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Abstract

The law of the few refers to the following empirical phenomenon: in social groups a
very small subset of individuals invests in collecting information while the rest of the
group invests in forming connections with this select few. In many instances, there are
no observable differences in characteristics between those who invest in information
and those who invest in forming connections. This paper shows that the law of few
naturally emerges in environments with identical rational agents.
We develop a strategic game in which players have the opportunity to invest in col-
lecting information as well as in investing in bilateral connections with others. We find
that every strict equilibrium of this game exhibits the ‘law of the few’. We also show
that this pattern of social differentiations is efficient in some cases.
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1 Introduction

In their classic study, Katz and Lazersfeld (1955) found that in making purchase decisions

across a range of products, most individuals relied on the information they received from a

small group of other individuals. They called these few individuals, opinion leaders. We refer

to the phenomenon of a small subset of individuals collecting information while the rest of

the group invests in connections with this select few as the Law of the Few. Over the years,

a large body of research in different subjects – which include political science, sociology,

and marketing – has confirmed the generality of the findings of Katz and Lazersfeld (1955).1

Most of this literature, after confirming the law of the few, has examined the individual

characteristics of opinion leaders and in many instances they found somewhat surprisingly

that there were no significant observable differences between the opinion leaders and the rest.2

Of course, in these studies one cannot exclude that such patterns of social differentiations

are caused by the presence of unobservable heterogeneity. Nevertheless, we think it is worth

exploring whether the law of the few can be obtained in environments with identical rational

agents.

There are three key ingredients in social information gathering: individuals can choose how

much to invest in collecting information and how much to invest in forming connections,

there are costs to each of these activities, and there is no difference across individuals with

regard to these costs and the corresponding benefits of information. The incentives to acquire

information and to form connections will naturally depend on the relative costs of doing so.

Moreover, there is also an issue of coordination: if no one else acquires any information then

a player may have no choice but to acquire information himself. The main result of the paper

is that these economic pressures together yield a clear cut prediction: if the costs of forming

links are lower than the costs of directly acquiring information then every strict equilibrium

1The classic paper in marketing is Feick and Price (1987); for more recent work see, e.g., Geisser and
Edison (2005), Wiedman, Walsh and Mitchel (2001), and Williams and Slama (1995). In political science
the classic work is Lazarsfeld et al. (1955); more recent papers are Beck et al (2002), Huckfeldt and Sprague
(1995).

2For example, Feick and Price (1987) showed that market mavens – individuals who are well defined
across several product categories – are prominent and that their characteristics do not differ significantly
from other individuals who are not well informed. Geisser and Edison (2005), Wiedman, Walsh and Mitchel
(2001), and Williams and Slama (1995) arrive at similar conclusions.
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exhibits the law of the few: a small fraction of players acquire information directly while the

rest of the players invest in forming connections and only acquire information indirectly.

We now briefly sketch the main arguments underlying this finding. In our model, the returns

from information are increasing and concave in total information received by a player, the

costs of acquiring information are linear in amount of information while the costs of forming

connections are linear in the number of connections. Under reasonable restrictions on the

marginal returns we get the property that on his own an individual will choose an interior

information level, say 1. This leads to our first observation: in any equilibrium the total

information available to an individual must be at least 1. Moreover, if a player exerts any

effort at all then the total information he gets must indeed be equal to 1. If the total

information was less than 1, then he gains by increasing effort, since marginal returns are

larger than marginal cost. Similarly, if own effort is positive but total information is greater

than 1, then the player can strictly increase payoffs by lowering effort.

The second observation constitutes the key to the result: in every strict equilibrium, the sum

total of information directly acquired in a society is equal to 1. There are two steps in the

proof of this equilibrium property. The first step shows that if any player chooses 1, then

it is optimal for everyone to choose 0 and simply link to this player. So let us consider an

equilibrium in which no player chooses 1. The second step shows that if two players choose

positive effort and they are neighbors then they must have common neighbors in a strict

equilibrium.3

The basic idea underlying this proof is the following. Suppose i and j are neighbors, they

both choose positive effort and l is a neighbor of i but not of player j. Suppose also that

player l chooses higher effort than player j. To fix ideas, figure 1 illustrates this configuration.

In the figure an arrow starting from i and pointing at j signifies that i sponsors the link

with j. Since i links with j then the costs of the link must be smaller than the costs of the

information that i accesses from j. Similarly, since player l is not a neighbor of j, it must be

the case that the costs of a link with j are higher than the costs of information that j has

3In a network, j and i are said to be neighbors if there is a direct link between them.
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acquired on his own. Together, this tells us that the costs of j’s information equal the costs

of a link. This makes player i indifferent between keeping the link with j and substituting

the link with own additional effort. Hence, this configuration cannot be sustained in a strict

equilibrium. Similar considerations are obtained in other configurations between these three

players. Thus, this second step implies that all linked players choosing positive effort share

the same neighbors and if aggregate effort were higher than 1 this would contradict our first

observation. Hence, in any strict equilibrium the aggregate information in the society must

be exactly 1.

The third observation is that every equilibrium network has the inter-linked stars architec-

ture. Figure 2 illustrates this architecture. Roughly speaking, an inter-linked stars architec-

ture contains a set of hub players (the black nodes in figure 2) who are linked to everyone

while every other player (the white nodes in figure 2) forms a link with each of the hubs.4 To

see how this comes about suppose that the number of players choosing to directly acquire

information is less than n. We know that in any strict equilibrium the total effort is 1, and

that every player has at least 1 unit of information. It then follows that every positive effort

player will form a link with every other positive effort player, while the zero effort players

will form a link with all the positive effort players. Thus any equilibrium network will have

the inter-linked stars architecture.

The final observation combines the above steps to derive the law of the few property for

every equilibrium. For any cost of acquiring information and any cost of forming link it

must be the case that if player i forms a connection with j then the cost of linking must be

less than the cost of providing the effort accessed from j. This, however, gives us a lower

bound on the size of effort of j. Since aggregate effort is 1, the maximum number of players

who choose positive effort is bounded above and is independent of the number of players.

This means that the fraction of players who choose positive effort can be made arbitrarily

small by suitably raising the number of players, and the Law of the Few obtains.

We also study the social efficiency of different patterns of efforts and linking. We find

4For a formal definition of this architecture, see section 2.
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that when the costs of forming links are low, then the star network in which the central

player acquires all the information is socially efficient.5 The intuition for this result is that

if many individuals make investments in acquiring information then social efficiency also

entails the formation of several links among these players. Since links are costly and the

costs of information gathering is linear in effort, concentrating all efforts with one player

economizes on costs and yields the efficient outcome. In contrast, if costs of forming links

are high, the socially efficient outcome is characterized by each player acquiring information

and no player forms links. Comparing socially optimal outcomes with equilibrium outcomes

we can conclude that for low costs of linking in equilibrium players under-invest in effort, for

moderate costs of linking in equilibrium there is under-investment and under-connectivity,

while if costs of linking are sufficiently high then equilibria are socially efficient.

Finally, we also study a discrete version of this model, which is called best shot game. Players

can only choose either to provide a unit of effort at a cost c or not providing effort at all.

A player gets 1 if he accesses at least a unit of effort, otherwise the returns are 0.6 Here

we confirm that if the costs of linking are lower than the costs of providing effort in every

equilibrium the law of the few obtains. In contrast with the continuous model, in the discrete

model every equilibrium is socially efficient.

