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Abstract

There is increasing interest in the intrinsic activity in the resting brain, especially that of ultraslow and slow oscillations.
Using near-infrared spectroscopy (NIRS), electroencephalography (EEG), blood pressure (BP), respiration and heart rate
recordings during 5 minutes of rest, combined with cross spectral and sliding cross correlation calculations, we identified a
short-lasting coupling (duration &100 s) between prefrontal oxyhemoglobin (HbO2) in the frequency band between 0.07
and 0.13 Hz and central EEG alpha and/or beta power oscillations in 8 of the 9 subjects investigated. The HbO2 peaks
preceded the EEG band power peaks by 3.7 s in 6 subjects, with moderate or no coupling between BP and HbO2
oscillations. HbO2 and EEG band power oscillations were approximately in phase with BP oscillations in the 2 subjects with
an extremely high coupling (squared coherence w0:8) between BP and HbO2 oscillation. No coupling was identified in one
subject. These results indicate that slow precentral (de)oxyhemoglobin concentration oscillations during awake rest can be
temporarily coupled with EEG fluctuations in sensorimotor areas and modulate the excitability level in the brains’ motor
areas, respectively. Therefore, this provides support for the idea that resting state networks fluctuate with frequencies of
between 0.01 and 0.1 Hz (Mantini et.al. PNAS 2007).
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Introduction

One of the major tasks of the brain is to organise, control and

execute motor behaviour. For this, two cortical regions are of

special importance, the prefrontal cortex and the primary motor

cortex. The former plays a role in the conscious experience of

intending to act, the latter in the execution of the motor act [1].

The prefrontal cortex is on the summit of the cortical motor

hierarchy and is widely connected with many other brain

structures, cortical and sub-cortical. In the case of self-paced

movement, activation spreads from the prefrontal cortex via the

premotor areas to the primary motor cortex. In the course of

movement preparation the Bereitschaftspotential is generated [2]

and the sensorimotor rhythms are desynchronised (premovement

event-related desynchronisation, (ERD) [3]), additionally the heart

rate is decreased ([4],[5],[6]). All these phenomena are measurable

a few seconds prior to movement onset and act as a good example

of the mutual interaction between the brain and the heart, as first

postulated by Claude Bernard about 150 years ago ([7] pp. 71–72,

originally published in 1872). Functional magnetic resonance

imaging (fMRI) studies have shown that the decision to perform

either a self-paced left or right hand movement can be encoded in

the prefrontal cortex up to 10 s before it enters awareness [8]. This

relatively long time span and the beginning of the heart rate (HR)

deceleration a few seconds prior to movement needs special

attention.

An interesting property of the brain is the slow fluctuations of

fMRI blood oxygenation level-dependent (BOLD), near-infrared

spectroscopy (NIRS) and electroencephalogram (EEG) signals.

Although slow and infraslow fluctuations are a prominent feature

in EEG, BOLD and NIRS signals, we still do not know where they

originate. There are different possibilities, such as, for example,

the firing of neurons in the reticular formation of the brain stem,

which waxes and wanes with a period of &10 s during

wakefulness and sleep [9]. Alternatively, neurons may slowly

modulate their activity level because of intrinsic excitability

changes [10]. Additionally, slow systemic fluctuations due to the

dynamics of cerebral autoregulation may also play a role [11].

Fluctuations around 0.1 Hz in the resting brain found in the EEG

([12],[13]) and in the oxyhemoglobin (HbO2) and deoxyhemo-

globin (Hb) concentrations ([14],[15],[16]) are of special interest.

Interestingly, intrinsic activity, as measured with fMRI-BOLD

and EEG in the resting brain, is organised in multiple highly

specific functional anatomical networks that fluctuate at frequen-

cies between 0.01 and 0.1 Hz [17]. Information about the

coupling of cortical networks can be obtained not only from

fMRI studies but also by the study of temporal correlation between

2 hemodynamic signals (e.g. HbO2 and Hb) or between

hemodynamic and EEG band power signals in low frequency

ranges. For example, the phase-shift between HbO2 and Hb

oscillations around 0.1 Hz in the prefrontal cortex depends on the

mental workload [15] and the fronto-posterior connectivity in the

resting state is significantly higher for HbO2 compared to Hb

oscillations around 0.1 Hz [16]. Of additional interest is the

observation that slow prefrontal HbO2/Hb oscillations can be
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phase coupled with the slow BP oscillations with a similar phase

shift during rest and movement tasks [18].

