
Soft Computing manuscript No.
(will be inserted by the editor)

Heuristic Procedures for Improving the Predictability of a Genetic
Programming Financial Forecasting Algorithm

Michael Kampouridis · Fernando E. B. Otero

Received: date / Accepted: date

Abstract Financial forecasting is an important area in com-
putational finance. EDDIE (Evolutionary Dynamic Data In-
vestment Evaluator) is an established Genetic Programming
financial forecasting algorithm, which has successfully been
applied to a number of international datasets. The purpose
of this paper is to further improve the algorithm’s predic-
tive performance, by incorporating heuristics in the search.
We propose the use of two heuristics: a sequential covering
strategy to iteratively build a solution in combination with
the GP search and the use of an entropy-based dynamic dis-
cretisation procedure of numeric values. To examine the ef-
fectiveness of the proposed improvements, we test the new
EDDIE version (EDDIE 9) across 20 datasets and compare
its predictive performance against three previous EDDIE al-
gorithms. In addition, we also compare our new algorithm’s
performance against C4.5 and RIPPER, two state-of-the-art
classification algorithms. Results show that the introduction
of heuristics is very successful, allowing the algorithm to
outperform all previous EDDIE versions and the state-of-
the-art. Results also show that the algorithm is able to return
significantly high rates of return across the majority of the
datasets.

Keywords genetic programming · financial forecasting ·
EDDIE · sequential covering · dynamic discretisation

1 Introduction

Data mining is an active research area focused on the design
and development of computational methods to discover (cre-
ate) a model from real-world data (Piatetsky-Shapiro and
Frawley, 1991; Fayyad et al, 1996). Classification is one of

M. Kampouridis (B) · F.E.B. Otero
School of Computing, University of Kent, UK
E-mail: M.Kampouridis@kent.ac.uk

the main data mining tasks, where the goal is to create a
predictive model that represents the relationships between
input attributes’ values and the values of a class attribute
by analysing the data. It usually involves two steps. In the
first step (model creation), the algorithm builds a model by
analysing cases from the training data. At this point, the al-
gorithm has access to the information of both input and class
attributes. In the second step (model evaluation), the model
created is used to classify new data, to simulate the use of fu-
ture (unseen) data. During this step, the algorithm has only
access to the input attributes’ values to make a prediction.
The class attribute value is only used to evaluate the model’s
prediction: if the predicted value is the same as the actual
value, the prediction is marked as correct; otherwise, it is
marked as incorrect. Hence, the goal is to create the most
accurate model given a set of training data.

Genetic Programming (GP) is an evolutionary technique
inspired by natural evolution, where computer programs act
as the individuals of a population (Koza, 1992; Poli et al,
2008). GP has been extensively used for classification prob-
lems. Its characteristic of being able to produce white-box
models makes it a more trustworthy algorithm to its users.
GP has been successfully applied for classification in dif-
ferent real-life applications, ranging from medical diagnosis
(Giacobini et al, 2014), to fraud detection (Phua et al, 2010)
and remote sensing (Dos Santos et al, 2011).

An application that we will be focusing on this paper is
financial forecasting, and particularly the prediction of buy
opportunities. Financial forecasting is a vital area in compu-
tational finance (Tsang and Martinez-Jaramillo, 2004). The-
re are numerous works that attempt to forecast the future
price movements of a stock; several examples can be found
in Chen (2002); Binner et al (2004). Furthermore, GP has
many times been used in the past for financial forecasting
(Wilson and Banzhaf, 2010; Wang et al, 2010; Abdelmalek

2 Michael Kampouridis, Fernando E. B. Otero

et al, 2009; Agapitos et al, 2010; Abdou, 2009), and has
shown it is able to identify patterns in the data.

EDDIE is a well-established genetic programming fi-
nancial forecasting tool, which has been found to outper-
form traditional decision rule induction methods, such as
C4.5, and return high accuracy results over different interna-
tional stock markets (Li, 2001; Tsang et al, 2000). Recently,
EDDIE 8-ATTR (Kampouridis and Otero, 2013) was intro-
duced, which is one of the latest algorithms from the EDDIE
series. While previous EDDIE algorithms were using pre-
specified periods for the indicators from technical analysis
(e.g., 20 days Moving Average, 50 days Momentum), ED-
DIE 8-ATTR was the first algorithm to allow these periods
to be directly selected by the GP. Thus, instead of the al-
gorithm’s user pre-specifying a number of fixed period val-
ues for the technical indicators, as it traditionally happens
in both academia and industry, EDDIE 8-ATTR allowed the
GP to evolve different periods for each technical indicator.
In addition, the algorithm used attribute construction, which
allowed for a better representation and search of the problem
search space. As a result to the above modifications, ED-
DIE 8-ATTR was able to produce new technical indicators,
which improved the algorithm’s predictive performance.

The purpose of this paper is to further improve the pre-
dictive performance of EDDIE by incorporating heuristics
into EDDIE’s search. This is paramount, because of the sig-
nificance of the financial forecasting field itself, which re-
quires the continuous development of new and improved al-
gorithms. The new version, EDDIE 9, uses two well-known
heuristics in combination with the GP search: a sequential
covering strategy to iteratively build a solution in combi-
nation with the GP search and the use of an entropy-based
dynamic discretisation procedure of numeric values. A se-
quential covering strategy has been successfully used in GP
for boolean domains (Otero and Johnson, 2013), allowing
the automatic decomposition of the original problem into
smaller (more tractable) subproblems. Furthermore, super-
vised learning algorithms usually employ a dynamic dis-
cretisation procedure to handle numeric attributes, with the
aim of deterministically calculating a threshold value that
best fits the data. To examine the effectiveness of the pro-
posed improvements, we test the new EDDIE 9 version across
20 datasets and compare its predictive performance against
three previous EDDIE algorithms. In addition, we also com-
pare our new algorithm’s performance against C4.5 and RIP-
PER, two state-of-the-art classification algorithms.

The rest of this paper is organised as follows: Section 2
presents a general overview of previous EDDIE algorithms.
Section 3 then details how we incorporated heuristics into
EDDIE’s search. Sections 4 and 5 then present the experi-
mental setup and discuss the obtained results, respectively.
Finally, Section 6 concludes this paper and discusses future
work.

2 The EDDIE algorithm

In this section, we present the different versions of EDDIE
that are going to be used in our experiments and the reasons
for using each version.

2.1 EDDIE 7

EDDIE 7, and EDDIE in general, is a forecasting tool, which
learns and extracts knowledge from a set of data. The kind
of question EDDIE tries to answer is ‘will the price increase
within the n following days by r%?’ The user first feeds the
system with a set of past data; EDDIE then uses this data
and through a GP process, it produces and evolves Genetic
Decision Trees (GDTs), which make recommendations of
buy (1) or not-to-buy (0).

The set of data used is composed of three parts: daily
closing price of a stock, a number of attributes and sig-
nals. Stocks’ daily closing prices can be obtained online
in websites such as http://finance.yahoo.com and also
from financial statistics databases like Datastream. The at-
tributes are indicators commonly used in technical analy-
sis (Edwards and Magee, 1992); which indicators to use de-
pends on the user and his/her belief of their relevance to the
prediction. The technical indicators that we use in this work
are: Moving Average (MA), Trade Break Out (TBR), Filter
(FLR), Volatility (Vol), Momentum (Mom), and Momentum
Moving Average (MomMA).1

The signals are calculated by looking ahead of the clos-
ing price for a time horizon of n days, trying to detect if
there is an increase of the price by r% (Tsang et al, 2000).
For this set of experiments, n was set to 20 and r to 4%. In
other words, the GP is trying to use some of the above indi-
cators to forecast whether the daily closing price is going to
increase by 4% within the following 20 days.

After we feed the data to the system, EDDIE creates
and evolves a population of GDTs. Figure 1 presents the
Backus Normal Form (BNF) (Backus, 1959) (grammar) of
EDDIE 7. As we can see, the root of the tree is an If-Then-
Else statement. The first branch is either a boolean (testing
whether a technical indicator is greater than/less than/equal
to a value), or a logic operator (and, or, not), which can hold
multiple boolean conditions. The first branch also includes
a V ariable, which can be anyone of 12 pre-defined techni-
cal analysis indicators;2 this variable is tested whether it is

1 We use these indicators because they have been proved to be quite
useful in developing GDTs in previous works like Martinez-Jaramillo
(2007), Allen and Karjalainen (1999) and Austin et al (2004). Of
course, there is no reason why not use other information like funda-
mentals or limit order book. However, the aim of this work is not to
find the ultimate indicators for financial forecasting.

2 These are the 6 indicators mentioned earlier; each indicator has
two different period lengths, 12 and 50 days, thus resulting to a total of
12 technical indicators.

