants, while correcting for multiple comparison (7 comparisons, Sidak correction). None of the comparisons 
was equivalent, indicating that the sample was likely underpowered to provide evidence for statistical equivalence 
for a range of small effects (Cohen’s d = -0.3 – 0.3).  
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Table 4 

Descriptive statistics and pairwise comparisons with Cohen’s U3s and Cohen’s ds of 

pairwise comparisons with confidence intervals 

 M (SD) 1 2 3 4 5 6 

Cohen’s U3 5.50 (1.64)a       

Probability of Superiority 5.13 (1.65)b 57, .18  

[-.10, .46] 

     

Default 5.06 (1.58)c 58, .21 

[-.07, .49] 

51, .03 

[-.25, .31] 

    

Overlapping coefficient 3.77 (1.98)a,b,c,d 76, .72 

[.43, 1.01] 

72, .59 

[.31, .88] 

69, .49 

[.21, .77] 

   

Partial eta square 3.57 (2.18)a,b,c 76, .69 

[.41, .98] 

72, .60 

[.31, .88] 

69, .51 

[.22, .79] 

54, .10 

[-.18, .38] 

  

Bayes Factor 3.17 (2.13)a,b,c,d 80, .84 

[.55, 1.13] 

78. .77 

[.48, 1.06] 

75, .68 

[.39, .97] 

60, .25 

[-.03, .53] 

58, .19 

[-.09, .47] 

 

Cohen’s d 3.13 (2.20)a,b,c,d 80, .86 

[.57, 1.15] 

79, .79 

[.50, 1.08] 

76, .70 

[.41, .99] 

61, .27 

[-.01, .55] 

58, .19 

[-.09, .47] 

51, .03 

[-.25, .30] 

Note. Same superscript indicates significant differences between two statements at p < .05 (Sidak 

corrected).  First number in each cell from column 3 onwards is Cohen’s U3 in percent, followed by Cohen’s d. 

Numbers in brackets refer to lower and upper limit of 99.5%-confidence interval (Sidak corrected Cis of Cohen’s d 

for 21 comparisons).  

General Discussion 

The present studies compared the informativeness of various ways in which statistical 

findings can be communicated.  First, we found in all studies that Cohen’s U3 was rated as one of 

the most informative effect sizes.  In Study 1 and 3, the informativeness of Cohen’s U3 did not 

statistically differ from the effect size probability of superiority, as well as the default statement.  

However, given that most science communication is using the default way, that is reporting mere 

significance statements,  informativeness ratings of the default statement can partly be explained 
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by an exposure effect (Montoya et al., 2017; Zajonc, 1968) or a form of status quo bias 

(Samuelson & Zeckhauser, 1988).  An alternative explanation may be that the default statement 

contained less statistical jargon compared to most other effect size measures definitions that were 

provided to participants (see Table 1).  However, we argue that this explanation is not supported 

by the data from informative ratings in Study 2, in which we controlled for this possible confound 

by presenting all effect size statements in combination with the default statement and also 

presented the default statement alone.  Results corroborated that Cohen’s U3 (in combination 

with the default statement) was rated as most informative. In contrast, the default statement alone 

was rated as least informative.  

Three additional observations were made in Study 2: First, we found that also Probability 

of Superiority and Overlapping Coefficient were rated as informative, although significantly less 

informative than Cohen’s U3.  Second, Cohen’s d was considered the least informative effect size 

in both studies.  This finding may be explained by the fact that the definition of Cohen’s d indeed 

contained more statistical jargon (“mean” and standard deviation”) than the definitions of most 

other measures.  For comparison, across all studies, results showed that 56% of the participants 

found Cohen’s U3 more informative than the second most informative effect size, the probability 

of superiority, 57% found U3 more informative than d and 77% found U3 more informative than 

the least informative effect size, Cohen’s d.  To express it in terms of absolute frequencies – 

which are easily accessible to people (Hoffrage & Gigerenzer, 1998) – we found that 243 

participants rated Cohen’s U3 more informative than the second most informative effect size 

(probability of superiority), whereas 159 rated the latter as more informative.  Further, 296 rated 

U3 as more informative than the default statement, whereas 188 rated the latter as more 

informative.  Finally, 440 participants rated U3 as more informative than d, whereas 95 felt the 

other way.  Ninety-nine participants rated both effect sizes as equally informative (18 participants 
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did not respond to either the U3 or d items, or both).  Lastly, findings from Study 2 further 

suggested that participants interpreted the findings heterogeneously, highlighting the need for 

reporting informative effect sizes to avoid that findings are over- or underestimated (cf. Posavac 

& Sinacore, 1984).   

Furthermore, summarizing research findings with Cohen’s U3 may also make the findings 

more accessible to some individuals who dismiss scientific findings based on anecdotal evidence.  

In our experience, some lay-people would, for example, dismiss the meta-analytical finding that 

women are more anxious than men (Feingold, 1994) if they can think about one man who is more 

anxious than one woman.  Better known as the availability heuristic in cognitive psychology and 

behavioral economics, immediate information that can be recalled may override other evidence 

that seems less accessible (Tversky & Kahneman, 1973).  We suggest that reporting scientific 

evidence in a more transparent fashion, for instance by stating that "61% of the women are more 

anxious than the average man" in the current example, makes clear that gender differences refer 

to the group averages and provides a statistical magnitude for an effect that may be recalled more 

easily.  However, which effect size a researcher wants to report depends on the context: while 

Cohen’s U3 or the probability of superiority emphasize more potential differences between 

groups of people, the overlapping coefficient highlights similarities between groups of people.  

