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Abstract

Purpose: To examine the effects of plyometric jump training (PJT) on lower-limb stiffness.

Methods: Systematic searches were conducted in PubMed, Web of Science, and Scopus. Study participants included healthy males and females

who undertook a PJT programme isolated from any other training type.

Results: There was a small effect size (ES) of PJT on lower-limb stiffness (ES = 0.33, 95% confidence interval (95%CI): 0.07 to 0.60, z = 2.47,

p = 0.01). Untrained individuals exhibited a larger ES (ES = 0.46, 95%CI: 0.08 to 0.84, p = 0.02) than trained individuals (ES = 0.15, 95%CI: ‒
0.23 to 0.53, p = 0.45). Interventions lasting a greater number of weeks (>7 weeks) had a larger ES (ES = 0.47, 95%CI: 0.06 to 0.88, p = 0.03)

than those lasting fewer weeks (ES = 0.22, 95%CI: ‒0.12 to 0.55, p = 0.20). Programmes with �2 sessions per week exhibited a larger ES

(ES = 0.39, 95%CI: 0.01 to 0.77, p = 0.04) than programmes that incorporated >2 sessions per week (ES = 0.20, 95%CI: �0.10 to 0.50,

p = 0.18). Programmes with <250 jumps per week (ES = 0.50, 95%CI: 0.02 to 0.97, p = 0.04) showed a larger effect than programmes with

250�500 jumps per week (ES = 0.36, 95%CI: 0.00 to 0.72, p = 0.05). Programmes with >500 jumps per week had negative effects (ES =�0.22,

95%CI: �1.10 to 0.67, p = 0.63). Programmes with >7.5 jumps per set showed larger effect sizes (ES = 0.55, 95%CI: 0.02 to 1.08, p = 0.04) than

those with <7.5 jumps per set (ES = 0.32, 95%CI: 0.01 to 0.62, p = 0.04).

Conclusion: PJT enhances lower-body stiffness, which can be optimised with lower volumes (<250 jumps per week) over a relatively long

period of time (>7 weeks).

Keywords: Jumps; Stretch shortening cycle; Tendon
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1. Introduction

High performance in activities that require a “bouncing”

motion, such as running, jumping, and hopping, form a basis

for success in both individual and team sports alike. At the tis-

sue level, in movements such as these, the musculotendinous

unit (MTU) exhibits spring- or elastic-like behavior whereby

the MTU stretches as the D13X Xlower-limb joints undergo angular

flexion before tissue shortening occurs as the joints extend.1,2

In this way, the stretch-shortening cycle D14X Xis facilitated by the
*Corresponding author.

E-mail address: jmorana@essex.ac.uk (J. Moran).
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storage of elastic energy that is used to potentiate further

movement beyond the movement that was initially executed.1

A key mechanical property governing the aforementioned

spring-like behavior of musculotendinous tissue is the term

“stiffness.” D15X X3 Stiffness is calculated as the ratio of the applied

force to the change in displacement of a body.3 During spring-

D16X Xlike movements, the individual stiffness values of various pas-

sive tissues (i.e., ligaments, tendons) and active tissues (i.e.,

muscles) are integrated with neural contributions (e.g.,

reflexes) to enable the musculoskeletal system to behave like a

spring.4,5 Stiffness can be quantified directly by using methods

such as ultrasonography,6 free oscillation,7 sinusoidal pertur-

bation,5 quick release,8 short-range stiffness experiments,9 and
103

104
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the “alpha” method.10 In addition, stiffness can also be quanti-

fied indirectly by using whole-body kinetics and kine-

matics,11�13 although such variables would be more

appropriately termed D17X Xmeasures of quasi D18X Xstiffness.3

LowerD19X X-limb stiffness can enhance performance in various

athletic movements, such as vertical jumping,14 endurance

running,15 sprint running,16 and performances requiring a

changing of direction.17 This was demonstrated in a recent

study16 in which stiffness of the entire D20X Xlower limb was shown

to share significant relationships with key indicators of athleti-

cism, such as maximal running velocity (r = 0.74), squat jump

height (r = 0.51), and reactive strength index (r = 0.44). In per-

forming these movements, an athlete must repeatedly leverage

the stretch-shortening cycle, which exploits the elastic charac-

teristics of the MTU as it absorbs braking forces and generates

propulsive forces.18 This process exploits the aforementioned

spring-like behavior of the MTU because the resultant kinetic

energy facilitates faster locomotion.18

VariousD21X X types of exercise can be used to target lower-D22X Xlimb

stiffness,19�21 although current conclusions concerning the opti-

mal form of training remain equivocal. For example, Kubo et

al.22 compared the effects of plyometric jumping and isometric

resistance training on muscle and joint stiffness in previously

untrained adult males. The authors reported that plyometric jump

training (PJT), but not isometric training, improved direct meas-

ures of active plantarflexor muscle stiffness and indirect measures

of joint stiffness during jumping actions. However, it has also

been reported that changes in stiffness, but not in the pattern of

muscle activation, accounted for the observed gains in jump per-

formance following PJT in male participants D23X X22 years of age.23

The differD24X Xing results found in these studies, in addition to the con-

flicting findings in other investigations that have reported signifi-

cant improvements22,24�26 or no change at all,23,27 show that

there is currently no clear consensus in the current body of litera-

ture aboutD25X Xthe effect of PJT on measures of stiffness.