Improving the Predictability of a GP Financial Forecasting Algorithm 3

<Tree> ::= If-Then-Else <Condition> <Tree> <Tree>
| Decision

<Condition> ::= <Condition> AND <Condition>
| <Condition> OR <Condition>
| NOT <Condition>
| Variable <RelationOperation> Threshold

<Variable> ::= MA 12 |MA 50 | TBR 12 | TBR 50 | FLR 12
| FLR 50 | Vol 12 | Vol 50 |Mom 12 |Mom 50
|MomMA 12 |MomMA 50

<RelationOperation> ::= “>” | “<” | “=”

Terminals:
Decision is an integer (Positive or Negative implemented)
Threshold is a real number

Fig. 1 The Backus Naur Form of the EDDIE 7.

greater than/less than/equal to a Threshold, and depending
on the result, we move to the ‘Then’ or the ‘Else’ branch.
The ‘Then’ and ‘Else’ branches can be a new GDT, or a de-
cision, to buy or not-to-buy (denoted by 1 and 0).

A sample GDT is presented in Fig. 2. This tree informs
us that if the 12 days Moving Average is less than 6.4, then
the trader should buy; otherwise, the tree checks whether the
50 days Momentum is greater than 5.57. If the above is true,
then the trader is advised not-to-buy; if it’s false, the trader
is advised to buy.

Depending on the classification of the predictions, we
can have four cases: True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN). As a result,
we can use the metrics presented in Equations 1, 2 and 3.

Rate of Correctness:

RC =
TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances:

RMC =
FN

FN + TP
(2)

Rate of Failure:

RF =
FP

FP + TP
(3)

The above metrics combined give the following fitness func-
tion, presented in Equation 4:

ff = w1 ∗RC − w2 ∗RMC − w3 ∗RF , (4)

where w1, w2 and w3 are the weights for RC, RMC and
RF respectively. These weights are given in order to reflect

If

<

MovingAverage-12 6.4

Buy(1) If

>

Momentum-50 5.57

Not-Buy(0) Buy(1)

Fig. 2 Sample GDT generated by EDDIE 7.

the preferences of investors. For instance, a conservative in-
vestor would want to avoid failure; thus a higher weight
for RF should be used. For our experiments, we choose to
include strategies that mainly focus on correctness and re-
duced failure. Thus these weights have been set to 0.6, 0.1
and 0.3 respectively.

The fitness function is a constrained one, which allows
EDDIE to achieve lower RF. The effectiveness of this con-
strained fitness function has been discussed in Tsang et al
(2005); Li (2001). The constraint is denoted by R, which
consists of two elements represented by a percentage, given
by:

R = [Cmin, Cmax] , (5)

where Cmin = Pmin

Ntr
× 100%, Cmax = Pmax

Ntr
× 100%,

and 0 ≤ Cmin ≤ Cmax ≤ 100%. Ntr is the total num-
ber of training data cases, Pmin is the minimum number of
positive position predictions required, and Pmax is the max-
imum number of positive position predictions required.

Therefore, a constraint of R = [50, 65] means that the
percentage of positive signals that a GDT predicts3 should
fall into this range. When this happens, then w1 remains as
it is (i.e. 0.6 in our experiments). Otherwise, w1 takes the
value of zero.

2.1.1 Advantages and Disadvantages of EDDIE 7

EDDIE 7 is a re-implementation of a previous EDDIE al-
gorithm, named FGP-2. This algorithm was one of the very
first tested on financial markets and was found very success-
ful. It was even compared against a Random Walk model
and the well-known classifier C4.5 (Quinlan, 1993); FGP-
2 outperformed both. We then added a few more technical
indicators and re-implemented Li’s FGP-2, and we called it
EDDIE 7.

3 As we have mentioned, each GDT makes recommendations of buy
(1) or not-to-buy (0). The former denotes a positive signal and the latter
a negative. Thus, within the range of the training period, which is t
days, a GDT will have returned a number of positive signals.

4 Michael Kampouridis, Fernando E. B. Otero

<Tree> ::= If-Then-Else <Condition> <Tree> <Tree>
| Decision

<Condition> ::= <Condition> AND <Condition>
| <Condition> OR <Condition>
| NOT <Condition>
| <VarConstructor> <RelationOperation> Threshold

<VarConstructor> ::= MA period | TBR period | FLR period
| Vol period |Mom period
|MomMA period

<RelationOperation> ::= “>” | “<” | “=”

Terminals:
MA, TBR, FLR, Vol, Mom, MomMA are function symbols
Period is an integer within a parameterised range, [MinP, MaxP]
Decision is an integer (Positive or Negative implemented)
Threshold is a real number

Fig. 3 The Backus Normal Form of EDDIE 8.

A main disadvantage of the EDDIE 7 algorithm is the
fact that it is using technical indicators, pre-specified by the
user, and with a fixed period length. As we saw above, ED-
DIE 7 can accept 12 and 50 days MA, 12 and 50 days TBR,
and so on. The periods 12 and 50 are fixed. Nevertheless,
one could argue that the choice of these two periods is not
the optimal one. To address this issue, we created EDDIE 8,
which is presented next.

2.2 EDDIE 8

The novelty of EDDIE 8 is in its extended grammar, which
allows the GP to search in the space of indicators to form
its Genetic Decision Trees (Kampouridis and Tsang, 2010,
2012). While EDDIE 7 was using 12 indicators pre-specified
by the user, EDDIE 8 is not constrained in using any pre-
specified indicators, but it is left up to the GP to choose the
optimal ones.

As we can see from the grammar in Fig. 3, there is a
function called <VarConstructor>, which takes two chil-
dren. The first one is the indicator, and the second one is the
<Period>. <Period> is an integer within the parameterised
range [MinP,MaxP] that the user specifies. As a result,
EDDIE 8 can return decision trees with indicators like 15
days Moving Average, 17 days Volatility, and so on. The ad-
vantage of EDDIE 8 is thus that the period is not an issue
any more, and it is up to the GP to decide which lengths
are more valuable for the prediction. This makes EDDIE 8 a
more dynamic and powerful algorithm.

A sample GDT is presented in Fig. 4. As we can observe,
the periods 12 and 50 are now in a leaf node, and thus are
subject to genetic operators, such as crossover and mutation.

The rest of the EDDIE 8 algorithm behaves in exactly
the same way with EDDIE 7.

If

<

VarConstructor

MovingAverage 12

6.4

Buy(1) If

>

VarConstructor

Momentum 50

5.57

Not-Buy(0) Buy(1)

Fig. 4 Sample GDT generated by EDDIE 8.

2.2.1 Advantages and Disadvantages of EDDIE 8

The major advantage of EDDIE 8 is that it is not restricted
to use pre-specified periods. In order to see the new algo-
rithm’s effectiveness, we compared it with EDDIE 7, over 10
different datasets. EDDIE 7 was proven to be more robust,
in terms of average results (Kampouridis and Tsang, 2010,
2012). This was because, EDDIE 8’s performance was com-
promised by the enlarged search space. With the old gram-
mar (EDDIE 7), EDDIE used 6 indicators from technical
analysis with two pre-specified period lengths. For instance,
if one of the indicators was Moving Average, then the two
period lengths used would be 12 and 50 days. On the con-
trary, EDDIE 8 could use any period within a given param-
eterised range, which for our experiments was set to 2-65
days. Thus, the algorithm could come up with any indicator
within that range, and not just with 12 and 50 days. As we
can see, the search space of EDDIE 8 was much bigger than
the one of its predecessor.4 In order to address the issue of
exploring better EDDIE 8’s big search space, we introduced
attribute construction into the algorithm, which will be pre-
sented below, in Section 2.3.

On the other hand, an advantage of the algorithm was
that it would usually find better optimal solutions (e.g. out
of 50 individual runs, EDDIE 8 would normally have its best
tree with significantly higher fitness than the best tree of ED-
DIE 7). Thus, EDDIE 8 was better than EDDIE 7 in terms
of best results.

4 To make this clearer, let us give an example: if a given GP tree can
have a maximum of k indicators, then the permutations of the available
12 indicators (we are using 6 different indicators, with 2 periods each,
thus 6 ∗ 2 = 12) under EDDIE 7 are 12k; on the other hand, if EDDIE
8 is using the same 6 indicators with periods within the range of 2
to 65 days, then the permutations of the available 384 indicators (we
are using 6 different indicators with 65-1=64 periods each, thus 64 ∗
6 = 384) are 384k. It is thus obvious that EDDIE 8’s search space
is significantly larger, which can therefore explain the difficulties of
EDDIE 8 of consistently finding good solutions.

Improving the Predictability of a GP Financial Forecasting Algorithm 5

<Tree> ::= If-Then-Else <Condition> <Tree> <Tree>
| Decision

<Condition> ::= <Condition> AND <Condition>
| <Condition> OR <Condition>
| NOT <Condition>
| <VarConstructor> <RelationOperation> Threshold
|<VarConstructor><RelationOperation><VarConstructor>

<VarConstructor> ::= MA period | TBR period | FLR period
| Vol period |Mom period
|MomMA period

<RelationOperation> ::= “>” | “<” | “=”

Terminals:
MA, TBR, FLR, Vol, Mom, MomMA are function symbols
Period is an integer within a parameterised range, [MinP, MaxP]
Decision is an integer (Positive or Negative implemented)
Threshold is a real number

Fig. 5 The Backus Normal Form of EDDIE 8-ATTR.

