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Abstract

Aggregating the preferences of individuals into a collective decision is the core subject of study of so-

cial choice theory. In 2006, Procaccia and Rosenschein considered a utilitarian social choice se�ing,

where the agents have explicit numerical values for the alternatives, yet they only report their linear

orderings over them. To compare di�erent aggregation mechanisms, Procaccia and Rosenschein in-

troduced the notion of distortion, which quanti�es the ine�ciency of using only ordinal information

when trying to maximize the social welfare, i.e., the sum of the underlying values of the agents for

the chosen outcome. Since then, this research area has �ourished and bounds on the distortion have

been obtained for a wide variety of fundamental scenarios. However, the vast majority of the existing

literature is focused on the case where nothing is known beyond the ordinal preferences of the agents

over the alternatives. In this paper, we take a more expressive approach, and consider mechanisms

that are allowed to further ask a few cardinal queries in order to gain partial access to the underlying

values that the agents have for the alternatives. With this extra power, we design new deterministic
mechanisms that achieve signi�cantly improved distortion bounds and, in many cases, outperform the

best-known randomized ordinal mechanisms. We paint an almost complete picture of the number of

queries required by deterministic mechanisms to achieve speci�c distortion bounds.
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1 Introduction

Social choice theory [Brandt et al., 2016] is concerned with aggregating the preferences of individuals into

a joint decision. In an election, for instance, the winner should represent well (in some precise sense) the

viewpoints of the voters. Similarly, the expenditure of public funds is typically geared towards projects

that increase the well-being of society. Most traditional models assume that the preferences of individuals

are expressed through ordinal preference rankings, where each agent sorts all alternatives from the most to

the least favorable according to her. Underlying these ordinal preferences, it is o�en assumed that there

exists a cardinal utility structure, which further speci�es the intensity of the preferences [Von Neumann

and Morgenstern, 1947, Bogomolnaia and Moulin, 2001, Barbera et al., 1998]. �at is, there exist numerical

values that indicate how much an agent prefers an outcome to another. Given this cardinal utility structure,

usually expressed via valuation functions, one can de�ne meaningful quantitative objectives, with the most

prominent one being the maximization of the utilitarian (or social) welfare, i.e., the sum of the values of

the agents for the chosen outcome.

�e main rationale justifying the dominance of ordinal preferences in the classical economics literature

is that the task of asking individuals to express their preferences in terms of numerical values is arguably

quite demanding for them. In contrast, performing simple comparisons between the di�erent options

is certainly more easily conceivable. To quantify how much the lack of cardinal information a�ects the

maximization of quantitative objectives like the social welfare, Procaccia and Rosenschein [2006] de�ned

the notion of distortion for mechanisms as the worst-case ratio between the optimal social welfare (which

would be achievable using cardinal information) and the social welfare of the outcome selected by the

mechanism, which has access only to the preference rankings of the agents. Following their agenda, a

plethora of subsequent works studied the distortion of mechanisms in several di�erent se�ings, such as

normalized valuation functions [Caragiannis and Procaccia, 2011, Boutilier et al., 2015], metric preferences

[Anshelevich et al., 2018, Anshelevich and Postl, 2017], commi�ee elections [Caragiannis et al., 2017], and

participatory budgeting [Benade et al., 2017].

Somewhat surprisingly, the di�erent variants of the distortion framework studied in this rich line of

work di�erentiate between two extremes: we either have complete cardinal information or only ordinal

information. Driven by the original motivation for using ordinal preferences, it seems quite meaning-

ful to ask whether improved distortion guarantees can be obtained if one has access to limited cardinal

information, especially in se�ings for which the best-possible distortion bounds are already quite discour-

aging [Boutilier et al., 2015]. We formulate this idea via the use of cardinal queries, which elicit cardinal

information from the agents. �ese queries can be as simple as asking the value of an agent for a possible

outcome, or even asking an agent whether an outcome is at least G times be�er than some other outcome, ac-

cording to her underlying valuation function. Note that questions of the la�er form are much less demand-

ing than eliciting a complete cardinal utility structure, and thus are much more realistic as an elicitation

device (see also the discussion below).

In this paper, we enhance the original distortion se�ing of Procaccia and Rosenschein [2006] and
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Boutilier et al. [2015] on single winner elections, by allowing the use of cardinal queries. In their se�ing,

there are = agents that have cardinal values over< alternatives, and the goal is to elect a single alterna-

tive that (approximately) maximizes the social welfare, while having access only to ordinal information.

Procaccia and Rosenschein [2006] proved that no deterministic mechanism can achieve a distortion be�er

than Ω(<) when agents have unit-sum normalized valuation functions (i.e., the sum of the values of each

agent for all possible alternatives is 1), which was later on improved to Ω(<2) by Caragiannis et al. [2017].

Under the same assumption, Boutilier et al. [2015] proved that the distortion of any (possibly randomized)

mechanism is between Ω(√< ) and $ (√< · log
∗<). Here we show how – with only a limited number of

cardinal queries – deterministic mechanisms can signi�cantly outperform any mechanism that has access

only to ordinal information, even randomized ones.

1.1 Our Contributions

We initiate the study of trade-o�s between the number of cardinal queries per agent that a mechanism

uses and the distortion that it can achieve. In particular, we show results of the following type:

�e distortion D(M) of a mechanismM that makes at most _ queries per agent is $ (6(<, _)).

What our results suggest is that we can drastically reduce the distortion by exploiting only a small amount

of cardinal information.

�ery Model

We consider two di�erent types of cardinal queries, namely value queries and comparison queries.

• A value query takes as input an agent 8 and an alternative 9 , and returns the agent’s value for that

alternative.

• A comparison query takes as input an agent 8 , two alternatives 9, ℓ and a real number 3 and returns

“yes” if the value of agent 8 for alternative 9 is at least 3 times her value for alternative ℓ , and “no”

otherwise.

Note that value queries are qualitatively stronger than comparison queries, as they reveal much more

detailed information. On the other hand, comparison queries are quite a�ractive as an elicitation device,

since the cognitive complexity of the question that they pose is not much higher than that of forming a

preference ranking. Additionally, comparison queries are conceptually similar to the idea of the original

utility framework de�ned by Von Neumann and Morgenstern [1947]. �e idea there is that a cardinal scale

for utility is possible because agents are capable of not only performing comparisons between alternatives,

but also between lo�eries over alternatives. For example, an agent 8 should be able to tell whether she

prefers alternative 0 with certainty, or alternative 1 with probability 1/2 (where the remaining probability

is assigned to a dummy alternative for whom all agents have value 0). Assuming risk-neutrality, this is

equivalent to asking the comparison query with parameters (8, 0, 1, 1/2).
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Results and Techniques

We warm-up in Section 3 by using _ simple pre�x value queries per agent (i.e., ask her at the �rst _

positions of her preference ranking). By selecting the alternative with the highest social welfare restricted

to the query answers (the revealed welfare), we obtain a linear improvement in the distortion, speci�cally

1 + (< − 1)/_. We show that this result is asymptotically optimal, among all mechanisms that use _ pre�x

value queries per agent.

In Section 4, we devise a class of more sophisticated mechanisms that achieve much improved trade-

o�s between the distortion and the number of queries. In particular, our class contains

• a mechanism that achieves constant distortion using at most $ (log
2<) queries per agent, and

• a mechanism that achieves a distortion of$ (√< ) using$ (log<) queries, matching the performance

of the best possible randomized mechanism in the se�ing of [Boutilier et al., 2015], and outperform-

ing all known randomized mechanisms for that se�ing.

Our mechanisms are based on a binary search procedure, which for every agent �nds the last alternative

U in the agent’s preference ranking such that the agent’s value for U is at least 1/: times the value for her

most-preferred alternative U∗, for some chosen parameter : . �en, the mechanism simulates the value of

the agent for all alternatives that the agent ranks between U∗ and U by her value for U , and outputs the

alternative that maximizes the simulated welfare. By repeatedly applying this idea for appropriately chosen

values of : , we explore the trade-o�s between the distortion and the number of queries, when the la�er

range from log< to log
2< per agent. In Section 4.1 we extend the above ideas to show that the mechanism

which achieves a constant distortion using $ (log
2<) value queries, can actually be transformed into a

mechanism which uses the same number of comparison queries. In particular, we show how to approximate

an agent’s value for her most-preferred alternative using only $ (log
2<) comparison queries.

In Section 5 we present several lower bounds on the possible achievable trade-o�s between the number

of queries and distortion. �ese bounds follow by explicit instances where we carefully de�ne a single

ordinal preference pro�le as well as the cardinal information that may be revealed by the value queries of

any mechanism. �is information is de�ned in such a way so that, no ma�er how the mechanism makes

its selection, it is always possible to create a superconstant gap between the optimal social welfare and the

social welfare of the winning alternative.

An overview of our main results can be found in Table 1. We conclude the paper in Section 6 with

several interesting open problems, and a particular set of very challenging conjectures about the tight

trade-o�s between the number of queries and distortion.

Remark 1 (Normalization assumptions). We remark here that all of our upper bounds for value queries

hold without any normalization assumption on the cardinal values, contrary to the results of [Procaccia and

Rosenschein, 2006] and almost all subsequent works in the related literature, which typically assume that

values are normalized according to the unit-sum normalization. We do use the unit-sum normalization in
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Number of queries Upper Bounds Lower Bounds

0 (ordinal, deterministic) $ (<2) [Caragiannis and Procaccia, 2011] Ω(<2) [Caragiannis et al., 2017]

0 (ordinal, randomized) $ (√< log
∗<) [Boutilier et al., 2015] Ω(√< ) [Boutilier et al., 2015]

1 (value) $ (<) [1-PRV, �eorem 1]

Ω(<) [�eorem 7]

Ω(√< ) [�eorem 9]

_ ≥ 2 (value) $ (</_) [_-PRV, �eorem 1] Ω(<1/2(_+1) ) [Corollary 4]

$ (log<) (value) $ (√< ) [$ (1)-ARV, Corollary 2]

Ω(1)
$ (: log<) (value) $ (<1/(:+1) ) [:-ARV, �eorem 4]

$ (log
2<) (value) $ (1) [$ (log<)-ARV, Corollary 2]

$ (log
2<) (comparison) $ (1) [$ (log<)-ARV, Corollary 3]

Table 1: A table showing the most important results in the paper. All our results are for deterministic
mechanisms. Results for unit-sum valuation functions are highlighted; everything else is for unrestricted

valuation functions.

Section 4.1, where we use comparison queries.
1

For the lower bounds, we prove bounds both for normalized

and unrestricted values.

