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Brain-machine interfaces (BMIs) promise to improve the quality of life of patients suffering

from sensory and motor disabilities by creating a direct communication channel between

the brain and the external world. Yet, their performance is currently limited by the

relatively small amount of information that can be decoded from neural activity recorded

form the brain. We have recently proposed that such decoding performance may be

improved when using state-dependent decoding algorithms that predict and discount

the large component of the trial-to-trial variability of neural activity which is due to

the dependence of neural responses on the network’s current internal state. Here we

tested this idea by using a bidirectional BMI to investigate the gain in performance

arising from using a state-dependent decoding algorithm. This BMI, implemented in

anesthetized rats, controlled the movement of a dynamical system using neural activity

decoded from motor cortex and fed back to the brain the dynamical system’s position by

electrically microstimulating somatosensory cortex.We found that using state-dependent

algorithms that tracked the dynamics of ongoing activity led to an increase in the amount

of information extracted form neural activity by 22%, with a consequently increase in all

of the indices measuring the BMI’s performance in controlling the dynamical system. This

suggests that state-dependent decoding algorithms may be used to enhance BMIs at

moderate computational cost.

Keywords: state dependence, brain-machine interfaces, neural coding, neural response variability, information

coding, network state

INTRODUCTION

The last two decades have seen tremendous progress in the development of brain-machine
interfaces, or BMIs (Lebedev and Nicolelis, 2006; Leuthardt et al., 2009; Andersen et al., 2014;
Bensmaia and Miller, 2014; Moxon and Foffani, 2015). These interfaces mediate communication
between a brain and the external world, and hold an enormous potential for clinical applications.
In particular, interfaces that decode neural activity (for example, decode the motor intent of the
subject from premotor cortical activity), and then use this information to command an artificial
actuator (for example, a robotic arm, a motorized wheelchair, or a computer cursor), can have a
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considerable clinical impact for the treatment of patients with
neurological diseases such as stroke, spinal cord injury, or
Parkinson’s disease (Hochberg et al., 2012; Bouton et al., 2016;
Capogrosso et al., 2016; Moraud et al., 2016).

The advances in BMIs have been assisted by technological
progress that has increased the quality and quantity of the
signals recorded from the brain and has improved current
brain stimulation techniques (Wolpaw et al., 2000; Lebedev and
Nicolelis, 2006; Brunner et al., 2011; Calixto et al., 2013; Tabot
et al., 2013; Angotzi et al., 2014; Lebedev M., 2014; Wander and
Rao, 2014; Gupta et al., 2016). Despite all these progresses, several
aspects of BMIs remain to be addressed. One key problem is
that the large trial-to-trial variability of neural responses (Faisal
et al., 2008; Quian Quiroga and Panzeri, 2009) still strongly limits
the performance of BMIs (Baranauskas, 2014; Lebedev M. A.,
2014). This problem has proved difficult to overcome by simply
increasing the number of recording or stimulating electrodes,
because trial-to-trial variability of neural activity is largely
shared among neurons. This shared variability partly arises
from intrinsic network-level factors (which can be collectively
described as “network state”) that include fluctuations in ongoing
spontaneous activity and network excitability, and the level of
neuromodulation as well as general changes in behavioral state
such as the level of arousal (Goris et al., 2014; Lin et al., 2015;
Schölvinck et al., 2015). This shared source of variability within
a network can be conceptualized by thinking of neural activity as
state-dependent: neural activity does not depend only on external
task-related variables but also on internal endogenous network
state variables, that are often collectively termed cortical state
(Buonomano and Maass, 2009; Harris and Thiele, 2011; Ritter
et al., 2015; Safaai et al., 2015).

We have recently proposed (Panzeri et al., 2016) that the
problem of shared trial-to-trial variability of neural activity may
in principle be addressed, or at least alleviated, by using decoding
algorithms based on decoding rules that properly consider the
state-dependence of neural responses and so are not confounded
by the state-induced trial-to-trial variability of neural responses
to stimuli. The simplest way to take advantage of state dependent
rules is, assuming that state-induced variability is additive, to first
estimate the amount of single-trial firing due to state-induced
variability and to discount it by subtracting it out (Safaai et al.,
2015; Panzeri et al., 2016). Although this suggestion has not
been tested yet in BMIs, studies that have used models of state
dependence of neural responses based on the observation of
neural activity encourage us to think that this idea may work. In
fact, studies using dynamical systems models of the time course
of spontaneous activity has shown that it is possible to use such
model of state dependence to obtain excellent predictions of each
single trial responses to stimuli (Curto et al., 2009; Safaai et al.,
2015). Importantly, one study (Safaai et al., 2015) has shown
that good predictions of single trial responses can be used to
dramatically improve (by up to∼70%) the performance of single
trial decoding of stimulus information from neural activity.

Building on these recent results, here we put to test our
proposal, by implementing state-dependent decoding rules in a
motor BMI that controlled the movement of a simulated point
mass moving into a viscous medium over a horizontal plane. In
this BMI, we fed to the brain information about the position

of the mass by electrically microstimulating somatosensory
cortex of anesthetized rats. We then recorded neural activity
from motor cortex in response to this electrical stimulation,
and we decoded this motor activity to drive the point mass
toward a target, until the target was reached. We compared
the BMI performance obtained with state-independent decoding
algorithms, that only used neural activity recorded in motor
cortex after the brain received information about the mass
position by microstimulation, with the performance of state-
dependent decoding algorithms that also used ongoing motor
cortical activity prior to stimulation to discount the state-
induced variability of motor cortical activity in response to
the information about the mass position. The quantitative
comparison of the BMI performance with state-independent
and state-dependent algorithms is useful to provide an initial
evaluation of the possible advantages of using state-dependent
BMIs.

MATERIALS AND METHODS

General Scheme of the State-Dependent
BMI
In this work we developed a novel neural interface, which we
termed state-dependent BMI, by including a state-dependent
decoder module to the dynamic Neural Interface described
the first time in Vato et al. (2012) and then updated in
Szymanski et al. (2011), Vato et al. (2014), Boi et al. (2015a), see
Figure 1A. Here our main goal is to test the potential advantages
of introducing such state-dependence decoding. The BMI is
summarized briefly in what follows.

The main purpose of the BMI was to control the movement
of a dynamical system (a simulated point mass moving in a
viscous medium, for details see Text S1) to reach a positional
target. Here we set-up the neural interface by dividing the space
in which the mass can move, a square box, into four equal
regions (A1,. . .,A4). We also defined four force vectors (F1,. . .,F4)
placed in the centroid of each regions and pointing toward the
target represented by a circular region placed in the center of the
workspace (Figure 1B, top left).