For example, if researchers compare polarized groups, highlighting similarities can improve 

intergroup attitudes (Hanel, Maio, & Manstead, in press). 

We note that it may seem surprising that one of the most frequently used effect sizes, 

Cohen’s d, was consistently considered to be least informative.  However, the definition of 

Cohen’s d contains the term standard deviation, a statistical term that rarely appears in everyday 

language.  Also, partial eta square was presumably rated as less informative because it contained 

the statistical term “variance” with which many participants were likely unfamiliar with.  
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Conversely, the three effect sizes that were rated as most informative (Cohen’s U3, the 

probability of superiority, and the overlapping coefficient) used percentage, which is one of the 

most frequently statistics in everyday language.  Thus, when communicating scientific findings 

for a wider audience, commonly understood statistical concepts such as proportions are 

preferable.  As a more general point with regards to standardized effect sizes, it should be noted 

that these do not require domain knowledge (in contrast to non-standardized effect sizes that 

operate in respective measurement units), and that they are hence in particular useful for 

communication with the public and researchers from other fields.  Based on the current evidence, 

we suggest that besides statistical properties that may guide researchers in reporting certain effect 

sizes (Cumming, 2014), perceived informativeness by the general public may also be considered, 

because it can potentially increase their public outreach and impact (Bonney et al., 2014).   

The current studies were based on a convenience samples and thus only provided post-hoc 

control for educational levels of participants and not for the exact profession.  Hence, the 

generalizability of the current findings is limited.  We note, however, that we found no evidence 

that our effects were moderated by educational level and statistical training.  Although this is 

speculative and remains to be tested in future studies, it is possible that our findings would 

replicate within a sample of quantitative researchers.  Also, future studies could test whether 

reports of scientific findings presented with Cohen’s U3 are processed more accurately by lay 

people, than for instance findings that are expressed with Cohen’s d, or without any effect size.  

This would provide further rationale using effect sizes in scientific communication. 

Another limitation pertains the example we used.  While we selected gender differences 

because they are accessible to everyone and concrete (Studies 1-2), and an abstract example 

(Study 3), we acknowledge that it is not clear whether our findings would generalize to other 
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contexts (e.g., mean differences between conservatives and liberals, between Christians and 

Muslims).   

However, despite largely consistent findings across both studies regarding the order of 

informativeness ratings between effect sizes, we also want to highlight that even the most 

informative effect size (Cohen’s U3) was on average rated as only “slightly informative” (a “5” 

on the 7-point scale ranging from 1 to 7).  Future research could thus test whether embedding 

them in a larger context such as a newspaper article would further increase the perceived 

informativeness and whether more informative effect sizes result in more behavioral 

consequences.  For example, are students more willing to try a new learning method if the 

findings of a study advertising this method were presented with Cohen’s U3 rather than Cohen’s 

d or no effect size.   

Informativeness could also be enhanced through visualizations in form of statistical 

graphs, infographics, and graphical abstracts can likely improve science communication.  

However, the comparability between graphs can be limited, for example because of differences in 

graph type (e.g. bar plot vs a cake diagram) and 2) graphs tend to consume more space in 

publications.  In contrast, standardized effect sizes are not affected by different measurement 

scales, can be converted into each other, and communicate essential information very concisely.  

Although empirical work on this topic is still scarce, visual aids in combination with effect sizes 

might help making abstract information more accessible and intuitive to a wider audience (e.g., 

Gardiner, Sullivan, & Grand, 2018; Lazard & Atkinson, 2015).   Such visual aids in combination 

with effect sizes could be reported in press releases or lay summaries of journals.   

Conclusion.  To further improve the informativeness and transparency of scientific 

communication, quantifying differences through effect sizes is important.  Across three studies, 
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we compared several effect sizes relevant for comparisons of two groups.  Based on our findings, 

we suggest reporting Cohen’s U3 along with a statistical significance statement. 
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Appendix 

Below is the R code for the three effect sizes, which were judged to be most informative, 

including Cohen’s d.  

# Cohen's d 

install.packages("effsize") 

library(effsize) 

cohen.d(x, y, na.rm = T) # Computes Cohen's d. x and y are vectors, containing 

the data. Add after "= T" ", paired = T" if appropriate. 

d <- cohen.d(x, y, na.rm = T)[[3]] # extracts only Cohen's d 

 

# Cohen's U3 

u3 <- function(d){pnorm(d)} # After copy + pasting this to R, you can compute 

the U3 for a given d. For example, you can get Cohen's U3 for d = 0.50 with 

"U3(0.50)". Do this analogue for the other effect sizes listed below 

 

# Common language effect size (CLES; McGraw & Wong, 1992) 

cl <- function(d){pnorm(d/sqrt(2))} 

 

# Probability of superiority A (Ruscio, 2008), which is the non-parametric 

version of the CLES 

ps <- 

function(x,y){suppressWarnings(as.numeric(wilcox.test(x,y)[1])/(length(x)*leng

th(y)))0} # Enter "ps(x, y)" in R, with x and y being vectors 

 

# Overlapping coefficient (OVL): 

OVL <- function(d){2*pnorm((-abs(d))/2)}   
 