Remark 2 (Noisy queries). �roughout this work we implicitly assume that agents can accurately answer

all value queries. In fact, this is not necessary for any of our positive results! �at is, we may assume

that the answers to the queries are noisy, e.g., because it requires extra e�ort for the agents to precisely

determine these answers. As long as each inaccurate answer is at most a (multiplicative) constant factor

away from the truth, all our upper bound proofs go through, at the expense of worse constants. Note that

lower bounds are stronger when proven for exact queries, as is the case here.

1.2 Related Work

�e distortion framework was introduced by Procaccia and Rosenschein [2006], and has been studied

subsequently in a series of papers, most prominently by Boutilier et al. [2015], who consider a general

social choice se�ing, under the unit-sum normalization; this general model was also previously studied by

Caragiannis and Procaccia [2011] who considered di�erent methods to translate the values of the agents for

the alternatives into rankings (embeddings), and more recently by Filos-Ratsikas et al. [2020] who bounded

1
Actually, our results hold even if one uses other reasonable normalizations. For example, for the other common normalization

assumption in the literature [Caragiannis et al., 2018, Feige and Tennenholtz, 2010, Filos-Ratsikas and Miltersen, 2014], the unit-

range normalization, where the value of an agent for her most-preferred alternative is 1 and all other values are in the interval

[0, 1], the results of Section 4 obviously extend verbatim to the case of comparison queries.
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the distortion of deterministic mechanisms in district-based elections. A related model is that of distortion

of social choice functions in a metric space, which was initiated by Anshelevich et al. [2018], and has

since then been studied extensively [Anshelevich and Postl, 2017, Goel et al., 2017, Anshelevich and Zhu,

2018, Borodin et al., 2019, Cheng et al., 2017, 2018, Fain et al., 2019, Feldman et al., 2016, Filos-Ratsikas and

Voudouris, 2020, Ghodsi et al., 2019, Gkatzelis et al., 2020, Goel et al., 2018, Gross et al., 2017, Kempe, 2020,

Munagala and Wang, 2019, Pierczynski and Skowron, 2019] In this se�ing, there is no normalization of

values (or costs), but the valuation (or cost) functions are assumed to satisfy the triangle inequality. Similar

distortion frameworks, in a metric space or under normalizations, have also been studied for other related

problems, such as matching and clustering [Anshelevich and Sekar, 2016, Abramowitz and Anshelevich,

2018, Anshelevich and Zhu, 2017, 2018, Filos-Ratsikas et al., 2014]. It is worth noting that following the

conference version of the present paper, recent works applied our research agenda and studied the tradeo�s

between the number of queries and the distortion for the one-sided matching problem and some of its

generalizations [Amanatidis et al., 2021, Ma et al., 2020] .

Two related variants of the problem are :-winner elections, where : alternatives are to be elected

instead of one [Caragiannis et al., 2017, Benade et al., 2019], and participatory budgeting, where every al-

ternative is associated with a cost, and one or more alternatives have to be elected in a manner that ensures

that the total cost does not exceed a pre-speci�ed budget constraint [Lu and Boutilier, 2011]. Benade et al.

[2017] studied the :-winner participatory budgeting problem, but interestingly, they considered a more

expressive model for the preferences of the agents, compared to simple preference rankings. In particular,

they considered the knapsack votes model of [Goel et al., 2019], rankings by value, rankings by value-for-

money and threshold votes. While the �rst three are not very relevant for our purposes, the la�er one can

be thought of as a di�erent type of (more expressive) query, in which a numerical value is speci�ed, and

every agent is asked to return the set of alternatives for which her value is above this threshold. Note that

such threshold queries are in general incomparable to the value and comparison queries we consider in

this work, as they elicit aggregate information with a single question.

Following Benade et al. [2017], Bhaskar et al. [2018] used a related model with thresholds drawn from

U[0, 1] to construct a randomized social choice function that approaches a distortion of 1 with high prob-

ability as the number of agents approaches in�nity. �eir results are incomparable to ours for three main

reasons: (a) threshold queries are stronger than value queries, as explained above, (b) their mechanisms

are randomized, while we only consider deterministic mechanisms, and (c) their guarantees are obtained

in the limit and in particular are not meaningful for cases where< < =3
; in constrast, we consider general

values of = and <. Bhaskar et al. [2018] also consider a di�erent type of query, referred to as “binary

threshold”: an alternative and a threshold are selected and the voter is asked if her value for that alterna-

tive exceeds the threshold or not. Clearly, this is weaker than a value query. However, the algorithm of

Bhaskar et al. [2018] requires Ω(<) binary threshold queries to achieve a constant approximation to the

distortion; achieving constant distortion with Ω(<) value queries in our model is trivial.

Recently, Mandal et al. [2019, 2020] studied a model conceptually related to ours, in which agents are

asked to provide cardinal information, but there is a restriction on the number of bits to be communicated
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to the mechanism. Hence, they studied trade-o�s between the number of transmi�ed bits and distortion.

�is is markedly quite di�erent from what we do here, as a query in their se�ing has access to the (approx-

imate) values of an agent for many alternatives simultaneously, and is therefore much too expressive when

translated to our se�ing. On the other hand, the se�ing of Mandal et al. [2019, 2020] does not assume “free”

access to the ordinal preferences, which are also considered as part of the elicitation process. In particular,

this implies that lower or upper bounds from our se�ing cannot be translated to theirs or vice-versa. We

consider our work complementary to theirs, as they are mostly motivated by the computational limita-

tions of elicitation (corresponding to a communication complexity approach), whereas we are motivated

by the cognitive limitations of eliciting cardinal values, as o�en highlighted in the classical literature of

social choice (corresponding to a query complexity approach). �at being said, as we discussed earlier, our

analysis is to some extent robust to noisy queries (which, for instance, could correspond to value declara-

tions truncated to the :’th bit of their representation) and therefore the communication complexity of the

problem could be studied on top of our query model.
2

Finally, at the same time and independently of the conference version of our work, Abramowitz et al.

[2019] also introduced a se�ing in which the mechanism designer has access to some cardinal information

on top of the ordinal preferences. �is enables the design of improved mechanisms in terms of distortion.

While the motivation of their paper is the same as ours, the approaches are inherently di�erent. Besides

the fact that Abramowitz et al. [2019] study a metric distortion se�ing, whereas we study a general se�ing

with valuation functions that which are either unrestricted or normalized according to unit-sum, there is

another fundamental distinction. �e access to the cardinal information in [Abramowitz et al., 2019] is not

via queries. Instead, it is given explicitly as part of the input in terms of a threshold g , which allows the

designer to know the number of agents for which the distance to an alternative 0 is at most 1/g times their

distance to another alternative 1.

2 �e model

We consider a standard social choice se�ing, in which there is a set � of < alternatives and a set # of

= agents. Our goal is to elect a single alternative based on the preferences of the agents, which are ex-

pressed through valuation functions E8 : �→ R≥0 that map alternatives to non-negative real numbers. For

notational convenience, we use E8 9 instead of E8 ( 9) to denote the cardinal value of agent 8 for alternative

9 , and refer to the matrix v = (E8 9 )8∈#,9 ∈� as a valuation pro�le. By V we denote the set of all possible

valuation pro�les. Clearly, the valuation function E8 also de�nes a preference ranking for agent 8 , i.e., a

linear ordering �8 of � such that 9 �8 9 ′ if E8 9 ≥ E8 9 ′ ; we assume that ties are broken according to a de-

terministic tie-breaking rule, e.g., according to a �xed global ordering of the alternatives.
3

We refer to

2
Since the communication complexity is not the focus of this work, we have chosen to not pursue this further than the

observation that constant inaccuracy leads to qualitatively similar results.

3
It would be equivalent to allow ties at this point, get pre-linear orderings instead, and leave the tie-breaking to the mechanisms

when necessary.
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�v= (�1, . . . , �=) as an (ordinal) preference pro�le.
In this work, we consider the following two families of valuation functions:

• Unrestricted valuation functions, which may take any non-negative real values.

• Unit-sum valuation functions, which are such that

∑
9 ∈� E8 9 = 1 for every agent 8 ∈ # .

�e social welfare of alternative 9 ∈ �with respect to v is the total value of the agents for 9 : SW( 9 | v) =∑
8∈# E8 9 . Our goal is to output one of the alternatives who maximize the social welfare, i.e., an alternative

in arg max9 ∈� SW( 9 | v). �is is clearly a trivial task if one has full access to the valuation pro�le. However,

we assume limited access to these cardinal values. In particular, we assume that we only have access to the

preference pro�le v� and can also learn cardinal information by asking queries. We consider two types of

queries: value queries that reveal the value of an agent for a given alternative, and comparison queries that

reveal whether the value of an agent for an alternative is a multiplicative factor larger than her value for

some other alternative.

De�nition 1. Given a preference pro�le, a query about the underlying cardinal values is called

• A value query, if it takes as input an agent 8 and an alternative 9 and returns the agent’s value E8 9

for that alternative. �is is implemented via the functionV : # × � → R≥0. We say that agent 8 is
queried at position : , if alternative 9 is ranked :-th in �8 and we make the queryV(8, 9).

• A comparison query, if it takes as input an agent 8 , two alternatives 9 , ℓ and a real number 3 , and

returns yes if E8 9 ≥ 3 · E8ℓ , and no otherwise. �is is implemented via the function C : # ×� ×� ×
R≥0 → {yes,no}.

Clearly, value queries reveal more information than comparison queries. Note that the information

obtained by a comparison query can be obtained by at most two value queries. On the other hand, however,

without any cardinal information or any normalization assumption, it is impossible to even approximate

the information obtained by a value query using only comparison queries. In this sense, value queries are

considerably stronger than comparison queries.

De�nition 2. A mechanismM = (Q, 5 ) with access to a (value or comparison) oracle takes as input a

preference pro�le �v and returns an alternative. In particular, it consists of the following two parts:

• An algorithm Q that takes as input the preference pro�le �v, adaptively makes queries to the oracle,

and returns the set of answers to these queries.

• A mapping 5 that takes as input the preference pro�le�v and the setQ(�v) of answers to the queries

above, and outputs a single alternative 9 ∈ �. Such a mapping is called a social choice function.

By the description of Q above, it is clear that the mechanism is free to choose the positions at which

each agent will be queried, and those can depend not only on �v, but on the answers to the queries
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already asked as well. �e performance of a mechanism is measured by its distortion, which is the worst-

case ratio—over all possible instances—between the optimal social welfare and the social welfare of the

alternative chosen by the mechanism.

De�nition 3. �e distortion of a mechanismM is

D(M) = sup

(#,�,v)

max9 ∈� SW( 9 | v)
SW(M(�v) | v) ,

where SW( 9 | v) is the social welfare of alternative 9 given a particular valuation pro�le, andM(v�) is the

output of the mechanism on input �v.