Before each experimental session, we also chose four
different couples of adjacent electrodes of a stimulating
multielectrode arrays placed in the somatosensory cortex (S1) of
an anesthetized rat.

An encoder provided the brain with the information about the
position of the point mass by using these couples of electrodes
to deliver different patterns of intracortical microstimulation
(ICMS) denoted as s1, . . . , s4, each one associated to a single
sensory region (Figure 1B, top-right).

Neural signals evoked by themicro-stimulation were recorded
from the motor cortex (M1) by means of a recording
multielectrode array and used to control the movement of the
dynamical system. A decoder transformed the recorded signals
into a force vector to be applied to the simulated point mass that
moved according to its dynamics, for a predefined amount of
time (Figure 1B, bottom from right to left).

The BMI task consisted in driving the simulated point mass
toward a target region (a circle around the origin of variable
size, see Results) by extracting from each stimulus-evoked neural
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FIGURE 1 | Schematic of the state-dependent bidirectional brain-machine interface. (A) We developed a state-dependent bidirectional BMI by connecting

the brain of an anesthetized rat to a simulated dynamical system represented by a point mass moving in a viscous medium. An encoder translated sensory signals

generated from the interaction of the dynamical system with the environment into brain stimulation patterns and a state-dependent decoder transformed the recorded

neural activity—both the post-stimulus evoked and pre-stimulus ongoing cortical activity—into motor commands to control the external system. (B) The space in

which the point mass can move was divided into four sensory regions (A1, . . . ,A4) and four force vectors (F1, . . . , F4) (black arrows), pointing toward the target (gray

circle), were placed in the centroid of each region. The actual position of the point mass was converted by the encoder into a pattern of intracortical microstimulation

delivered to the somatosensory cortex (top from left to right). A state-dependent decoder transformed the neural activity recorded from the motor cortex of rat’s brain

into a force vector (orange arrow) to be applied to the point mass (bottom from right to left).

response a force vector (Fdecoded) calculated as a weighted sum of
the four force vectors (F1,. . .,F4).

Neurophysiological Procedures
All the neurophysiological procedures have been performed in
accordance with DL 116/92 of the Italian legal code and approved
by the institutional review board of the University of Ferrara and
by the Italian Ministry of Health (73/2008-B). The procedures
are identical to those reported previously and are only briefly
summarized in what follows. We refer to Vato et al. (2012) for
more details.

Neural data were recorded from five male Long-Evans
rats (300–400 g) anesthetized for the entire duration of the
experimental sessions by means of Xylazine (5mg/kg) and

a mixture of Tiletamine and Zolazepam (30mg/kg) as an
alternative of using narcotic drugs (Vogler, 2006). Two
craniotomies were performed above the vibrissal representation
of the primary somatosensory (S1) cortex and above the vibrissal
motor cortex (M1) on the same hemisphere.

The stimulation microwire array (Tucker Davis
Technologies—TDT) was lowered perpendicular to S1, 900–
1100 µm under the surface (AP −3.5mm, LM +4 mm with
respect to the most posterior medial electrode of the array)
using a hydraulic microdrive. Each stimulation pattern consisted
of a train of 10 biphasic pulses (333Hz pulse frequency,
200 µs pulse duration, 100 µA pulse amplitude, 30ms train
duration) delivered from 50 to 200 times during an experimental
session.
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The recording microwire array was placed at depth 300–500
µmbelow the pia (AP+1.5mm, LM+0.5mmwith respect to the
most posterior medial electrode of the array) using a hydraulic
microdrive. These locations have been chosen for the presence
of several cortico-cortical connections between the two regions
(Ferezou et al., 2007; Chakrabarti et al., 2008; Mao et al., 2011).
Both arrays had 16 microelectrodes (2 rows of 8 electrodes, 50
µm diameter) each one separated from the neighboring ones by
250 and 375 µm along and across the rows, respectively. After
the insertion of the arrays, we let the electrodes to settle down
for 30min and then we run a commercial available spike-sorting
software (Rasputin, Plexon Inc.) identifying 10–15 single units
per experimental session that were active from the beginning
to the end of each experimental session which could last from
20 to 60min. To get an estimate of the order of magnitude
of the stability of the responses over the experimental session,
we evaluated for each unit the variation in the duration of the
whole experimental session of the stimulus-evoked activity. By
averaging the linear slope across all the units, across all the
stimuli and across all the experimental sessions, we found an
average linear regression slope of β = 0.22 ± 0.18 mHz/trial
and a percentage variation of +20.5 ± 16.35% with respect
to mean firing rate. This moderate drift of evoked firing rate
over the session is one of the sources of state dependency of
neural responses that could be discounted by state dependent
algorithms.

An illustration of the kind of recordings and responses that we
collected in this way is reported in the bottom-right of Figure 1B,

where we show the raster plots of spike trains during the pre- and
post-stimulus window of single-units recorded in motor cortex.

State-Dependent Decoder
Terminology and Assessment of Cortical States
The scheme of the state-dependent decoding algorithm is shown
in Figure 2. We considered the ongoing activity in a pre-
stimulus time window of duration 1Tpre_stim and the stimulus-
evoked response in a post-stimulus time window of duration
1Tpost_stim. We recorded the evoked and the ongoing Single
Unit Activity (SUA), for each unit n∈{1, . . . ,N}, where N is
the total number of units for each experimental session. We
discretized the SUA by binning neural spike trains into short time
intervals of 5ms and then computing the number of spikes in
each interval. As a first preliminary approach, we used uniform
time binning of shortest size (5ms) both for evoked response and
for pre-stimulus ongoing activity. However, when developing
the preliminary analyses, we noted that considering the ongoing
activity immediately before the stimulus onset with fine (5ms)
temporal precision allowed a better performance in state-
dependent decoding, whereas the beneficial effect of decoding
when considering pre-stimulus activity recorded further back
from the stimulus onset window did not need recording spikes
with such millisecond-scale temporal precision (for details see
Text S2). For this reason, we used for the pre-stimulus window
variable time bin sizes (finer bins closer to stimulus onset and
coarser bins further from stimulus onset) using a total of 39 time
bins organized as shown in Table S1. Adaptive-size time bins