2.3 EDDIE 8-ATTR

The previous versions of EDDIE only created GDTs involv-
ing the combination of tests composed by a triple (attribute,
operator, value), where the value is a numeric constant, as
most of machine learning algorithm used for knowledge dis-
covery. In order to allow the creation of new attributes, ED-
DIE’s grammar is extended to allow the creation of tests in-
volving the direct comparison of indicator values using a
relational operator, presented in Figure 5. This new version
is called EDDIE 8-ATTR.

The main modification is the introduction of the pro-
duction “<VarConstructor> <RelationOperation> <Var-
Constructor>” to the symbol “<Condition>”, which de-
fines the rules for creating the conditions of If-Then-Else
statements of the GDTs. The new grammar allows EDDIE
8-ATTR to create GDTs with the same structure as EDDIE
8 and also GDTs that can define new attributes, in a simi-
lar fashion as GP-based attribute construction methods (Hu,
1998; Otero et al, 2003; Krawiec, 2002)—i.e., creating new
boolean conditions combining indicators (attributes) using
AND, OR and NOT operators. A sample GDT of EDDIE 8-
ATTR is presented in Figure 6. It is important to emphasise
that this GDT could not be created by the original EDDIE
8, since it involves a condition comparing indicator values
directly—i.e., a new boolean attribute represented by the
condition “MovingAverage 20 > Momentum 50”.

2.3.1 Advantages and Disadvantages of EDDIE 8-ATTR

EDDIE 8-ATTR successfully addressed the problem of inef-
fective search of EDDIE 8 by introducing attribute construc-
tion. Results in Kampouridis and Otero (2013) showed that
this attribute construction was beneficial to the algorithm,

If

>

VarConstructor

MovingAverage 20

VarConstructor

Momentum 50

Not-Buy(0) Buy(1)

Fig. 6 Sample GDT generated by EDDIE 8-ATTR using a new
boolean attribute represented by the condition “MovingAverage 20 >
Momentum 50”.

which was able to outperform its two predecessors, EDDIE
7 and EDDIE 8, in 8 of the 10 tests examined. Results also
indicated that the introduction of more productions that al-
low the direct comparison of indicators in a single tree, can
have a significantly positive effect to the tree’s predictive
performance.

However, although the results ranked EDDIE 8-ATTR
first, they were not statistical significant, indicating that there
was still room for improvement in the search process of ED-
DIE. This thus led us to consider using further heuristic pro-
cesses in the search, which will be described in Section 3.
Next, we briefly present the two state-of-the-art algorithms
that are going to act as benchmarks for our experiments.

3 Incorporating heuristics into EDDIE’s search

The current EDDIE 8-ATTR algorithm (and also previous
EDDIE versions) follows the traditional GP approach, where
the algorithm is given solution components (non-terminal
and terminal symbols) and the evolutionary process is re-
sponsible to find an optimal combination of these compo-
nents to create a solution to the problem. The aim of this
process is to “get a computer to do what needs to be done,
without telling it how to do it” (Koza, 1992). If we look at
the structure of GDTs generated by EDDIE 8-ATTR, there
is a dependency regarding the position of conditions in the
tree—e.g., a condition sub-tree that works well in a top level
If-Then-Else statement does not have the same effect if
moved down the tree, since the top-level condition has a big-
ger effect on the overall tree than a lower-level one. There-
fore, individuals are fragile to the application of search opera-
tors—it is very easy for a crossover or mutation operation
to disrupt the quality of an individual. A small change in a
near-optimal individual can produce a very poor individual.
That puts extra pressure on the GP search, since not only
the correct conditions have to be created, but also they need
to be placed in the correct position of the GDT. On top of
this, the conditions involve numeric threshold values, test-
ing a particular indicator value using a relational operator
(e.g., MA 12 < 0.5), which should be created throughout

6 Michael Kampouridis, Fernando E. B. Otero

the evolutionary process and are subject to the search opera-
tors; and the “Decision” (output of the GDT) is a random
selected integer (1 [buy] or 0 [not-buy]). Therefore, even
if the correct condition is created and placed in the correct
position, the candidate solution can have a poor fitness if
the decision node of the GDT outputs the incorrect value.
There is no way of rewarding a candidate solution for par-
tial correctness—even when the structure of the individual
contains correct structures, the fitness is calculated taking
into account only the correctness of the output.

Let’s consider the search strategy employed by other su-
pervised learning algorithms. The majority of them do not
attempt to create the complete solution in one step, they
instead use a heuristic to decompose the original problem
into smaller (more tractable) subproblems. The divide-and-
conquer strategy is employed by top-down decision tree in-
duction algorithms to build a decision tree. At the start of
the top-down process, an attribute is selected to divide the
training data—the first attribute selected corresponds to the
root node of the tree. Each branch originating from the node
tests a different value in the domain of the attribute and the
training data is divided according to the outcome of the tests
(i.e., each branch is associated with the subset of the train-
ing data that satisfies its test). The procedure of selecting an
attribute is then repeated to further divide the subsets.

Rule induction algorithms usually employ a sequential
covering strategy to generate a list of classification rules,
with the aim of reducing the complexity of creating a com-
plete list by transforming the problem into a sequence of
subproblems concerning in creating a single rule. The se-
quential covering is an iterative procedure, in each iteration
a rule is created and the training cases covered by the rule
(i.e., the training cases that satisfy the condition of the rule)
are removed. A rule solves a subproblem—i.e., it classifies
a subset of the training data. This process is then repeated
until all training cases are covered by a rule. Note that each
iteration is dealing with a different problem, since the train-
ing data changes from one iteration to the next.

In this section we present the details of proposed ex-
tension to EDDIE (named EDDIE 9), which incorporates
heuristics into the GP search. The aim is to apply the GP in
a modular way: instead of relying on the GP to evolve a com-
plete GDT (candidate solution), the GP is used in combina-
tion with a sequential covering strategy to iteratively build
the solution. Additionally, threshold values in the condition
tests are automatically determined by a dynamic discretisa-
tion procedure, instead of randomly selected. In this way,
the GP search is focused in finding an optimal combination
of conditions to classify a subset of the training data (i.e.,
search for subproblem solutions), while the complete solu-
tion is created by the sequential covering procedure.

Input: training data
Output: GDT

1: training← all training data;
2: GDT ← {};
3: while |training| not empty do
4: rule← RunGP(training);
5: training← training − CoveredData(rule, training);
6: GDT ← GDT + rule;
7: end while
8: return GDT ;

Fig. 7 High-level pseudocode of the sequential covering procedure in
EDDIE 9.

3.1 The new EDDIE 9 algorithm

The sequential covering employed in EDDIE 9 is presented
in Figure 7. Starting with an empty solution and the com-
plete training data, it evolves a partial solution using the GP,
removes all training cases that satisfy its conditions and adds
it to the solution. A partial solution is represented by a single
If-Then-Else, where both Then and Else correspond to a
“Decision”—it is regarded as a partial solution, since it cor-
responds to a rule that classifies only a subset of the training
data. The procedure is then repeated until there are no train-
ing cases remaining. In other words, each execution of the
GP evolves a rule, which classifies a subset of the training
data. Since the training data classified by previous rules is
removed, subsequent executions of the GP evolves a differ-
ent rule—a rule classifying a different subset of the training
data.

Given that the GP is not used to generate a complete so-
lution to the problem, EDDIE 9 grammar is a simplified ver-
sion of the grammar used by EDDIE 8 and EDDIE 8-ATTR.
Instead of evolving a complete GDT, a single rule is evolved
by the GP. Therefore, no nested If-Then-Else are allowed
and both Then and Else are fixed to “Decision”. Figure 9
presents the grammar of EDDIE 9. Note that while each exe-
cution of the GP creates a rule, where nested If-Then-Else

are not allowed, the sequential covering creates a GDT to
combine the individual solutions created by the different ex-
ecutions of the GP. Individual solutions are combined by
nesting their If-Then-Else—the If-Then-Else of itera-
tion 2 is added under the Else branch of the rule created
in iteration 1; the one from iteration 3 is added under the
Else of the rule created in iteration 2, and so forth. The it-
eratively solution construction is illustrated in Figure 8. As
a result of this procedure, the structure of the solution cre-
ated by EDDIE 9 is the same as the structure of EDDIE 8.
The main difference between the algorithms is related to the
search strategy: in EDDIE 8 and EDDIE 8-ATTR, the GP
is responsible to evolve the complete solution for the prob-
lem, while in EDDIE 9 the GP evolves partial solutions that

Improving the Predictability of a GP Financial Forecasting Algorithm 7

If

DynVarConstructor

MovingAverage 12

Buy(1) Not-Buy(0)

(a) Solution of iteration 1.

If

DynVarConstructor

MovingAverage 12

Buy(1) If

DynVarConstructor

Momentum 50

Not-Buy(0) Buy(1)

(b) Solution of iteration 2.

Fig. 8 Sample GDT generated by the sequential covering in EDDIE 9:
in (a) the solution at the end of the first iteration; in (b) the solution at
the end of the second iteration.

are combined by a sequential covering strategy to create a
complete solution.