Where different types of exercise are considered effective

in enhancing stiffness, this may, in part, be due to variations in

total training volume or dosage, which includes factors such as

the number of sessions, repetitions, and sets and the time spent

under muscular tension.28 For example, it has been shown that

exercise that induces higher levels of strain is more effective

for increasing stiffness,29 with minimal loading durations, at

90% of maximal voluntary contraction, shown to be around

3 s per repetition. In terms of traditional forms of training for

performance enhancement, higher levels of strain are, there-

fore, more readily achievable with traditional resistance train-

ing than with PJT. Nevertheless, as evidenced above, this does

not exclude PJT as an effective mechanism for enhancing

direct and indirect stiffness, and PJT seems to remain a prom-

ising method for enhancing these qualities. To our knowledge,

the effects of PJT on direct and indirect measures of lower-

D26X Xlimb stiffness have not yet been examined in the form of a

comprehensive pooled analysis, which could help to gauge the

actual level of effectiveness of PJT in enhancing this particular

physical quality. Accordingly, to better understand the effec-

tiveness of PJT on D27X Xlower-limb stiffness, we undertook a com-

prehensive meta-analysis.
Please cite this article as: Jason Moran et al., The effects of plyometric jump training on lower-
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We aimed to examine the effects of PJT on D28X Xlower-limb stiff-

ness in healthy individuals. We also aimed to establish the

characteristics of the dose-response between PJT variables (e.

g., training volume, duration, and frequency) and lower-limb

stiffness, with a view to optimising training prescription guide-

lines for coaches.
2. Methods

This meta-analysis was conducted in accordance with the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) statement.30

2.1. Literature search

With no date restrictions, a systematic search was conducted

in the electronic databases PubMed (including MEDLINE),

Web of Science, and Scopus. Keywords were collected through

experts’ opinions, a systematic literature review, and controlled

vocabulary (i.e., Medical Subject HeadingsD29X X). Boolean search

syntax, using the operators “AND” and “OR” was applied, in

various combinations, to the following terms: “ballistic,”D30X X

“complex,”D31X X “explosive,”D32X X "force-velocity,"D33X X “plyometric,” D34X X

"stretch-shortening cycle,"D35X X “jump,” D36X X "plyometric exercise,"D37X X

"resistance training,"D38X X “training,”D39X X “muscle,” D40X X “tendon,” D41X X

“musculotendinous,”D42X X“compliance,” D43X X“elasticity,”D44X X“viscoelastic,”

and “hysteresis.” D45X XOnly original articles written in English were

considered. Although we used the default values of the database

search engines, manual data checking was also performed to

increase the precision of data collection from relevant studies.
2.2. Selection of retrieved articles

After an initial search, accounts were created in the relevant

databases. Through these accounts, we received automatically

generated E-D46X Xmails for updates regarding the search terms used.

Thus, our search in the 3 databases was ongoing, with updates

received on a weekly basis. Studies were eligible for inclusion

until the initiation of manuscript preparation in July 2020.
2.3. Inclusion criteria

To determine the eligibility of studies for inclusion in our

meta-analysis, we used the PICOS (participants, intervention,

comparators, study outcomes, and study design) framework.30

The PRISMA flow diagram illustrating the number of studies

excluded at each stage of the systematic review and meta-anal-

ysis is shown in Fig. 1. Inclusion and exclusion criteria are

shown in Table 1, and the characteristics of the included stud-

ies are displayed in Table 2. For PJT intervention studies that

were identified as being potentially relevant, the full text was

used to determine D47X Xwhether the study contained a relevant mea-

sure of stiffness, as stipulated in Table 1. D48X XLower-limb stiffness

can be assessed using either direct measures D49X X such

ultrasonography D50X X29,31 or indirect measures using kinetics and/or

kinematics.11
limb stiffness in healthy individuals: A meta-analytical comparison, Journal of Sport and
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Fig. 1. Flow chart for inclusion and exclusion of studies.
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2.4. Analysis and interpretation of results

Data were extracted from included articles with a form cre-

ated in Microsoft Excel. Where required data were not clearly

or completely reported, the article’s authors were contacted

for clarification. Meta-analytical comparisons were carried out

in RevMan Version 5.3.32 Means and SD for measures of
Table 1

Population, intervention, comparison, and outcomes (PICOS) framework for study i

Category Inclusion criteria

Population Healthy males and females of any age

Intervention A plyometric jump training programme that conformed to the follo

ing definition:

"Lower body unilateral and bilateral bounds, jumps, and hops that u

lise a pre-stretch or countermovement that incites usage of the stret

shortening cycle”31,65

Comparator Studies must have included an experimental group that undertook

plyometric training and a control group to which it could be compa

The control group could not have been engaged in any plyometric

training.

Outcome Each study must have included a measure of direct or indirect lowe

body stiffness, taken both prior to and after the intervention period.