FIGURE 2 | Schematic of state-dependent decoding algorithm. We used a stimulating array placed in the somatosensory cortex to deliver one out of four

different patterns of intracortical microstimulation (s1, s2, s3, s4) according to the position of the point mass. (A) The pre-stimulus ongoing activity and the

stimulus-evoked responses (a1, · · · ,aN ) were collected from a 16-channels recording array placed in the motor cortex. (B) For each trial m, we defined the state 2m

from the pre-stimulus ongoing activity based on the time averaged pre-stimulus activity or by considering the time course using temporal bins of 5 ms. (C) After a

spike-sorting algorithm discarded the stimulus artifacts (gray area), both the state variables and the post-stimulus responses were stored in a matrix (Aϑ ). For each

trial m, a Principal Component Analysis (PCA) algorithm reduced the dimensionality of the matrix and a decoder then provided a probability P
(

sd |a
m

)

representing the

posterior belief that stimulus sd was presented after observing activity am. To improve the BMI performance, the largest value among the four probabilities was

compared to a predefined threshold (Pthr ) to select either a Winner Take All or a Weighted Sum procedure to obtain the direction and the magnitude of the decoded

force, Fdecoded , to be applied to the point mass (black arrow bottom right) from the four force vectors (F1,. . ., F4) (colored arrows).
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gave an information advantage of ∼7% with respect to using
fixed-shortest-size bins.

We denote the neural spike count as Rm for the evoked
response, and as 2

m for the ongoing activity, for each trial
m∈{1, . . . ,M}, where M is the total number of trials. Each
row of Rm and 2

m corresponds to one unit and each column
corresponds to one time-bin t. For each trial m, we denote
as r

m(t) and θ
m(t) the columns of Rm and 2

m, respectively.
The vectors r

m(t) and θ
m(t) represent the population spike

counts in bin t for the evoked response considered in the time
window of duration1Tpost_stim and for the pre-stimulus ongoing
activity considered in the time window of duration 1Tpre_stim,

respectively. We have Rm ∈ R
NxTr , with Tr being the number

of time bins per trial considered in the post-stimulus window,
and 2

m∈ R
NxTθ , with Tθ being the number of time bins per

trial considered in the pre-stimulus window. Note that Tr and
Tθ depend on 1Tpost_stim and 1Tpre_stim respectively and are
constant across all trials. The time bin immediately after the
stimulation was labeled as bin #1 (t = 1) and the last time bin of
the post-stimulus time window was labeled as bin #Tr (t = Tr).
The time bin immediately before the stimulation was labeled as
bin #–1 (t = −1) and the first time bin of the pre-stimulus time
window was labeled as bin #–Tθ (t = −Tθ ).

For each trial m, we defined the Single Unit Activity (SUA)
state variables matrix as:

2
SUA,m =

[

θ
m(−Tθ ) , . . . , θ

m (−t) , . . . , θm (−1)
]

∈ R
NxTθ

(1)
For each trialm we defined the SUA state activity matrix as:

ASUA,m =
{

2
SUA,m|Rm

}

=
{[

θ
m (−Tθ ) , . . . , θ

m (−t) , . . . , θm(−1)
]

|
[

r
m (1) , . . . , rm (t) ,. . . ,rm(Tr)

]}

∈ R
Nx(Tθ + Tr) (2)

i.e., we obtained ASUA,m by concatenating the SUA state variable
matrix and the response matrix (see Figure 2, top left). In some
sessions, we found that there were fewer single units and there
was little difference in the response profiles of different single
units to the four stimuli. In such case, it was more convenient,
faster and robust to decode neural activity after neglecting single
unit identity and pooling together the activity of all units into a
single Multi Unit Activity (MUA) channel. In such sessions, we
defined a MUA state variables matrix and a MUA state activity
matrix to describe the network state exactly as we did for the SUA
case above (for details see Text S3). The quantitative criterion
to choose between using SUA or MUA was to select the signal
that optimize the decoding performance as described in Section
Decoding Algorithm.

We denoted as Aϑ ,m the generic state activity matrix where ϑ

could be one of SUA or MUA.
For each trial m, the rows of Aϑ ,m correspond to the

units and the columns to time bins, i.e., aϑ ,m
n,t ∈Aϑ ,m is the

spike count at time t recorded from unit n. We reshaped
Aϑ ,m in a row vector aϑ ,m by concatenating all of its rows:

aϑ ,m =
[

aϑ ,m
1,−Tθ

, . . . , aϑ ,m
1,−1, a

m
1,1, . . . , a

m
1,Tr

, . . . , aϑ ,m
N,−Tθ

, . . . , aϑ ,m
N,−1, a

ϑ ,m
N,1 , . . . , a

m
N,Tr

]

∈ R
N(Tθ + Tr) (3)

We called aϑ ,m state-dependent activity vector.
For each trial m, given a stimulus sm ∈ {s1, s2, s3, s4} and

a corresponding activity vector aϑ ,m , we defined as decoder
the function ŝm = D

(

aϑ ,m
)

, where ŝm denotes the predicted
stimulus.

To test the importance of taking into account the network
state and also the usefulness of defining state variables in
terms of the temporal history, rather than only of the strength
of the pre-stimulus activity, we performed three different
decoding operations. In each of the three types of decoding the
mathematical algorithm was the same, but what varied was the
neural activity that we fed to the decoder.

In the first case, that we called state-independent decoder
(shortened to SI decoder), we fed to the decoder an activity
matrix that did not contain the pre-stimulus activity (in other
words, we fed to the decoder only the response matrix). This
decoder did not use state dependence. In this case ϑ = SI
and aϑ ,m = r

m, where r
m denotes the response vector (or

state-independent activity vector).
In the second case, that we called state-dependent time-

dependent decoder (shortened to SD-TD decoder), we fed to the
decoder an activity matrix that did contain both the response
matrix and also the full temporal representation of the pre-
stimulus activity, in Equation (4). This decoder took advantage
of knowledge of network state, and used the temporal structure
of ongoing activity to determine state.

In the third case, that we called state-dependent time-averaged
decoder (shortened to SD-TA decoder), we fed to the decoder
an activity matrix that did contain both the response matrix and
also the time-averaged pre-stimulus activity, in Equation (4). This
decoder took advantage of knowledge of network state, but used
only the strength of pre-stimulus activity, and not its time course,
to determine state.

In all calculations we did, we fed to the decoder an
activity matrix that contained spike timing information in the
response (post-stimulus) period. This is because this operation

maximized the amount of state-dependent information, and
this made it more difficult for the state dependent decoder

to add information. This ensured that our results of state

dependent information increase did not result from suboptimal
consideration of the temporal structure of the responses to the
stimuli.