A close interaction exists between the prefrontal cortex and the

primary motor cortex during movement tasks. It is, therefore, of

interest to ask whether some functional coupling between both

cortical areas also exists in the resting brain. Thus, we performed a

combined NIRS and EEG study to explore the correlations

between slow prefrontal HbO2/Hb oscillations and central alpha

and beta power fluctuations during rest. From [18] and another

recently published paper [16] there is evidence that &0:1 Hz Hb

and HbO2 concentration oscillations during rest are rare and

found only in a small group of subjects.

We recently reported the novel finding of coupling between

prefrontal HbO2 fluctuations and central EEG band power

changes during rest [19]. This study was preliminary with the

following limitations: (i) EEG data were band pass filtered in

subject-specific most reactive alpha and beta frequency bands

determined in the movement session, (ii) segments with relatively

clear HbO2 waves were selected by visual inspection of the raw

data, (iii) consecutive positive HbO2 peaks in the selected segment

were marked and used as triggers for averaging over aligned

segments of HbO2, Hb and EEG band power, and (iv)

determination of the delays between the positive peaks of the

averaged HbO2 and EEG band power changes. To obtain

support for this coupling we used a different methodology in this

paper : (i) the use of the same frequency bands in each subject, (ii)

the use of sliding cross correlation analysis to investigate the

coupling between prefrontal HbO2 fluctuations and EEG band

power changes, (iii) determination of the delay between HbO2 and

EEG oscillations from the cross correlation function and (iv)

application of appropriate statistical tests to confirm the presence

of transient periods of coupling between HbO2 and EEG. A

further goal of this study was to relate the EEG band power

fluctuations during rest to concomitant slow oscillations in HbO2,

BP and heart rate.

Methods

The group of subjects, the recording condition and the coupling

between slow (de)oxyhemoglobin and blood pressure oscillations

have been described in detail in a previous paper [18]. The phase

coupling was estimated in 19 subjects via cross-spectral analysis

between BP, HR, and NIRS signals during 5 minutes of rest with

special emphasis on the coupling between HbO2 and Hb

concentration changes. A reliable estimated phase can be expected

when the coherence is high (w0:5; see [20]). In the case of HbO2

and Hb oscillations only 9 subjects displayed such a reliable

estimated phase coupling (COH 2
w0:5) with a mean (+SD ) of

0:71+0:10 (the other 10 subjects displayed a mean (+SD ) of

0:30+0:13). These nine subjects were used for further analysis.

Subjects and Experimental Paradigm
The investigation was carried out in 9 naive, healthy subjects (2

male, 7 female) aged 20 to 31 years (24+3:1, mean + SD). All

subjects displayed phase coupled slow oxy- and deoxyhemoglobin

oscillations during rest (for details see [18]). The subjects all

voluntarily participated in a study with an initial data recording

during 5 minutes of rest without any instruction. All subjects were

right-handed (Edinburgh- Handedness-Inventory (EHI)), had

normal or corrected to normal vision and were seated in a

comfortable armchair for the experiments. The experiments were

in compliance with the World Medical Association Declaration of

Helsinki. The protocol was approved by the Ethics committee of

the Medical University of Graz, and the subjects gave informed

written consent before participating.

Data Recording and Pre-processing
We recorded ECG, blood pressure, (de)oxyhemoglobin, respi-

ration and EEG. All signals were sampled at a frequency of

500 Hz. ECG was recorded bipolarly at electrodes placed on the

thorax (filter setup: 0.5–100 Hz). Blood pressure was recorded

continuously via a non-invasive monitoring system (CNAP

Monitor 500, CNSystems, Austria) from the proximal limb of

the index or middle finger. The respiration patterns were obtained

by using a respiratory sensor (Respiratory Effort Sensor, Pro-Tech

Services Inc., filter setup: 0.1–100 Hz).