�roughout our proofs, it will be useful to partition the quantity SW( 9 | v), into two separate quantities

depending on the cardinal information we obtain from the queries. �is is particularly relevant when we

deal with value queries, but even for comparison queries we use a similar decomposition in Section 4.1.

De�nition 4. �e revealed welfare SWA ( 9 | v) of 9 is the contribution to SW( 9 | v) of agents that have been

queried for alternative 9 via value queries, i.e., SWA ( 9 | v) =
∑
8∈# :V(8, 9) ∈Q (�v) E8 9 . �e remaining quantity

SW( 9 | v) − SWA ( 9 | v) is called the concealed welfare SW2 ( 9 | v) of 9 .

3 Warm-Up: Mechanisms Using Fixed-Position Value�eries

Before we dive into our more technical results, we �rst warm-up by discussing probably the most obvious

class of mechanisms, which query every agent at the �rst _ ≥ 1 positions; we refer to such queries as

pre�x. A particular member of this class is the mechanism that uses the Range Voting (RV) social choice

function to decide the outcome. Formally, RV takes as input the whole valuation pro�le v and elects an

alternative G with maximum social welfare: G ∈ arg max9 ∈� SW( 9 | v). In our case, since v is not fully

known, we deploy RV only on the revealed valuation pro�le, where any unknown value is assumed to be

zero.

To be more speci�c, let ): ( 9) be the set of agents that rank alternative 9 ∈ � at position : ∈ [<]. Our

mechanism �rst queries every agent at each of the �rst _ positions of her preference ranking. �en, it

elects the alternative ~ that maximizes the revealed welfare: ~ ∈ arg max9 ∈� SWA ( 9 | v). We refer to this

mechanism as _-Pre�x Range Voting (_-PRV). We remark that a very similar mechanism was independently

proposed by Mandal et al. [2019]; the analyses of the two mechanisms follow along the same lines.

�eorem 1. �e distortion of _-PRV is D(_-PRV) ≤ 1 + <−1

_
, even for unrestricted valuation functions.

Proof. Consider some instance with valuation pro�le v. Let G be an alternative that maximizes the social

welfare according to v, and let ~ be the alternative that is elected by _-PRV. Recall that here the revealed

welfare of any alternative 9 ∈ � is SWA ( 9 | v) =
∑_
:=1

∑
8∈): ( 9) E8 9 . Since SW(~ | v) ≥ SWA (~ | v), it su�ces

to show that SW(G | v) ≤ (
1 + <−1

_

)
SWA (~ | v). To this end, we will bound the revealed and the concealed

welfare of G separately.
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Mechanism _-PRV(�v)
1 for 9 ∈ � do
2 SWA ( 9 | v) = 0

3 for 8 ∈ # do
4 for : ∈ [_] do
5 Ask the queryV(8, 98 (:)) to learn E8, 98 (:) , where 98 (:) is the :-th favorite alternative of 8 .

6 SWA ( 98 (:) | v) = SWA ( 98 (:) | v) + E8, 98 (:)
7 Let ~ ∈ arg max9 ∈� SWA ( 9 | v) be an alternative achieving the best revealed welfare.

8 return ~

Since ~ is an alternative that maximizes the revealed welfare, we have that SWA (~ | v) ≥ SWA ( 9 | v) for

every 9 ∈ �, and therefore

SWA (G | v) ≤ SWA (~ | v) . (1)

Now, consider the agents in

⋃<
:=_+1): (G). �ey are not queried about their value for G , and therefore

contribute to the concealed welfare of G . For every such agent 8 there exist _ di�erent alternatives 98 (1), . . . ,
98 (_) that 8 ranks above G , and for whom she has value E8, 98 (1) , . . . , E8, 98 (_) ≥ E8G .

4
Consequently, we have

that

SW2 (G | v) =
<∑

:=_+1

∑
8∈): (G)

E8G ≤
<∑

:=_+1

∑
8∈): (G)

E8, 98 (1) + . . . + E8, 98 (_)
_

=
1

_

∑
9 ∈�\{G }

SWA ( 9 | v) ≤ 1

_

∑
9 ∈�\{G }

SWA (~ | v) = < − 1

_
SWA (~ | v) . (2)

�e statement now follows by (1) and (2).

Clearly, the distortion guarantee of _-PRV improves linearly in the number of queries _. Nevertheless,

it is interesting to see for which values of _ the mechanism achieves distortion $ (√< ) and $ (1). �ese

are given by the following statement.

Corollary 1. �e distortion of _-PRV is

D(_-PRV) =

$ (√< ), for _ = Θ(√< )
$ (1), for _ = Θ(<)

Next, we show that, in terms of distortion, _-PRV is the best possible mechanism among those that

make at most _ pre�x value queries.

4
When the subscripts have subscripts themselves, we follow the common practice of separating them with commas.
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�eorem 2. Any mechanism that makes _ pre�x value queries per agent has distortion Ω(</_), even for
unit-sum valuation functions.

Proof. Consider an instance with = agents and< = = alternatives 01, . . . , 0< . Let _ ≤ </2. We de�ne the

following ordinal pro�le:

• �e _ favorite alternatives of agent 8 are 08 , 08+1, . . . , 08+_−1 in decreasing order, where all the indices

are considered modulo<. Hence, all alternatives appear exactly once at each of the �rst _ positions.

• Alternatives G = 01 and ~ = 0_+1 appear</2 times each at position (_+1), in the<−_ ≥ </2 agent

rankings in which they do not appear at the �rst _ positions. Observe that, by de�nition, G and ~ do

not appear together at the �rst _ positions in any preference ranking, and there are multiple ways

to decide in which rankings each of them appears at position (_ + 1); any such construction works

for our purposes.

• For every agent, the remaining alternatives are arbitrarily ordered at positions (_ + 2) up to<.

See Table 2 for a speci�c example of the ordinal pro�le.

agent ranking

1 01 02 03 04 05 06

2 02 03 01 04 05 06

3 03 04 01 02 05 06

4 04 05 03 01 02 06

5 05 06 01 03 02 04

6 06 01 03 02 04 05

Table 2: An example of the ordinal pro�le used in the proof of �eorem 2 with< = = = 6 and _ = 2, where

G = 01, ~ = 03, )_+1(G) = {2, 3, 5} and )_+1(~) = {1, 4, 6}.

�e valuation pro�le v is such that each agent has value
1

_+1 for her �rst _ favorite alternatives. It

is without loss of generality to assume that any mechanism that knows the ordinal information of this

instance and also makes _ pre�x value queries, must elect either G or ~. To see this, �rst notice that given

the revealed cardinal information, the revealed welfare of all alternatives is the same. Further, given the

particular preference pro�le, it is easy to always complete the valuation pro�le v in a way that guarantees

that no alternative has more concealed welfare than G and ~; indeed, the two possible valuation pro�les

we consider have this property.

So, assume that the mechanism selects alternative ~ (the case of G being completely symmetric). Now

the remaining values of the agents are such that the</2 agents in )_+1(G) have value
1

_+1 for G and 0 for

11



the remaining alternatives, while the </2 agents in )_+1(~) have value
1

(<−_) (_+1) for all alternatives at

positions _ + 1 up to<.

Given this valuation pro�le v, the social welfare of the winner ~ is

SW(~ | v) = _

_ + 1

+
<
2

(< − _) (_ + 1) ≤ 1 .

In contrast, the social welfare of the optimal alternative G is

SW(G | v) = _ + <
2

_ + 1

+
<
2

(< − _) (_ + 1) ≥
<

2(_ + 1) .

�erefore, the distortion of any mechanism is at least
<

2(_+1) .

We now turn our a�ention to a slightly more general class of mechanisms which query all agents at

the same �xed positions, and show that _-PRV remains best possible among the mechanisms of this class

for unrestricted valuation functions. In Section 5 we further show that 1-PRV is best possible among all

mechanisms that make one query per agent for unrestricted valuation functions.

�eorem 3. For unrestricted valuation functions, any mechanism that makes _ �xed-position value queries
per agent has distortion Ω(</_).

Proof. Let _ ≤ </2. Consider any mechanism of this class, and let ℓ be the �rst position at which it does

not query the agents. Observe that if ℓ > _, then the mechanism only makes pre�x value queries. In

this case, the bound follows by �eorem 2, which holds for unit-sum valuation functions, and thus for

unrestricted ones as well. So, we may assume that ℓ ∈ [_].
Now, we consider an instance with = = < that is very similar to the one presented in the proof of

�eorem 2. Essentially, we substitute (_ + 1) with ℓ , and we have that all alternatives appear exactly once

at each of the �rst ℓ − 1 positions, while two alternatives G and ~ appear</2 times each at position ℓ . �e

remaining alternatives for every agent are arbitrarily ordered at position ℓ + 1 up to<.

�e valuation pro�le v is such that each agent has value 1 for her �rst ℓ − 1 favorite alternatives, and

value 0 for the alternatives at positions ℓ + 1 up to<. Observe that the revealed welfare of all alternatives

is exactly equal to ℓ − 1. Given the revealed cardinal information and the particular ordinal pro�le, we can

argue exactly like we did in the proof of �eorem 2 about fact that it is without loss of generality to assume

that the mechanism elects either G or ~. So, assume that the mechanism selects alternative ~; the case of G

is symmetric. �e remaining values of the agents are such that the</2 agents in)ℓ (G) have value 1 for G ,

while the</2 agents in )ℓ (~) have value 0 for ~.

Given this valuation pro�le v, the social welfare of the winner ~ is SW(~ | v) = ℓ − 1 ≤ _ − 1, while the

social welfare of the optimal alternative G is SW(G | v) = ℓ − 1 + <
2
≥ <

2
. �erefore, the distortion of the

mechanism is Ω(</_).
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4 Improving Distortion via Simulated Valuation Functions

Our goal in this section is to further explore the additional power that cardinal queries provide, and focus

on the design of mechanisms with improved distortion guarantees. Mechanism _-PRV is a good �rst step

in this direction, but it needs to make a large number of queries per agent in order to do so; in particular, by

Corollary 1, it achieves distortion$ (√< ) for _ = Θ(√< ) and constant distortion for _ = Θ(<). �erefore,

it is natural to ask whether it is possible to design mechanisms that achieve similar distortion bounds, but

require much less queries per agent. We answer this question positively.