The main contribution of our paper is to develop a simple model of strategic investments in

information collection and link formation which can address the empirical finding of the Law

of the Few. Our analysis shows that in settings with identical rational agents, a combination

of simple economic factors – the relative costs of acquiring information versus the costs of

forming links – and strategic interaction together provide a simple explanation for this law.

From a theoretical point of view, our paper is a contribution to the recent theory of net-

works. We develop a simple game in which individuals choose investments in information

acquisition as well as decide with whom to form connections with a view to accessing the

5The star architecture is a network in which there is one player, the hub, who is linked with all other
players, the spokes, and there are no other links. Figure 3 contains an example of this architecture.

6The best-shot game is a good metaphor for situations in which there are significant externalities between
players’ effort. For a discussion of best-shot games within the contexts of public good games see, e.g.,
Hirshleifer (1983) and Harrison and Hirshleifer (1989).
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information acquired by these individuals. Our model combines the approach to link for-

mation introduced in Bala ad Goyal (2000) with the approach to the study of local public

goods developed in Bramoulle and Kranton (2007).7 As the above discussion illustrates,

this combination yields a tractable framework and sharp predictions. A recent paper by

Cabrales, Calvo-Armengol and Zenou (2007) also presents a model of private investments

and network formation. There are two key differences between our paper and their papers.

We have a model in which individuals decide on individual specific links while in their papers

investments in links are not individual specific. This implies that the strategy set of players

and the methods of analysis are completely different. The second difference is that in their

models individuals are ex-ante different, while in our paper the focus is on understanding

how significant differentiation and the law of the few can arise in settings with identical

individuals.8

The rest of the paper is organized as follows. Section 2 develops the model, while section

3 contains the main results. Section 4 considers two extensions. The first extension studies

the effect of richer patters of spill overs. The second extensions studies a best shot game.

Section 5 concludes. The appendix contains all the proofs.

2 Model

Let N = {1, 2, .., n} with n ≥ 3 be the set of players and let i and j by typical members of

this set. Each player i chooses an effort xi ∈ X and a set of links which is represented as a

(row) vector gi = (gi1, ..., gii−1, gii+1, ..., gin), where gij ∈ {0, 1}, for each j ∈ N \ {i}. We will

suppose that X ∈ [0, +∞). We say that player i has a link with player j if gij = 1. A link

between player i and j allows both players to access the effort exerted by the other player.

The set of strategies of player i is denoted by Si = X × Gi. Define S = S1 × ...× Sn as the

set of strategies of all players. A strategy profile s = (x, g) ∈ S specifies the effort of each

player, x = (x1, x2, ..., xn), and the network of relations g = (g1, g2, ..., gn).

7The literature on network formation and the literature on games played on fixed networks are both
extensive and rich. For a survey of this work see Goyal (2007).

8In this paper, our interest is in situations where information sharing is a social activity; for a study of
situations in which players can charge prices for their information, see Cabrales and Gottardi (2007).
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The network of relations g is a directed graph; let G be the set of all possible directed graphs

on n vertices. Define Nd(i; g) = {j ∈ N : gij = 1} as the set of players with whom i has

formed a link. Let ηi(g) = |Nd(i; g)|.

The closure of g is a non-directed network denoted ḡ = cl(g), where ḡij = max{gij, gj,i} for

each i and j in N . In words, the closure of a directed network simply means replacing every

directed edge of g by a non-directed one. Define N(i; ḡ) = {j ∈ N : ḡij = 1} as the set of

players directly connected to i.

The payoffs to player i under strategy profile s = (x, g) are

Π(s) = f

xi +
∑

j∈N(i;ḡ)

xj

− cxi − ηi(g)k, (1)

where c > 0 reflects the cost of effort and k > 0 is the cost of linking with one other

person. We will assume that f(y) is twice continuously differentiable, increasing, and strictly

concave in y. To focus on interesting cases we will assume that f(0) = 0, f ′(0) > c and

limy→∞f ′(y) = z < c. Under these assumptions there exists a number ŷ > 0 such that

ŷ = arg maxy∈X f(y)− cy.

For any strategy profile s, let s−i = (s1, ...si−1, si+1, ..., sn), be the strategies of all players

other player i. A Nash equilibrium is a strategy profile s∗ = (x∗, g∗) such that:

Πi(s
∗
i , s

∗
−i) ≥ Πi(si, s

∗
−i),∀si ∈ Si,∀i ∈ N.

An equilibrium is said to be strict if the inequalities in the above definition are strict for

every player.

We define social welfare to be the sum of individual payoffs. So that for any profile s social

welfare is given by:

W (s) =
∑
i∈N

Πi(s) (2)

A profile s∗ is socially efficient if W (s∗) ≥ W (s), ∀s ∈ S.
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We say that there is a path in ḡ between i and j if either ḡij = 1 or there exists players

j1, ..., jm distinct from each other and i and j such that {ḡij1 = ḡj1,j2 = ... = ḡin,jm = 1}.

Given a network ḡ, we define a component as a set C(ḡ) ⊂ N such that ∀i, j ∈ C(ḡ) there

exists a path between them and there does not exist a path between ∀i ∈ C(ḡ) and a player

j ∈ N \ C(ḡ). A component C(ḡ) is non-singleton if |C(ḡ)| > 1. A player i is isolated if

ḡij = 0, ∀j ∈ N . Let m(ḡ) be the number of components of ḡ; we say that a network ḡ is

minimal if m(ḡ− ḡij) > m(ḡ), for every link ḡij = 1 in ḡ, where ḡ− ḡij is a network obtained

starting from ḡ and deleting a link ḡij. A network ḡ is minimally connected if it is composed

of only one component and it is minimal.

A network g is an inter-linked stars network if there are some players who are linked to

everyone while the rest of the players only form links with these players. Formally in an

inter-linked stars network there are two groups of players, N1(ḡ) and N2(ḡ), with the feature

that Ni(ḡ) = N2(ḡ) for i ∈ N1(ḡ) and Nj(ḡ) = N\{i}, for all j ∈ N2(ḡ). The star a special

case of this architecture, in which |N2(ḡ)| = 1 and |N1(ḡ)| = n − 1. In an inter-linked star

network, nodes which have n − 1 links are referred to as central nodes or as hubs, while

the complementary set of nodes are referred to as peripheral nodes or as spokes. Figure

3 illustrates inter-linked stars networks. In the figure there are n = 8 players; in each

architecture the black nodes are the hubs (the set N1), while the white nodes are the spokes

(the set N2).

3 Analysis

The focus of our analysis will be on the distribution of effort and linking activity across

players in strict equilibria. Our main result has three parts. First, we show that if costs of

linking are smaller than the costs of effort that a player would provide on his own, say ŷ,

then in equilibrium the aggregate social effort will be equal to ŷ, irrespective of the number

of players. Second, we show that the inter-linked stars network is the unique equilibrium

architecture. In this network every player who exerts a positive effort is a hub, while the no

effort players are the spokes. Third, the set of hub players is very small relative the total
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number of players, i.e., the law of the few obtains.

Given any equilibrium s = (x, g), define I(s) = {i ∈ N |xi > 0} as the set of players who

choose a positive effort.

Theorem 3.1 Suppose payoffs are given by (1). If k < cŷ, then in every strict equilibrium

s∗ = (x∗, g∗),
∑

i∈N x∗i = ŷ. Every strict equilibrium has the interlinked stars architecture

and hub players exert positive efforts while the spokes choose zero effort. Finally, for given

c and k, with k < cŷ, in any strict equilibrium s∗ the ratio |I(s∗)|/n can be made arbitrarily

close to 0 by raising n. If k > cŷ then there exists a unique equilibrium: every player exerts

effort ŷ and no one forms any links.