Another difference between the proposed EDDIE 9 and
EDDIE 8 is regarding the creation of the tests (conditions)
involving the indicators. According to the grammar in Fig-
ure 9, there are no “<RelationOperator>” nor “Threshold”
symbols in the grammar, and the <VarConstructor>” sym-
bol is replaced by a “<DynVarConstructor>”. Instead of
relying on the evolutionary process to find good combina-
tions of (indicator, relational operator, threshold) to create
the conditions, EDDIE 9 uses a data-driven procedure to
automatically determine the relational operator and thresh-
old value, given an indicator and the current training data.
Therefore, the GP is responsible for creating the structure of
the tests (the combination of conditions in the antecedent of
the rule) and the actual relational tests are created in a deter-
ministic way by checking the training data—as detailed in
Subsection 3.2. Note that the rule returned as a results of the
execution of the GP (line 4 in the pseudocode in Figure 7)
already contains the relational operator and threshold values
in all conditions for all its conditions, in the same structure
as EDDIE 8.

3.2 Dynamic discretisation of indicator values

According to the grammar in Figure 9, the candidate so-
lutions evolved by the GP do not contain complete con-

<Tree> ::= If-Then-Else <Condition> Decision Decision

<Condition> ::= <Condition> AND <Condition>
| <Condition> OR <Condition>
| NOT <Condition>
| <DynVarConstructor>

<DynVarConstructor> ::= MA period | TBR period | FLR period
| Vol period |Mom period
|MomMA period

Terminals:
MA, TBR, FLR, Vol, Mom, MomMA are function symbols
Period is an integer within a parameterised range, [MinP, MaxP]
Decision is an integer (Positive or Negative implemented)

Fig. 9 The Backus Normal Form of EDDIE 9.

ditions. Conditions represent boolean expressions that test
an indication value against a threshold value using a rela-
tional operator. Since the algorithm has the training data, it
is possible to check whether a test—a combination of (in-
dicator, relation operator, threshold)—is a good test or not.
More importantly, looking at the data, the algorithm can de-
terministically calculate the test that best fits the data. To
this end, EDDIE incorporates a dynamic discretisation pro-
cedure based on the entropy measure. This is inspired by
similar uses of the entropy measure to discretise continuous
attributes (Quinlan, 1993; Otero et al, 2008, 2013).

The dynamic discretisation is a procedure applied to the
candidate solutions in order to be able to evaluate them—a
solution can only be evaluated if it contains complete con-
ditions—and it has an indirect effect on the solutions’ struc-
ture. While the structural changes resulting from the dis-
cretisation are not permanent modifications, the fitness of
the candidate solution directly reflects the quality of the con-
ditions created by the discretisation procedure.

Let’s consider the candidate solution illustrated in Fig-
ure 10(a). This solution is evolved by the GP following the
grammar rules of EDDIE 9. As we mentioned, this solution
cannot be directly evaluated since the “<DynVarConstruc-
tor>” subtrees do not represent a complete boolean test.
Therefore, before evaluating each individual of the GP (can-
didate solution), the dynamic discretisation procedure is ap-
plied to transform the individual representation back to
EDDIE 8’s representation—illustrated in Figure 10(b). The
transformation step works as follows. Starting from the root
node of the individual’s tree with all the training data avail-
able, the tree is traversed in depth-first fashion. When a
“<DynVarConstructor>” node is found, the dynamic dis-
cretisation procedure is used to select a relation operator
and threshold to create a condition. In order to select the
best threshold value given the current training data, all val-
ues in the domain of the indicator (I), which is specified by
“<DynVarConstructor>”, are considered. A threshold value

8 Michael Kampouridis, Fernando E. B. Otero

If

AND

DynVarConstructor

MovingAverage 12

DynVarConstructor

Momentum 50

Buy(1) Not-Buy(0)

(a) EDDIE 9’s generated solution.

If

AND

>

VarConstructor

MovingAverage 12

5.5

≤

VarConstructor

Momentum 50

4.9

Buy(1) Not-Buy(0)

(b) Solution at the end of the discretisation (EDDIE 8 format).

Fig. 10 Illustration of the effect of the dynamic discretisation transfor-
mation: in (a) the solution generated by EDDIE 9; in (b) the solution
transformed into EDDIE 8’s format by the discretisation procedure.

v divides the training data into two sets: the set where I ≤ v

and another set where I > v. The best threshold value cor-
responds to the value v that minimises the entropy in both
sets, given by:

E(I, v;D) =
|DI≤v |
|D|

· entropy(DI≤v)

+
|DI>v |
|D|

· entropy(DI>v) ,

(6)

where |DI≤v| is the total number of examples in the interval
I ≤ v (subset of the training data where the indicator I has
a value less than or equal to v), |DI>v| is the total number
of examples in the interval I > v (subset of the training data
where the indicator I has a value greater than v) and |D| is
the size of the training data. Both values of entropy(I ≤ v)

and entropy(I > v) are given by:

entropy(T) =
1∑

S=0

−
(
|TS |
|T |
· log2

|TS |
|T |

)
, (7)

where T is the subset of the training data (DI≤v or DI>v)
and TS is the subset of T that is associated with signal S.
After selecting the best threshold value v, the relational op-
erator is selected based on the entropy of the two generated
sets, given by:

operator =

≤ , if entropy(DI≤v) < entropy(DI>v)

> , if entropy(DI≤v) > entropy(DI>v)
. (8)

At the end of the discretisation procedure, the “<DynVar-
Constructor>” node is replaced by EDDIE’s 8 equivalent
“<VarConstructor><RelationOperator> Threshold”, as il-
lustrated in Figure 10.

Before continuing traversing the tree, the current train-
ing data is filtered according the the parent of the “<Dyn-
VarConstructor>”. If the parent is a node:

– AND: if the “<DynVarConstructor>” is the first child
to be evaluated, the training data passed to the second
child is filtered to include only the subset that satisfies its
conditions; after both children are evaluated the training
data is filtered to include only the examples that satisfy
both “<DynVarConstructor>” conditions;

– OR: after both children are evaluated, the training data is
filtered to include only the examples that satisfy one of
the “<DynVarConstructor>” conditions;

– NOT: after both children are evaluated, the training data
is filtered to include only the examples that do not satisfy
the “<DynVarConstructor>” condition.

In this way, the dynamic discretisation is tailored to the cur-
rent training data—when a “<DynVarConstructor>” node
is reached, the threshold value and relational operator is se-
lected according to the available data.

4 Experimental Setup

4.1 Algorithms

Our goal is to investigate whether the introduction of the
heuristics is beneficial to the EDDIE algorithm. We are thus
going to compare the performance of EDDIE 9 to EDDIE 7,
EDDIE 8, and EDDIE 8-ATTR. Furthermore, we will also
compare the performance of EDDIE 9 to two state-of-the-art
classification algorithms, C4.5 (Quinlan, 1993) and RIPPER
(Cohen, 1995). More specifically, for the purposes of our
experiments, we will be using Weka’s (Witten and Frank,
2005) implementation of the algorithms, which are J48 and
JRip, respectively.

4.2 Datasets

For our experiments, we run tests for 25 datasets. These
datasets consist of daily closing prices of 18 stocks from
FTSE 100, and 7 international indices. The 18 FTSE 100
stocks are: Aggreko, Amlin, Barclays, British Petroleum

Improving the Predictability of a GP Financial Forecasting Algorithm 9

(BP), Cadbury, Carnival, Easyjet, First, Hammerson, Impe-
rial Tobacco, Marks & Spencer, Next, Royal Bank of Scotl-
land (RBS), Schroders, Sky, Tesco, Vodafone and Xstrata.
The 7 indices are: Athens Stock Exchange (Greece), Dow
Jones Industrial Average (DJIA - USA), Hang Seng Index
(HSI - Hong Kong), Mid-cap Deutscher Aktien Index (MDAX
- Germany), and National Association of Securities Dealers
Automated Quotations (NASDAQ - USA), Nikkei (Japan),
and New York Stock Exchange (NYSE - USA).5 The train-
ing period is 1000 days and the testing period 300.

Because we need to tune the parameters of our new algo-
rithm (EDDIE 9), we will use 5 of the above datasets (ran-
domly selected) for tuning purposes. The remaining 20 will
then be used for testing all algorithms. The 5 datasets that
will be used for the tuning of EDDIE 9 are: Aggreko, Bar-
clays, First, Marks & Spenser, and Xstrata. To avoid any
biases, these 5 datasets will not be used during the testing
phase presented in the Results section.

4.3 Parameter Tuning

There are two main parameters that are affected by the se-
quential covering procedure; these are the number of genera-
tions and the population size. As we are creating smaller so-
lutions (rules) to cover a subset of the training data, it might
not be necessary to run the GP for many generations—in or-
der to avoid overfitting—or even to have a large number of
individuals in the population. Furthermore, another parame-
ter we need to experiment with is the minimum number of
cases for the sequential covering iteration, we can choose
to stop the procedure if the number of available (not cov-
ered) cases falls below a minimum value. Since the number
of combinations for the above parameters can be high, we
divided the tuning process into two phases.