For any : ∈ [<], we de�ne a mechanism which we call :-Acceptable Range Voting (:-ARV). Let

_0, _1, . . . , _: be : + 1 thresholds such that _ℓ = <
ℓ
:+1 for ℓ ∈ {0, 1, . . . , :}. For every agent 8 ∈ # , we

�rst query her value E∗8 for her favorite alternative 98 (1). �en, using binary search we compute the max-

imal _ℓ -acceptable set (8,ℓ = { 9 ∈ � : E8 9 ≥ E∗8 /_ℓ } for every ℓ ∈ [:]; see the procedure BSearch in the

pseudocode describing the mechanism. Also, for each agent 8 , we de�ne (8,0 = { 98 (1)} to contain only

8’s favorite alternative. �e _ℓ -acceptable set of an agent consists of the alternatives that this agent �nds

at most _ℓ times worse than her favorite alternative. We continue by constructing a new approximate

valuation pro�le ṽ, where the values of every agent 8 are

• Ẽ∗8 = E
∗
8 ;

• Ẽ8 9 = E
∗
8 /_ℓ for every 9 ∈ (8,ℓ \ (8,ℓ−1 with ℓ ∈ [:];

• Ẽ8 9 = 0 for every 9 ∈ � \ (8,: .

We �nally elect the alternative I ∈ � that maximizes the social welfare according to the approximate

valuation pro�le: I ∈ arg max9 ∈�
∑
8∈# Ẽ8 9 .

Now, we proceed by proving an upper bound on the distortion achieved by :-ARV as a function of : .

�eorem4. �emechanism:-ARV makes$ (: log<) value queries per agent, and has distortionD(:-ARV) =
$ (:+1√< ).

Proof. Consider any instance with valuation pro�le v. Since mechanism :-ARV executes a binary search

in order to compute the _ℓ -acceptable sets for each ℓ ∈ [:], it requires a total of $ (: log<) value queries

per agent. �e rest of the proof is dedicated in bounding the distortion of :-ARV. First, we �x our notation:

• I is the alternative elected by :-ARV.

• ~ is a welfare-maximizing alternative for the valuation pro�le v̂, which is such that the value of agent

8 ∈ # for alternative 9 ∈ � is

Ê8 9 =


0, if 9 ∈ � \ (8,:
E8 9 , otherwise.

�at is, ~ ∈ arg max9 ∈�
∑
8∈# Ê8 9 .
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Mechanism :-ARV(�v)

1 for 8 ∈ # do
2 E∗8 = V(8, 98 (1)), where 98 (?) is the alternative that agent 8 ranks at position ? .

3 Ẽ8, 98 (1) = E
∗
8

4 (8,0 = { 98 (1)}
5 for ℓ ∈ {1, 2, . . . , :} do
6 _ℓ =<

ℓ
:+1

7 ?∗ = BSearch(1,<, _ℓ , E
∗
8 )

8 (8,ℓ = { 9 ∈ � : 9 �8 98 (?∗)} /* define the _ℓ -acceptable set of agent 8 */

9 for 9 ∈ (8,ℓ \ (8,ℓ−1 do
10 Ẽ8 9 = E

∗
8 /_ℓ /* define the approximate valuation profile */

11 for 9 ∈ � \ (8,: do
12 Ẽ8 9 = 0

13 for 9 ∈ � do
14 SWB ( 9 | ṽ) = 0 /* compute the simulated welfare of alternative 9 */

15 for 9 ∈ � do
16 SWB ( 9 | ṽ) = SWB ( 9 | ṽ) + Ẽ8 9

17 Let I ∈ arg max9 ∈� SWB ( 9 | ṽ) be an alternative achieving the best simulated welfare.

18 return I

19 Procedure BSearch(U , V , _, E)
20 if U = V then
21 return U

22 Let D = V(8, 98 ( U+V
2
))

23 if D ≥ E/_ then
24 BSearch(

U+V
2
, V, _, E)

25 else
26 BSearch(U,

U+V
2
, _, E)

14



• G is the welfare-maximizing alternative for the true pro�le v. �at is, G ∈ arg max9 ∈�
∑
8∈# E8 9 .

Also, for a valuation pro�le u, let # 9 (u) = {8 ∈ # : D8 9 > 0} be the set of agents with strictly positive

value for alternative 9 ∈ � with respect to u. We use the following easy fact about welfare-maximizing

alternatives.

Lemma 1. If 9∗ ∈ arg max9 ∈�
∑
8∈# E8 9 , then 9∗ ∈ arg max9 ∈�

∑
8∈# 9 (v) E8 9 .

To prove the statement, we will bound the social welfare of G in terms of the social welfare of I for the

true valuation pro�le v. In particular, we will show that

SW(G | v) ≤
(
_1 + <

_:

)
SW(I | v) . (3)

�en, the approximation ratio of :-ARV will be

SW(G | v)
SW(I | v) ≤ _1 + <

_:
= 2 ·< 1

:+1 = $ (:+1√< ) .

We partition the social welfare of G into the following two quantities: the contribution of the agents

8 that place G in the _: -acceptable set (8,: , and the contribution of the remaining agents that have small

value for G . By de�nition, we have that 8 ∈ #G (v̂) for any agent 8 such that G ∈ (8,: , and therefore

SW(G | v) =
∑

8∈#G (v̂)
E8G +

∑
8∉#G (v̂)

E8G

We �rst consider the term

∑
8∈#G (v̂) E8G , and have that∑

8∈#G (v̂)
E8G ≤

∑
8∈#~ (v̂)

E8~ ≤ _1

∑
8∈#~ (v̂)

Ẽ8~ ≤ _1

∑
8∈#I (ṽ)

Ẽ8I ≤ _1

∑
8∈#I (ṽ)

E8I ≤ _1 SW(I | v) , (4)

where

• the �rst inequality follows by the fact that SW( 9 | v̂) = ∑
8∈# 9 (v̂) Ê8 9 =

∑
8∈# 9 (v̂) E8 9 , the de�nition of

~ as the alternative that maximizes the social welfare for the valuation pro�le v̂, and Lemma 1;

• for the second inequality it su�ces to notice that for any 8 ∈ #~ (v̂) there exists an ℓ ∈ [:] such that

~ ∈ (8,ℓ \ (8,ℓ−1, and thus E8 9 ≤ E∗8
_ℓ−1

= _1

E∗8
_ℓ

= _1Ẽ8 9 ;

• the third inequality follows by the de�nition of I as the alternative that maximizes the social welfare

for the valuation pro�le ṽ and Lemma 1;

• the fourth inequality follows by the fact that E8 9 ≥ Ẽ8 9 , for every 8 ∈ # and 9 ∈ �;

• the last inequality follows trivially from the fact that #I (ṽ) ⊆ # .
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Next, we consider the term

∑
8∉#G (v̂) E8G . By the de�nition of #G (v̂), for every 8 ∉ #G (v̂) it holds that

G ∉ (8,: , and hence E8G < E∗8 /_: . Using this, we obtain∑
8∉#G (v̂)

E8G <
∑

8∉#G (v̂)

E∗8
_:

=
1

_:

∑
8∉#G (v̂)

E∗8 ≤
1

_:

∑
8∈# \)1 (G)

E∗8 =
1

_:

∑
9 ∈�\{G }

∑
8∈)1 ( 9)

E8 9 , (5)

where recall that)1( 9) is the set of agents whose favorite alternative is 9 , and for whom E∗8 = Ẽ
∗
8 = Ẽ8 9 = E8 9 .

Since I is the alternative that maximizes the quantity

∑
8∈# Ẽ8 9 , for every 9 we have that∑

8∈#
Ẽ8I ≥

∑
8∈#

Ẽ8 9 =
∑

8∈)1 ( 9)
E8 9 +

∑
8∈# \)1 ( 9)

Ẽ8 9 ≥
∑

8∈)1 ( 9)
E8 9 .

Combining the above inequality together with the fact that E8I ≥ Ẽ8I for every agent 8 ∈ # , we have that∑
8∈#

E8I ≥
∑

8∈)1 ( 9)
E8 9 .

Using this last inequality, (5) becomes∑
8∉#G (v̂)

E8G ≤ 1

_:

∑
9 ∈�\{G }

∑
8∈)1 ( 9)

E8 9 ≤ 1

_:

∑
9 ∈�\{G }

∑
8∈#

E8I =
< − 1

_:
SW(I | v) . (6)

Finally, the desired inequality (3) follows by combining inequalities (4) and (6).

�e next statement follows by appropriately se�ing the value of the parameter : in �eorem 4, and

shows how mechanism :-ARV improves upon the distortion guarantees of _-PRV using way less value

queries per agent.

Corollary 2. We have that

• 1-ARV achieves distortion $ (√< ) using $ (log<) values queries per agent;

• log<-ARV achieves distortion $ (1) using $ (log
2<) value queries per agent.

We conclude this section by showing that the analysis of :-ARV is tight.

�eorem 5. �e distortion of :-ARV is Ω(:+1√< ).

Proof. Recall that _1 = <
1

:+1 = _ and consider the following instance with< alternatives � = {01, ..., 0<}
and = =< − 2 agents. To simplify our discussion, let I = 0<−1 and G = 0< . �e valuation pro�le v is such

that the values of agent 8 are

• E8,08 = E8G = _
2_+1 ,

• E8I =
1

2_+1 , and

• E8,0 9 = 0 for 9 ∈ [<] \ {8,< − 1,<}.
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In the ordinal pro�le �v which is given as input to the mechanism, we assume without loss of generality

that agent 8 ranks alternative 08 ahead of G .

Since
1

2_+1 = 1

_
· _

2_+1 , :-ARV de�nes only one acceptable set per agent using _. In particular, the

algorithm sets (8,1 = {G, I} for every agent 8 ∈ [< − 2]. �en, the approximate valuation pro�le ṽ is such

that the values of agent 8 are

• Ẽ8,08 =
_

2_+1 ,

• Ẽ8G = Ẽ8I =
1

2_+1 , and

• Ẽ8,0 9 = 0 for 9 ∈ [<] \ {8,< − 1,<}

For the approximate valuation pro�le ṽ, the social welfare of both alternatives G and I is

SW(G | ṽ) = SW(I | ṽ) = < − 2

2_ + 1

,

while any other alternative 9 ∈ � \ {G, I} has social welfare

SW( 9 | ṽ) = _

2_ + 1

.

Hence, :-ARV might select alternative I as the winner instead of G , and the distortion is then

(< − 2) _
2_+1

(< − 2) 1

2_+1
= _ =

:+1√
<,

as desired.

4.1 Implementing k-ARV with Comparison�eries

A crucial observation is that mechanism :-ARV can actually be implemented using just one value query.

We can ask the value of each agent for her favorite alternative, and then ask$ (: log<) comparison queries

that guide the binary search in computing the maximal acceptable sets. Hence, log<-ARV achieves con-

stant distortion using only one value query and $ (log
2<) comparison queries. �erefore, it is natural to

ask whether we can avoid this single value query entirely, and rely only on comparison queries instead.