We now briefly sketch the main arguments underlying the proof of this result. The focus

will be on the case where k < cŷ. Define yi = xi +
∑

j∈Ni(ḡ) xj. The first step in the proof

exploits the assumption that f(0) = 0, f ′(0) > c and limy→∞ f ′(y) < c, to show that in every

equilibrium yi ≥ ŷ and if xi > 0 then yi = ŷ. Note that if yi < ŷ, then a player gains by

increasing effort, since marginal returns are larger than marginal cost. Similarly, if xi > 0

and yi > ŷ, then player i can strictly increase payoffs by lowering effort.

The key step in the proof shows that in any strict equilibrium
∑

i∈N xi = ŷ. This relies in

the following equilibrium properties: in any strict equilibrium every linked pair of positive

effort players must share the same neighbors. To see the intuition underlying this suppose

that i and j exert some positive efforts and that gij = 1. Suppose also that xi ≤ xj and

that player i has a neighbor, say l, who is not linked with j. Figure 1 illustrates a possible

configuration between these three players.

First note that since xi ≤ xj then gli = 0, otherwise player j would weakly gain by switching

the link from player i to player j. Hence, gil = 1; this immediately implies that the costs of

a link sponsored to l are sufficiently low, namely k < cxl. The fact that k < cxl also implies

that the effort of player j must be strictly less than the effort of player l, i.e., xj < xl. Indeed,

if j were providing higher effort than l, then, since k < cxl, player j would strictly gain by

forming an additional link with player l and reducing his own effort to xj − xl.
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However, given that xj < xl, then l may have an incentive to form a link with j and reducing

his own effort to xl − xj. This is not profitable only if the effort provided by j is sufficiently

low, namely k > cxj. But note that in this case j must have sponsored a link to i and since

j is not linked to l then i must exert strictly higher effort than l, xi > xl. Since the effort of

player j is lower than the effort of l, we conclude that the effort of i is strictly higher than

the effort of j, which is in contradiction with the initial hypothesis. This proves that every

neighbor of i must also be a neighbor of j. The reverse then follows by noting that if j were

accessing the effort of some player not in the neighbor of i, then player j would access from

his own neighbor strictly more effort than what player i would access from his own neighbor,

but then player j should provide less effort than player i, which is in contradiction with our

initial hypothesis.

It is then clear that since every linked pair of players i, j ∈ I(s) share the same neighbors,

the players in I(s) constitute a clique and this implies that the total effort must equal ŷ.

The third step in the proof shows that if
∑

i∈N xi = ŷ then an equilibrium network has the

inter-linked stars architecture. To see why this is true, let us focus on the case |I(s)| < n.

Since in any strict equilibrium
∑

i∈N xi = ŷ, it follows that for every pair of players i, j ∈ I(s),

ḡij = 1. Since k > 0, for every i ∈ N , and for every l /∈ I(s), gil = 0. Thus, for every l /∈ I(s),

since xl = 0 it must be the case that and gli = 1 for all i ∈ I(s). This establishes the required

architecture of strict equilibrium networks.

The last step in the proof derives the law of the few property for every equilibrium. For any

c and k it must be the case that if i links with j then the cost of link must be less than the

cost of providing the effort accessed from j, in other words cxj > k. This, however, gives us

a lower bound of k/c on the effort of j. Since total effort in equilibrium is ŷ, it follows that

the maximum value of |I(s)| is bounded above by (ŷc)/k. This number is independent of n,

and so it follows that for any equilibrium, the ratio |I(s)|/n can be made arbitrarily small

by suitably raising n.

Theorem 3.1 obtains the law of the few, for large n. What can we say about number of

players who exert effort for fixed n? The following result addresses this issue.
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Proposition 3.1 Suppose payoffs are given by (1). If k < ŷc, then there exists an equilib-

rium in which the network is a star, the hub player exerts effort ŷ, all the other players exert

effort 0 and each forms a link with the hub player. Moreover, if k
ŷ
∈ (c/2, c) then this is the

unique strict equilibrium outcome.

If all players choose zero effort and link with player i, then it is clearly a best response

for player i to choose ŷ. For a spoke player the payoff is f(ŷ) − k. Exerting effort while

maintaining the link is not profitable under the assumptions on f(.). Deleting the link is

not profitable since k < ŷc. Next note from Theorem 3.1 that every strict equilibrium is an

inter-linked star with every player who exerts effort being a hub. However, if k > ŷc/2 then

a link is only profitable if a player chooses effort xi > ŷ/2. Since sum of efforts is equal to ŷ,

in equilibrium at most one player can exert effort.

We now turn to the social welfare of equilibrium networks. We first observe that if k < ŷc

then in any strict equilibrium the sum of total effort is ŷ, each player accesses exactly ŷ

units of effort, but the number of links vary. Given the linearity of costs of effort as well

as the costs of linking it then follows that these equilibria can be ranked by the number

of links they contain. In particular, since the star minimizes the number of links, it is the

most efficient equilibrium. The second observation is that in every equilibrium, every player

must access ŷ of effort. This observation follows from Proposition 5.1 which is presented in

the appendix. In that proposition we provide a partial characterization of all equilibria in

this game. Since every player must access effort ŷ in every equilibrium, it follows that in

every equilibrium the aggregate gross returns are nf(ŷ). The most efficient equilibrium will

clearly minimizes the total costs of effort and total costs of forming links, which immediately

leads to the star architecture where the hub provides all the effort. These observations are

summarized in the following proposition.

Proposition 3.2 Suppose payoffs are given by (1). If k < ŷc, then the strict equilibria can

be ranked by the number of links they contain. Furthermore, the efficient equilibrium is a

star where the hub provides effort ŷ, every spoke provides effort 0 and forms a link with the

hub.
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However, it is clear that an equilibrium will not be socially efficient in general. To see this

note that in the star, the hub player chooses effort ŷ, and at this point f ′(ŷ) = c. But

marginal social returns are given by nf ′(ŷ), which is certainly larger than c, for n ≥ 2.

Hence, all equilibria are inefficient if k < ŷc. This is an implication of the public good

nature of individual effort. So long as equilibrium entails any links, it will also imply an

under provision of effort relative to the social optimum.

The following proposition characterizes efficient outcomes.

Proposition 3.3 Suppose payoffs are given by (1). For every c, there exists a k̄ > cŷ such

that if k < k̄ then the socially optimal outcome is a star network in which the hub chooses

effort ỹ such that nf ′(ỹ) = c, while all other players choose effort 0. If k > k̄, then in the

socially optimal outcome every player chooses effort ŷ and no one forms links.

The value of k̄ is obtained by equating the social welfare attained by the two configurations

presented in Proposition 3.3 and it is formally derived in the appendix. To illustrate more

in details the trade-off between equilibrium and efficiency, consider the following example.

Suppose c = 1/2 and f(y) = ln(1 + y). In this case ŷ = 1, while ỹ = 2n − 1. In figure 4

we plot k̄ as a function of the number of players. For a given n there are three regions. For

low costs of linking, k < 1/2, the most efficient equilibrium is a star where the hub provides

effort 1 and the spokes choose 0. As compared to socially optimal outcomes, in equilibrium

there is under investment. For moderate costs of linking, k ∈ (1/2, k̄), in equilibrium we

have under investment and under connectivity relative to socially optimal outcomes. In the

remaining region equilibrium outcomes coincide with socially optimal outcomes.