Lower-limb stiffness can be assessed using either laboratory measu

such ultrasonography to quantify muscle and tendon stiffness

directly29,31 or field-related measures such as vertical hopping stiff

ness.11 In our meta-analysis, when the included studies used metho

to quantify muscle and/or tendon stiffness, the resultant term tissue

stiffness is used. In contrast, when included studies used field-based

measures, the term quasistiffness is used.3,66

The classification of stiffness, as we judged it, must have conforme

1 of the following, as described by Latash and Zatsiorsky3:

Stiffness: the elastic properties of tendons and passive muscles

Apparent stiffness: the response of active muscles to stretch forces

Quasistiffness: proxies of the above qualities as measured with test

such as rebound hopping

Study design Controlled training intervention studies containing 2 independent

groups for comparison

Please cite this article as: Jason Moran et al., The effects of plyometric jump training on lower

Health Science (2021), https://doi.org/10.1016/j.jshs.2021.05.005
stiffness were used to calculate D51X Xeffect sizes. The inverse-vari-

ance random-effects model for meta-analyses was used

because it allocates a proportionate weight to trials based on

the size of their individual standard errors33 and facilitates

analysis whilst accounting for heterogeneity across studies.34

Effect sizes are represented by the standardised mean
nclusion and exclusion criteria.

Exclusion criteria

Individuals who had sustained a recent injury

w-

ti-

ch-

Interventions that were carried out in conjunction with alternative

training methods such as strength or balance training

Interventions that were carried out in water or that used additional

manipulative techniques such as electrostimulation

Interventions <3 weeks

red.

Studies that did not have a control group

r

res

-

ds

d to

s

Studies with no measure of stiffness, apparent stiffness or

quasistiffness

The second treatment sequence of a crossover study, cross-sectional

studies, or studies that evaluated acute performance variables only (i.e.,

postactivation potentiation)

-limb stiffness in healthy individuals: A meta-analytical comparison, Journal of Sport and

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

https://doi.org/10.1016/j.jshs.2021.05.005


Table 2

Study characteristics.

Study Age

(year)a
Height

(cm)a
Weight

(kg)a
Training status Weeks Mean frequency

(per week)

Total

sessions

Mean

weekly

jumps

Jump type Sets Repetitions Test Type of

stiffness

Chaouachi et al.

(2014)65
13.7 § 0.8 161.5 § 7.7 45.9 §9.7 Inactive (physical

education only)

8 3 24 292.5 Countermovement jump Line

jump (standing distance jump),

drop jump + 1 step, front to back

cone hops, lateral box jump push

off, 1-leg distance jump + 1 step,

single-leg cone jumps front to

back, single-leg cone jumps side

to side, single-leg box push off

1-2 8-15 Leg stiffness

(submaximal

hopping test)

Direct

Cornu et al. (1997)5 22.3 § 2.4 — — Athletes (basketball

and volleyball)

7 2 14 1200 Squat jumps, drop jumps, hopping, jumps fr high (70 cm) and low

(40 cm) platforms, jumps over hedges using or both feet

Mechanical

impedance

Indirect

Four�e et al. (2014)27 18.8 §0.9 179.2 § 6.1 68.5 § 7.1 Athletes (basketball,

volleyball, and

handball)

8 2 16 400 Squat jumps, counter-movement jumps, dro umps from either low

(40 cm), medium (60 cm), or high (80 cm) p tforms, jumps over hedges

using 1 or both feet

Maximal musculo-

articular stiffness

with dynamometer

Direct

Four�e et al. (2010)26 18.8 § 0.9 177.3 § 6.2 68.4 § 6.5 Active (10.5 h per

week)

14 2.4 34 485.7 Squat jumps, counter-movement jumps, dro umps from either low

(40 cm), medium (60 cm), or high (80 cm) p tforms, jumps over hedges

using 1 or both feet

Maximal musculo-

articular stiffness

with dynamometer

(stiffness index)

Direct

Garc�ıa-Pinillos et al.

(2014)xx3 X X

27.2 § 8.6 172.0 § 10.0 66.0 §10.4 Recreationally

trained (3‒5 weekly
running sessions)

10 3.2 32 1000 Bilateral and unilateral—alternat-

ing jump rope

1 100-140 Arch stiffness Indirect

Hirayama et al.

(2017)67
22.0 § 3.0 172.0 §5.8 66.9 § 10.5 Recreationally active

with no plyometric

experience

12 3 36 300 Unilateral depth jumps 10 10 Achilles’ tendon

stiffness (ultrasound)

Direct

Houghton et al.

(2013)68
21.0 § 4.0 174.6 § 3.1 73.7 §10.3 Athletes (no prior

plyometric

experience)

8 1.875 15 223.12 Land off box, standing long jump

in squat jump position, standing

long jump, forward jump over

hurdle, vertical countermovement

jump, lateral jump over hurdle,

reactive jumps, forward jump

(50 cm apart), bounding forward

hurdles, forward jumps to box,

box jumps, bounding forward

repeated hurdles, forward jumps,

lateral jumps to box, drop jumps,

drop jump and jump over hurdle

1-6 2-12 Achilles’ tendon

stiffness at 90%

MVC

(dynamometer)

DIrect

Jeffreys et al.

(2014)69 (HPG)

20.3 § 1.6 182.0 § 5.0 91.6 § 10.4 Trained (1‒2 years
plyometrics)

6 2 12 320 Standing vertical jumps (tuck

jumps), multiple two-foot hurdle

jumps, repeated 2-foot jumps

(horizontal), alternate leg bounds,

lateral 2-foot jumps, multiple

two-foot hurdle jumps, single-

foot hops, drop jumps, lateral one-

foot jumps, single-foot drop

jumps

4-8 5-10 Leg stiffness (force

plate)

Indirect

(continued on next page)
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Table 2 (Continued)

Study Age

(year)a
Height

(cm)a
Weight

(kg)a
Training status Weeks Mean frequency

(per week)

Total

sessions

Mean

weekly

jumps

Jump type Sets Repetitions Test Type of

stiffness

Jeffreys et al.