The state variables defined above are defined and computed in

the time domain. To check if a more compact and informative
definition of state could be obtained in the frequency domain, we

did the following control analysis. Neural oscillations are usually

quantified using LFPs. However, we could record LFPs only in

one session out of 13. Thus, we could not relate systematically

the pre-stimulus LFP oscillations to the state variations. Given

this, and to understand whether state variables could be described
with simple oscillatory parameters, in all sessions we first built the

overall session MUA by pooling the spikes of all neurons and we

then convolved it with a Volterra kernel (Poor, 1988) to generate

an analog population signal (termed convolved spiking activity
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in the following) that is similar to the LFP (the Volterra kernel
was computed from the only session in which we could record
both LFPs and spikes, and was similar in width and shape to
those reported in other studies; Kreiman et al., 2000; Rasch et al.,
2009). This process has been reported to generate a convolved
MUA signal that correlates well with the LFP recorded from
the same location (Kreiman et al., 2000; Rasch et al., 2009). We
checked this match in the session where we had both spiking
activity and LFP and we observed a good correlation between the
convolved MUA signal and the LFP (ρ = 0.61, p < 0.001).
We then filtered the convolved MUA signal in the (1–4Hz)
band and we quantified the gain in state-dependent information
that we obtained using either phase or power of this filtered
convolved MUA signal. We found that the information gain
obtained using this definition of state was 6.12 ± 1.21%,
thus smaller than that obtained with the timed-domain state
computation presented throughout this paper. Information gains
obtained when filtering this signal in frequency bands of higher
frequency were even smaller. We thus decided to use throughout
the paper the time-domain state computation procedure
described above.

Decoding Algorithm
Taking into account all trials m ∈ {1, . . . , M} , we built the state-
dependent activity matrix A

ϑ by shaping all the M vectors aϑ ,m

in rows:

A
ϑ =







aϑ ,1

...

aϑ ,M






=









aϑ ,1
1,−Tθ

· · · a1N,Tr
...

. . .
...

aϑ ,M
1,−Tθ

· · · aMN,Tr









∈ R
MxN(Tθ + Tr) (4)

For each row of A
ϑ we had N(Tθ + Tr) trial-independent

variables.
We usedmulticlass Linear Discriminant Analysis (LDA) (Rao,

1948; Delis et al., 2016) to predict the stimulus associated
with single trial activities using a leave-one-out cross-validation.
We denote by A

ϑ
tr ∈ R(M−1)xN(Tθ+Tr) the activity matrix

corresponding to the training set and by �ϑ
test ∈ N

1xN(Tθ + Tr)

the activity vector corresponding to the test trial. Before
training the LDA decoder we reduced the dimensionality of
A

ϑ
tr by Principal Components Analysis (PCA) decomposition

(Jolliffe, 2002; Onken et al., 2016), and selecting the k principal
components of A

ϑ
tr (see algorithm step-by-step description

in Text S4):

A
ϑ
tr = Hϑ ,k

tr Bϑ ,k
tr + residual (5)

where Hϑ ,k
tr ∈ R

(M−1)xk denotes the principal component scores

matrix and Bϑ ,k
tr ∈ R

kxN(Tθ +Tr) the principal components

loadings matrix. We trained the decoder on Hϑ ,k
tr with presented

stimulus indices si as class labels and we tested the decoder on
hϑ,k
test = �ϑ

testB
ϑ,k−1
tr .

For each test trial m and each d ∈ {1, 2, 3, 4}, the decoder
then provided a probability P

(

sd|a
ϑ ,m

)

representing the posterior

belief that stimulus sd was presented after observing activity a
ϑ ,m.

To improve decoding performance, we further adopted aWinner

Take All (WTA) strategy to improve the decoding performance
(Maass, 2000) if, for a given trialm, the largest of the probabilities
P

(

s1|a
ϑ ,m

)

, . . . , P
(

s4|a
ϑ ,m

)

was greater that a certain threshold
Pthr :

if max
d

(

P
(

sd|a
ϑ ,m

))

≤ Pthr

P̃
(

sd|a
ϑ ,m

)

= P
(

sd|a
ϑ ,m

)

if max
d

(

P
(

sd|a
ϑ ,m

))

> Pthr (6)







P̃
(

sd|a
ϑ ,m

)

= 1 if d = argmax
d

(

P
(

sd|a
ϑ ,m

))

P̃
(

sd|a
ϑ ,m

)

= 0 otherwise

For all test trials, we stored these probabilities in a matrix P̃ ∈
[0, 1]Mx4, where each element p̃d,m , P̃

(

sd|a
ϑ ,m

)

.

Decoding Performance Measure
To quantify decoding performance, we used an information
theoretic characterization (Shannon, 1948; Quian Quiroga and
Panzeri, 2009).

In particular, we first computed the confusion matrix Q ∈
[0, 1]4x4 quantifying the probability that a presented stimulus si
is decoded as stimulus sd. Each element Q is defined as follows:

qd,i = Q (sd|si) ,
∑

m: sm = si
P̃
(

sd|a
ϑ ,m

)

P(sm = si) (7)

We then quantified decoding performance as the mutual
information in the confusion matrix:

I (S;D) =
∑

d,i
P (si)Q (sd|si) log2

Q (sd|si)

Q (sd)
(8)

where P (si) is the probability that electrical stimulus si was
applied, and Q (sd) is the marginal probability of the decoded
stimulus in the confusion matrix (Shannon, 1948).

Information in the confusion matrix is measured in bits (1 bit
corresponds to a reduction of uncertainty by a factor of two).
It quantifies the amount of information can be extracted by
decoding the stimulus from neural activity with a given decoding
algorithm. In our case, information quantities obtained from the
SI, SD-TA, and SD-TD algorithms quantify the information that
can be extracted from neural responses without knowledge of
network state, with the knowledge of the temporal structure of
the network state prior to the stimulus, and with the knowledge
of the time-averaged strength of the network state prior to the
stimulus.

A systematic error in this measure of information was
introduced by the fact that the stimulus conditional responses
probabilities were calculated over a finite number of trials
(Panzeri et al., 2007). We corrected this bias by using a shuffling
procedure (Montemurro et al., 2007).

Decoder Parameters Optimization
We used the information in the confusion matrix I (S;D) to
optimize the parameters Pthr , k, ϑ ,Tθ and Tr . We chose the
parameter values that maximized I (S;D), by using leave-one-out
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cross-validation on the M-1 trials of the training set. We then
used the optimized parameters to evaluate the test trial (more
details are presented in Text S4 and Figure S1).