4 Extensions

In this section we consider two extensions of the model presented in Section 2. The first

extension studies a situation in which the effort provided by a player may spill over along

links in the network. The second extension considers a model in which effort is a discrete

choice.
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4.1 General Decay Model

The model in section 2 assumes that the efforts of players only spill over on direct neighbors.

A more general model is one where efforts spill over along links and the intensity of these

synergies depends on the distance in the network between players. We now extend the model

presented in section 2 to allow for a richer patterns of effort’s externalities.9

Given two players i and j in g, the geodesic distance, d(i, j; ḡ), is defined as the length of

the shortest path between i and j in ḡ. If not such path exists, the distance is set to infinity.

Let N l(i; ḡ) = {j ∈ N : d(i, j; ḡ) = l}, that is N l(i; ḡ) is the set of players who are at finite

distance l from i in ḡ. For a strategy s = (x, g) the total amount of efforts that player i

has is given by yi = xi +
∑n−1

l=1

∑
j∈N l(i;ḡ) alxj, where a1, a2, ..., an−1 are weights measuring

the intensity of spill overs at different distances. We shall assume that al ∈ [0, 1] for all

l = 1, ..., n − 1 and that a1 ≥ a2 ≥ ... ≥ an−1; this last assumption signifies that spill overs

are decreasing in the geodesic distance.

The payoffs to player i under strategy profile s = (x, g) can be rewritten as follows,

Πi(s) = f(yi)− cxi − ηi(g)k, (3)

and the assumptions on c, k and f(·) are the same as in section 2. Note that the model in

section 2 is obtained by setting a1 = 1 and al = 0 for all l > 1.

The following proposition provides some preliminary results on the effect of allowing spill

overs along links.

Proposition 4.1 Suppose payoffs are given by (3).

I Suppose al = 1 for all l = 1...., n − 1. If k < cŷ then s = (x, g) is an equilibrium if

and only if (a) aggregate effort equals ŷ, (b) ḡ is minimally connected and (c) if gij = 1

then k ≥ cyj. Moreover, the star where the hub chooses ŷ, every spoke chooses 0 and

forms a link with the hub is always an equilibrium.

9We model spill overs following Hojman and Szeidl (2006).
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II Suppose a1 = 1 > a2. If k < cŷ, then there exists a strict equilibrium in which the

network is a star, the hub chooses ŷ, every spoke chooses 0 and forms a link with the

hub.

Part I of Proposition 4.1 covers the extreme situation in which efforts perfectly spill over

along links. In this case it is clear that in every equilibrium the aggregate effort must equal

the effort that a player would provide on his own and that the network must be connected

and minimal. Equilibrium condition (c) says that not every minimally connected network

may be part of an equilibrium. Indeed, it must be the case that if the costs of a link, say

from i to j, must be lower than the effort that i accesses via j. This implies that either player

j provides enough effort on his own, or that player j allows i to access the effort provided by

other players. This suggests that when the costs of a link are sufficiently high (sufficiently

closed to cŷ), then even if in equilibrium there may be many players who provide efforts, only

few players provide most of the total effort collected in the group. The following example

illustrates this idea.

Consider a star architecture with 4 spokes and suppose that the hub chooses 0 and each

spokes choose ŷ/4. First, suppose also that the hub forms a link with each spoke. Clearly, if

k > ŷ/4 this configuration cannot be an equilibrium. Second, consider now that every spoke

forms a link with the hub. In this case, even if the hub does not provide effort, he allows

each hub to access 3ŷ/4 units of effort. Clearly, if k ≤ 3cŷ/4 this configuration cannot be

part of an equilibrium. In contrast, note that if the hub provides all the effort then this is

always an equilibrium.

Finally, Part II of Proposition 4.1 covers the case in which the effort accessed from direct

neighbors is as valuable as own effort, while the effort accessed from non-neighbors players

is less valuable. In this case the star architecture where only the hub invests in effort is

always a strict equilibrium. It is also possible to check that inter-linked stars are equilibria

for appropriately chosen levels of costs of linking and effort.
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4.2 The Best Shot Game

In this section we study a model similar to the model presented in section 2, but where

a player can either acquire information at a cost c or he does not provide effort at all, i.e.

X = {0, 1}. We assume that the returns to a player from acquiring information are f(yi) = 1

if yi ≥ 1, otherwise f(yi) = 0, where recall that yi = xi +
∑

j∈N(i;ḡ) xj. We assume that

c < 1. This specification resembles the best shot game which has been widely studied in

economics.10 The following proposition characterizes the equilibria in the best shot game.

Proposition 4.2 Suppose X = {0, 1}. If k < c then every equilibrium has a star architec-

ture, the hub chooses 1, every spoke chooses 0 and forms a link with the hub. If k > c then

there exists a unique equilibrium: every player chooses 1 and no one forms any links.

The proof of this proposition relies on the observation that if k < c then only one player

can provide effort. Suppose, on the contrary, that players i and j provide effort. If they

are neighbors, then player i would strictly gain by choosing effort 0. This implies that each

player belonging to i’s neighbor does not provide effort. But then player i would strictly

gain by choosing effort 0 and linking up with player j.

There are two remarks we would like to emphasize. First, Proposition 4.2 shows that even

if players can choose a discrete amount of effort the law of the few obtains. We note that

this is true in a more general model where the returns to a player are: f(y) = 1 if y ≥ z,

otherwise 0, z ≥ 1. When z > 1 this specification is reminiscent of the weakest link model

studied within the contexts of public good games by, among others, Harrison and Hirshleifer

(1989). Note that if z > 1, then the efforts of players are complements if y < z, while strict

substitutes if y ≥ z. In this model, for low costs of linking, in every equilibrium the sum

of total efforts would be z and every equilibrium has the inter-linked stars architecture, hub

players choose 1 and every spoke chooses 0.11

10The best-shot game is a good metaphor for situations in which there are significant externalities between
players’ effort. For a discussion of best-shot games within the contexts of public good games see, e.g.,
Hirshleifer (1983) and Harrison and Hirshleifer (1989).

11A full characterization of this “weakest-link“ public good model is available from the authors upon
requests.
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The second remark is that in this model every equilibrium is efficient. This is in sharp

contrast with the case in which effort is a continuous variable.

Proposition 4.3 Suppose X{0, 1}. If k < c, then the socially optimal outcome is a star

network, the hub chooses 1 and every spoke chooses 0. If k > c, then in the socially optimal

outcome every player chooses 1 and no one forms links.

5 Concluding Remarks

We have defined the law of the few as the empirical phenomenon of a small subset of in-

dividuals collecting information while the rest of the group invests in connections with this

select few. The main contribution of our paper is to develop a simple model of strategic

investments in information collection and link formation in which the law of the few emerges

as an equilibrium outcome with identical rational players. We also studies the efficiency

properties of these patterns of social differentiation.

From a theoretical point of view, our paper combines the approach of link formation in-

troduced in Bala and Goyal (2000) with the approach to the study of network games with

strategic substitutes developed in Bramoulle and Kranton (2007). On the one hand, the

main drawback of the existing literature on strategic network formation is that the benefits

that players obtained when belonging to a certain network are primitives of the model. That

is, the architecture of the network influences with whom a player would like to link up, but it

does not influence other decision variables, such as provision of effort, collecting information

and alike, which naturally also determine the value of the network. On the other hand, the

existing literature on network games assumes that the network of relations is given and fo-

cuses on how the location of a player in the network affects his behavior. In many instances,

both dimensions are endogenous: individuals form connections with others depending on

their behavior and the behavior of individuals depends on the social network. This paper

shows that the combination of these two approaches yields a tractable framework and sharp

predictions.