Three EEG signals were recorded (0.5–100 Hz) bipolarly over

the three primary motor areas (left hand, foot and right hand

representation areas) of the sensorimotor cortex (electrodes were

placed 2.5 cm anterior and posterior to C3, Cz and C4) using a

biosignal amplifier (g.BSamp, g.tec medical engineering GmbH,

Austria). (De)oxyhemoglobin concentration changes were re-

corded with a custom made one-channel, continuous wave

method-based NIRS system (for details see [21]). The sources

and the detector were placed over the left lateral prefrontal

cortex (Brodmann area 10, this area is responsible for the

temporary organisation of movement including the prefrontal

function of readiness to act [22]) 1.5 cm to the left and right of

position FP1 according to the international 10/20 system for

EEG recording. A fifth-order Butterworth filter with a cut-off

frequency of 0.9 Hz was used to remove variability due to the

cardiac cycle.

ECG and BP Processing
After detection of the beat-to-beat intervals (RRI) in the ECG

signal (based on an algorithm using a filter bank to decompose the

ECG signal into various subbands), the intervals were linearly

interpolated, resampled at 2 Hz, and displayed as RRI time series.

From the arterial blood pressure recording, the systolic (BPsys) and

diastolic (BPdia) pulse pressure amplitudes were extracted, linearly

interpolated, resampled at 2 Hz, and displayed as BPsys and

BPdia time series. A transfer function model [5] was used to

remove respiratory-related variability from the instantaneous RRI-

and BP-time series. Examples of such time series, together with

NIRS and EEG power signals, and respiration are shown in Fig. 1.

Estimation of Coherence and Phase Spectra
Cross-spectra were calculated for the BP and RRI time series

and HbO2 (Hb) signals resampled at 2 Hz. The spectral values of

1024 samples were smoothed using a 31-point triangular window

(for details see [18], [20], and [23]). After an automatic search for

the largest peak in the cross-spectrum in the range 0.07–0.13 Hz,

the corresponding squared coherence (COH2) and phase-shift

(PHA) values were determined. The frequency of the peak was

termed dominant frequency (DF) and named DF1 for the

dominant frequency of HbO2 vs. Hb cross spectra, DF2 for

HbO2 vs. BP spectra and DF3 for BP vs. RRI spectra.

EEG Processing
The EEG signals were band pass filtered in the frequency bands

9–14 Hz and 15–25 Hz, the samples squared and then low pass

filtered with a fourth-order Butterworth filter (cut-off frequency

0.13 Hz). The resulting band power time courses were log

transformed and resampled at 2 Hz. The signals were segmented

via a sliding window approach with a window length of 100 s and

step size of 50 s. The cross correlation between EEG band power

Slow Oxyhemoglobin & EEG Oscillations during Rest
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and HbO2 signals was calculated for every window and the largest

peak was identified in the cross correlation plot +50 s, this was

used to calculate the delay between the two signals. The signals

were offset against one another by this delay and the correlation

calculated.

Statistical Analysis
Relationships between HbO2/Hb changes within the prefrontal

cortex and EEG beta band activity within the primary motor areas

were measured via the correlation coefficient. Because the nature

of the correlation appears to change dynamically over time the

correlation was calculated within a sliding window of length 100 s

and step size 50 s. These values were chosen to provide a balance

between the need for a short window length to give accurate

measures of the dynamics of the changes in correlation between

the signals and a sufficiently long window length to allow accurate

estimation of the correlation coefficients.

Statistical significance of the correlation between the HbO2 and

EEG signals was estimated via a bootstrapping approach. The

signals within each 100 s window are assumed to be locally

stationary and bootstrap replications of the signals within each

window were generated directly from the signals within each

window. To test the assumption of local linearity within the

windows and global non-linearity over the whole signals non-

linearity tests based upon estimates of the third order moments of

the time series, as proposed in [24], were applied to each window

and the whole signals.

The traditional approach towards bootstrapping is to generate

bootstrap replications of each dataset under a suitable null

hypothesis. In the case of correlation, a suitable null is that the

relationship between the signals is random. To generate bootstraps

under this null, sample by sample shuffling may be used. However,

sample-wise shuffling assumes consecutive samples to be indepen-

dent. This is not the case in EEG or NIRS signals and so a

different approach is required. The recommended approach is

therefore to use a moving block bootstrap, in which the signal is

segmented into consecutive blocks which are then shuffled [25].