Decoded Force Vector Calculation
For each trial m, the decoded force vector was computed as
weighted sum of the four forces (F1,. . .,F4) defined during the
set-up of the neural interface using P̃

(

sd|a
ϑ ,m

)

as weights (see
Figure 2)

EFmdecoded =
∑4

d= 1
P̃

(

sd|a
ϑ ,m

)

EFd (9)

RESULTS

Neural responses to a sensory stimulation depend not just on the
sensory input but also on the intrinsic network variables defined
as network state (Buonomano and Maass, 2009). In this paper
we tested the hypothesis that the implementation of a decoding
algorithm that take into account state-induced variability in
the neural responses may increase the performance of BMIs
(Figures 1, 2).

We used state-dependent decoding rules in a motor BMI
that controlled a simulated dynamical system represented by a
point mass moving in a viscous medium (Vato et al., 2012).
Information about the position of the point mass was fed to
the brain of an anesthetized rat by electrically microstimulating
the somatosensory cortex, and the neural activity recorded from
motor cortex was decoded and used to drive the mass toward a
target, until the target was reached. The space in which the mass
could move was divided into four contiguous sensory regions
each of them associated with a different pattern of intracortical
stimulation (s1, s2, s3, s4) (Figure 1B). The original, state-
independent, implementation of this BMI (Vato et al., 2012)
was inspired by the spinal cord, which mediates movements by
generating positions-dependent force fields (Bizzi et al., 1991;
Mussa-Ivaldi et al., 1994; Tresch and Bizzi, 1999). Here, this
BMI was used because our extensive experience with it allowed
us to be confident to run it optimally in the state-independent
decoding case, which insured that the gain in performance
observed with state-dependent rules was not due to fact that the
stat-independent ones were inefficiently implemented.

We compared the BMI performance obtained by using a state-
independent decoder with the performance obtained by using
decoder algorithms that take into account the dependence of
neural responses on the cortical state (Figure 2).

The term cortical state is used in the literature to describe
a wide range of phenomena (Curto et al., 2009; Harris and
Thiele, 2011; Marguet and Harris, 2011; Pachitariu et al.,
2015). These phenomena range to the fluctuations of ongoing
activity prior to stimulation reflecting endogenous changes
in the network’s excitability (Azouz and Gray, 1999; Lakatos
et al., 2005; Curto et al., 2009; Kayser et al., 2015). Other
definition of state include the history of stimulation prior to the
current stimulus (Buonomano and Maass, 2009), fluctuations in
attention (Harris and Thiele, 2011) and/or arousal that correlate
also with biomarkers such as pupil state (Costa and Rudebeck,
2016; Joshi et al., 2016), and fluctuations in neuromodulation
(Safaai et al., 2015). Here we only consider as state variables

those corresponding to ongoing fluctuations of the network’s
excitability and quantifiable through examining ongoing network
activity a few hundreds of milliseconds prior to the application of
the stimulus.

To examine the usefulness of knowing network state (either
through the detailed examination of the time course of pre-
stimulus activity or through the simpler examination of only the
time-averaged pre-stimulus activity) we run the BMI with three
different decoders. The first, that we called state-independent
decoder (shortened to SI decoder), did not use the pre-
stimulus activity but only used the post-stimulus responses. The
second, that we called state-dependent time-dependent decoder
(shortened to SD-TD decoder), used both the post-stimulus
responses and the full temporal representation of the pre-
stimulus activity. The third, that we called state-dependent time-
averaged decoder (shortened to SD-TA decoder), operated on
post-stimulus responses and on the time-averaged pre-stimulus
activity.

To summarize, the SI decoder did not use state dependence at
all. Of the two state dependent decoders, one (SD-TA) used only
the strength of pre-stimulus activity to determine the network
state, whereas the SD-TD used also the pre-stimulus activity time
course to determine state.

Decoding Performance
We first studied the decoding performance of the BMI when run
with these three different decoding algorithms.

Figure 3A reports the average over all experimental sessions
of the information decoded with each algorithm. The SD-
TA decoder, that took into account the state but ignored its
time structure, extracted 0.026 ± 0.008 bits of information, a
larger information amount (p = 0.0015, two-sided Wilcoxon
signed rank test) than the state-independent decoder. The SD-
TD decoder that took into account state and used in full its
time structure extracted 0.062 ± 0.016 bits, a significantly larger
amount of information (p= 2.44e-4, two-sided Wilcoxon signed
rank test) with respect to both the SI decoder and the SD-TA
decoder (p = 0.0098, two-sided Wilcoxon signed rank test). The
percentage information gain with state dependent decoders over
the state-independent decoder was 9.68% for the SD-TA and
21.74% for the SD-TD decoder, respectively.

We then asked whether the gain in information when taking
into account state dependence could be explained because the
state variables itself was informative about the stimulus. A
direct relationship between stimulus and state can for example
arise when the same stimulus, applied for several consecutive
trials, creates a bias (due to habituation) in the pre-stimulus
ongoing activity. To address this issue, we calculated the amount
of information that the state variable (either defined with or
without taking into account the temporal structure of ongoing
activity) carried about the stimulus. This value was calculated
using similar decoding procedures as for the other information
quantities, but not feeding the post-stimulus response to the
decoder. We found that the information carried by both state
variables about the stimulus was significantly smaller (a factor
of two for the SD-TA gain, p = 0.047, and a factor of 4 for the
SD-TD gain, p = 2.44e-4) than the information gain of the state
dependent decoders (see Figure 3B). These results show that the
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FIGURE 3 | Decoding performance of state-dependent and state independent algorithms. (A) Information about the stimulus delivered in the somatosensory

cortex, carried by the neural activity recorded in the motor area. We compared the state-independent decoder (SI, red bar) with two different state-dependent

decoders: the state-dependent time average decoder (SD-TA), which uses state but only use time averaged pre-stimulus activity to define state), and the

state-dependent time-dependent decoder (SD-TD), which uses state and uses the full timing of pre-stimulus activity to define state). (B) Comparison between the

information gain due to the introduction of the state variable(s), computed as the difference between the information decoded from knowledge of state (either SD-TD,

green bars; or SD-TA, blue bars) and the decoded information that the state variable carried about the stimulus. The bars report the average ± S.E.M of the information

over all experimental sessions. In all figures, *, **, and *** denote significance values of p < 0.05, 0.01, and 0.001, respectively (two-sided Wilcoxon signed rank test).

information gain of both the state dependent decoders was not
merely a consequence of the fact that the state variable carried
some stimulus information, but the information gain was in its
majority due to the fact that the knowledge that response to the
stimulus depends on the state helps the decoder.