Surprisingly, for unit-sum valuation functions, we show that this is indeed possible at no extra cost! More

precisely, we show that we can approximate the value that an agent has for her favorite alternative within

a factor of 1 ± Y, using $ (log
2<) comparison queries. Note that this is the only time that we assume the

unit-sum normalization for any of our upper bounds.

For the sake of readability, we focus on a single agent and write D 9 for her value for the alternative

that she ranks at position 9 ∈ [<]. We take the same approach as in the proof of �eorem 4 in order to

build an approximate valuation pro�le. Since everything in this pro�le is expressed in terms of the largest

value D1, we utilize the unit-sum assumption to approximately solve for D1.
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�eorem 6. For any constant Y ∈ [1/<, 1], it is possible to compute some D∗ such that (1 − Y) D∗ ≤ D1 ≤
(1 + Y) D∗, using $ (

log
2<

Y

)
comparison queries per agent.

Proof. Let ^ = dlog
1+Y<

2e = Θ
(

log<

log (1+Y)
)
= Θ

(
log<

Y

)
. We de�ne ^ thresholds _ℓ = (1 + Y)ℓ for ℓ ∈ [^];

observe that _8 = _8−1 · _1. For each ℓ ∈ [^], we perform a binary search using Θ(log<) comparison

queries to �nd the maximum integer bℓ such that Dbℓ ≥ D1

_ℓ
; we also set b0 = 1 and b^+1 = <. Hence, we

have that

D 9 ∈


[
D1

_ℓ
,
D1

_ℓ−1

)
, for each 9 ∈ (bℓ−1, bℓ ], ℓ ∈ [^]

[
0,
D1

_^

)
, for each 9 ∈ (b^, b^+1] .

(7)

To simplify the notation, let 68 = b8 − b8−1 for 8 ∈ [^ + 1]. Note that 68 ≤ <.

By the unit-sum normalization we have

1 =

<∑
9=1

D 9 =

^+1∑
ℓ=1

∑
9 ∈(bℓ−1,bℓ ]

D 9 .

Using (7), we can now upper- and lower-bound the above expression. We start with the upper bound:

1 =

^+1∑
ℓ=1

∑
9 ∈(bℓ−1,bℓ ]

D 9 ≤
^+1∑
ℓ=1

∑
9 ∈(bℓ−1,bℓ ]

D1

_ℓ−1

=

^+1∑
ℓ=1

D1

6ℓ

_ℓ−1

= D1

∑̂
ℓ=1

6ℓ

_ℓ−1

+ D1

6^+1
_^

.

By the de�nition of _^ we have that
6^+1
_^
≤ 1

<
≤ Y and hence,

D1 ≥ (1 − Y) ·
(∑̂
ℓ=1

6ℓ

_ℓ−1

)−1

.

Similarly, by using the lower bounds in (7), we have that

1 =

^+1∑
ℓ=1

∑
9 ∈(bℓ−1,bℓ ]

D 9 ≥
∑̂
ℓ=1

∑
9 ∈(bℓ−1,bℓ ]

D1

_ℓ
=

∑̂
ℓ=1

D1

6ℓ

_ℓ
= D1

∑̂
ℓ=1

6ℓ

_ℓ−1

· 1

_1

=
D1

1 + Y
∑̂
ℓ=1

6ℓ

_ℓ−1

.

or, equivalently,

D1 ≤ (1 + Y) ·
(∑̂
ℓ=1

6ℓ

_ℓ−1

)−1

.

Hence, the theorem follows by se�ing D∗ =

(∑^
ℓ=1

6ℓ
_ℓ−1

)−1

. Indeed, to compute D∗ only the integers bℓ ,

ℓ ∈ [^] are used. �ose, in turn, are computed via Θ(log<) binary searches. Hence, we only need$
(

log
2<

Y

)
comparison queries.
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By inspecting the proof of �eorem 4, it is easy to see that knowing the approximate valuation pro�le ṽ
exactly or perturbed within a multiplicative constant factor, makes no di�erence asymptotically. �erefore,

we augment :-ARV with a pre-processing step where each maximum value E∗8 is approximated according

to �eorem 6 above, and these approximations are used in line 2 of the mechanism. For : = log<, this

new mechanism, which we call modi�ed (log<)-ARV, achieves the same distortion guarantee and asks

the same number of queries (asymptotically) as (log<)-ARV.

Corollary 3. Modi�ed (log<)-ARV achieves distortion $ (1) using $ (log
2<) comparison queries per

agent.

5 Lower Bounds

We now present general lower bounds on the distortion which depend on the number of value queries

the mechanisms are allowed to ask per agent, but are unconditional on how and where they decide to ask

these queries. In particular, we show that the distortion of any mechanism that makes one value query

per agent is Ω(<) when the agents have unrestricted valuation functions, and Ω(√< ) when the agents

have unit-sum valuation functions. Moreover, for mechanisms that are allowed to make _ ≥ 1 queries per

agent, we show a weaker lower bound of Ω
(

1

_+1 ·<
1

2(_+1)
)

for unrestricted valuation functions. �is shows

that in order to achieve constant distortion, we need to necessarily make l

(
log<

log log<

)
queries per agent.

Closing the gap between this lower bound and the upper bound of$ (log
2<) queries that the mechanism

$ (log<)-ARV from Section 4 requires in order to achieve constant distortion is one of the most interesting

problems that our work leaves open; see the discussion in Section 6.

Before we proceed with the presentation of the results of this section, let us give a very brief roadmap

of the proofs. �e high-level idea is similar to those used in the lower bound proofs presented in previous

sections (for example, see �eorem 2 and �eorem 3 in Section 3), but the particular constructions and ar-

guments exploited in the following proofs are more delicate; this is a consequence of the fact that we aim

to lower-bound the distortion of any mechanism. To this end, assuming an arbitrary mechanism (that is

allowed to make a speci�c number of queries per agent), we �rst de�ne a single ordinal preference pro�le

which is given as input to the mechanism, and also carefully de�ne the cardinal information that could

be revealed by any query of the mechanism. �is cardinal information is such that it is always possible to

de�ne the unknown part of the valuation pro�le in a way that leads to a large enough gap between the

optimal social welfare and the social welfare of the alternative selected by the mechanism. Since we do

not know how the mechanism makes its selection, we need to take into account every possible scenario,

and therefore de�ne many di�erent valuation pro�les that can be used in di�erent cases.

Remark. To simplify our discussion when we deal with unrestricted valuation functions in this section, we

assume that the values are normalized and lie in the interval [0, 1]. �is is without loss of generality since

we make no other assumption about the way the mechanisms behave, other than that they are allowed to
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ask a particular number of queries.

5.1 One-�ery Mechanisms with Unrestricted Valuations

We start by showing that, for unrestricted valuations, any mechanism that makes one value query per

agent has linear distortion. �is also shows that the mechanism 1-PRV from Section 3 is the best possible

mechanism among such mechanisms.

�eorem 7. For unrestricted valuation functions, the distortion of any mechanism that uses one value query
per agent is Ω(<).

Proof. LetM be an arbitrary mechanism that makes one value query per agent, and consider an instance

with< ≥ 4 alternatives and= =<−2 agents, where< is an even number. We denote the set of alternatives

as� = {01, ..., 0<−2, G,~}. Using the notation [I,F] to denote the fact that alternatives I andF are ordered

arbitrarily in the ranking of an agent, we de�ne the ordinal pro�le as follows:

• �e ranking of agent 8 ≤ =
2

is 08 �8 G �8 ~ �8 [01, ..., 08−1, 08+1, ..., 0<−2];

• �e ranking of agent 8 > =
2

is 08 �8 ~ �8 G �8 [01, ..., 08−1, 08+1, ..., 0<−2].

Depending on the positions at whichM queries, we reveal the following cardinal information:

• For every query at a �rst position we reveal a value of<−1
;

• For every query at a second or third position we reveal a value of<−2
;

• For any other position we reveal a value of 0.

We claim thatM must query all agents at the �rst position, as otherwise its distortion is Ω(<). Assume

otherwise thatM does not query agent 1 her value for alternative 01; this is without loss of generality due

to symmetry. We now de�ne two valuation pro�les v1 and v2, which are both consistent to the ordinal

pro�le and the revealed information, but di�er on the value that agent 1 has for alternative 01. In particular:

• In both v1 and v2, every agent 8 ≥ 2 has value<−1
for alternative 08 , <

−2
for alternatives G and ~,

and 0 for everyone else;

• In both v1 and v2, agent 1 has value<−2
for alternatives G and ~, and 0 for every alternative 08 for

8 ≥ 2. �e value of agent 1 for alternative 01 is<−2
in v1, and 1 in v2.

�ese two pro�les are utilized in the following way: IfM selects 01, then the valuation pro�le is set to be

v1, while ifM selects some other alternative, then the valuation pro�le is set to be v2. Now, observe that

SW(08 | v1) = SW(08 | v2) =<−1
for every 8 ≥ 2,
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and

SW(G | v1) = SW(G | v2) = SW(~ | v1) = SW(~ | v2) = (< − 2) ·<−2 ≤ <−1.

IfM selects 01, the social welfare of 01 is SW(01 | v1) = <−2
and therefore any alternative 08 for 8 ≥ 2 is

optimal, yielding distortion equal to<. Similarly, whenM selects some alternative di�erent than 01, then

01 is optimal with social welfare SW(01 | v2) = 1, yielding distortion at least<.

Hence,Mmust query all agents at the �rst position in order to learn a value of<−1
for every alternative

08 , 8 ∈ [=]. We now de�ne three valuation pro�les v3, v4 and v5, which are consistent to the ordinal pro�le

and this revealed information, but di�er on the values that the agents have for alternatives G and ~; in

particular, v4 and v5 are symmetric.

• In all three pro�les, every agent 8 ∈ [=] has value<−1
for alternative 08 , and 0 for any alternative 0 9

such that 9 ≠ 8;

• In v3, all agents have value<−1
for alternatives G and ~;

• In v4, all agents have value<−2
for alternative ~, every agent 8 > =/2 (who ranks G a�er ~) has value

<−2
for G , and every agent 8 ≤ =/2 (who ranks G before ~) has value<−1

for G .

• In v5, all agents have value<−2
for alternative G , every agent 8 ≤ =/2 (who ranks ~ a�er G ) has value

<−2
for ~, and every agent 8 > =/2 (who ranks ~ before G ) has value<−1

for ~.