Doing so maintains, on average over multiple bootstraps, the

sample to sample dependencies, while breaking the relationships

between the signal pair.

However, this approach raises the question of how one chooses

the block length. A proposed solution is to draw the block length

from a geometric distribution, referred to as the stationary

bootstrap [26]. This has the advantage of generating bootstrap

replication signals which are automatically centered on the sample

mean and have been demonstrated to have good consistency and

asymptotic accuracy.

Therefore, the stationary bootstrap approach is used in this

work. In total 4,000 bootstraps are generated for each window

position from the EEG and NIRS signals within the windows. The

significance of the correlation between the original signals is then

estimated against the distribution of correlation values estimated

from the bootstrap replications. Finally, Bonferroni correction for

multiple comparisons was applied as an additional check for the

validity of the statistical significance.

Figure 1. Data from a representative subject (S8). From top to bottom: time series of BPdia (mmHg), RRI (ms), HbO2 (mM*mm), Hb (mM*mm),
EEG band power (C4, 15–25 Hz), and respiration (a.u.) during 300 s of rest. Relationships between individual peaks are marked by stippled lines.
doi:10.1371/journal.pone.0043640.g001

Slow Oxyhemoglobin & EEG Oscillations during Rest
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Results

Coupling between Prefrontal Hemodynamic and Central
EEG Power Fluctuations

The assumption of local linearity and global non-linearity is

borne out. 2% of 100 s segments are seen to be non-linear while

87% of the whole signals are seen to be non-linear. The coupling

results of all subjects (maximal correlation, lag, significance) are

summarised in Table 1 and examples of cross correlation functions

from 2 representative subjects are shown in Figs. 2 and 3. The

sliding cross correlation analyses revealed, in 8 subjects, a

significant (pv0:01) correlation (rw0:3) between 100 s segments

of HbO2 and EEG-band power with a preference to channels C3

and Cz and a slight preference for the 15–25 Hz band.

Remarkably, with the exception of one measure, the correlation

peak delays were all positive, meaning that HbO2 concentration

changes preceded the EEG band power changes. On average this

delay (with the exception of 2 subjects indicated in Table 1) was

3:66+2:45 s. In the majority of subjects only one 100 s segment

revealed a significant coupling.

Subjects S2 and S5 need special attention, both exhibit

oscillating cross correlation functions (CCFs) (for an example see

Fig. 2). The former with a correlation peak delay of 11.5 s and the

latter with a delay of 10.5 s (see Table 1). From the CCF in Fig. 2

(subject S2) it can be interpreted that both the EEG beta power

and HbO2 oscillations are in-phase in the window 150–250 s and

that the HbO2 precedes the EEG oscillations by one period,

namely 11.5 s. In subject S5 the CCF also displayed an oscillating

behaviour and showed peaks at 2 s (non-significant) and 10.5 s

(significant; pv0:01, see Table 1). In this case the HbO2 preceded

the EEG oscillations either by 2 s or more likely by 10.5 s (the

difference of 10.5 s minus 2 s = 8.5 s corresponds to the period of

the HbO2 oscillations).

In subject S8, another representative subject, the CCF displayed

a correlation peak delay of 2 s (Fig. 3) meaning that the HbO2

preceded the EEG oscillations by 2 s in the window 150–250 s.

Coupling between Slow BP, RRI, HbO2 and Hb
Oscillations

For the interpretation of the coupling between slow HbO2 and

EEG power oscillations, the average phase coupling between the

HbO2 and Hb, HbO2 and BP time series, and BP and RRI time

series, are of interest. The dominant frequencies were determined

for HbO2/Hb oscillations (DF1), HbO2/BP oscillations (DF2)

and BP/RRI oscillations (DF3). The different dominant frequen-

cies and phase couplings are summarised in Table 2. All subjects

except one (S7) displayed similar DFs for HbO2/Hb and BP/RRI

oscillations (differences between DF1, DF2 and DF3 ƒ0:02 Hz).