Before concluding we would like to make a remark on the implications of our results for
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the design of prevention policies interventions. Many social programmes attempt to create

awareness among individuals about different risk behavior that can lead, for example, to

sexually transmitted disease. Our analysis suggests that the data collection of interpersonal

communication networks of a community is key to design effective prevention policies inter-

ventions.12 As a very simple illustration suppose that a government realizes that a particular

community lacks information on how to prevent the transmission of a particular diseas. Sup-

pose that the policy of the government is to contact and inform 1 individual with the hope

that the information will spread among other community members. Without knowledge of

the network, the government will choose the individual randomly and for a large community

almost surely that individual will not be an opinion leader. In this case every dollar that

the government spends to inform the individual will only spill over to a small subsets of the

community. On the other hand, by collecting information about the communication network,

for example by asking a subset of the community members to report “with whom they talk

to” about a particular matter, the government can identify an opinion leader, the individual

who receives most nominations. Each dollar spent on this opinion leader will then spill over

to all community members.

12For example, in a recent report of the World Bank “The Africa Multi-Country AIDS Programm 2000-
2006” there are many examples of effective prevention social programmes based on interpersonal communi-
cation networks. See also Valente et al. (2003) and Kelly et al. (1991) for a discussion about the empirical
importance of prevention policies intervention which incorporate information on social networks.
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Appendix A.

This appendix provides proofs of the results in section 3. We also provides Proposition

5.1 which provides a partial characterization of Nash equilibria. We star with the proof

of Theorem 3.1. This proof consists of a number of steps and it is useful to present it

as a sequence of lemmas. The first step in the proof obtains a general property of every

equilibrium configuration. For a strategy profile s = (x, g), define, with some abuse of

notation, yi = xi +
∑

j∈N(i;ḡ) xj as the total effort accessible to player i. Recall that ŷ =

arg maxy∈X f(y)− cy.

Lemma 5.1 In any equilibrium s = (x, g), yi ≥ ŷ, for all i ∈ N . Moreover, if xi > 0 then

yi = ŷ.

Proof: Suppose not and yi < ŷ for some i in equilibrium. Under the maintained assumptions

f ′(yi) > c and so player i can strictly increase his payoffs by increasing effort. Next suppose

that xi > 0 and yi > ŷ. Under our assumptions on f(.) and c, if yi > ŷ then f ′(yi) < c; but

then i can strictly increase payoffs by lowering effort. This completes the proof. �

If a player chooses xi = ŷ and k < cŷ then this leads to a specially simple equilibrium profile.

The following lemma clarifies this point.

Lemma 5.2 Suppose k < cŷ. In any equilibrium s = (x, g), if xi = ŷ, then xj = 0, for all

j 6= i.

Proof: Suppose that s = (x, g) is an equilibrium in which xi = ŷ and there is xj > 0, for

some j 6= i. First, since xi > 0, it follows from Lemma 5.1 that yi = ŷ. This also implies

that every player in the neighbor of i must exert effort 0. Now consider j, with xj > 0. This

means that ḡij = 0. It follows from Lemma 5.1 that yj = ŷ. If xj = ŷ then this player must

get payoff f(ŷ) − cŷ. If he switched to a link with i and reduced effort to 0, his payoff is

f(ŷ) − k. Since k < cŷ, xj = ŷ is clearly not an optimal strategy for player j. So s is not

an equilibrium. Next suppose that xj < ŷ. From Lemma 5.1 we know that in equilibrium

yj = ŷ, and so there there is some player l 6= i such that ḡjl = 1 and xl ∈ (0, ŷ). It is clear
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that if gjl = 1 then player j can strictly increase payoff by switching the link from l to i.

Similarly, if glj = 1, then player l gains strictly by switching link from j to i. So s cannot

be an equilibrium. A contradiction which completes the proof. �

Lemma 5.2 implies that, for given k < cŷ, if some player chooses ŷ, then in any equilibrium

aggregate effort is ŷ. We now turn to equilibria in which no player chooses ŷ. We show that

in any strict equilibrium aggregate effort is also equal to ŷ. This is the key step in the proof

of Theorem 3.1.

Lemma 5.3 Suppose k < cŷ. In every strict equilibrium s = (x, g),
∑

i∈N xi = ŷ.

Proof: In view of Lemma 5.2 we can focus on the case where no player chooses ŷ. Recall

that I(s) is the set of players who choose positive effort in equilibrium s. We now show that

if two players belonging to I(s), say i and j, are linked, then every player in the neighbor of

i who exerts positive effort also belongs to the neighboor of j, and vice versa.

Claim 1. Suppose s is a strict equilibrium. Let i, j ∈ I(s) and ḡij = 1. Then, for every

l ∈ I(s) \ {i, j}, l ∈ N(i; ḡ) if and only if l ∈ N(j; ḡ).

Proof Claim 1. Let ḡi,j = 1, i, j ∈ I(s), and suppose, without loss of generality, that

xi ≤ xj. We first prove that for every l ∈ I(s) \ {i, j}, if l ∈ N(i; ḡ) then l ∈ N(j; ḡ).

Suppose not and there exists a player l ∈ I(s), with l ∈ N(i; ḡ) and l /∈ N(j; ḡ). If gli = 1,

then, since xi ≤ xj, l (weakly) gains by switching the link from i to j. Hence, let gil = 1.

Since xi > 0, it follows from Lemma 5.1 that yi = ŷ and the payoffs to i in equilibrium s

are f(ŷ) − cxi − ηi(g)k. Suppose that i deletes the link with player l and choose an effort

x̃i = xi + xl, then he obtains payoffs f(ŷ) − cxi − cxl − (ηi(g) − 1)k. Since s is a strict

equilibrium this deviation strictly decreases i’s payoffs, which requires that k < cxl. Let

k < cxl and consider the following two possibilities.

(I:) xj ≥ xl. In this case, since ḡjl = 0, and since s is a strict equilibrium, player j must

strictly loose if he forms and additional link with l and choose efforts x̃j = xj − xl. That is,

f(ŷ) − cxj − ηj(g)k > f(ŷ) − c(xj − xl) − (ηj(g) + 1)k, which holds if and only if k > cxl;

but this contradicts that k < cxl.
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(II:) xj < xl. Here we have two sub-cases. (IIa:) Suppose gij = 1; this implies that the

costs for i to link with j are strictly lower than the costs of effort that i accesses from j,

i.e., k < cxj. Since k < cxj, ḡlj = 0 and, by assumption, xl > xj, then l strictly gains if he

links with j and chooses effort x̃l = xl − xj. So s is not a strict equilibrium. (IIb:) Suppose

gji = 1. Since j does no access l but he sponsors a link to i, it follows that xi > xl. Since,

by assumption, xj < xl, it follows that xi > xl > xj, which contradicts that xi ≤ xj. We

have then shown that for every l ∈ I(s) \ {i, j}, if l ∈ N(i; ḡ) then l ∈ N(j; ḡ).