In the first phase, we were interested in selecting the best
combination of generations and population size. We experi-
mented with 4 different settings for number of generations:
15, 25, 35, and 50. We also experimented with the follow-
ing generation size settings: 50, 100, 200, 300, and 500. For
this set of experiments, we kept the number of available (not
covered) cases (from sequential covering process) the same,
and equal to 0 (i.e., the sequential covering goes on as long
as the number of uncovered training cases is greater than or
equal to 0). Hence, we tested EDDIE 9 with 15 generations
and population 50, 100, 200, 300 and 500 (5 different exper-
iments), then with 25 generations and the same population
size combinations, and so on. In total, we ran 20 EDDIE
9 experiments with the above different settings. We then
ranked the results in terms of Fitness, RC, RMC, and RF
by using the non-parametric Friedman statistical test with

5 The datasets used in our experiments can be downloaded from:
http://www.cs.kent.ac.uk/people/staff/mk451/datasets.html

Table 1 GP parameters values used in the experiments.

GP Parameters

Max Initial Depth 6
Max Depth 8
Generations 50
Population size 500
Tournament size 2
Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01
Weight {w1, w2, w3} {0.6, 0.1, 0.3}
Period [2,65]

the post-hoc Hommel’s test (Demšar, 2006; Garcı́a and Her-
rera, 2008). Results showed that the top ranking algorithm
for Fitness was the 25-300-0 configuration (i.e., 25 genera-
tions, 300 population size, and availability value equal to 0),
for RC the 15-200-0 configuration, for RMC the 25-300-0,
and for RF the 35-100-0. We thus decided to tune the above
configurations with the availability parameter from sequen-
tial covering.

Tuning the number of available cases in sequential cov-
ering was the second phase of our parameter tuning. We had
already tested the value 0, and we then tested the values
25, 50, 75 and 100. Thus, for each ‘winning’ configuration
from the first phase, we replaced the 0 with 25, 50, 75, and
100. Therefore, in addition to 25-300-0, we also tested 25-
300-25, 25-300-50, 25-300-75 and 25-300-100. We also did
the same with 15-200-0, and 35-100-0. Hence in total we
ran an extra 12 set of experiments. We again followed the
same ranking process as with the first phase. Results showed
that configurations 35-100-0 and 15-200-0 had equal ranks
across the four performance metrics. At the end, we selected
the 15-200-0 configuration to be our standard EDDIE 9 al-
gorithm, as it has a lower number of generations and thus
runs much faster than the equally performing 35-100-0.

We did not experiment with any other GP parameters,
as we did not think that these would be affected by the in-
troduction of the new heuristics into EDDIE. These GP pa-
rameters have been tuned in previous experiments and are
presented next.

4.4 Other Parameters

The remaining GP parameters for the algorithms tested in
this paper are presented in Table 1. For statistical purposes,
the GP is run 50 times. The process is as follows. We create
a population of 500 GDTs, which are evolved for 50 genera-
tions, over a training period of 1000 days. At the last gener-
ation, the best performing GDT in terms of fitness is saved
and applied to the testing data. As already explained, this
procedure is done for 50 individual runs.

Both C4.5 and RIPPER are run with the default values:
C4.5 {confidence factor in the pruning equal to 0.25, min-
imum number of cases per leaf node equal to 2}; RIPPER

10 Michael Kampouridis, Fernando E. B. Otero

Table 2 Summary results for the different EDDIE versions: EDDIE 7 (ED7), EDDIE 8 (ED8), EDDIE 8-ATTR (ED8-AT), and EDDIE 9 (ED9).
The metrics used for the comparison of the algorithms are: Fitness, Rate of Correctness (RC), Rate of Missing Chances (RMC), and Rate of
Failure (RF). Results are in the [0, 1] scale—best results are shown in boldface. The last row of the table shows the average raking according to
the Friedman statistical test, where the lower the rank the better the algorithms’ performance.

Fitness Rate of Correctness (RC) Rate of Missing Chances (RMC) Rate of Failure (RF)
Algorithm ED7 ED8 ED8-AT ED9 ED7 ED8 ED8-AT ED9 ED7 ED8 ED8-AT ED9 ED7 ED8 ED-AT ED9

Amlin 0.54 0.55 0.54 0.58 0.51 0.52 0.51 0.55 0.42 0.43 0.42 0.33 0.41 0.4 0.42 0.39
Athens 0.54 0.54 0.52 0.51 0.53 0.53 0.52 0.51 0.19 0.25 0.27 0.26 0.53 0.53 0.55 0.55
BP 0.60 0.58 0.58 0.59 0.56 0.53 0.54 0.55 0.39 0.42 0.40 0.35 0.32 0.34 0.34 0.35
Cadbury 0.66 0.68 0.68 0.63 0.64 0.65 0.66 0.60 0.18 0.17 0.18 0.23 0.34 0.33 0.32 0.36
Carnival 0.50 0.50 0.49 0.45 0.51 0.51 0.50 0.44 0.17 0.15 0.14 0.14 0.63 0.63 0.63 0.66
DJIA 0.69 0.69 0.68 0.68 0.65 0.65 0.64 0.64 0.13 0.16 0.2 0.16 0.29 0.28 0.28 0.30
Easyjet 0.55 0.51 0.53 0.59 0.49 0.45 0.47 0.53 0.58 0.67 0.63 0.45 0.29 0.31 0.29 0.29
Hammerson 0.51 0.55 0.59 0.56 0.49 0.53 0.57 0.53 0.51 0.38 0.32 0.27 0.45 0.43 0.4 0.43
HSI 0.65 0.65 0.66 0.68 0.61 0.6 0.61 0.65 0.24 0.27 0.27 0.13 0.30 0.29 0.28 0.31
Imp 0.62 0.61 0.62 0.62 0.58 0.57 0.59 0.58 0.48 0.45 0.44 0.34 0.27 0.29 0.28 0.32
MDAX 0.52 0.52 0.54 0.53 0.49 0.49 0.51 0.49 0.24 0.20 0.18 0.15 0.52 0.51 0.50 0.51
NASDAQ 0.61 0.60 0.61 0.63 0.57 0.55 0.56 0.59 0.37 0.42 0.36 0.23 0.30 0.31 0.32 0.33
Next 0.55 0.51 0.55 0.60 0.50 0.47 0.50 0.55 0.41 0.48 0.43 0.30 0.37 0.39 0.36 0.35
NIKEI 0.56 0.54 0.53 0.58 0.54 0.52 0.51 0.55 0.23 0.30 0.34 0.16 0.46 0.48 0.48 0.45
NYSE 0.56 0.57 0.58 0.56 0.54 0.55 0.55 0.53 0.26 0.21 0.20 0.20 0.45 0.44 0.44 0.46
RBS 0.54 0.56 0.58 0.57 0.50 0.53 0.54 0.54 0.41 0.37 0.34 0.32 0.40 0.39 0.38 0.39
Schroders 0.59 0.60 0.62 0.61 0.55 0.57 0.59 0.57 0.36 0.33 0.26 0.24 0.37 0.36 0.36 0.38
Sky 0.57 0.56 0.54 0.62 0.53 0.52 0.49 0.58 0.43 0.47 0.49 0.34 0.34 0.34 0.36 0.32
Tesco 0.64 0.65 0.65 0.66 0.59 0.61 0.61 0.63 0.30 0.29 0.27 0.22 0.30 0.28 0.29 0.30
Vodafone 0.46 0.52 0.49 0.51 0.44 0.50 0.47 0.48 0.37 0.30 0.32 0.21 0.56 0.51 0.54 0.52

Avg. Rank 2.75 2.85 2.35 2.05 2.80 2.75 2.35 2.10 2.90 3.05 2.75 1.30 2.70 2.19 2.10 2.99

{1/3 of the data used for pruning, weight of a case in a rule
equals to 2}. Since these algorithms are deterministic, they
are executed only once on each dataset.

5 Results

This section presents the results from our experiments. We
will first present the results from the comparison of our pro-
posed version EDDIE 9 with previous EDDIE versions, na-
mely EDDIE 7, EDDIE 8 and EDDIE 8-ATTR. Then, we
will also compare the performance of EDDIE 9 with C4.5
and RIPPER, two state-of-the-art classification algorithms.

5.1 Comparisons with previous EDDIE versions

Table 2 presents the average results, over 50 runs, for all
EDDIE algorithms for Fitness, RC, RMC, and RF. When an
algorithm has the best value for a given dataset among all
other algorithms, then the respective value is in bold fonts.
As we can observe, EDDIE 9 has done quite well in terms
of Fitness and RC, where it returned the best results in 9
and 10 datasets, respectively. Results for RMC were even
better for EDDIE 9, where it returned the best RMC in 17
datasets out of the 20 tested. Lastly, in terms of RF, EDDIE
9 returned the best values in 5 datasets. The last row of the
table presents the average rank of each algorithm—the lower
the average rank, the better the algorithm’s performance—
for each metric. As we can observe, EDDIE 9 ranks first
in terms of Fitness, RC, and RMC. The average rank was
calculated by running the non-parametric Friedman test.

Table 3 Statistical test results according to the non-parametric Fried-
man test with the Hommel’s post-hoc test. Statistically significant dif-
ferences at the α = 0.05 level are in bold.