In subject S7 no coupling (COH2
v0:5) was found between

prefrontal HbO2 and BP oscillations, due to the different

dominant frequencies of BP and HbO2 oscillations.

Inspection of Table 2 reveals that 2 groups of subjects can be

identified, subjects with a high coupling between slow autonomic

Table 1. Correlations between EEG and HbO2 for all subjects.

C3 Cz C4

Frequency
band

Window
p,0.01 delay corr. delay corr. delay corr. delay

Hz s s s s s

S1 9–14 – – – – – – –

15–25 0–100 3.5 0.33 – – – – 3.5

S2 9–14 – – – – – – –

15–25 150–250 9.5 0.36 11.5 0.49 – – 11.5/0.0

S3 9–14 100–200 20.5 0.31 0.5 0.36 0.5 0.36 0.5

15–25 – – – – – – –

S4 9–14 200–300 8.0 0.33 – – – –

15–25 200–300 8.5 0.38 – – – – 8.5

S5 9–14 50–150 – – – – 11.0 0.38

15–25 50–150 – – – – 10.5 0.36 10.5/2.0

S6 9–14 150–250 – – 2.0 0.32 – – 2.0

15–25 – – – – – – –

S7 9–14 200–300 – – 11.5 0.31 – –

15–25 0–100 5.5 0.33 – – – – 5.5

S8 9–14 0–100 – – 4.5 0.31 – –

15–25 150–250 2.0 0.41 – – – – 2

S9 9–14 – – – – – – –

15–25 – – – – – – –

Mean 3.66

SD 2.45

For each subject 100 s windows, which exhibit significant correlation (r.0.3), and their corresponding delays, are listed in the 9–14 and 15–25 Hz frequency bands. In
the last column the delays with the largest correlation are indicated. For subject’s S2 and S5 the second largest correlations are also marked. Mean delay (+ SD) is

calculated without subject’s S2 and S5. Subjects with a high coupling (COH 2
w0:70 between HbO2 and BP are highlighted in grey.

doi:10.1371/journal.pone.0043640.t001
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BP and slow central HbO2 oscillations (COH2
w0:70; S2, S5, S9)

or no coupling (S7), and subjects with a moderate coupling

(0:5wCOH2
v0:7; S1, S3, S4, S6, S8). In the group with a high

coupling the phase shifts between HbO2 and Hb oscillations were

small (,220u and ,0.7 s, respectively). In the group with a

moderate coupling the phase shifts between HbO2 and Hb

oscillations were moderate to large (.60u). Remarkably, in 4 of

Figure 2. From top to bottom. cross correlation function (CCF) for the 150–250 s window, time courses of EEG log band power (Cz, 15–25 Hz) and
HbO2 during 300 s of rest and CCF calculated from the total 300 s (5 minute) epoch. Subject S2. Note, the significant correlation (r = 0.49, , p,0.01) in
the 100 s window and the non-significant correlation (r = 0.2) for the total 300 s.
doi:10.1371/journal.pone.0043640.g002

Figure 3. From top to bottom. cross correlation function (CCF) for the 150–250 s window, time courses of EEG log band power (C3, 15–25 Hz) and
HbO2 during 300 s of rest and CCF calculated from the total 300 s epoch. Subject S8.
doi:10.1371/journal.pone.0043640.g003

Slow Oxyhemoglobin & EEG Oscillations during Rest
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these subjects (S1, S4, S6, and S8) the Hb preceded not only the

HbO2 but also the BP oscillations.

Discussion

Reliability of the Cross Correlation
Although it’s well known that non-linear components play a

role in the generation of brain (e.g. [13] and [27]) and

cardiovascular rhythms (e.g. [28] and [29]) we used, in a first

step, linear methods and thereby verified the presence of

coupling between slow fluctuating hemodynamic and EEG

signals. The next step in our research will be to plan a

multichannel NIRS and EEG recording with the use of non-

linear analysis methods. In particular, the observation that Hb

frequently displays an oscillatory behaviour around half the

frequency of the HbO2 oscillations (e.g. 0.05 Hz vs. 0.1 Hz) is

an indicator of non-linearity.