(2019)69 (LPG)

20.3 § 1.6 183.0 §5.0 91.6 §10.4 Trained (1‒2 years
plyometrics)

6 2 12 80 Standing vertical jumps (tuck

jumps), multiple two-foot hurdle

jumps, repeated 2-foot jumps

(horizontal), alternate leg bounds,

lateral 2-foot jumps, multiple 2-

foot hurdle jumps, single-foot

hops, drop jumps, lateral 1-foot

jumps, single-foot drop jumps

1-2 5-10 Leg stiffness (force

plate)

Indirect

Laurent et al.

(2020)70 (KE)

22.5 180.5 §5.8 68.7 § 14.0 Active but untrained 10 2 20 298 Stationary hopping, drop jump on

the spot, drop jump with

displacement

3-5 10 Achilles’ tendon

stiffness (ultrasound)

Direct

Laurent et al.

(2020)70 (KF)

22.5 180.9 §10.5 69.7 § 10.8 Active but untrained 10 2 20 298 Stationary hopping, drop jump on

the spot, drop jump with

displacement

3-5 10 Achilles’ tendon

stiffness (ultrasound)

Direct

Lloyd et al. (2012)71

(G12)

12.3 § 0.3 151.8 § 7.9 44.8 § 9.4 Inactive (physical

education only)

4 2 8 92.5 Squat jump, countermovement

jump, pogo hopping, standing

long jump, lateral hops, hop

scotch, bilateral “power” hops,

ankle jumps, “power” skipping,

unilateral pogo hops, max

rebound hops, drop jumps, hurdle

“power” hops, total foot contacts

2-4 4-10 Absolute leg stiff-

ness (submaximal

hopping)

Indirect

Lloyd et al. (2012)71

(G15)

15.3 § 0.3 174.4 § 6.6 65.0 § 8.9 Inactive (physical

education only)

4 2 8 92.5 Squat jump, countermovement

jump, pogo hopping, standing

long jump, lateral hops, hop

scotch, bilateral “power” hops,

ankle jumps, “power” skipping,

unilateral pogo hops, max

rebound hops, drop jumps, hurdle

“power” hops, total foot contacts

2-4 4-10 Absolute leg stiff-

ness (submaximal

hopping)

Indirect

Lloyd et al. (2012)71

(G9)

9.4 § 0.5 133.2 § 8.7 32.6 § 7.0 Inactive (physical

education only)

4 2 8 92.5 Squat jump, countermovement

jump, pogo hopping, standing

long jump, lateral hops, hop-

scotch, bilateral “power” hops,

ankle jumps, “power” skipping,

unilateral pogo hops, max

rebound hops, drop jumps, hurdle

“power” hops, total foot contacts

2-4 4-10 Absolute leg stiff-

ness (submaximal

hopping)

Indirect

Spurrs et al. (2003)15 25.0 § 4.0 178.0 § 4.0 72.4 §5.5 Trained athletes (10

years)

6 2.5 15 131.1 Squat jump, split scissor jump,

double-leg bound, alternate leg

bound, single-leg forward hop,

depth jump, double-leg hurdle

jump, single-leg hurdle hop

2-3 6-15 Musculotendinous

stiffness (seated calf

raise)

Direct

(continued on next page)
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lower-
difference and are presented alongside 95% confidence inter-

vals (95%CI). The calculated effect sizes (ESs) were inter-

preted by using the conventions D52X Xoutlined by Hopkins et al.35

(<0.19 = trivial; 0.20�0.59 = small, 0.60�1.19 = moderate,

1.20�1.99 = large, 2.00�3.99 = very large, �4.0 = extremely

large). In cases in which there was more than D53X X1 intervention

group in a given study, the comparison group was proportion-

ately divided to facilitate comparison across all participants.36

To gauge the degree of heterogeneity amongst the included

studies, the I2 statistic was calculated. This represents the pro-

portion of effects that are caused by heterogeneity as opposed to

chance.30 Low, moderate, and high heterogeneity correspond to

I2 values of 25%, 50%, and 75%, respectively; however, these

thresholds are considered tentative.37 A value >75% is rated as

being considerably heterogeneous.33 The D54X Xx2 (chi-square) is

assessed if any observed differences in results are compatible

with chance alone. A low p D55X XvalueD56X Xor a large xD57X X2 statistic relative
to its degree of freedomD58X Xprovides evidence of heterogeneity of

intervention effects beyond those attributableD59X Xto chance.33

2.5. Assessment of risk of bias

The Physiotherapy Evidence Database D60X Xscale was used to

assess the risk of bias and methodological quality of the

included studies. This scale evaluates internal study validity

on a scale from 0 (high risk of bias) to 10 (low risk of bias).

Two reviewers (HC and YN) independently rated each study.