Algorithm Average Rank Adjusted pHomm

(i) Fitness
EDDIE 9 (c) 2.05 –
EDDIE 8-ATTR 2.35 0.4624
EDDIE 7 2.75 0.1728
EDDIE 8 2.85 0.1296

(ii) Rate of Correctness (RC)
EDDIE 9 (c) 2.10 –
EDDIE 8-ATTR 2.35 0.5402
EDDIE 8 2.75 0.2226
EDDIE 7 2.80 0.1728

(iii) Rate of Missing Chances (RMC)
EDDIE 9 (c) 1.30 –
EDDIE 8-ATTR 2.75 3.82E-4
EDDIE 7 2.90 1.77E-4
EDDIE 8 3.05 5.44E-4
(iv) Rate of Failure (RF)
EDDIE 8-ATTR (c) 2.10 –
EDDIE 8 2.19 0.0824
EDDIE 7 2.70 0.2832
EDDIE 9 2.99 0.8064

These observations are further supported by the Hom-
mel’s post-hoc test (Demšar, 2006; Garcı́a and Herrera, 2008),
and are presented in Table 3. For each algorithm, the table
again shows the average rank according to the Friedman test
(first column), and the adjusted p-value of the statistical test
when that algorithm’s average rank is compared to the av-
erage rank of the algorithm with the best rank (control al-
gorithm) according to the Hommel’s post-hoc test (second
column). When statistically significant differences between
the average ranks of an algorithm and the control algorithm

Improving the Predictability of a GP Financial Forecasting Algorithm 11

Table 4 Average results for comparison with state-of-the-art (C4.5, RIPPER). Results are in the [0, 1] scale—best results are shown in boldface.
The last row of the table shows the average raking according to the Friedman statistical test, where the lower the rank the better the algorithms’
performance.

Rate of Correctness (RC) Rate of Missing Chances (RMC) Rate of Failure (RF)
Algorithm EDDIE 9 C4.5 RIPPER EDDIE 9 C4.5 RIPPER EDDIE 9 C4.5 RIPPER

Amlin 0.550 0.453 0.467 0.330 0.457 0.531 0.390 0.469 0.450
Athens 0.510 0.467 0.413 0.260 0.276 0.394 0.550 0.576 0.621
BP 0.550 0.467 0.510 0.350 0.474 0.438 0.350 0.400 0.363
Cadbury 0.600 0.527 0.553 0.230 0.350 0.433 0.360 0.403 0.354
Carnival 0.440 0.587 0.503 0.140 0.239 0.337 0.660 0.593 0.659
DJIA 0.640 0.670 0.667 0.160 0.062 0.118 0.300 0.303 0.287
Easyjet 0.530 0.540 0.550 0.450 0.498 0.458 0.290 0.266 0.276
Hammerson 0.530 0.507 0.593 0.270 0.331 0.396 0.430 0.449 0.350
HSI 0.650 0.573 0.627 0.130 0.248 0.150 0.310 0.332 0.316
Imp 0.580 0.593 0.567 0.340 0.355 0.452 0.320 0.318 0.311
MDAX 0.490 0.503 0.487 0.150 0.397 0.493 0.510 0.508 0.526
NASDAQ 0.590 0.573 0.450 0.230 0.396 0.584 0.330 0.282 0.359
Next 0.550 0.470 0.450 0.300 0.482 0.568 0.350 0.380 0.377
NIKEI 0.550 0.617 0.380 0.160 0.062 0.677 0.450 0.410 0.597
NYSE 0.530 0.563 0.500 0.200 0.364 0.525 0.460 0.411 0.458
RBS 0.540 0.567 0.493 0.320 0.332 0.370 0.390 0.359 0.420
Schroders 0.570 0.493 0.643 0.240 0.276 0.309 0.380 0.438 0.290
Sky 0.58) 0.583 0.427 0.340 0.497 0.626 0.320 0.222 0.407
Tesco 0.630 0.587 0.600 0.220 0.429 0.278 0.300 0.235 0.299
Vodafone 0.480 0.633 0.450 0.210 0.261 0.380 0.530 0.410 0.558

Avg. Rank 1.75 1.90 2.34 1.20 2.40 2.40 2.27 1.92 1.80

at the 5% level (p ≤ 0.05) are observed, the line is tabulated
in bold face.

As we can observe in Table 3, EDDIE 9 ranks first in
terms of Fitness, RC, although not significantly at the 5%
level. EDDIE 8-ATTR ranks then second, in both cases, and
EDDIE 7 and EDDIE 8 take the last two positions. In addi-
tion, EDDIE 9 ranks first and significantly outperforms all
other EDDIE algorithms for RMC. Lastly, EDDIE 9 ranks
in the last position in terms of RF. This appears to happen
due to the fact that EDDIE 9 has increased the number of
false positive signals (FP), in the expense of true negatives
(TN). However, this increase does not affect the other three
metrics (Fitness, RC, RMC). Overall, EDDIE 9 has done
very well, as it ranked first in three out of the four perfor-
mance metrics tested. Hence, we believe that this makes it
an important addition to the EDDIE family.

5.2 Comparisons with state-of-the-art

This section presents the comparative results between our
new algorithm, EDDIE 9, and two state-of-the-art algorithms,
C4.5 and RIPPER. Since C4.5 and RIPPER use a different
fitness function than the EDDIE algorithm, in this section
we will not be comparing this value. We will only be mak-
ing comparisons for the remaining performance metrics, i.e.,
RC, RMC, and RF. We first present the average results, over
50 individual runs, for EDDIE 9; C4.5 and RIPPER are de-
terministic algorithms, hence they were run once per dataset.
These results will be presented in Section 5.2.1.

However, while average results are meaningful in Ma-
chine Learning as they can give us an idea of the expected
performance of a given algorithm, in this section we will

Table 5 Statistical test results for average performance according to
the non-parametric Friedman test with the Hommel’s post-hoc test.
Statistically significant differences at the α = 0.05 level are in bold.

Algorithm Average Rank Adjusted pHomm

(ii) Rate of Correctness (RC)
EDDIE 9 (c) 1.75 –
C4.5 1.90 0.6352
RIPPER 2.34 0.1155

(iii) Rate of Missing Chances (RMC)
EDDIE 9 (c) 1.20 –
C4.5 2.40 1.47E-4
RIPPER 2.40 1.47E-4
(iv) Rate of Failure (RF)
RIPPER (c) 1.80 –
C4.5 1.92 0.6926
EDDIE 9 2.27 0.2661

also be presenting the best results for EDDIE 9. Best results
refers to the best tree in terms of fitness, out of 50 runs in
the training set, which was then applied to the unseen test-
ing set—i.e., a single best tree is selected from the 50 runs.
Thus, below in Section 5.2.2 we present the RC, RMC, and
RF results for the best tree of each algorithm. This is par-
ticularly meaningful in the financial sector, because if an in-
vestor was using EDDIE 9 in the stock market, s/he would
first run the algorithm multiple times and then select the best
performing tree (model) for trading. Therefore, having an al-
gorithm with very good performance in terms of best tree is
an important aspect in the financial forecasting sector. These
results will be presented in Section 5.2.2.

5.2.1 Average results

The good performance of EDDIE 9 continues also when
compared to the state-of-the-art. Table 4 presents the aver-

12 Michael Kampouridis, Fernando E. B. Otero

Table 6 Best results for comparison with state-of-the-art (C4.5, RIPPER). Results are in the [0, 1] scale—best results are shown in boldface.
The last row of the table shows the average raking according to the Friedman statistical test, where the lower the rank the better the algorithms’
performance.

Rate of Correctness (RC) Rate of Missing Chances (RMC) Rate of Failure (RF)
Algorithm EDDIE 9 C4.5 RIPPER EDDIE 9 C4.5 RIPPER EDDIE 9 C4.5 RIPPER

Amlin 0.590 0.453 0.467 0.250 0.457 0.531 0.370 0.469 0.450
Athens 0.480 0.467 0.413 0.160 0.276 0.394 0.560 0.576 0.621
BP 0.560 0.467 0.510 0.360 0.474 0.438 0.330 0.400 0.363
Cadbury 0.650 0.527 0.553 0.030 0.350 0.433 0.370 0.403 0.354
Carnival 0.310 0.587 0.503 0.040 0.239 0.337 0.700 0.593 0.659
DJIA 0.580 0.670 0.667 0.350 0.062 0.118 0.280 0.303 0.287
Easyjet 0.570 0.540 0.550 0.290 0.498 0.458 0.330 0.266 0.276
Hammerson 0.520 0.507 0.593 0.230 0.331 0.396 0.450 0.449 0.350
HSI 0.500 0.573 0.627 0.580 0.248 0.150 0.260 0.332 0.316
Imp 0.570 0.593 0.567 0.170 0.355 0.452 0.390 0.318 0.311
MDAX 0.510 0.503 0.487 0.090 0.397 0.493 0.500 0.508 0.526
NASDAQ 0.600 0.573 0.450 0.200 0.396 0.584 0.330 0.282 0.359
Next 0.500 0.470 0.450 0.420 0.482 0.568 0.370 0.380 0.377
NIKEI 0.560 0.617 0.380 0.010 0.062 0.677 0.450 0.410 0.597
NYSE 0.560 0.563 0.500 0.120 0.364 0.525 0.440 0.411 0.458
RBS 0.630 0.567 0.493 0.020 0.332 0.370 0.380 0.359 0.420
Schroders 0.580 0.493 0.643 0.310 0.276 0.309 0.360 0.438 0.290
Sky 0.720 0.583 0.427 0.040 0.497 0.626 0.290 0.222 0.407
Tesco 0.670 0.587 0.600 0.150 0.429 0.278 0.280 0.235 0.299
Vodafone 0.470 0.633 0.450 0.250 0.261 0.380 0.530 0.410 0.558

Avg. Rank 1.60 2.05 2.34 1.25 2.05 2.69 1.85 1.90 2.24

age results for EDDIE 9, and Table 5 presents the statistical
test results. EDDIE 9 ranks again first for RC and RMC,
with the latter rank being significant at the 5% level. In ad-
dition, EDDIE 9 ranks last in terms of RF. The reason of the
poor performance in terms of RF appears again to be a high
number of FP signals.