Figure 4A reports the average value, over all experimental
sessions, of the angle between the force produced by the decoding
process (Fdecoded) and the expected force represented by one of
the four force vectors (F1,. . .,F4) defined for each sensory region
to set-up the neural interface (yellow arrow, Figure 4 inset).
A perfect decoding would have led to an angle equal to zero,
while any deviation from zero can been considered as a decoding
angular error. Taking into account the temporal structure of
the state, the SD-TD decoding algorithm led to a significant
reduction of the angular error with respect to the SI decoder
(−4.61 ± 1.15 degrees; p = 2.44e-4, two-sided Wilcoxon signed
rank test). The SD-TA decoding algorithm led to a smaller, but
significant, reduction of the angular error with respect to the SI
decoder (−1.27 ± 0.74 degrees; p = 0.013, two-sided Wilcoxon
signed rank test). The percentage reduction of angular error with
state dependent decoders over the state-independent decoder
was 2.07% for the SD-TA and 7.52% for the SD-TD decoder,
respectively.

BMI Performance
We then explored if and how an increase in decoding
performance using a state-dependent algorithm was reflected
into an increase in the BMI performance in terms of generated
trajectories of the simulated dynamical system. The dynamical
system controlled by the BMI was a simulated point mass placed
in a simulated viscous medium and moving in a 36 × 36 cm
simulated horizontal plane. The goal of the BMI was to move
the point mass toward a target—a circular region placed in the

center of the plane (Vato et al., 2012; Boi et al., 2015b, 2016)
whose size was varied throughout the next subsections depending
on the analysis to be performed. We initialized the position
of the point mass at one of eight starting positions (circled
numbers in Figure 5A). The point mass moved according to the
sequence of decoded forces that the closed-loop BMI applied
to the dynamical system in order to reach the target. For each
experimental session we analyzed the decoded force vectors
after collecting 100 trajectories for each starting positon. We
measured the magnitude of the component of the decoded force
pointing toward the target region, here referred to as Force
Directed to the target (Fdir , cyan arrow in Figure 4A inset). For
each experimental session we collected 800 trajectories and we
averaged across all the decoded forces to obtain the average Fdir
force magnitude. We varied the target radius values from 0.1
to 2 cm repeating the calculation for all the 13 experimental
sessions, for the five values of the target radius and for the
three decoder (SI, SD-TA, and SD-TD) comparing the average
Fdir force magnitudes in the three decoding conditions. We
found a significant increase in the Fdir force magnitude when
we considered the temporal structure of the state with respect
to the SI decoding for all the target radius values; we had an
average increase by 33.96% (average over the different target
radius values). We had also an average increase by 14.68% in the
Fdir force magnitude when we considered the time averaged pre-
stimulus activity as state with respect to the SI decoding, for all
the target radius values (Figure 4B).

Analysis of BMI Trajectories
In order to evaluate the precision of the trajectories throughout
the entire space in which the point mass could move we first run
an analysis in which we set the target to a single point in the origin
(thus the target region had a zero area and a zero radius). In this
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FIGURE 4 | Magnitude and direction of the decoded force vectors. (A) The angular error is defined as the angle (degrees) between the force vector (Fdecoded ,

black arrow) extracted by the decoder from the recorded signal and one of the four force vectors (F1,. . .,F4 orange arrow) associated to the sensory region to whom

the actual position of the point mass belongs and. The graph shows the average ± S.E.M of the angular errors of the decoded forces over all experimental sessions

by comparing the state-independent vs. both the state-dependent decoding algorithms (SD-TA and SD-TD). The angular error gives an estimation of the decoder

performance independently of the trajectories generated by the dynamical system. (B) The directive force is defined as the magnitude of the component of the

decoded force pointed toward the target (Fdir, cyan arrow in the inset). The graph shows, in contrast with the angular error, how the average magnitude angular error

of the directive forces depends on the target radius. For each values of the target radius (from 0.1 to 2 cm) we collected 800 trajectories and we compared the

average (± S.E.M) values of the magnitude of such directive force using state-independent (red bars) and state-dependent decoders (the blue bars for the SD-TA

decoder and the green bars for the SD-TD decoder).

FIGURE 5 | Analysis of trajectories. (A) In this graph red dots indicate, for each trajectory, the closest points to the target (i.e., the center of the horizontal plane)

when the network state information is not considered. Blue and green dots represent the cases in which decoders take into account state variables from the ongoing

neural activity. Data were collected by fixing the number of steps for each trajectory (i.e., 100) and by running the system 100 times for each of the eight predefined

initial positions represented by circled numbers using the three different decoding algorithms. (B) Bar plots of the average distance of the closest points from the

target of the trajectories generated by a state-independent decoder (red bars) and by state-dependent decoders (blue bar for the SD-TA decoder and green bar for

the SD-TD decoder).

specific analysis, we stopped the running of the BMI after 100
time steps. We run the BMI as described in the previous section
in order to explore whether the trajectories directed toward a
point target (i.e., the origin of axes) got closer to the target

when we used a state-dependent decoder with respect to a state-
independent decoder. For each trajectory, we marked and plotted
the positon of the point that was closest to the target point (the
origin of the axes in the plane where the point mass moved). In
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Figure 5A we show an example of a collection of closest points
to target obtained for one of the 13 experimental session used for
this study (see Section Neurophysiological procedures). For each
starting position, we repeated the experiment 100 times, yielding
800 points for each of the three decoders (red points for the SI
decoder, blue points for the SD-TA decoder and green points
for the SD-TD decoder). For each point shown in Figure 5A we
measured the distance from the origin of the axes, we averaged
these values and we obtained the average distance from the target.
We repeated the calculation for all the experimental sessions and
for the three decoders (SI, SD-TA, and SD-TD). We compared
the average distances obtained by using each of the three decoders
(Figure 5B). The closest points to the target extracted from the
trajectories generated by running a state-dependent decoding
algorithm were, on average, significantly closer to the target
than using a state-independent decoder. Specifically, we found a
significant decrease in the average distance from the origin of the
axes of the closest points to target when the decoder considered
the temporal structure of the state with respect to the SI decoder
(−3.94 ± 1.00 mm, −35.54%; p = 4.88e-4, two-sided Wilcoxon
signed rank test); we did not find a significant decrease when
the decoder considered the time averaged pre-stimulus activity
as state with respect to the SI decoder.