Any ratings that yielded different results between the 2

reviewers were further adjudicated by a third reviewer (UG), a

course of action that did not have to be followed. The agreed

rating was used in the risk of bias scale. A median score of �6

represents the threshold for studies with a low risk of bias.38

2.6. Analysis of moderator variables

To assess the potential effects of moderator variables, sub-

group analyses were performed. We selected, a priori, modera-

tors likely to influence the main effect of PJT on stiffness. For

this, a subgroup division between direct and indirect measures

of stiffness was made. Indirect stiffness is that which can be

quantified using whole-body kinetics and kinematics11�13 and

can be alternatively termed D61X Xquasi D62X Xstiffness D63X Xbecause it does not

necessarily evaluate the mechanistic elements of this physical

quality. Conversely, direct stiffness, which is representative of

localised passive stiffness in anatomical structures such as the

Achilles tendon,39 is that which is quantified with methods

such as ultrasonography,6 free oscillation,7 sinusoidal pertur-

bation,5 quick release,8 short-range stiffness experiments,9 and

the “alpha” method.10 Other subgroups included the number

of weeks in the applied programme, the total number of train-

ing sessions, and the weekly frequency of those sessions.

These variables were chosen based on the accepted influence

of the FITT (frequency, intensity, time, and type D64X X) principle on

adaptations to exercise.40 The median number of sets and repe-

titions per exercise were chosen on the basis of their use in pre-

vious PJT meta-analyses.41 A cumulative total of mean weekly

jumps was also used as a moderator. The training status of the

study participants was considered due to the presence of an
limb stiffness in healthy individuals: A meta-analytical comparison, Journal of Sport and
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upper threshold of adaptation to exercise after a particular

level is achieved.42 For this moderator, study participants were

divided into “trained” and “untrained” subgroups, with ath-

letes, active individuals, and those with >1 year of training

experience considered for the former group and inactive and

recreationally trained individuals allocated to the latter. For

these classifications, we depended on the study authors’ own

assessment of the level of activity undertaken by participants

in their study. We did not, however, consider children engaged

in physical education only as “active.” For all other variables,

a median, or “natural split,” was used to divide subgroups,

whereby clear divisions in the data were identified and used as

a delineator. For example, the most logical division of mean

weekly jump total resulted in the formation of subgroups of

<250 jumps, 250�500 jumps, and >500 jumps per week.

This constitutes a more intuitive division, where indiscriminate

use of the median split would be inappropriate.

3. Results

3.1. Study selection

The PRISMA flow diagram illustrating the number of stud-

ies excluded at each stage of the systematic review and meta-

analysis is shown in Fig. 1. Together, the studies were consid-

ered to be at low risk of bias (median quality score = 6.0).

These data are presented in Table 3. In total, 12 studies, with

16 experimental groups, met the inclusion criteria and were

included in the systematic review. A total of 7 D65X Xof these groups

incorporated measures of indirect stiffness, and 9 of them

incorporated measures of direct stiffness.

3.2. Primary analyses

For the main effect analysis o D66X Xf the effect of PJT on D67X Xlower-

limb stiffness, there was a small effect size (ES = 0.33,
Table 3

Physiotherapy Evidence Database (PEDro) scale ratings.

Item 1a Item 2 Item 3 Item 4 Item 5 Ite

Chaouachi et al.(2014)65 1 1 0 1 0 0

Cornu et al. (1997)5 1 0 0 0 0 0

Four�e et al. (2009)27 1 1 0 1 0 0

Four�e et al. (2010)26 1 1 0 1 0 0

Garc�ıa-Pinillos et al. (2020)66 1 1 0 1 0 0

Hirayama et al. (2017)67 1 1 0 1 0 0

Houghton et al. (2013)68 1 0 0 0 0 0

Jeffreys et al. (2019)69 1 1 0 1 0 0

Laurent et al. (2020)70 1 1 0 1 0 0

Lloyd et al. (2012)71 1 0 0 0 0 0

Spurrs et al. (2003)15 1 1 0 1 0 0

Wu et al. (2010)25 1 1 0 1 0 0

Notes: Here is a brief explanation: Item 1, eligibility criteria were specified; Item 2,

Item 4, the groups were similar at baseline; Item 5, there was blinding of all subjec

assessors; Item 8, measures of at least 1 key outcome were obtained from more than

outcome measures were available received the treatment or control condition as all

Item 10, the results of between-group statistical comparisons were reported for at le

ures of variability for at least 1 key outcome.
a A detailed explanation of each PEDro scale item can be accessed at https://www.ped

Please cite this article as: Jason Moran et al., The effects of plyometric jump training on lower

Health Science (2021), https://doi.org/10.1016/j.jshs.2021.05.005
95%CI: 0.07‒0.60, z = 2.47, p = 0.01). Between-study hetero-

geneity was moderate (I2 = 38%, p = 0.06). These results are

displayed in Fig. 2.
3.3. Effect of moderator variables

The results of the moderator analysis are displayed in

Table 4. Differences between subgroups demonstrated low

heterogeneity and were non D68X Xsignificant. For training status,

“untrained” individuals exhibited a small effect (ES = 0.46

95%CI: 0.08 to 0.84, p = 0.02), whereas D69X X no effects were

observed for “trained” participants (ES = 0.15, 95%CI:�0.23

to 0.53, p = 0.45). For test type, those tests for direct measures

of stiffness showed a small effect (ES = 0.48, 95%CI: �0.03 to

0.98, p = 0.06) that exceeded the borderline trivial to small

effect for indirect measures of stiffness (ES = 0.21, 95%CI:

D70X X�0.03 to 0.45), p = 0.09). For programme duration, those inter-

ventions lasting a greater number of weeks (>7 weeks) dis-

played a larger (ES = 0.47, 95%CI: 0.06 to 0.88), p = 0.03)

than those lasting a lower number of weeks (ES = 0.22,

95%CI: ‒0.12 to 0.55, p = 0.20). A contradictory trend was

seen for total sessions per programme, with programmes hav-

ing �16 sessions showing a larger (ES = 0.37, 95%CI: � D71X X0.04

to 0.77, p = 0.08), though still small, effect compared to its

opposite subgroup (ES = 0.24, 95%CI: ‒0.05 to 0.53),

p = 0.11). Similarly, programmes with �2 sessions per week

exhibited a larger effect size (ES = 0.39, 95%CI: 0.01 to 0.77,

p = 0.04) than programmes that incorporated >2 sessions per

week (ES = 0.20, 95%CI: ‒0.10 to 0.50, p = 0.18). This trend

is also apparent in the subgroups for number of jumps per

week, with <250 jumps (ES = 0.50, 95%CI: 0.02 to 0.97,

p = 0.04) showing a larger effect than 250‒500 jumps

(ES = 0.36, 95%CI: 0.00 to 0.72, p = 0.05), which was, in turn,

larger than the negative effect size for >500 jumps per week

(ES = ‒0.22, 95%CI: ‒1.10 to 0.67, p = 0.63). Interventions
m 6 Item 7 Item 8 Item 9 Item 10 Item 11 Total (from a possible

maximal of 10)

0 1 1 1 1 6

0 1 1 1 1 4

0 1 1 1 1 6

0 1 1 1 1 6

0 1 1 1 1 6

0 0 1 1 1 5

0 1 0 1 1 3

0 1 1 1 1 6

0 1 1 1 1 6

0 1 1 1 1 4

0 1 1 1 1 6

0 1 1 1 1 6

subjects were randomly allocated to groups; Item 3, allocation was concealed;

ts; Item 6, there was blinding of all therapists; Item 7, there was blinding of all

85% of the subjects initially allocated to groups; Item 9, all subjects for whom

ocated, or data for at least 1 key outcome was analysed by “intention to treat”;

ast 1 key outcome; Item 11, the study provided both point measures and meas-

ro.org.au/english/downloads/pedro-scale (Access for this review: March 11, 2020.)
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Fig. 2. Forest plot of main effect of plyometric training on lower-limb stiffness.a The sum of the percentages is not 100% due to the rounding. 95%CI = 95% confi-

dence interval; G12 = age 12 experimental group; G15 = age 15 experimental group; G9 = age 9 experimental group; HPG = high volume plyometric group;

KE = knees extended; KF= knees flexed; LPG = low-volume plyometric group.
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with >7.5 jumps per set showed a larger effect size (ES = 0.55,

95%CI: 0.02 to 1.08), p = 0.04) than interventions with <7.5

jumps per set (ES = 0.32, 95%CI: 0.01 to 0.62), p = 0.04).

Interventions with �3 sets or <3 sets displayed similar effect

sizes (ES = 0.41, 95%CI: 0.13 to 0.69), p = 0.04 vs. ES = 0.45,

95%CI: ‒0.23 to 1.14), p = 0.2, respectively).

869

870

871

872

873

874
4. Discussion

This meta-analysis examined the effects of PJT on D72X Xlower-

limb stiffness in healthy males and females. The main results

indicate that PJT can induce small but statistically significant
Table 4

Moderator analyses for the effect of plyometric training on tendon stiffness.

Outcome or subgroup Studies ES (95%CI)

Training status 16 0.33 (0.07 to 0.60)

Trained 7 0.15 (‒0.23 to 0.53)
Untrained 9 0.46 (0.08 to 0.84)*

Stiffness type 16 0.33 (0.07 to 0.60)

Indirect stiffness 7 0.21 (‒0.03 to 0.45)
Direct stiffness 9 0.48 (‒0.03 to 0.98)
Mean weekly jumps 16 0.33 (0.07 to 0.60)

>500 jumps 2 ‒0.22 (‒1.10 to 0.67)
250‒500 jumps 7 0.36 (0.00 to 0.72)

<250 jumps 7 0.50 (0.02 to 0.97)*

Programme duration (weeks) 16 0.33 (0.07 to 0.60)

>7 weeks 9 0.47 (0.06 to 0.88)*

�7 weeks 7 0.22 (‒0.12 to 0.55)
Total sessions 16 0.33 (0.07 to 0.60)

>16 sessions 6 0.24 (‒0.05 to 0.53)
�16 sessions 10 0.37 (‒0.04 to 0.77)
Weekly training frequency 16 0.33 (0.07 to 0.60)

>2 sessions per week 5 0.20 (‒0.10 to 0.50)
�2 sessions per week 11 0.39 (0.01 to 0.77)*

Median number of sets per session 13 0.40 (0.12 to 0.69)

�3 sets per session 8 0.41 (0.13 to 0.69)*

<3 sets per session 5 0.45 (‒0.23 to 1.14)
Median number of jumps per set 13 0.40 (0.12 to 0.69)

>7.5 jumps per set 7 0.55 (0.02 to 1.08)*

<7.5 jumps per set 6 0.32 (0.01 to 0.62)*

*Represents a statistically significant effect within moderator subgroups.