5.2.2 Best results

Table 6 presents the best results for EDDIE 9, and Table
7 presents the statistical test results. What we can observe
here is that selecting the best tree6 of EDDIE 9 has intro-
duced further improvements in the ranking results. In terms
of RC, EDDIE 9 again ranks first, and is also significantly
better than the RIPPER algorithm. In terms of RMC, ED-
DIE 9 maintains its previous excellent performance and sig-
nificantly outperforms C4.5 and RIPPER. Lastly, in terms
of RF, EDDIE 9 ranks first for the first time, although not
significantly. Nevertheless, our findings imply that selecting
the best tree for trading has only positive effects, with no
negatives.

5.3 Computational times

Table 8 presents the computational times in seconds that
each of the EDDIE algorithms took to complete a single run.
Results are over all datasets. When compared to the compu-
tational time for inducing a decision tree of C4.5 and RIP-
PER, the EDDIE variations are a factor of 20 to 70 slower

6 Refer to Section 5.2 for the definition of best tree.

Table 7 Statistical test results for Best according to the non-parametric
Friedman test with the Hommel’s post-hoc test. Statistically significant
differences at the α = 0.05 level are in bold.

Algorithm Average Rank Adjusted pHomm

(ii) Rate of Correctness (RC)
EDDIE 9 (c) 1.60 –
C4.5 2.05 0.1547
RIPPER 2.34 0.0354
(iii) Rate of Missing Chances (RMC)
EDDIE 9 (c) 1.25 –
C4.5 2.05 0.0114
RIPPER 2.69 9.06E-6
(iv) Rate of Failure (RF)
EDDIE 9 (c) 1.85 –
C4.5 1.90 0.8743
RIPPER 2.24 0.4111

(C4.5) and a factor of approximately 7 to 23 slower (RIP-
PER). This is expected, given that both C4.5 and RIPPER
create and prune a single candidate decision tree using a
deterministic procedure, while the EDDIE variations mul-
tiple candidate decision trees are created before finding the
best decision tree. With regards to the EDDIE algorithms,
EDDIE 9 is the slowest one, and takes about 70 seconds
on average to complete a single run. This makes it slower
in a factor of 3.5 when compared to the fastest EDDIE al-
gorithm, which is EDDIE 7, and only takes approximately
20.5 seconds on average. Thus, the addition of the heuristic
processes introduced in EDDIE 9 (sequential covering and
dynamic discretisation) has slowed down the algorithm.

However, it should be noted that in the current financial
forecasting application the computational time taken by the
algorithms to induce a classification model has a relatively
minor importance, since it represents an off-line applica-
tion (i.e., it involves daily predictions rather than intra-day

Improving the Predictability of a GP Financial Forecasting Algorithm 13

Table 8 Average computational times (over all data sets) in seconds to
complete a single run for each of the EDDIE algorithms on a 2.53 GHz
Intel Xeon computer. The deterministic C4.5 and RIPPER algorithms
take on average 1 and 3 seconds, respectively, to complete an individual
run.

Algorithm Time (seconds)

EDDIE 7 20.478
EDDIE 8 38.140
EDDIE 8-ATTR 48.112
EDDIE 9 70.358

ones). Hence, the introduced improvements in the perfor-
mance metrics justify the slower exectution speed of EDDIE
9. In addition, GP algorithms can be easily parallelised since
each tree builds and evaluates a candidate solution indepen-
dent from all other trees in the population. Therefore, a large
speed up could be obtained by running a parallel version of
EDDIE, as it has actually been shown in (Brookhouse et al,
2014), where speed ups of up to 21 times were observed.

5.4 Average Annualised Rate of Return

Lastly, in addition to the performance metrics mentioned in
the previous sections (i.e., fitness, RC, RMC, RF), we also
decided to use an additional metric for the comparison of
the algorithms. This metric is related to the return the algo-
rithm yields, and is called Average Annualised Rate of Re-
turn (AARR). The formula for this metric is presented be-
low. It should be stated that AARR is not part of the fitness
function. However, rate of return is a very important invest-
ment metric, and that is why we use it as a reference. There-
fore, we use an investment performance criterion (AARR),
based on the following hypothetical trading behaviour.

Hypothetical Trading Behaviour: We assume that when
a positive position is predicted by a GDT, one unit of money
is invested in a stock reflecting the current closing price. If
the closing price does rise by r% or more at day t within the
next n trading days, we then sell the portfolio at the closing
price of day t. If not, we sell the portfolio on the nth day,
regardless of the price.

Given a positive position predicted, for example, the ith
positive position, for simplicity, we ignore transaction cost,
and annualise its return by the following formula:

ARRi =
250

t
∗ Pt − P0

P0
(9)

where P0 is the buy price, Pt is the sell price, t is the number
of days in markets, 250 is the number of total trading days in
one calendar year. Given a GDT that generates N+ number
of positive positions over the period examined, its average
ARR is shown in Equation (10):

Table 9 Average Annualised Rate of Return (AARR) for the 20
datasets for EDDIE 9. 13 out of the 20 datasets have achieved a profit
(AARR > 1).

Dataset AARR Dataset AARR

Amlin 1.52 MDAX 0.93
Athens 1.07 NASDAQ 1.42
BP 1.07 Next 1.18
Cadbury 0.88 NIKEI 1.15
Carnival 0.36 NYSE 0.88
DJIA 1.07 RBS 0.75
Easyjet 2.49 Schroders 1.60
Hammerson 0.71 Sky 1.24
HSI 1.86 Tesco 1.94
Imp 1.65 Vodafone 0.62

AARR =
1

N

N+∑
i=1

ARRi (10)

According to Table 9, EDDIE 9 has done quite well. In
13 out of the 20 datasets tested, it achieved a profit (AARR >

1). Overall, the algorithm achieved an AARR equal to 1.2205,
which indicates that an investor would make an average an-
nual return of 22% by using EDDIE 9.

5.5 Discussion

From the results presented in this section, we can draw sev-
eral conclusions. First of all, it is apparent that the introduc-
tion of discretisation and sequential covering has improved
the average performance of the EDDIE algorithm. As we ob-
served in Tables 2 and 3, our new version EDDIE 9 ranked
first in Fitness, RC, and RMC. The only metric that EDDIE
9 had a lower performance was RF, although results were not
significant at 5% level. On the other hand, the improvements
for RMC were statistically significant. This is a very impor-
tant result, because improving the RMC means that the algo-
rithm is able to identify more buy opportunities. Therefore,
thanks to EDDIE 9 an investor increases its chances to make
profit by reducing the number of missed buy opportunities.

In addition, EDDIE 9 achieved positive results when co-
mpared to the well-known C4.5 and RIPPER algorithms in
terms of RC, RMC and RF, as shown in Tables 4 and 5. Al-
though the improvements in RC are not significant, EDDIE
9 outperforms both C4.5 and RIPPER in terms of RMC and
the differences are statistically significant at the 5% level.
Hence, if an investor needed to choose which algorithm to
use, the best option would be EDDIE 9.

As explained, the above average results are given as a
measure of expected behaviour of the given algorithms. Ho-
wever, in real-world applications such as the one of financial
forecasting, it is even more important to have good perfor-
mance in terms of the best model. As we mentioned earlier,
in a real scenario, an investor would decide which model to

14 Michael Kampouridis, Fernando E. B. Otero

use after running the algorithm multiple times and then se-
lecting the best performing model in the training datasets.
The best results, which were presented in Tables 6 and 7,
re-confirmed EDDIE 9’s strengths. EDDIE 9 outperformed
both C4.5 and RIPPER with statistically significant differ-
ences on RMC and also outperform RIPPER with statisti-
cally significant differences on RC. An investor, who would
use the best model after multiple runs, would be able to get
the best performance in all three metrics (RC, RMC, RF)
when compared to C4.5 and RIPPER. Hence, in a real sce-
nario, EDDIE 9 would be the best classification algorithm
among the well-know C4.5 and RIPPER.

Lastly, our results in Table 9 showed that EDDIE 9 is
not simply a good classification algorithm, but also a prof-
itable one. As we mentioned in the previous section, for the
20 datasets tested in this paper, EDDIE 9 would return an
annual profit of 22% on average.