The EEG and physiological processes are known to be non-

linear processes with high degrees of inter-subject variability [30].

It is, therefore, unsurprising that the relationship between

physiological processes should be non-stationary, with short lived

periods of significant correlations occurring at different times

between the EEG and HbO2 signals. Correlation is a linear

method, that is, it attempts to measure the degree of a linear,

stationary relationship between a pair of signals. Therefore, to

measure a non-stationary relationship with the correlation

function it is necessary to apply a sliding window approach, as is

done in this work, with the assumption that the relationship is

transiently stationary (stationary within the window). The choice of

the window length and step size are based upon visual

observations of apparent relationships between the signals (see

[18] for further details). Thus, this work may be seen as a statistical

verification of visually apparent relationships between the EEG

and HbO2 processes. The sliding window is necessary to account

for the non-stationarity of the signals, but it does not solve the

question of non-linearity. To solve the latter other methods have to

be used, such as Mutual Information, bicoherence or non-linear

association measures.

It may be of interest, in future work, to make a more detailed

analysis of the non-linear dynamical relationships between the

physiological signals. For example, the phase locking value

coupled with hidden markov models (HMMs) could be used to

do this, as is the case in e.g. [31].

Correlation between Prefrontal Hemodynamic and
Central EEG Band Power Changes

The main finding of the present study was the temporary

coupling of slow prefrontal HbO2 oscillations with similar

fluctuations of EEG alpha and/or beta power in sensorimotor

areas in the resting brain. Temporary means that, in most subjects,

slow HbO2 oscillations revealed a significant correlation (pv0:01)

with EEG band power oscillations for only approximately 100 s

intervals. In some subjects a significant correlation was also found

for longer periods. Some explanation is needed for the correlation

findings in the two representative subjects S2 and S8. In both cases

the correlation was significant; in S2 the correlation function was

in-phase with the HbO2 and EEG changes (Fig. 2) but in S8 it was

delayed by 2 s (Fig. 3).

The coupling, for only short time windows, between prefrontal

hemodynamic and central electrical oscillations is not unexpected.

There is a large body of literature ([9],[13],[17],[32],[33],[34])

reporting on EEG fluctuations ranging from ultraslow (&0:02 Hz)

to slow (&0:2 Hz) and on nonstationarities of correlated

hemodynamic (fMRI BOLD signal), heart rate, and EEG alpha

power fluctuations of the braiǹs resting state (see e.g. [35]). This

means the intrinsic brain activity is never stationary and is also

closely linked to slow changes of the hearts beat-to-beat intervals

(RRI). The latter are modulated not only by pathways originating

in the prefrontal cortex [36] but also by the slow BP waves of the

baroreflex loop [37] whereby these waves precede the RRI waves

by &2 s [18], [20], see also (Table 2).

Relationships between HbO2-EEG Coupling and Slow
Oscillations of HbO2, Hb, BP and RRI

The 2 subjects with an extremely high coupling (COH 2
w0:8)

between HbO2 and BP (S2, S5) and between HbO2 and Hb

Table 2. For each subject, couplings are listed between, HbO2 and Hb, HbO2 and BP, and BP and RRI.