IfM selects some alternative 08 for 8 ∈ [=], then the valuation pro�le is set to be v3, while ifM selects

alternative ~ or G , then the valuation pro�le is set to be v4 or v5, respectively. Given this, observe that if

M decides to select alternative 08 for some 8 ∈ [=], then since

SW(08 | v3) = SW(08 | v4) = SW(08 | v5) =<−1
for every 8 ∈ [=],

and

SW(G | v3) = SW(~ | v3) = (< − 2) ·<−1 = 1 − 2<−1,

the distortion is at least< − 2. Similarly, ifM decides to select alternative ~, then since

SW(~ | v4) = (< − 2)<−2 ≤ <−1

and

SW(G | v4) =
(<

2

− 1

)
<−1 +

(<
2

− 1

)
<−2 =

1

2

(
1 −<−1 − 2<−2

)
,

the distortion is at least
1

2
(< − 1− 2<−1) ≥ <

4
for any< ≥ 4; the case whereM selects G is symmetric and

follows by v5. In any case,M has distortion Ω(<) and the theorem follows.
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5.2 General Mechanisms with Unrestricted Valuations

We will now focus on mechanisms that make a number _ ≥ 1 of queries per agent, and will show a weaker

lower bound on the distortion which depends on _.

�eorem 8. For unrestricted valuation functions, the distortion of any mechanism that uses _ ≥ 1 value
queries per agent is Ω

(
1

_+1 ·<
1

2(_+1)
)
.

Proof. Our instance consists of< ≥ _ alternatives and = =< agents. We partition the set� of alternatives

into the following (_ + 2) sets:

• � 9 with |� 9 | =<1− 9

_+1 , for every 9 ∈ [_];

• - with |- | = 2;

• . with |. | =< − 2 −∑_
9=1
<1− 9

_+1 .

We will now de�ne the ordinal pro�le. Let - = {G1, G2} and denote by [I,F] the fact that alternatives

I and F are ordered arbitrarily in the ranking of an agent. For every agent 8 there exists an alternative

08 9 ∈ � 9 for each 9 ∈ [_] such that:

• �e ranking of agent 8 ≤ <
2

is 081 �8 ... �8 08_ �8 G1 �8 G2 �8 [. ] �8 [∪9 ∈[_]� 9 \ {08 9 }];

• �e ranking of agent 8 > <
2

is 081 �8 ... �8 08_ �8 G2 �8 G1 �8 [. ] �8 [∪9 ∈[_]� 9 \ {08 9 }];

In words, every agent 8 ranks some alternative 08 9 ∈ � 9 at position 9 ∈ [_], followed by the two alternatives

of - = {G1, G2} at positions (_ + 1) and (_ + 2), followed by all alternatives of . (in an arbitrary order),

followed by the alternatives of ∪9 ∈[_]� 9 \ {08 9 } (in an arbitrary order). Observe that the alternatives of

. are all dominated by the alternatives of - in the sense that both G1 and G2 have at least as much social

welfare as any alternative of . . �e choices as to how the alternatives of ∪9 ∈[_]� 9 are distributed in the

rankings of the agents are such that:

• Each alternative of � 9 appears<
9

_+1 times at position 9 ∈ [_];

• For any 9 ∈ [_ − 1] and pair of agents 8, 8 ′ such that 08 9 = 08′ 9 , it holds that 08, 9+1 = 08′, 9+1.

Hence, the agents with the same favorite alternative have exactly the same ranking. To simplify our

discussion in what follows, we refer to the alternatives in . and ∪9 ∈[_]� 9 \ {08 9 } as the tail alternatives

of agent 8 . Let )9 (I) be the set of the<
9

_+1 agents that rank alternative I ∈ � 9 at position 9 ∈ [_]. Fig. 1

depicts the ordinal pro�le of our instance for _ = 2.

LetM be an arbitrary mechanism that makes _ value queries per agent. Naturally, we assume that

M does not elect any dominated alternative from . . �e cardinal information that is revealed due to the

queries ofM is as follows:

• Each of the �rst
_
_+1 ·<

9

_+1 queries ofM for any alternative I ∈ � 9 , 9 ∈ [_] reveals a value of<−
9+1/2
_+1 ,

while each of the remaining
1

_+1 ·<
9

_+1 queries ofM for I reveals a value of<−
9

_+1 .
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a1

a2

···

am1/3

am1/3+1

am1/3+2

···

a2m1/3

am2/3−m1/3+1

am2/3−m1/3+2

···

am2/3

b1

b2

bm1/3

x1 x2

x2 x1

tail alternatives

···

m1/3

m2/3

m
2

Figure 1: An example of the instance used in the proof of �eorem 8 for _ = 2; for convenience, we denote

here the alternatives of �1 and �2 as �1 = {01, ..., 0<2/3} and �2 = {11, ..., 1<1/3}.
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• Every query ofM for an alternative of - reveals a value of<−1
.

• Every query ofM for a tail alternative reveals zero value.

To simplify our notation in the rest of the proof, let X8 9 be the indicator variable:

X8 9 =


1, ifM asks agent 8 for 08 9 and has previously asked

strictly less than
_
_+1 ·<

1

_+1 other agents of )9 (08 9 ) for 08 9

0, otherwise.

Now, assume towards a contradiction thatM has distortionD(M) ∉ Ω
(

1

_+1 ·<
1

2(_+1)
)
. Using the next

two claims, we will show by induction thatM must query a large proportion of the agents at the �rst _

positions, since otherwise the distortion ofM would be Ω
(

1

_+1 ·<
1

2(_+1)
)
.

Claim 1. �e mechanismM must ask at the �rst position strictly more than _
_+1 ·<

1

_+1 of the agents in)1(I)
for every alternative I ∈ �1.

Claim 2. Given that for every alternative I ∈ � 9 , 9 ∈ [_ − 1] the mechanismM asks at the �rst 9 positions
strictly more than

(
1 − 9

_+1
)
·< 9

_+1 of the agents in)9 (I),M must ask at the �rst 9 + 1 positions strictly more

than
(
1 − 9+1

_+1
)
·< 9+1

_+1 of the agents in )9+1(F) for every alternativeF ∈ � 9+1.

By Claim 1 and Claim 2, M must ask at the �rst _ positions strictly more than (1 − _
_+1 ) · <

_
_+1 =

1

_+1 ·<
_
_+1 of the agents in )_ (I) for every alternative I ∈ �_ . Consequently, since �_ consists of exactly

<
1

_+1 alternatives, there are at least <
1

_+1 · 1

_+1 ·<
_
_+1 = 1

_+1 ·< agents that are not queried at positions

(_ + 1) and (_ + 2) for the alternatives of - = {G1, G2}. Let ( be the set of these
1

_+1 ·< agents; observe

that half of them rank G1 ahead of G2 and half of them rank G1 below G2, which follows by the fact that (

includes the same number of agents per alternative of �_ and the de�nition of the ordinal pro�le. Further,

we de�ne two more sets of agents: (12 = {8 ∈ ( : 8 ≤ <
2
} and (21 = ( \ (12. Observe that all agents of (12

rank alternative G1 ahead of G2, and all agents of (21 rank G2 ahead of G1.

Now, we de�ne three valuation pro�les v1, v2 and v3, which are consistent to the ordinal pro�le and

the cardinal information revealed by the queries ofM, but di�er on the values that the agents in ( have

for the alternatives in - ; in particular, v2 and v3 are symmetric.

• In all three pro�les, every agent 8 ∈ [<] has value X8 9 ·<−
9+1/2
_+1 + (1 − X8 9 ) ·<−

9

_+1 for the alternative

08 9 ∈ � 9 that she ranks at position 9 ∈ [_], and zero value for her tail alternatives;

• In all three pro�les, every agent 8 ∉ ( has value<−1
for both G1 and G2;

• In v1, every agent 8 ∈ ( has value<−
_+1/2
_+1 for both G1 and G2;

• In v2, every agent 8 ∈ (12 has value<−1
for both G1 and G2, while every agent 8 ∈ (21 has value<−1

for G1 and value<−
_+1/2
_+1 for G2.

24



• In v3, every agent 8 ∈ (21 has value<−1
for both G1 and G2, while every agent 8 ∈ (12 has value<−1

for G2 and value<−
_+1/2
_+1 for G1.

Next, we compute the social welfare of each alternative for the di�erent valuation pro�les:

• �e social welfare of every alternative I ∈ . is

SW(I | v1) = SW(I | v2) = SW(I | v3) = 0.

• �e social welfare of every alternative I ∈ ∪9 ∈[_]� 9 is

SW(I | v1) = SW(I | v2) = SW(I | v3) = _

_ + 1

·< 9

_+1 ·<− 9+1/2_+1 + 1

_ + 1

·< 9

_+1 ·<− 9

_+1

=
_

_ + 1

·<− 1

2(_+1) + 1

_ + 1

≤ 1.

• �e social welfare of G1 is

SW(G1 | v1) ≥ 1

_ + 1

·< ·<−_+1/2_+1 =
1

_ + 1

·< 1

2(_+1) ,

SW(G1 | v2) =< ·<−1 = 1,

SW(G1 | v3) ≥ 1

2

· 1

_ + 1

·< ·<−_+1/2_+1 =
1

2(_ + 1) ·<
1

2(_+1) .

• �e social welfare of G2 is

SW(G2 | v1) ≥ 1

_ + 1

·< ·<−_+1/2_+1 =
1

_ + 1

·< 1

2(_+1) ,

SW(G2 | v2) ≥ 1

2

· 1

_ + 1

< ·<−_+1/2_+1 =
1

2(_ + 1) ·<
1

2(_+1) ,

SW(G2 | v3) =< ·<−1 = 1.

Depending on the choices of the mechanismM, we set the valuation pro�le to be one of v1, v2 and v3

so that the distortion is as high as possible. In particular, we have:

• IfM selects any alternative I ∈ ∪9 ∈[_]� 9 , we set the valuation pro�le to be v1. Hence, the social

welfare of the winner I is at most 1, while any alternative of - is optimal with social welfare at least

1

_+1 ·<
1

2(_+1) , yielding distortion at least
1

_+1 ·<
1

2(_+1) .

• IfM selects alternative G1, we set the valuation pro�le to be v2. Hence, the social welfare of the

winner G1 is exactly 1, while G2 is the optimal alternative with social welfare at least
1

2(_+1) ·<
1

2(_+1) ,

yielding distortion at least
1

2(_+1) ·<
1

2(_+1) .

• IfM selects alternative G2, we set the valuation pro�le to be v3, which is symmetric to the previous

case and again yields distortion at least
1

2(_+1) ·<
1

2(_+1) .
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�erefore, the distortion ofM is Ω
(

1

_+1 ·<
1

2(_+1)
)

and the proof of the theorem is now complete; the proofs

of Claim 1 and Claim 2 can be found in the appendix.