Abbreviation: ES = effect size.
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increases in D73X Xlower-limb stiffness. Of potentially greater interest

to practitioners are the results of the subgroup analysis, which

demonstrated a non D74X Xuniform pattern of adaptation across popu-

lations. Of potentially greater interest to practitioners are the

results of the subgroup analysis, which demonstrated a non D75X Xuni-

form pattern of adaptation across populations: D76X Xuntrained indi-

viduals, the programming of a greater number of jumps per

set, and an upper weekly limit of 250 jumps were D77X Xsome of the

key factors to D78X Xinfluence effect magnitude positively.

4.1. Main effect

Mechanical loading of the MTU results in increases in ten-

don stiffness due to enhanced collagen synthesis.43,44 Such

loading can enhance both the size and the mechanical charac-

teristics of the tendon,44 but the nature of these changes is

dependent on the type of loading that is habitually applied.45

Indeed, this may be why conclusions in the literature related to

the effectiveness of PJT for the enhancement of tendon stiff-

ness have been equivocal. Two reviews,45,46 whilst acknowl-

edging the propensity ofD79X X PJT to enhance tendon stiffness,

reported similarD80X X results, with these inconsistencies’ possibly

being explained by differentials in adaptive potential across

various anatomical structures in the body or by differentials in

active and passive components of the musculotendinous com-

plex.22 Hypertrophic gains of up to 35% in tendon tissue are

possible in adults.45 However, it seems that such changes, and

subsequent increases in tendon stiffness, are more likely to

occur due to traditional resistance training rather than PJT.23

This could be because the comparatively small D81X Xer amount of

time spent under an applied force (or tension) during PJT47

may not be sufficient to induce a hypertrophic response48,49

and, by extension, an increase in tendon stiffness. Thus, resis-

tance training D82X Xand, in particular, its eccentric variantD83X Xmay be a

more appropriate stimulus for achieving stiffness-related

adaptations.50

Although PJT can be readily utilised to enhance tendon

stiffness, it may not necessarily represent the optimal method

with which to drive such adaptation, through hypertrophic

pathways at least. This is D84X Xsupported not only by the existing
limb stiffness in healthy individuals: A meta-analytical comparison, Journal of Sport and
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literature but also by the small magnitude of the main effect in

our meta-analysis, which suggests that a potentially low level of

change in stiffness occurs due to PJT, particularly in the short

term. To understand this small effect size, the multidimensional

nature of sports performance must be considered. For example,

the attainment of muscular strength is underpinned by various

interdependent pathways of adaptation relating to neurological

and morphological changes.51 There is a differential in the time

it takes for muscle and tendon tissue to adapt to training, with

PJT seeming to preferentially stimulate adaptations in muscle tis-

sue as opposed to tendons.45 Also, increases in muscle strength

seem to be more sensitive to neuromuscular training stimuli in

that they have been found to precede increases in tendon stiff-

ness by up to 2 months.21,52 The average duration of the studies

included in our meta-analysis was just 7.5 weeks, indicating that

even if tendon stiffness were assumed to be highly achievable

through PJT, the time course of the included studies may not

have been of sufficient duration to allow this phenomenon to be

observed. This is supported by our finding that programmes last-

ing >7 weeks produced a 2D85X X-fold greater magnitude of effect

compared to programmes lasting �7 weeks. Accordingly, until

longer-term interventions that examine the effects of PJT on ten-

don stiffness are undertaken, definitive conclusions concerning

their true effect will be difficult to make. Indeed, this variance in

duration could be theD86X Xreason that discrepancies exist in the results

from studies on the potential to enhance stiffness through PJT.

Long-term interventions would also be in line with the principles

of athletic development programmes for youth participants

(which accounted for nearly 30% of the study groups in our

meta-analysis) and would better facilitate the assessment of

potential imbalances in the development of muscle and tendon

adaptations, thus reducing injury risk.45,53,54
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4.2. Effect of moderators

With respect to the impact of moderators on the main effect,

a notable result relates to the higher effect size observed in

untrained, compared to trained, participants. This could indi-

cate a pattern of adaptation that is characterised by a rapid

onset of small changes in stiffness, with the potential for con-

tinued adaptation quickly reduced as an individual attains a

larger body of training experience. This could potentially

reduce the chances of further development in the longer term

because D87X X the bulk of adaptive responses are seen in the early

stages of training. In order to continue stiffness-related adapta-

tions in more advanced athletes,29 coaches may want to place

a greater emphasis on traditional strain-inducing resistance

training than on PJT, underpinning the importance of a multi-

dimensional programme to achieve highly specific aims. This

is an important consideration for coaches because advanced

athletes, in particular, are accustomed to a “biological ceiling”

in their development, beyond which further adaptations to

training are reduced or negated.42 Furthermore, coaches should

be aware of the potential for mismatches in the time course of

muscle and tendon adaptations, which can result in problem-

atic outcomes for an individual. For example, an increase in

muscle strength that occurs independent of any change in
Please cite this article as: Jason Moran et al., The effects of plyometric jump training on lower
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tendon stiffness can lead to higher tendon strain during maxi-

mal performance, culminating in an increase of the mechanical

demand exerted on the tendons by acting musculature.55 Thus,

multidimensional programmes that concurrently develop the

strength and stiffness of all tissues should be an integral com-

ponent of athletic development.

Another notable moderator finding relates to the apparently

inverse dose-response of PJT for the enhancement of stiffness.