Coupling HbO2 vs Hb Coupling HbO2 vs BP Coupling BP vs RRI

DF1
Period
DFp phase shift COH2 DF2 phase shift COH2 DF3 phase shift COH2

Hz s grad s Hz grad s Hz grad s

S1 0.09 10.9 2201 26.1 0.63 0.10 2166 24.6 0.59 0.09 262 21.9 0.72

S2 0.08 12.2 220 20.7 0.87 0.08 246 21.6 0.95 0.08 286 23.0 0.91

S3 0.08 11.9 280 22.6 0.69 0.09 299 23.1 0.55 0.08 252 21.8 0.61

S4 0.11 9.2 267 21.7 0.55 0.11 258 21.5 0.65 0.11 283 22.1 0.77

S5 0.11 8.8 214 20.3 0.83 0.12 214 20.3 0.92 0.12 253 21.2 0.84

S6 0.08 11.9 218 20.6 0.70 0.07 22 20.1 0.54 0.09 269 22.1 0.48

S7 0.08 12.2 0 20.0 0.66 – – – – 0.13 2109 22.3 0.74

S8 0.10 10.2 2101 22.9 0.64 0.09 228 20.9 0.62 0.09 291 22.8 0.79

S9 0.12 8.3 27 20.2 0.76 0.12 269 21.6 0.70 0.12 289 22.1 0.81

mean 0.10 10.62 256.44 21.67 0.70 0.10 260.25 21.70 0.69 0.10 277.11 22.15 0.74

SD 0.01 1.55 64.99 1.96 0.10 0.02 52.84 1.49 0.16 0.02 19.27 0.52 0.13

Dominant frequencies (DFs), periods, phase shifts, and squared coherence values (COH2) are listed in each case. Subjects with a high coupling (COH2
w0:70) are

highlighted in grey.
doi:10.1371/journal.pone.0043640.t002
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oscillations also displayed high coupling between BP and RRI

oscillations (see Table 2). In these two subjects the central EEG

band power displayed, for &100 s, a significant (pv0:01)

coupling with the prefrontal HbO2 oscillations in the form of

cyclic amplitude changes of EEG power with a frequency of

0.08 Hz and 0.11 Hz, respectively. From this it can be interpreted

that weak periodic fluctuations of the central EEG power were

temporarily related to autonomic blood pressure oscillations with a

lag of 13.1 s (11.5+1.6 s) in subject S2 and a lag of 2.3 s (2+0.3 s)

and 10.8 s (10:5z0:3 s), respectively in subject S5.

In other words, in the case of an extremely high phase coupling

between HbO2 and BP oscillations and a phase shift close to zero

between Hb and HbO2 oscillations, cerebral blood volume (CBV)

oscillations of large magnitudes are dominant [38]. Therefore, it

can be assumed that the blood pressure (Mayer waves) is the

driving force for common fluctuations of the cerebral HbO2, Hb,

and EEG band powers.

In the case of a moderate phase coupling between HbO2 and

BP and a moderate to large phase shift between Hb and HbO2

oscillations we can assume the dominance of cerebral blood flow

(CBF) and oxygen consumption fluctuations, respectively. This

may be characteristic of a neurovascular coupling [38]. The

existence of some coupling can be supposed in all of the subjects

with a significant correlation between prefrontal oxyhemoglobin

and central EEG power changes. Such a coupling is not only

found in the awake state in adults but also in preterm infants

during quiet sleep [14]. In pre-term and full-term infants the

occurrence of EEG bursts can display a periodic pattern with

inter-burst-intervals between 10–15 s, dependent on the concep-

tual age ([13], [32]) and is associated with delayed changes of Hb

and HbO2 concentrations.

At this time it’s not completely clear how the frequency of the

slow blood pressure waves (Mayer waves) can be explained. Two

theories have been proposed: the central pacemaker theory

([39],[40],[41]) and the baroreflex loop theory ([20], [37]) For a

detailed discussion see [42]. Support for a central oscillator

(pacemaker theory) is given by the slight lead in slow Hb

oscillations before BP oscillations, as found in 4 subjects. Clear

support of the baroreceptor theory is given by the dominance of

CBV oscillations, found in 2 subjects.

Some comment is needed on the fact that no EMG was

recorded. From the EEG/MEG work of Claus et al. [43] we know

that the frontal muscles show a peak in the 20–30 Hz band and

temporal muscles in the 40 Hz band and above. Due to the

location of our electrode positions over midcentral and temporal

areas and the analysis in the 15–25 Hz band spurious results are

unlikely. Also, the similar results reported in the alpha and beta

bands rules out a significant EMG contribution in EEG signals.

The large variability in the HbO2-EEG couplings, as

documented in Table 1, is not completely unexpected, when the

non-linearity of the involved cerebral and cardiovascular systems

([27], [28], [29]) and the complexity of interactions between slow

EEG [12], cerebral (de)oxyhemoglobin [16], and cardiovascular

(Mayer waves) fluctuations in the resting state are taken into

consideration. The dominant frequency of HbO2 oscillations

varied not only from subject to subject (0.08 to 0.12 Hz, see

Table 2) but also within subjects and the coupling between BP and

HbO2 varied between close to 1 (S2, S5) and close to zero (S7).