Using �eorem 8, we can show several lower bounds on the distortion of any mechanism, depending

on the number of queries that it makes per agent. In particular, we have the following statement.

Corollary 4. For unrestricted valuation functions, the distortion of any mechanismM that uses _ queries
per agent is

D(M) =

Ω

(
<

1

2(_+1)
)
, for any constant _ ≥ 1

Ω (log log<) , for _ = $

(
log<

log log<

)
.

5.3 One-�ery Mechanisms with Unit-Sum Valuations

Next, we turn our a�ention to unit-sum valuation functions. Coming up with constructions that satisfy the

very restricted structure of such valuation functions and at the same time capture all mechanisms is quite

challenging. In the following, we consider mechanisms that are allowed to make only one value query per

agent. For this case, we are able to show a weaker lower bound of Ω(√< ), which indicates (but does not

prove) some separation between unrestricted and unit-sum valuation functions.

�eorem 9. For unit-sum valuation functions, the distortion of any mechanism that uses only one value
query per agent is Ω(√< ).
Proof. Consider an instance with< ≥ 4 alternatives and = =

√
< agents. We partition the set � of alterna-

tives into the following four sets:

• � = {11, ..., 1√<} with |� | =√<;

• � = {21, 22} with |� | = 2;

• � = {31, ..., 3√<−3
} with |� | =√< − 3;

• � = {41, ..., 4<−2

√
<+1} with |� | =< − 2

√
< + 1.

Using the notation [I,F] to denote the fact that alternatives I andF are ordered arbitrarily in the ranking

of an agent, we de�ne the following ordinal pro�le:

• �e ranking of agent 8 ≤ =
2

is 18 �8 21 �8 22 �8 [�] �8 [�] �8 [� \ {18}]

• �e ranking of agent 8 > =
2

is 18 �8 22 �8 21 �8 [�] �8 [�] �8 [� \ {18}]
Observe that the alternatives of � ∪� are all dominated by alternatives 21 and 22 in the sense that electing

21 or 22 always yields social welfare that is at least as much as the social welfare of any alternative in�∪�.

We refer to the alternatives of � ∪ � \ {18} as the tail alternatives of agent 8 .

LetM be any mechanism that makes one query per agent. Naturally, we assume thatM does not elect

any dominated alternative from�∪�. �e possible queries ofM reveal the following cardinal information:
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• A query for the favorite alternative of an agent (at the �rst position) reveals a value of
1√
<

;

• A query for an alternative in � ∪ � reveals a value of
1

<
;

• Any other query (for a tail alternative) reveals zero value.

We de�ne the following sets of agents, depending on the function ofM:

• (1 is the set of agents queried at the �rst position (for their favorite alternative);

• (� is the set of agents queried for some alternative in �;

• (� is the set of agents queried for some alternative in � ;

• (> is the set of agents queried for some tail alternative.

Next, we distinguish between three cases, depending on the alternative thatM elects.

Case I:M selects alternative c1 (the case of c2 is symmetric)
If |(1 | < =, we de�ne the following valuation pro�le v:

• For every agent 8 ∈ (� , we set E8,18 = 1 − 2

<
and E8,21

= E8,22
= 1

<
; the value for all other alternatives

is zero.

• For every agent 8 ∈ (� , we set E8,18 = 1−
√
<−1

<
and E8,21

= E8,22
= E8,3 9 =

1

<
for 9 ∈ [√< − 3]; the value

for all other alternatives is zero.

• For every agent 8 ∈ (>, we set E8,18 = 1; the value for all other alternatives is zero.

• For every agent 8 ∈ (1, we set E8,18 =
1√
<

, and split the remaining value of 1 − 1√
<

equally among all

other< − 1 alternatives so that for each of them the value of agent 8 is

√
<−1√

< (<−1) .

Hence, alternative 21 has social welfare

SW(21 | v) =
(
|(� | + |(� |

)
· 1

<
+ |(> | · 0 + |(1 | ·

√
< − 1√

<(< − 1)
≤

(
|(1 | + |(� | + |(� |

)
· 1

<

≤ 1√
<
,

where the �rst inequality follows since

√
<−1√

< (<−1) ≤ 1

<
⇔√< ≤ <, and the second follows by the fact that

|(1 | + |(� | + |(� | ≤ = =
√
<. Since |(1 | < =, there exists an agent 8∗ ∈ (� ∪ (� ∪ (> such that her favorite

alternative 18∗ has social welfare

SW(18∗ | v) ≥ 1 −
√
< − 1

<
≥ 1 − 1√

<
.
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As a result, the distortion is at least

√
< − 1.

If |(1 | = =, we de�ne the following valuation pro�le v:

• For every agent 8 ≤ =
2
, we set E8,18 =

1√
<

, and split the remaining value of 1 − 1√
<

equally among all

other< − 1 alternatives so that for each of them the value of agent 8 is

√
<−1√

< (<−1) .

• For every agent 8 > =
2
, we set E8,18 = E8,22

= 1√
<

, and split the remaining value of 1 − 2√
<

equally

among all other< − 2 alternatives so that for each of them the value of agent 8 is

√
<−2√

< (<−2) .

Hence, alternative 21 has social welfare

SW(21 | v) = =

2

·
( √

< − 1√
<(< − 1) +

√
< − 2√

<(< − 2)

)
≤ =

2

· 2

√
< − 3√

<(< − 2) .

On the other hand, alternative 22 has social welfare

SW(22 | v) = =

2

·
( √

< − 1√
<(< − 1) +

1√
<

)
=
=

2

· < +
√
< − 2√

<(< − 1) .

Consequently, the distortion is at least

SW(22 | v)
SW(21 | v) ≥

< − 2

< − 1

· < +
√
< − 2

2

√
< − 3

≥ 1

2

√
<,

where the last inequality holds for any< ≥ 3.

Case II: |Y1 | ≥ 1 andM selects some alternative bi∗ for i∗ ∈ Y1.
If |(1 | < =, we de�ne the following valuation pro�le v:

• For every agent 8 ∈ (� , we set E8,18 = 1 − 2

<
and E8,21

= E8,22
= 1

<
; the value for all other alternatives

is zero.

• For every agent 8 ∈ (� , we set E8,18 = 1 − 1√
<
+ 1

<
and E8,21

= E8,22
= E8,3 9 =

1

<
for 9 ∈ [√< − 3]; the

value for all other alternatives is zero.

• For every 8 ∈ (>, we set E8,18 = 1; the value for all other alternatives is zero.

• For every 8 ∈ (1, we set E8,18 =
1√
<

, and split the remaining value of 1− 1√
<

equally among the<−√<
alternatives of � ∪ � ∪ �, while the value for the alternatives of � \ {18} is zero.
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Hence, the social welfare of alternative 18∗ is

SW(18∗ | v) = 1√
<
.

Since |(1 | < =, there exists an agent 8 ∈ (� ∪ (� ∪ (> such that alternative 18 has social welfare

SW(18 | v) ≥ 1 − 1√
<
+ 1

<
≥ 1 − 1√

<
,

and therefore the distortion is at least

√
< − 1.

If |(1 | = =, we de�ne the following valuation pro�le v:

• For every agent 8 ∈ [=], we set E8,18 = E8,21
= E8,22

= 1√
<

, and split the remaining value of 1 − 3√
<

equally among the< −√< − 2 alternatives of � ∪ �; the value for the alternatives of � \ {18} is zero.

�is is a valid valuation de�nition since the value for each alternative in � ∪ � is

√
<−3√

< (<−√<−2) ≤
1√
<
⇔ (√< − 1)2 ≥ 0.

Hence, alternative 18∗ has social welfare

SW(18∗ | v) = 1√
<
.

But now, the social welfare of 21 and 22 is equal to

SW(21 | v) = SW(22 | v) = = 1√
<

= 1,

yielding distortion that is at least

√
<.

Case III: |YI | + |YJ | + |Y> | ≥ 1 andM selects some alternative bi∗ for i∗ ∈ YI ∪ YJ ∪ Y>

We de�ne the following valuation pro�le v:

• If 8∗ ∈ (� ∪ (� , we set E8∗ 9 =
1

<
for every alternative 9 ∈ �. If 8∗ ∈ (>, we split the total value of 1

equally among the< −√< + 1 alternatives in {18∗} ∪� ∪� ∪ � so that the value of agent 8 for each

such alternative is
1

<−√<+1 ≤ 1√
<

.

• For every agent 8 ∈ (� \ {8∗}, we set E8,18 = 1 − 2

<
and E8,21

= E8,22
= 1

<
; the value for all other

alternatives is zero.

• For every agent 8 ∈ (� \ {8∗}, we set E8,18 = 1 − 1√
<
+ 1

<
and E8,21

= E8,22
= E8,3 9 =

1

<
for 9 ∈ [√< − 3];

the value for all other alternatives is zero.

• For every agent 8 ∈ (> \ {8∗}, we set E8,18 = 1; the value for all other alternatives is zero.

• For every agent 8 ∈ (1, we set E8,18 = E8,21
= E8,22

= 1√
<

, and split the remaining value of 1 − 3√
<

equally among the < −√< − 2 alternatives in � ∪ �; the value of agent 8 for the alternatives of

� \ {18} is zero. �is is a valid valuation de�nition since the value for each alternative in � ∪ � is

1− 3√
<

<−2

√
<+1 ≤ 1√

<
⇔ (√< − 1)2 ≥ 0.

29



Hence, in any case, the social welfare of alternative 18∗ is

SW(18∗ | v) ≤ 1√
<
.

We now distinguish between a couple more cases:

• If |(� | + |(� | + |(> | ≥ 2, then there exists an agent 8 ∈ (� ∪(� ∪(> \ {8∗} such that the social welfare

of alternative 18 is

SW(18 | v) ≥ 1 − 1√
<
+ 1

<
≥ 1 − 1√

<
,

yielding distortion at least

√
< − 1.

• If |(� | + |(� | + |(> | = 1, then since |(1 | = = − 1 =
√
< − 1, alternatives 21 and 22 both have social

welfare

SW(21 | v) = SW(22 | v) ≥ (
√
< − 1) 1√

<
= 1 − 1√

<

and the distortion is at least

√
< − 1.

�e proof is now complete.

6 Conclusions and Directions for Future Research

We studied mechanisms for general single winner elections. In particular, we explored the potential of

improving the distortion of deterministic ordinal mechanisms by making a limited number of cardinal

queries per agent. On this front, we obtained a de�nitive positive answer. As highlights of our positive

results, we showed that it is possible to achieve constant distortion by making $ (log
2<) value or com-

parison queries per agent, while only $ (log<) value queries are enough to guarantee distortion $ (√<),
thus outperforming the best known randomized ordinal mechanism of Boutilier et al. [2015]. �ite inter-

estingly, our positive results for value queries hold without any normalization assumptions, which makes

them even stronger.