Convergence Rate and Speed Increase of BMI

Trajectories
In order to evaluate how often and how fast the BMI can reach a
target, we then run the BMI by setting a finite-size target region
around the origin to be reached, and we tested the performance of
the BMI in reaching target regions of different sizes (varying from
a target area radius of 0.1 cm to a radius of 2 cm). We quantified
this performance by computing both the rate of convergence of
the BMI (that is, the percentage of trajectories generated by the
BMI that converged to reach the target region) and the average
number of steps taken to reach the target (the latter served to
evaluate the speed by which the BMI reaches the target).

We defined the target as circular region with radius r
placed in the center of the horizontal plane. We distinguished
between converging and non-converging trajectories. A trial was
considered successful (i.e., the trajectory in that trial was classified
as converging) if the point mass reached within the border of
the circular area. When this happened the BMI was stopped and
we recorded the number of steps needed to reach the target. A
trial was considered unsuccessful (non-converging trajectory) if
after 100 steps the point mass did not reach the target region. We
computed the performance of the BMI for each tested value of
the target radius.

For all tested values of the target radius, we found
(Figure 6) a significantly superior performance of the state-
dependent decoders over the state independent decoder. The
state dependent decoder that considered the temporal structure
of pre-stimulus activity led to a better BMI performance than the
one that did not consider the temporal structure of pre-stimulus
activity. On average across all the radii of the target regions
considered in Figure 6, use of the state-dependent decoder
that considered the temporal structure of pre-stimulus activity
increased the convergence rate by 10.49%, and it decreased the

number of steps to reach the target by 16.38% with respect to
the state-independent case. When we used a state-dependent
decoder that used only the time-averaged pre-stimulus activity
the convergence rate increased (on average across all sessions and
tested target radius sizes reported in Figure 6) by 4.52% and the
number of steps to reach the target decreased on average by 6.56%
when compared to the state-independent case.

BMI Trajectories Stability and Reproducibility
We then investigated the stability and reproducibility of the
trajectories obtained with state-dependent and state-independent
decoders. We took the within trajectory variance, shortened to

wtv and defined as
√

Cx
2 + Cy

2 whereCx andCy is the covariance

of the distribution of per-step displacement along the x and y
axis, respectively (Boi et al., 2016), as a measure of how the trial-
to-trial variability is reflected into the shape of the generated
trajectories. Results of how wtv varies when considering state-
independent or state-dependent BMIs are reported in Figure 7.
To compute these results, we initialized the position of the
point mass at one of eight starting positions (circled numbers in
Figure 7A) and, for each trajectory, we stopped the BMIwhen the
point mass reached the target region or, if it did not reach it, at a
maximum number of steps equal to 100. For each experimental
session, we collected 100 trajectories for each starting positon.
We considered the mean wtv obtained by averaging the wtv
computed for each set of trajectories that started from one initial
position. Figure 7A shows the mean trajectories (red lines) and
the covariance (light red area) generated during one experimental
session with the state-independent decoder. In this experimental
session we set a target radius of 2 cm. In the correspondent SD-
TA and SD-TD cases, the mean trajectories (blue and green lines,
respectively) and the covariance (light blue and light green areas,
respectively) are also shown in Figure 7A. The mean trajectories
were more straightly directed toward the target and we had a
smaller wtv when the state was taken into account for decoding
than when it was not. For this particular session improvement is
more evident when the point mass started from positions labeled
as 2, 3, and 4 and when the decoder took into account also
the temporal structure of the state (SD-TD decoder, green in
the figure). We repeated the experiment for all the experimental
sessions and for different values of the target radius, we measured
the average wtv and we show the results in Figure 7B. When
we used our state-dependent decoder, considering the temporal
structure of the pre-stimulus ongoing activity, the wtv decreased
on average of 26.24% with respect to the state-independent case.
When we considered the state as time averaging pre-stimulus
activity the wtv decreased on average of 14.33% with respect to
the state-independent case.

DISCUSSION

A limit for the development of BMIs is the trial-to-trial variability
in neural activity, which ultimately poses an upper limit to
current BMI performance. This problem cannot be easily solved
by increasing the number of electrodes used to record neural
activity, because part of this variability is shared across neurons,
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FIGURE 6 | Convergence rate and speed of the BMI. The percentage of trajectories that reached the target and the length of these converging trajectories are

described respectively by the average percentage of converging trajectories (A) and by the average number of steps (B) needed to reach the target. These two

features define the performances of the bidirectional BMI and depend on the radius of the target. In these graphs we compared these two measures by running a

state-independent (red bars) and two different state-dependent decoders (blue bar for the SD-TA decoder and green bar for the SD-TD decoder).

FIGURE 7 | Analysis of the dependence of the shape of trajectories on the decoding algorithms. (A) The colored lines represent the mean trajectories and

the shaded areas define the covariance of the trajectories generated by running the interface 100 times from each initial position (numbered circles). The

state-independent decoding algorithm is represented by the red lines, the blue and the green lines represent the mean trajectory generated by using respectively the

SD-TA and SD-TD decoders. The target region is represented by a circle placed in the origin of the workspace that is subdivided into four sensory regions represented

with different colors. (B) The mean within-trajectory variance (wtv ± S.E.M) depends on the target radius and represents an index of the repeatability of the trajectories

by using state-independent (red bars) and state-dependent decoders (blue and green bars).

and thus cannot be just averaged away across electrodes. One
approach to solve such problem is to identify the reasons of this
variability and try to predict it on each trial, so that its negative
effects can be discounted by a decoding algorithm benefitting
from this prediction. Here we evaluated the effectiveness of this
procedure. We assumed that trial-to-trial variability arises from
the dependence of single trial responses to stimuli on the ongoing
variations of network state, we constructed decoding algorithms
trained to learn this dependence, and then we computed how
much does a BMI benefit from this state-dependent decoding.

We tested this state-dependent decoding algorithm in a BMI
developed in our laboratory (Vato et al., 2012). We found both
a general increase of decoding performance of more than 20%,

which translated into all aspects of BMI performance, such as
the convergence rate, variance and speed of the converging
trajectories. The BMI equipped with a state-dependent decoder
generated shorter, more accurate and stable trajectories of the
simulated point mass moving toward the target with respect to
the state-independent version. These advantages were obtained
without the need to increase the invasiveness of the BMI (for
example by increasing the number of electrodes), and came
only at the moderate computational cost of including the time
course of ongoing activity prior to the stimulus into our decoding
algorithms.

We found that estimating network state by examining the
time course of neural activity prior to stimulation, rather
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than relying only on time-averaged pre-stimulus activity,
doubled the information gained by using state-dependence for
decoding. These results suggest that the detailed time course of
ongoing activity carries important information about changes in
excitability of the network and strongly influences the responses
to stimuli, as also put forward by recent studies using dynamical
systems to model ongoing activity (Curto et al., 2009; Safaai et al.,
2015).