Mean weekly jumps in our meta-analysis were divided into

low (<250 jumps), medium (250-500 jumps), and high (>500

jumps) load classifications. It is interesting to note that the

higher the dose, the lower the observed effect. This inverse

trend seems to imply that lower volumes of PJT may be more

beneficial than higher volumes for the achievement of

enhanced stiffness. Indeed, previous research lends support to

this finding, with lower volumes of PJT found to be almost as

effective and more efficient than higher volumes when jump-

ing performance was measured.56,57 A recent investigation69 X X

also revealed the effect of low and high volumes of PJT on the

reactive strength index in collegiate rugby players. Across var-

ious measures of the reactive strength index,58 larger effects

were reported from different jump drop heights following low-

D88X Xvolume PJT (480 foot contacts) than fo D89X Xllowing high- D90X Xvolume

PJT (1920 foot contacts).69 Alt D91X Xhough the results of these cited

studies do not relate directly to a measure of tendon stiffness,

they do lend weight to the notion of an upper limit to the effec-

tiveness of larger volumes of PJT. As has been previously

demonstrated, higher volumes of PJT are not universally opti-

mal.59,60 This could be further elucidated with additional

research implemented over a longer period of time than the

research cited in our meta-analysis.

The finding that lower volumes of PJT (<250 jumps) may

be more beneficial for enhancing stiffness than D92X Xhigher volumes

is further supported by our results, which indicated that pro-

grammes with �16 sessions were marginally more effective

than programmes with >16 sessions. Furthermore, pro-

grammes with <3 sets of PJT were as D93X Xeffective as those with

>3 sets, whilst lower training frequencies (�2 sessions per

week) were preferable to higher training frequencies (i.e., >2

sessions per week). These results imply that, alongside lower

jump volumes within individual sessions, having fewer train-

ing sessions across a long D94X Xer time frame may help to optimise

adaptations for tendon stiffness, with higher doses seemingly

not required to initiate adaptation in the short term. Coaches

could, therefore, maximise tendon D95X X-stiffness adaptations by

programming a lower frequency of PJT alongside low within-

session training volumes D96X Xbut over a higher number of training

weeks. Such a programming structure would enable coaches to

D97X Xtarget stiffness specifically without compromising, through

fatigue, the other training goals that must be achieved in a

physicalD98X X-preparation programme. A prudent training strategy,

therefore, would include jumps that are D99X X appropriate specifi-

cally for enhancing stiffness as a physical quality, including

jumpsD100X Xthat require resistance to knee and hip flexion D101X Xand short

ground contact times,61 such as ankle hops, skipping, hurdle

hops, and depth jumps. Because in many cases these jumps are

of low intensity,62 they can regularly be D102X Xincorporated into
-limb stiffness in healthy individuals: A meta-analytical comparison, Journal of Sport and
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warm-up activities that conform to the low load of semi D103X Xregular

PJT, thus underpinning progression in this area. Coaches are

encouraged to avoid having athletes engage in high volumes

of PJT to achieve greater stiffness D104X Xbecause this seems unneces-

sary and could be detrimental to an athlete’s conditioning.60
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4.3. Limitations

Because there are some limitations to our study, our results

should be interpreted with caution. Female participants were

part of only D105X X D106X X2 studies66,70 in our meta-analysis X X; thus, the results

of our review may not be fully applicable to that population.

Also, because stiffness was measured and represented in the

included studies in a number of different ways, it is not possi-

ble to conclude that the positive increases we report can be

attributed to changes in muscle activity, mechanical properties

of the MTU, or a combination of both. It has been shown that

changes in muscle morphology and architecture can occur in

as fewD107X X as D108X X3 weeks in response to resistance training, whilst

rapid adaptations of tendon morphological or mechanical

properties seem unlikely.45 Additionally, in our moderator

analyses, the dichotomisation of continuous data with the

median split could have resulted in residual confounding and

reduced statistical power.63,64 Finally, the moderator analyses

were calculated independently and not interdependently. Such

univariate analysis must be interpreted with caution because

the programming parameters were calculated as single factors,

irrespective of between-parameter interactions.
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5. Conclusions

Based on the pooled data presented in our meta-analysis,

PJT can be used as an effective method that coaches can use to

enhance direct and indirect stiffness in healthy males and

females. However, based on the wider body of evidence, PJT

may not be the best way to enhance stiffness and may be better

utilised as a complementary method for enhancing it, along-

side potentially more effective methods, such as traditional

resistance training or eccentric resistance training. The time

course of adaptation is also an important factor to consider; D109X X

programmes lasting longer than 7 weeks D110X Xare more effective.

This could be directly related to the relative responsiveness of

tendinous tissue compared to muscle tissue; D111X Xthe latter seems to D112X X

adaptD113X X faster to neuromuscular training stimuli. Balancing the

training volume is key because weekly loads >500 jumps may

be deleterious to enhancing stiffness, and the need to prescribe

sustained volumes that are optimal but not excessive is appar-

ent. Thus, the prescription of <250 jumps per week seems

optimal for the enhancement of stiffness. Complicating these

recommendations is the training status of the individual.

Therefore, coaches are encouraged to remain mindful that

small gains in stiffness that can be attained through PJT are

likely to be subject to diminishing returns over time. This

necessitates the prescription of multidimensional physical-

D114X Xpreparation programmes that enhance stiffness via alternative

pathways of adaptation.
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