Indeed, it could be argued that the large variability in the results

could be reduced by controlling for specific psycho-physiological

factors in the subjects. However, the exploratory nature of this

research entailed the uncontrolled recruitment of subjects for this

study.

Additionally, the phase delay between HbO2 and Hb oscilla-

tions was large (e.g. ,180u in S1), moderate (S3, S4, S8) or close to

zero (S2, S5, S6, S7, S9). One explanation for the relative

dominance of significant HbO2-EEG couplings at electrode

position C3 on the left hemisphere could be that all subjects were

right-handed. Such right-handers display a clear preponderance of

the dynamics of sensorimotor rhythms in the left hemisphere [44].

Although the variability is large, it is remarkable that similar delays

between HbO2 peaks and EEG power maxima (3.6 + 0.9 s [19])

and the delay of the cross correlation maximum from zero (3.7 +
2.5 s) are obtained with 2 completely different methods (see the

last paragraph of the Introduction). This gives some support for

the robustness of the results.

Choice of EEG Bands and Interpretation of Short-lasting
Increases of Central Alpha and/or Beta Power

The classical central mu rhythm ERD is present in the 9–13 Hz

band but mu event-related synchronisation (ERS) during inhib-

itory control of acquired motor programs is often found between

12–14 Hz [45]. Therefore, we studied the extended alpha band,

9–14 Hz. The central post-movement beta ERS (beta rebound), a

short-lasting beta burst after termination of movement or

somatosensory stimulation ([3], [46]) shows area specific resonance

frequencies: lower beta components (v20 Hz) are predominantly

found over the hand area (17:4+1:8 Hz), whereas upper beta

components (w20 Hz) show the largest frequency components at

mid-central sites overlaying the foot representation area and

supplementary motor area (21:5+3:3 Hz; [47]). To have only one

beta band we selected the 15–25 Hz range for our study.

An interesting finding is the temporary periodic increase of

alpha and/or beta power during rest. How can this be interpreted?

Various studies with combinations of EEG and trans-cranial

magnetic stimulation (TMS) [45] and fMRI and EEG ([35], [48])

have shown that a short-lasting increase of central alpha (mu)

activity can be related to deactivation or inhibition in sensorimotor

structures. From TMS studies ([49] and [50]) we have further

evidence that the excitability of corticospinal structures is reduced

during the generation of the beta rebound. Summarising these

observations, we can speculate that the temporary periodic

increase of central alpha and/or beta power in the resting brain

can be viewed as the result of a periodic decrease of the excitability

level in sensorimotor areas. The opposite, an alpha and/or beta

power decrease (desynchronisation), can be viewed as an

electrophysiological correlate of an activated cortical network

involved in information processing [51]. Therefore, we hypothe-

sise that the observed slow fluctuations of central EEG band power

following the prefrontal HbO2 oscillations in the resting brain

represent slow intrinsic fluctuations of the excitability level in

sensorimotor areas. Recently, it has been shown that very slow

EEG fluctuations (0.01–0.1 Hz) are related to cognitive processes

and can predict the dynamics of stimulus detection in humans

[10].

Conclusion
Intrinsic prefrontal HbO2 oscillations with frequencies of

approximately 0.1 Hz in the resting brain can be coupled, for

short time periods of approximately 100 s, with EEG alpha and/

or beta power oscillations in sensorimotor areas. We therefore

suggest that a coupling between HbO2/Hb and EEG oscillations

is an important feature of the resting brain not only found in

infants [14] but also in adults. It has to be explicitly mentioned,

that a prerequisite for the study was a reliable phase coupling

(COH2
w0:5) between HbO2 and Hb, whereby such a coupling

was found only in a relative small portion of subjects. In the case of
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a high phase coupling between BP and HbO2 oscillations

(COH2
w0:8) it can be speculated that the slow BP oscillations

(Mayer waves) are the driving force for temporary central EEG

band power oscillations. The temporary phase coupling between

HbO2 and EEG band power oscillations provides further evidence

that resting state networks can fluctuate with frequencies between

0.01 and 0.1 Hz [17].
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