6 Conclusion

To conclude, this paper presented work on the application
of heuristic processes into the GP financial forecasting algo-
rithm named EDDIE 9. Our proposal included two heuris-
tics: (i) a sequential covering strategy to iteratively build a
solution in combination with the GP search, and (ii) the use
of an entropy-based dynamic discretisation procedure of nu-
meric values. The sequential covering strategy allowed for
the automated decomposition of the original problem into
smaller subproblems. In addition, the dynamic discretisation
process allowed for the deterministic calculation of thresh-
old values that best fit the data.

Computational experiments showed that EDDIE 9 achi-
eved positive results when compared to all three previous
EDDIE versions, as well as C4.5 and RIPPER, in the major-
ity of our test cases. More specifically, EDDIE 9 achieved
first rank in terms of average Fitness, Rate of Correctness
and Rate of Missing Chances against both the previous ED-
DIE versions. In addition, EDDIE 9 achieved first rank in all
metrics (including Rate of Failure) in terms of best results.
Moreover, EDDIE 9 showed remarkable improvements in
the Rate of Missing Chances, outperforming both the pre-
vious EDDIE versions and well-known C4.5 and RIPPER
with statistically significantly differences at the 5% level,
which effectively allows investors to identify more buy op-
portunities, and thus increase their profit opportunities. This
profitability was confirmed when we looked into the aver-
age annualised return rates across the 20 datasets, where we
found that EDDIE 9 was not only proven to be a competi-
tive classification algorithm, but also a profitable one, as it
yielded an annualised average return of 22%.

There are several interesting directions for future rese-
arch. First, it would be interesting to evaluate the use of a
pruning procedure to potentially improve the solutions of

the GP. This could reduce the size of the overall solutions
and also improve their predictive performance. Second, the
use of different discretisation procedures can improve the
generation of the indicators’ tests. Exploring the use of an
heuristic to reorder the individual solutions—e.g., rank them
based on their quality—to improve the quality of the final
solution is a direction worth further exploration.

References

Abdelmalek W, Hamida S, Abid F (2009) Selecting the best
forecasting-implied volatility model using genetic pro-
gramming. Journal of Applied Mathematics and Decision
Sciences, vol. 2009, Article ID 179230, 19 pages

Abdou H (2009) Genetic programming for credit scoring:
The case of egyptian public sector banks. Expert Systems
with Applications 36(9):11,402–11,417

Agapitos A, O’Neill M, Brabazon A (2010) Evolutionary
learning of technical trading rules without data-mining
bias. In: Schaefer R, Cotta C, Kołodziej J, Rudolph G
(eds) Parallel Problem Solving from Nature – PPSN XI,
Springer, Lecture Notes in Computer Science, vol 6238,
pp 294–303

Allen F, Karjalainen R (1999) Using genetic algorithms to
find technical trading rules. Journal of Financial Eco-
nomics 51:245–271

Austin M, Bates G, Dempster M, Leemans V, Williams S
(2004) Adaptive systems for foreign exchange trading.
Quantitative Finance 4(4):37–45

Backus J (1959) The syntax and semantics of the proposed
international algebraic language of Zurich. In: Interna-
tional Conference on Information Processing, UNESCO,
pp 125–132

Binner J, Kendall G, Chen SH (eds) (2004) Applications
of Artificial Intelligence in Finance and Economics, Ad-
vances in Econometrics, vol 19. Elsevier

Brookhouse J, Otero F, Kampouridis M (2014) Working
with OpenCL to speed up a genetic programming fi-
nancial forecasting algorithm: Initial results. In: Wagner,
S. and Affeneller, M. (eds) GECCO 2014 Workshop on
Evolutionary Computation Software Systems (EvoSoft),
pp.1117–1124

Chen SH (2002) Genetic Algorithms and Genetic Program-
ming in Computational Finance. Springer-Verlag New
York, LLC

Cohen W (1995) Fast effective rule induction. In: Proceed-
ings of the 12th International Conference on Machine
Learning, Morgan Kaufmann, pp 115–123

Demšar J (2006) Statistical Comparisons of Classifiers over
Multiple Data Sets. Journal of Machine Learning Re-
search 7:1–30

Edwards R, Magee J (1992) Technical analysis of stock
trends. New York Institute of Finance

Improving the Predictability of a GP Financial Forecasting Algorithm 15

Fayyad U, Piatetsky-Shapiro G, Smith P (1996) From data
mining to knowledge discovery: an overview. In: Ad-
vances in Knowledge Discovery & Data Mining, MIT
Press, pp 1–34

Garcı́a S, Herrera F (2008) An Extension on “Statistical
Comparisons of Classifiers over Multiple Data Sets” for
all Pairwise Comparisons. Journal of Machine Learning
Research 9:2677–2694

Giacobini M, Provero P, Vanneschi L, Mauri G (2014) To-
wards the use of genetic programming for the prediction
of survival in cancer. In: Cagnoni S, Mirolli M, Villani M
(eds) Evolution, Complexity and Artificial Life, Springer
Berlin Heidelberg, pp 177–192

Hu Y (1998) Constructive induction: Covering attribute
spectrum. Feature Extraction Construction and Selection
pp 257–272

Kampouridis M, Otero F (2013) Using attribute construc-
tion to improve the predictability of a GP financial fore-
casting algorithm. In: Proceedings of the Conference on
Technologies and Applications of Artificial Intelligence,
IEEE Xplore, pp 55–60

Kampouridis M, Tsang E (2010) EDDIE for investment
opportunities forecasting: Extending the search space of
the GP. In: Proceedings of the IEEE World Congress on
Computational Intelligence, Barcelona, Spain, pp 2019–
2026

Kampouridis M, Tsang E (2012) Investment opportunities
forecasting: Extending the grammar of a gp-based tool.
International Journal of Computational Intelligence Sys-
tems 5(3):530–541

Koza J (1992) Genetic Programming: On the programming
of computers by means of natural selection. Cambridge,
MA: MIT Press

Krawiec K (2002) Genetic programming-based construction
of features for machine learning and knowledge discov-
ery tasks. Genetic Programming and Evolvable Machines
3(4):329–343

Li J (2001) FGP: A genetic programming-ased financial
forecasting tool. PhD thesis, Department of Computer
Science, University of Essex

Martinez-Jaramillo S (2007) Artificial financial markets: An
agent-based approach to reproduce stylized facts and to
study the red queen effect. PhD thesis, CFFEA, Univer-
sity of Essex

Otero F, Silva M, Freitas A, Nievola J (2003) Genetic pro-
gramming for attribute construction in data mining. In:
Proc. of EuroGP, LNCS 2610, pp 384–393

Otero F, Freitas A, Johnson C (2008) cAnt-Miner: an ant
colony classification algorithm to cope with continuous
attributes. In: Ant Colony Optimization and Swarm Intel-
ligence (Proc. ANTS 2008), pp 48–59

Otero F, Freitas A, Johnson C (2013) A New Sequential
Covering Strategy for Inducing Classification Rules With

Ant Colony Algorithms. IEEE Transactions on Evolution-
ary Computation 17(1):64–76

Otero FEB, Johnson CG (2013) Automated problem decom-
position for the boolean domain with genetic program-
ming. In: Proceedings of the 16th European Conference
on Genetic Programming, EuroGP 2013, Vienna, Austria,
pp 169–180

Phua C, Lee V, Smith K, Gayler R (2010) A Comprehensive
Survey of Data Mining-based Fraud Detection Research.
http://www.bsys.monash.edu.au/people/cphua/

Piatetsky-Shapiro G, Frawley W (1991) Knowledge Discov-
ery in Databases. AAAI Press

Poli R, Langdon W, McPhee N (2008) A Field Guide to Ge-
netic Programming. Lulu.com

Quinlan JR (1993) C4.5: programs for machine learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA

Dos Santos J, Ferreira C, Da S Torres R, Gonçalves M, Lam-
parelli R (2011) A relevance feedback method based on
genetic programming for classification of remote sensing
images. Information Sciences 181(13):2671 – 2684

Tsang E, Martinez-Jaramillo S (2004) Computational
finance. IEEE Computational Intelligence Society
Newsletter pp 3–8

Tsang E, Li J, Markose S, Er H, Salhi A, Iori G (2000) ED-
DIE in financial decision making. Journal of Management
and Economics 4(4) (online)

Tsang E, Markose S, Er H (2005) Chance discovery in stock
index option and future arbitrage. New Mathematics and
Natural Computation, World Scientific 1(3):435–447

Wang P, Tsang E, Weise T, Tang K, Yao X (2010) Using GP
to evolve decision rules for classification in financial data
sets. In: Cognitive Informatics (ICCI), 2010 9th IEEE In-
ternational Conference on, pp 720 –727

Wilson G, Banzhaf W (2010) Fast and effective pre-
dictability filters for stock price series using lin-
ear genetic programming. In: Evolutionary Computa-
tion (CEC), 2010 IEEE Congress on, pp 1–8, DOI
10.1109/CEC.2010.5586297

Witten H, Frank E (2005) Data Mining: Practical Machine
Learning Tools and Techniques, 2nd edn. Morgan Kauf-
mann