We complemented these results by showing (nearly) tight lower bounds for many interesting cases.

For one-query mechanisms we showed a linear lower bound for unrestricted valuation functions and a

lower bound of Ω(√< ) for unit-sum valuations. Further, for mechanisms that make $

(
log<

log log<

)
queries

we showed a superconstant lower bound for unrestricted valuation functions.

Possibly the most obvious open problem is to �ll in the gaps between our upper and lower bounds. To

this end, we make the following two conjectures.

U (1)-�ery Conjecture. �ere exists a mechanism that achieves a distortion of $ (√< ) using a constant
number of value queries per agent, for unit-sum or unrestricted valuation functions.
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(logm)-�eries Conjecture. �ere exists a mechanism that achieves a constant distortion, using$ (log<)
value queries per agent, for unit-sum or unrestricted valuation functions.

We consider se�ling these two conjectures the most interesting problems le� open in our work. Since our

upper bounds for value queries do not make use of the unit-sum normalization, it is conceivable that some

clever use of that extra information could possibly lead to be�er trade-o�s.

A natural direction for future work is to consider randomization. Intriguingly, one could consider two

di�erent levels of randomization. �e �rst level consists of mechanisms that decide randomly what queries

to make to the agents, yet the winning alternative is chosen deterministically. �e second level consists

of mechanisms that use randomization for both querying and making the �nal decision. Both of these

two classes of randomized mechanisms are very natural and may lead to similar distortion bounds but

potentially using fewer queries.

Our work takes a �rst step towards exploring how powerful ordinal mechanisms with limited access

to cardinal information can actually be. Of course, the same idea can be applied to many di�erent contexts,

such as participatory budgeting, multi-winner elections, or the metric distortion se�ing, which has been

extensively studied over the past years. As we mentioned in the introduction, Abramowitz et al. [2019]

already take a step in this direction in the metric se�ing.

A Missing Proofs from Subsection 5.2

Proof of Claim 1

Assume towards a contradiction that there exists an alternative I∗ ∈ �1 such that the mechanismM asks

at most
_
_+1 ·<

1

_+1 agents of )1(I∗) at the �rst position, andM has distortion D(M) ∉ Ω
(

1

_+1 ·<
1

2(_+1)
)
.

Let ( be the set of the at least
1

_+1 ·<
1

_+1 agents of )1(I∗) that are not queried byM at the �rst position.

Hence, we have that X81 = 1 for every agent 8 ∉ ( .

We now de�ne two valuation pro�les v1 and v2, which are consistent to the ordinal pro�le and any

information revealed by the queries ofM, but di�er on the value that the agents of ( have for alternative

I∗:

• In both v1 and v2, every agent 8 ∉ ( has value X8 9 ·<−
9+1/2
_+1 + (1 − X8 9 ) ·<−

9

_+1 for the alternative

08 9 ∈ � 9 that she ranks at position 9 ∈ [_], value<−1
for alternatives G1 and G2, and zero value for

her tail alternatives.

• In both v1 and v2, every agent 8 ∈ ( has value X8 9 ·<−
9+1/2
_+1 + (1 − X8 9 ) ·<−

9

_+1 for the alternative

08 9 ∈ � 9 that she ranks at position 9 ∈ [_] \ {1}, value<−1
for alternatives G1 and G2, and zero value

for her tail alternatives.

• In v1, every agent 8 ∈ ( has value<−
3/2
_+1 for I∗.

• In v2, every agent 8 ∈ ( has value 1 for I∗.
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Given the de�nition of these two valuation pro�les, it is easy to compute the social welfare of the alterna-

tives:

• �e social welfare of every alternative I ∈ . is

SW(I | v1) = SW(I | v2) = 0.

• �e social welfare of alternatives G1 and G2 is

SW(G1 | v1) = SW(G1 | v2) = SW(G2 | v1) = SW(G2 | v2) =< ·<−1 = 1.

• �e social welfare of any alternative I ∈ ∪9 ∈[_]� 9 \ {I∗} is

SW(I | v1) = SW(I | v2) = _

_ + 1

·< 9

_+1 ·<− 9+1/2_+1 + 1

_ + 1

·< 9

_+1 ·<− 9

_+1

=
_

_ + 1

·<− 1

2(_+1) + 1

_ + 1

≤ 1.

• �e social welfare of alternative I∗ is

SW(I∗ | v1) = _

_ + 1

·< 1

_+1 ·<− 1+1/2
_+1 + 1

_ + 1

·< 1

_+1 ·<− 3/2
_+1 =<

− 1

2(_+1) ,

SW(I∗ | v2) = _

_ + 1

·< 1

_+1 ·<− 1+1/2
_+1 + 1

_ + 1

·< 1

_+1 · 1 =
_

_ + 1

·<− 1

2(_+1) + 1

_ + 1

·< 1

_+1 .

Depending on the choices of the mechanismM, we set the valuation pro�le to be either v1 or v2 so

that the distortion is as high as possible. In particular, we have:

• IfM selects alternative I∗, we set the valuation pro�le to be v1. Hence, the social welfare of the

winner I∗ is<−
1

2
· 1

_+1 , while any alternative of - is optimal with social welfare 1, yielding distortion

<
1

2(_+1) .

• IfM selects some alternative I ∈ - ∪9 ∈[_] � 9 \ {I∗}, we set the valuation pro�le to be v2. Hence,

the social welfare of the winner I is at most 1, while alternative I∗ is optimal with social welfare at

least
1

_+1 ·<
1

_+1 , yielding distortion at least
1

_+1 ·<
1

_+1 .

In any case, the distortion is Ω
(

1

_+1 ·<
1

2(_+1)
)

and the proof of the claim follows.

Proof of Claim 2

For every alternative F ∈ � 9+1, let (F ⊆ )9+1(F) be the set of agents that rank F at position ( 9 + 1) and

are queried byM at the �rst 9 positions. By the de�nition of the ordinal pro�le, the set )9+1(F) consists

of<
9+1
_+1 agents. �ese agents are partitioned into<

1

_+1 sets of size<
9

_+1 so that the agents of each such set

all rank the same alternative of � 9 at position 9 . �erefore, by the assumption of the claim, we have that

|(F | > < 1

_+1 ·
(
1 − 9

_+1
)
·< 9

_+1 =

(
1 − 9

_+1
)
·< 9+1

_+1 .

32



Now, assume towards a contradiction that there exists an alternative F∗ ∈ � 9+1 such thatM queries

at most (1 − 9+1
_+1 ) ·<

9+1
_+1 of the agents in (F∗ at the �rst ( 9 + 1) positions, and D(M) ∉ Ω

(
1

_+1 ·<
1

2(_+1)
)
.

Let ( be the set of the agents in (F∗ that are not queried byM at position ( 9 + 1). By our discussion so far,

we have that |( | ≥ |(F∗ | −
(
1 − 9+1

_+1
)
·< 9+1

_+1 > 1

_+1 ·<
9+1
_+1 , and therefore X8, 9+1 = 1 for every agent 8 ∉ ( .

We now de�ne two valuation pro�les v1 and v2, which are consistent to the ordinal pro�le and any

information revealed by the queries ofM, but di�er on the value that the agents of ( have for alternative

F∗:

• In both v1 and v2, every agent 8 ∉ ( has value X8ℓ ·<−
ℓ+1/2
_+1 + (1−X8ℓ ) ·<− ℓ

_+1 for the alternative 08ℓ ∈ �ℓ
that she ranks at position ℓ ∈ [_], value <−1

for alternatives G1 and G2, and zero value for her tail

alternatives.

• In both v1 and v2, every agent 8 ∈ ( has value X8ℓ ·<−
ℓ+1/2
_+1 + (1−X8ℓ ) ·<− ℓ

_+1 for the alternative 08ℓ ∈ �ℓ
that she ranks at position ℓ ∈ [_] \ { 9 + 1}, value<−1

for alternatives G1 and G2, and zero value for

her tail alternatives.

• In v1, every agent 8 ∈ ( has value<−
9+3/2
_+1 forF∗.

• In v2, every agent 8 ∈ ( has value<−
9+1/2
_+1 forF∗.

Given the de�nition of these two valuation pro�les, it is easy to compute the social welfare of the alterna-

tives:

• �e social welfare of every alternative I ∈ . is

SW(I | v1) = SW(I | v2) = 0.

• �e social welfare of alternatives G1 and G2 is

SW(G1 | v1) = SW(G1 | v2) = SW(G2 | v1) = SW(G2 | v2) =< ·<−1 = 1.

• �e social welfare of any alternative I ∈ ∪ℓ∈[_]�ℓ \ {F∗} is

SW(I | v1) = SW(I | v2) = _

_ + 1

·< ℓ
_+1 ·<− ℓ+1/2_+1 + 1

_ + 1

·< ℓ
_+1 ·<− ℓ

_+1

=
_

_ + 1

·<− 1

2(_+1) + 1

_ + 1

≤ 1.

• �e social welfare of alternativeF∗ is

SW(F∗ | v1) = _

_ + 1

·< 9+1
_+1 ·<− 9+1+1/2_+1 + 1

_ + 1

·< 9+1
_+1 ·<− 9+3/2_+1 =<

− 1

2(_+1) ,

SW(F∗ | v2) = _

_ + 1

·< 9+1
_+1 ·<− 9+1+1/2_+1 + 1

_ + 1

·< 9+1
_+1 ·<− 9+1/2_+1

=
_

_ + 1

·<− 1

2(_+1) + 1

_ + 1

·< 1

2(_+1) .
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Depending on the choices of the mechanismM, we set the valuation pro�le to be either v1 or v2 so

that the distortion is as high as possible. In particular, we have:

• IfM selects alternative F∗, we set the valuation pro�le to be v1. Hence, the social welfare of the

winnerF∗ is<
− 1

2(_+1) , while any alternative of - is optimal with social welfare 1, yielding distortion

<
1

2(_+1) .

• IfM selects some alternative I ∈ - ∪ℓ∈[_] �ℓ \ {F∗}, we set the valuation pro�le to be v2. Hence,

the social welfare of the winner I is at most 1, while alternativeF∗ is optimal with social welfare at

least
1

_+1 ·<
1

2(_+1) , yielding distortion at least
1

_+1 ·<
1

2(_+1) .

In any case, the distortion is Ω
(

1

_+1 ·<
1

2(_+1)
)

and the proof of the claim follows.
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