We now show that if l ∈ I(s) \ {i, j} and l ∈ N(j; ḡ) then l ∈ N(i; ḡ). Suppose not; then

player j accesses all positive effort players that i accesses plus some other positive effort

players. But this would contradict that xi ≤ xj. This concludes the proof of Claim 1. �

It is now easy to complete the proof of Lemma 5.3. Consider the subgraph of g defined on

players belonging to I(s). If this subgraph is connected, then Claim 1 implies that it is a

clique. In this case Lamma 5.3 immediately follows from Lemma 5.1. Next, suppose this

subgraph is not connected and let C1 and C2 be two components. Claim 1 implies that each

component is a clique and, from Lemma 5.1, the total effort in each component is ŷ. Let

i, i′ ∈ C1 and j, j′ ∈ C2 with gi,i′ = 1 and gj,j′ = 1. Suppose, without loss of generality, that

x′i ≤ x′j; note that player i (weakly) gains by switching link from i′ to j′, a contradiction

with the hypothesis that s is a strict equilibrium. This concludes the proof of Lemma 5.3.

�

We are now ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1: We first consider the case k < cŷ. From Lemma 5.3 we know

that aggregate effort in any strict equilibrium is equal to ŷ. We now take up the issue of

architecture. Suppose that s = (x, g) is a strict equilibrium and it is not an inter-linked

stars network. Clearly then there is no player i such that xi = ŷ; for if there were such a

player then from Lemma 5.2 the equilibrium network would be a star. Since
∑

i∈N xi = ŷ, it

follows that for all i, j ∈ I(s), ḡij = 1. If |I(s)| = n, the claim follows. Suppose |I(s)| < n;

since k > 0, for every i ∈ N , and for every l /∈ I(s), gil = 0. Thus, for every l /∈ I(s), gl,i = 1
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for all i ∈ I(s). This proves that every strict equilibrium network has the inter-linked stars

architecture.

We now consider the proportion I(s)/n. Fix c and k. Consider first a strict equilibrium

in which there is some player j /∈ I(s). In such an equilibrium j forms a link with every

i ∈ I(s). For a player j to link to i, it must be true that cxi > k. This means that xi > k/c

for every i ∈ I(s) and so the maximum number of players who can contribute is given by

(ŷc)/k. Clearly, for given c and k, the ratio (ŷc)/nk can be made arbitrarily small by suitably

increasing n. Now consider an equilibrium in which |I(s)| = n. Note that for any i ∈ I(s),

if there is some j ∈ N such that gji = 1 then cxi > k. So the number of players who will

have incoming links is bounded above by (ŷc)/nk, as before. The rest of the players will

have no in-coming links but since |I(s)| = n, and
∑

i∈N xi = ŷ, it follows that yi < ŷ, for all

i ∈ N . This contradicts Lemma 5.1 and so |I(s)| = n is not possible in a strict equilibrium,

for large n.

We finally consider the case k > cŷ. In any equilibrium s = (x, g), xi ≤ ŷ, for all i ∈ N .

But this means that if k > cŷ(c) then no player will form a link in equilibrium. Under

our assumptions on f(·), it now follows that in equilibrium xi = ŷ, for every i ∈ N . This

completes the proof of Theorem 3.1. �

Proof of Proposition 3.1: First we show that a star network in which the hub exerts

effort ŷ and all other players exert 0 effort but each forms a single link with the hub is an

equilibrium. Suppose that xi = ŷ for some i ∈ N . The payoff to player i is f(ŷ)− c > 0. All

players are linked with him, so forming links is clearly not profitable. A lowering of effort

lowers payoff since f(.) is strictly concave and f ′(ŷ) = c. Consider a player j 6= i. His payoff

is f(ŷ) − k. A possible deviation is to retain the link and increase effort, but this is not

profitable since f ′(ŷ) = c and f(·) is strictly concave. Linking with a player l 6= i is clearly

not profitable since this player chooses effort 0. The only other alternative is to delete the

link with player i and increase effort. The optimal effort level with zero links is xj = ŷ, but

then the payoff is f(ŷ)− cŷ. Since k < cŷ, this is less than the payoff f(ŷ)− k, which player

j obtains in the stipulated profile.
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Consider next the case where k > (ŷc)/2; suppose that s = (x, g) is a strict equilibrium.

We know from Lemma 5.3 that
∑

i∈I(s) xi = ŷ. Suppose |I(s)| ≥ 2. Then from Theorem

3.1 we know that ḡij = 1, for every pair i, j ∈ I(s). But gij = 1 implies that cxj > k,

and under the hypothesis k > (ŷc)/2 this means that xj > ŷ(c)/2. There are two possible

situations: one, I(s) = n and two, |I(s)| < n. In the former case, there are n(n− 1)/2 links

and n(n− 1)/2× ŷ(c)/2 > ŷ, for all n ≥ 3; from Lemma 5.3 this contradicts the hypothesis

that s is a strict equilibrium. Finally, if |I(s)| < n, then every player in I(s) is linked to by

every player outside I(s). However then
∑

i∈I(s) xi > (|I(s)|ŷ)/2 ≥ ŷ so long as |I(s)| ≥ 2;

from Lemma 5.3 this contradicts the hypothesis that s is a strict equilibrium. Thus the only

possible equilibrium involves |I(s)| = 1. The result now follows. �

Proof of Proposition 3.2:

Suppose k < cŷ. First consider strict equilibria. From Theorem 3.1 it follows that the

sum of total efforts is ŷ, that yi = ŷ for all i ∈ N and that g has an inter-linked stars

architecture. Given the linearity of costs of effort as well as the costs of linking, it follows

that the most efficient strict equilibrium is the star. Let s∗ be such configuration, then

SW (s∗) = nf(ŷ)− cŷ − (n− 1)k.

We now show that the social welfare of every nonstrict Nash equilibrium is strictly lower that

SW (s∗). Suppose s = (x, g) is a nonstrict Nash equilibrium. From Proposition 5.1 we know

that yi = ŷ for all i ∈ N and that
∑

i∈N xi > ŷ. If g is connected, then there are at least

n − 1 links and therefore the proof follows. Suppose g is not connected and suppose there

are p components. Let C1(g) be a component of g. Since s is a nonstrict equilibrium then

yi = ŷ for all i ∈ C1(g) and
∑

i∈C1(g) xi ≥ ŷ. Also, the number of links in C1(g) is at least

m ≥ |C1(g)| − 1. So the sum of players’ payoffs in C1(g) is |C1(g)|f(ŷ)− c
∑

i∈C1(g) xi −mk.

This is (weakly) lower than a profile in which C1(g) is a star, the hub chooses ŷ and all the

spokes choose 0. So, SW (s) ≤ nf(ŷ)− cpŷ − (n− p)k < SW (s∗). This concludes the proof

of Proposition 3.2 �

Proof of Proposition 3.3: Suppose s = (x, g) corresponds to an efficient profile. We first

show that if g is not empty, then g is a star. Let g be a not empty network and suppose
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that C is a component in g. Let |C| ≥ 3 be the number of players in C. Suppose that

x is the total effort exerted in component C. Then it follows that the total payoff of all

players in component C is at most |C|f(x)− cx− (|C| − 1)k. Consider a star network with

|C| players in which the hub player alone exerts effort equal to x. It then follows that this

configuration attains the maximum possible aggregate payoff given effort x. Moreover, note

that aggregate payoff in any profile s, in which two or more players exert effort is strictly

less than this, since it will entail the same total costs of effort but a strictly higher cost of

linking or a strictly lower payoff to at least one of the players. So the star network with the

hub exerting effort is the optimal profile for each component.

Next consider two or more components in an efficient profile s. It is easy to see that in a

component of size m, efficiency dictates that effort x satisfy mf ′(x) = c. If the components

are of unequal size then efforts will be unequal and a simple switching of spoke players across

components raises social welfare. So in any efficient profile with two or more components, the

components must be of equal size. Let m be the size and let the effort x satisfy mf ′(x) = c.