State dependence of neural responses reflect a variety of
phenomena, from the dependence of neural responses on the
ongoing activity of the same network, to dependence of neural
responses on changes of behavioral states such as attention
or arousal that are mediated by neuromodulation. A recent
study (Safaai et al., 2015) examined the interplay between
ongoing activity and neuromodulation in modulating neural
responses to stimuli, and found that these channels acted
complementarily to determine the cortical responses to sensory
stimuli. In particular, prediction of single-trial neural responses
to stimuli and the decoding of the sensory information that
these responses carry was much better when using knowledge
of the activity of neuromodulatory nuclei as well as knowledge
of ongoing activity. An implication of this finding is that
the performance of state dependent decoding algorithms is
expected to increase even further if including an estimate of
the activity of neuromodulatory nuclei into the state dependent
decoder. Interesting, the activity of such nuclei, particularly of
the ones releasing norepinephrine, correlates well with pupil size
with good time resolution (Costa and Rudebeck, 2016; Joshi
et al., 2016), suggesting non-invasive ways to improve state-
dependent BMI.

For technical reasons, we limited the exploration of the
advantages of state dependence only for the decoding part of
BMIs, and we could not test their potential advantages for the
encoding part. One could in principle design a state-dependent
encoding algorithm that, taking into account the ongoing
pre-stimulus activity, modulates the stimulation parameters
according to the predicted stimulus-evoked responses. Support
for this suggestion was given by Brugger and colleagues that
demonstrated how to use low-frequency pre-stimulus activity
to increase the reliability of the neural responses in rat’s
somatosensory cortex (Brugger et al., 2011). Thus, closed loop
BMIs that take advantage of state dependence both at the
encoding and decoding stage could lead to a much larger advance
in performance than the one reported here.

For experimental convenience, in this article we performed
our initial attempt to improve BMI performance by exploiting
state dependence only in anesthetized subjects. The obtained
results suggest a benefit for BMI function when including state
dependence. However, to prove that these advantages can be
translated to BMI of actual use in real-life situations, it will be
necessary to explore in future studies how to take advantage of
state dependence in chronic BMIs implanted in awake behaving
animals. Studies of state dependence of neural responses across
different behavioral states suggest that this may be possible. In
fact, studies of shared trial-to-trial variability across neurons
have shown that such shared variability can be described by a
small set of state-parameters across a variety of behavioral states,

including awake behaving behavioral states (Ecker et al., 2014;
Goris et al., 2014; Kayser et al., 2015; Rabinowitz et al., 2015),
suggesting that this shared variability may be discounted also in
awake preparation after characterizing the state dependence of
their neuronal responses. However, although phase or power low
frequency (1–10Hz) fluctuations of pre-stimulus neural activity
seem to have a comparable effect on post-stimulus responses
both in anesthetized and awake animals (Lakatos et al., 2005;
Kayser et al., 2015), the nature of state dependence may vary
across different behavioral states (Ecker et al., 2014; Rabinowitz
et al., 2015) meaning that both the variables describing past
neural activity and the specific algorithms used to predict state
dependence of post-stimulus responses need to be calibrated in
each specific BMI.

A major obstacle to be overcome to successfully implement
in awake animals and real-life situations state-dependent BMIs
of the type conceptualized here, is that this approach in its
present form is based on observing pre-stimulus activity for
relatively long periods of several hundred milliseconds. This may
greatly limit the frequency by which the user may interrogate
and use the interface. However, the same principles invoked here
can be directly extended to predict the variability of single-trial
responses to frequent, dynamic stimulations, from the combined
observation of the fluctuations of past neural excitability both
in response to recent stimuli and in relatively inter-stimulus
periods. We thus speculate that real-life situations with frequent
stimulation and interrogation of neural circuits by the BMI,
may benefit from the principles of state dependency by building
algorithms that estimate online the current state or current
excitability level of the neural circuit both using responses to
recent stimuli and ongoing activity observed in the recent past in
inter-stimulus intervals. These estimates of current excitability,
though not directly carrying information about the external
variables that the BMI seeks to sense or control, may be useful
as internal state variables to interpret the neural responses to the
variables to be controlled.

Addressing these issues poses technological as well as
mathematical challenges. One challenge regards how to
implement such algorithms in a fast online form. In this respect,
we note that the mathematical functions we used here are
suitable to be implemented in programmable hardware and can
be even approximated by using artificial neural networks (Hinton
and Salakhutdinov, 2006; Matsumoto et al., 2016), suggesting
that they could be in principle implementable in adaptive and
low-power consumption devices such as neuromorphic circuits
(Chicca et al., 2014; Qiao et al., 2015; Boi et al., 2016). Another
technological challenge regards how to track down online the
temporal dynamics of pre-stimulus activity, which we showed
to be useful to increase state-dependent information. In our
study we tracked the time course of pre-stimulus activity by
customized non-uniform temporal binning. However, this may
not be practical in real life situations. Recent progresses in
designing adaptive neuromorphic architectures suggest (Wang
et al., 2013) that in the next future will be possible to overcome
this problem by implementing adaptive temporal binning
schemes in hardware. By using such adaptive architectures, it
may be possible to design acquisition hardware that self-adjusts
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its inherent parameters (for instance, the working frequency
of the sample-and-hold circuit) naturally following the neural
activity variability. A next step of this research could thus
be to implement our state-dependent decoding algorithm by
using the neuromorphic hardware decoder developed by our
group (Boi et al., 2016) and to test it with behaving rats in the
experimental paradigm described in Boi et al. (2015b). A second
challenge, when implementing state-dependent principles in
closed-loop bidirectional BMIs (that both encode information in
the nervous system by perturbing neural activity and that decode
information from recorded neural activity in a closed loop) is
that of the potentially different time scales of state variables (that
may require observing past activity over periods of hundreds of
milliseconds) and of the task- or stimulus-informative neural
response variables (that often vary in short time scales of
few tens of ms; Panzeri et al., 2010). This potential mismatch
in time scales poses important technological challenges for
implementing a closed-loop state-dependent BMI. In particular,
given that electrical microstimulation produces artifacts that
may mask the recorded neural signals for few ms, it is likely
that running in real-life a state-dependent closed-loop BMIs will
need the development of clever strategies for optimizing the time
multiplexing strategy for the simultaneous stimulation readout
of signals at multiple time scales (O’Doherty et al., 2011).
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