Suppose next that the network contains two components C1 and C2 of size m. Consider the

network in which the spoke players in component 2 are all switched to component 1. This

yields a network g′ with components C ′
1 and C ′

2 with the former containing 2m − 1 players

while the latter contains 1 player. Then the payoff remains unchanged. However, the effort

level x is no longer optimal in either of the components. So, for instance, effort can be lowered

in component 2 and the aggregate payoff thereby strictly increased, under the assumptions

on f(·). A similar argument also applies to networks with three or more components, and so

we have proved that no profile with two or more components can be efficient. Thus, if g is

not empty then g is a star and the effort of the central player is ỹ = arg maxy∈X nf(y)− cy.

The social welfare associated to such profile is: SW = nf(ỹ)− cỹ − (n− 1)k.

Finally, note that if s is socially efficient and g is not a star, then g must be empty and

every player will choose ŷ. The social welfare is then SW = n[f(ŷ) − cŷ]. The expression

of k̄ is obtained by equating the social welfare in these two configurations, i.e. (n − 1)k̄ =

n[f(ỹ) − f(ŷ)] + c[(n − 1)ŷ − ỹ] + cŷ. To see that k̄ > cŷ, note that if k̄ ≤ cŷ, then
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n[f(ỹ) − f(ŷ)] + c[(n − 1)ŷ − ỹ] + cŷ ≤ (n − 1)cŷ, which holds if and only if nf(ỹ) − cỹ ≤

nf(ŷ)−cŷ. Given that ỹ = arg maxy∈X nf(y)−cy, ŷ = arg maxy∈X f(y)−cy and that f(·) is

strictly concave, the above inequality cannot hold. This concludes the proof of Proposition

3.3. �

The following proposition provides a partial characterization of Nash equilibria.

Proposition 5.1 Suppose k < cŷ and let s = (x, g) be an equilibrium. If
∑

i∈N xi = ŷ then

g is an inter-linked stars, hubs choose positive efforts and every spoke chooses effort 0. If∑
i∈N xi > ŷ there are two possibilities:

I Every player i ∈ I(s) has ∆ ∈ {1, ..., n − 2} links with positive effort players and

chooses effort xi = ŷ
∆+1

= k
c
, while every other player has ∆ + 1 links with positive

effort players and there are not other links.

II Every player chooses positive efforts and there are two types of players. High effort

players choose x̄ = k
c
, while every low effort player has η links with high effort players,

they are not neighbors of each other and choose effort x = ŷ−η k
c
, where ŷc

k
−1 < η < ŷc

k
.

Proof of Proposition 5.1:

First suppose that
∑

i∈N xi = ŷ. In this case it is clear that I(s) must be a clique. Further-

more, ḡi,j = 0 for all j /∈ I(s). Therefore, each player choosing 0 effort must sponsor a link

with every positive effort players.

Hereafter, let s = (x, g) be an equilibrium where
∑

i∈N xi > ŷ. The proof now consists of

two steps. In the first step, we characterize equilibria in which positive effort players choose

the same effort. In the second step we consider situations in which positive effort players

choose different level of efforts.

Step 1. We prove that if all positive effort players choose the same level of effort then s

satisfies Part I of Proposition 5.1. Suppose xi = x, ∀i ∈ I(s). If x = ŷ, Lemma 5.2 implies

that |I(s)| = 1 and therefore aggregate effort is ŷ, a contradiction. Assume x ∈ (0, ŷ); from

Lemma 5.1 it follows that yi = ŷ, ∀i ∈ I(s). Since, by assumption, xi = x, ∀i ∈ I(s), it
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follows that every positive effort player accesses the same amount of effort from his neighbors,

which immediately implies that every positive effort player has the same number of links with

positive effort players; let ∆ be this number. Note that for all i ∈ I(s), yi = x + ∆x = ŷ,

which implies that x = ŷ
∆+1

. Since aggregate effort is strictly higher than ŷ it follows that

∆ < |I(s)| − 1. Also, from Lemma 5.2 we know that x < ŷ, which implies that ∆ ≥ 1.

Thus, there exists two positive effort players who are neighbors. Since s is equilibrium, then

k ≤ cx. Also, since, by assumption,
∑

i∈N xi > ŷ, there exists two positive effort players who

are not neighbors. Since s is equilibrium, then k ≥ cx. Hence, k = cx. Finally, if I(s) = N ,

the proof follows. If not, select j /∈ I(s). Clearly, in equilibrium no player forms a link with

j. So, in equilibrium j must sponsor ∆ + 1 links with positive effort players. This concludes

the proof of Part I of Proposition 5.1.

Step 2. Let g′ be the subgraph of g defined on I(s). Let C(ḡ′) be a component ḡ′. By

construction each player in C(ḡ′) chooses positive effort. Suppose that (A1) total sum of

efforts in C(ḡ′) is strictly higher than ŷ and (A2) there exists at least a pair of players in

C(ḡ′) who choose a different level of effort. The following Lemma is key.

Lemma 5.4 Suppose that (A1) and (A2) holds in C(ḡ′). Then there are two types of players

in C(ḡ′): high effort players choose x̄ and low effort players choose x < x̄. Moreover, every

low effort player forms η links with high effort players, there are not links between low effort

players and k = cx̄, x = ŷ − ηx̄ and ŷc
k
− 1 < η < ŷc

k
.

Proof of Lemma 5.4 Without loss of generality label players in C(ḡ′), so that x1 ≥ x2 ≥

... ≥ xm. (A2) implies that there exists l ∈ C(ḡ′), l 6= m, such that xj = xl = x̄, for all j ≤ l,

and x̄ > xl+1. We start by proving two claims.

Claim 1. For all j > l, gji = 1 for some i ≤ l.

To see this, suppose that there exists a j > l such that gji = 0, ∀i ≤ l. This implies that

j does not sponsor links. If, on the contrary, player j sponsors links, then these links are

directed to players j′ > l, but then player j could strictly gain by switching a link from j′ to

some i ≤ l. Note that, it must also be the case that j does not receive any links. Suppose j
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receives a link from a player j′. Then it must be the case that player l is also a j’s neighbor,

otherwise j′ strictly gains by switching the link from j to l. But this says that every player

who sponsors a link to j is a l’s neighbor and since player j only receives links, this means

that player j accesses from his neighbors at most as much effort as player l does. This is in

contradiction with our hypothesis that xj < x̄ = xl. Hence, claim 1 follows.

Claim 2. There exists some i, i′ ≤ l such that ḡii′ = 0.

Suppose not; then {1, .., l} is a clique. This implies that for all i ≤ l, there exists at least a

player j > l such that ḡij = 0. If not, i would access everyone and from A1 it follows that

yi > ŷ, which contradicts Lemma 5.1. Next, select such a player j. Clearly, gjj′ = 0 for all

j′ > l, otherwise j strictly gains by switching the link from j′ to i. Analogously, if j receives

a link from some j′ > l, then also i must be a neighbor of j′. Therefore, since {1, .., l} is

a clique, it follows that every neighbor of j is also a i’s neighbor, and this contradicts the

assumption that xj < x̄. Hence, claim 2 follows.

We can now conclude the proof of Lemma 5.4. First note that an implication of claim 1 and

claim 2 is that k = cx̄. Indeed, from claim 1 we know that there exists a player j > l who

sponsors a link to a player i ≤ l. Since s is equilibrium, this implies that k ≤ cx̄. Similarly,

claim 2 implies that there exists i, i′ ≤ l such that ḡii′ = 0; since s is an equilibrium this

implies that k ≥ cx̄. Hence, k = cx̄.

Next, since k = cx̄ and xj < x̄ for all j > l, it follows that ḡj′j = 0 for all j > l. Therefore,

every player j > l forms only links with players in {1, .., l}. We now show that xj = xj+1

for all j > l. Select j > l and assume that xj > xj+1. Then, yj = xj + ηj(g)x̄ and

yj+1 = xj+1 + ηj+1(g)x̄. Lemma 5.1 implies that yj = yj+1 = ŷ, which holds whenever

xj − xj+1 = (ηj+1 − ηj)x̄. Since xj > xj+1, then ηj+1 − ηj ≥ 1, but then (ηj+1 − ηj)x̄ ≥ x̄ >

xj−xj+1, where the last inequality follows because, by assumption, xj < x̄. Thus, all players

j > l chooses the same effort, say x, and from Lemma 5.1 it follows that x + ηj(g)x̄ = ŷ.

Thus, every low effort player sponsors the same number of links with high effort players, say

η, and x + ηx̄ = ŷ. This concludes the proof of Lemma 5.4. �
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We now conclude the proof. Recall that g′ is the subgraph of g defined on positive efforts

players. We need to consider two cases: one, ḡ′ is connected, and two ḡ′ is not connected.

One, if ḡ′ is connected, then (A1) holds by assumption. If (A2) does not hold then step 1

applies and the proof follows. If (A2) holds then Lemma 5.4 applies. We then need to show

that every player must choose positive effort. To see this note that since k = cx̄ every player

j /∈ I(s) will only sponsor links to high effort players. Then, by symmetry, low effort players

must obtain the same payoffs of players j /∈ I(s). It is easy to check that this is possible if

and only if x = x̄, which contradicts (A2).

Two, suppose g′ is not connected and let C1 and C2 be two arbitrary components. Here, note

that for every i, i′ ∈ C1 and j, j′ ∈ C2 such that gi,i′ = gj,j′ = 1, then x′i = x′j = x ≥ xi, xj

and k = cx. Indeed, x′i = x′j = x follows because, if x′i < x′j then player i would strictly gain

by switching a link from i′ to j′; for analogous reasonings it follows that xi, xj ≤ x; k = cx

follows because i sponsors a link to i′, thus k ≤ cx, and i′ does not sponsor a link to j′, thus

k ≥ cx. Together, these observations imply that every player who receives a link in C1 and

every player who receives a link in C2 chooses effort x. Thus, if in C1 and C2 every player

receives at least a link, positive efforts players choose the same effort and the proof follows

from step 1. Suppose in C1 some player does not receive a link and effort is not homogeneous

across players. If the aggregate effort in C1 equals ŷ, then C1 is a clique and therefore at

most one player can only sponsor links. Since C1 is a clique and aggregate effort is ŷ, this

player will choose x = ŷ − (|C1| − 1)x. Alternatively, if in C1 the aggregate effort is higher

than 1, then lemma 5.4 applies. Similar considerations hold for any other components. The

proof of Proposition 5.1 now follows from the combination of these observations. �

Appendix B.

This appendix provides proffs of the results in section 4.

Proof of Proposition 4.1: We start with Part I. Suppose s satisfies the condition in the

proposition. Take a player i; since
∑

j∈N xj = ŷ, ḡ is minimally connected, and al = 1 for all

finite l, then yi = ŷ, so player i does not want to change his own effort level and also he does

not want to form an additional link. The payoffs to i at equilibrium s are f(ŷ)− cxi − ηi(g).
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If ηi(g) = 0, then player i plays a best reply. Suppose ηi(g) > 0, then gi,j = 1 for some j.

Note that player i is indifferent between keeping the link with j and switching the link from

j to a player that i accessed via j. So, the only possible deviation to check is that player

i deletes the link with j; since k ≤ cyj player i does not gain by doing so. Hence, s is an

equilibrium.

We now prove the reverse. Let s = (x, g) be an equilibrium. Since al = 1 for all finite l, then,

in equilibrium, every component of ḡ must be minimal. Also, the aggregate effort in each

component must be ŷ. If not, then a positive effort player strictly gains by either increasing

his own effort (if aggregate effort is lower than ŷ) or decreasing his own effort (if aggregate

effort is higher than ŷ). Next, suppose ḡ is not connected. Let C1 be a component of ḡ; note

that it cannot be the case that a player i ∈ C1 chooses xi = ŷ. Suppose, on the contrary,

that xi = ŷ, then all i’s neighbors choose effort 0 and sponsors a link to i, so i’s payoffs are

f(ŷ) − cŷ, but, since k < cŷ, player i strictly gains if he chooses 0 and forms a link with a

player j ∈ C2. Thus, in C1 there are at least two players choosing positive effort; moreover,

since C1 is minimal it must be the case that at least a player who chooses positive effort also

sponsors a link. So let gjj′ = 1, j, j′ ∈ C1 and xj ∈ (0, ŷ). Then, since
∑

j∈N xj = ŷ, y′j < ŷ

and therefore player j strictly gains by switching the link from j′ to a player j′′ belonging to

a different component. Thus, ḡ is connected. Finally, it is readily seen that if gij = 1 and

s is equilibrium, then k ≤ cyj. It is not easy to conclude the proof of Part I of Proposition

4.1. It is easy to verify Part II of Proposition 4.1. This concludes the proof of Proposition

4.1 �

Proof of Proposition 4.2: Suppose k < c and let s = (x, g) be an equilibrium. We claim

that there exists an i ∈ N such that xi = 1 and that xj = 0, ∀j 6= i. First, since k < c, there

must be at least a player who chooses effort 1. Second, suppose both i and j choose effort

1. Then, it must be the case that xi′ = 0, ∀i′ ∈ N(i; ḡ); for if a neighbor of i chooses effort

1, player i strictly gains by choosing effort 0. Since xi′ = 0, ∀i′ ∈ N(i; ḡ), then gil = 0 for

all l. Hence, player i’s payoffs in equilibrium s are 1 − c. If player i chooses 0 and forms a

link with j then he obtains 1− k. Since k < c, 1− k > 1− c and therefore s cannot be an

equilibrium. Next, let xi = 1 and xj = 0, ∀j 6= i. Trivially, gj′j = 0, ∀j′ ∈ N , j 6= i, and,
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since k < c, every player j 6= i has a link with i. This completes the proof for the case k < c.

The proof for the case k > c is trivial and therefore omitted. �

Proof of Proposition 4.3: Suppose k < c and suppose that s = (x, g) is efficient. It is

easy to see that the only links in g are between pair of players (i, j) with xi 6= xj. Also, if

player i chooses 0 then player i has only one link with a player choosing 1. Indeed, if player i

had two distinct links with two players choosing 1, then welfare can be made strictly higher

by deleting one of the link. Hence, the total number of links are (n − m), where m is the

number of players choosing 1, and each player gets returns of 1. Then the social welfare is

n−mc− (n−m)k. If k > c, this expression decreases with m and therefore m = 1, which

implies the result. Suppose now that k > c. The above arguments show that if there are

m < n players choosing 1, and s is efficient then the social welfare is n−mc− (n−m)k, but

then welfare can be increased by setting m = n, which implies the result. This concludes

the proof. �
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Figure 1. xi,xj,xl>0, xl>xj
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Figure 2. Inter-linked stars architecture with three 
hubs, n=8.
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Figure 3. Inter-linked stars architectures, 
n=8

Inter-linked stars architectures with 3 hubs. Inter-linked stars architectures with 2 hubs.

Inter-linked stars architectures with 1 hub.
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