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randomly” through the network of “citations” as this algorithm leads to selecting highly
connected parent nodes. We show that the distribution of productivity resulting from this
optimal behaviour follows a power law. The intuition behind the result is that the innova-
tor focuses his efforts on strengthening local spilovers because he has no command on the
other sources of productivity. When this process of innovation is embedded in a model a
la Kortum (1997) balanced growth of output is generated.
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1 Introduction

The literature offers several models rationalizing the stylized facts of growth
and innovation. However, these models of technological progress are in fact
models of research effort but not of innovation. Indeed, they assume that
the innovator only faces the decision of whether to innovate or to work in
production but has no command on the quality of these innovations. For
example, in Kortum (1997) ideas arrive at the desk of an innovator as a
Poisson process and have a productivity that follow an exogenously given
distribution. Kortum finds that in order to replicate the observed behav-
ior of investment in research and productivity growth, the productivity of
ideas should follow a Pareto distribution. There is some empirical evidence
that the productivity of innovations follow a power law (see for example
the discussion in Jones (2005)). However, we are not aware of any model
generating this feature.

The goal of the present paper is then to provide a model of innovation in
which the productivity of the recipes is endogenous. In fact the model follows
very closely Kortum (1997). Formally, the difference is that the behavior
of the innovator is further modelled and Assumption 3.2 in Kortum (1997),
i.e. Pareto distributed productivity, is the result of the optimizing behavior
of the innovator instead of being an assumption. The main two ingredients
driving the results of the present paper is the combination of imperfect
information on the productivity of ideas together with the existence of local
spillover across related ideas.

In the model we assume that innovations are obtained through combi-
nations of existing ideas. As in the case of patents and scientific papers we
assume that the innovator has access to the cited references, i.e. the par-
ents. The productivity of an innovation has three elements. Beside an un-
observable intrinsic productivity random component, an idea benefits from
spilovers from other ideas. As in Kortum (1997) we allow for economy-wide
spillover upon which the innovator has no command. However, there is a
third element upon which the innovator has some command because it is
related to how the new idea is obtained. Indeed, we assume the existence of
local spillovers from the parent ideas. The rationale is that “knowledge” ac-
cumulated by the parent ideas contribute to the productivity of the offspring.
Furthermore, the contribution of each parent to the offspring’s productiv-
ity depends on the number of projects or recipes in which the parent idea
is itself involved. Clearly, in most cases the weight of each parent in the
combination is not known ex-ante. It is modeled as a random variable.
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As innovators are profit maximizers the objective of the innovator is to
innovate in areas in which these spilovers are the greatest. However, we
also assume that the innovator has no information on the global topology
of the network of parenthood links (as citations). Then, due to the lack of
global information, it is rational for the innovator to “walk on the network”
and explore areas of greater spilovers only by “local” decisions (see Section
2.5 to get a better idea of these notions). The present paper shows that
this mechanism leads the distribution of productivity to be of the Pareto
type, at least asymptotically. Note that the outlined mechanism implies
that there is an endogenous tendency to generate “patent classes”. Loosely
speaking, this is in line with the empirical evidence provided by Adams and
Jaffe (1996). However, our notion of a “patent class” is fairly different.

The model also provides a way to analyze the effects of a change in the
available information, due for example to a change in the policy regarding
patents. One of the surprising consequences is that allowing for better global
information on the links between ideas induces the innovators to excessively
reward the local spillover component, an attitude leading to the collapse of
the network growth. On the other hand, making the content of innovations
more transparent and providing ways to reveal their productivity are factors
that improve growth.

The paper has the following structure. In Section 2 the model is de-
scribed while in Section 3 the property of the distribution of productivity of
innovations is obtained. In Section 4 some policy implications are consid-
ered. In Section 5 the links with the literature are explained while Section
6 concludes. Finally, an Appendix contains the most important proofs.

2 The model

The general structure of the model follows very closely Kortum (1997). How-
ever, the behavior of the innovator is modelled and Assumption 3.2 in Kor-
tum (1997) is the result of an optimization instead of being an assumption.

At date t there is a continuum of individuals, h ∈ [0, L(t)] with L(t) a
non-decreasing function with

∫ t
−∞ L(t) < ∞ for t < ∞. There is a contin-

uum of consumption goods, j ∈ [0, 1] . The utility of the individual from
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consumption is of the Dixit-Stiglitz type. Agents can chose to be an innova-
tor or a worker in a firm in which case they receive a wage W (t). The effort
produced by an innovator is inelastic, fixed and constant. The total research
effort in t is the labor force engaged in research R(t), i.e. at each date there
is a continuum of innovators h with h ∈ [0, R(t)] . The stock of past research
effort is noted K(t) =

∫ t
−∞R(s)ds. In the model R(t) is endogenous and

depends on the expected profits from innovation. As in Kortum (1997) we
assume that innovators come up with techniques pertaining to the produc-
tion of a good of variety j, with labor as the sole input, and that innovators
are not able to chose the variety j. Since all varieties are similar, we can
focus on an arbitrary variety j.

At equilibrium, the return of being an innovator and that of a worker
are the same. In other words the expected returns to innovation is equal
to the wage rate W (t). In order to be able to decide being an innovator
or a worker, the agent needs to know the expected returns to innovation.
This depends on the productivity of the innovation, on the probability that
it will be patentable (i.e. it will be the most productive recipe) and on the
time it will stay undominated. When a better technique is discovered the
patent expires. Once the research effort is endogenously determined, and
the distribution of productivity specified then the equilibrium growth rates
can be determined. The main contribution of the paper is to endogenously
determine the distribution of productivity of innovations.

2.1 The quality of ideas

Knowledge is characterized by the stock of ideas as well as their quality.
The number of ideas produced depends on the amount of resources devoted
to innovation. This issue is treated in Kortum (1997). Here we focus on the
quality of ideas.

An idea designates a broad class of objects. It can be a sequence of
operations used to produce a physical good. It may also be a sequence of
assumptions, lemmas and techniques as in a scientific paper. We assume
that in all cases an idea can be considered as a combination of existing
ideas. Let it be an idea produced at date t. We note it(i1t , i

2
t , ..., i

m
t ) where

ikt is an idea existing at time t used to produce idea it. We assume that the
combinations include m parent ideas.

In order to gain intuition on the determinants of productivity it is useful
to consider two examples. First, consider a recipe to produce chocolate
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cake. We may assume that the sequence of operations is: 1) grow chocolate
plants, 2) mash the seeds with stones and hands, 3) feed the cows, 4) milk
the cows, 5) put the ingredients in a casserole, 6) mix, and 7) cook with a
wood fire. The present paper is an illustration of the second kind of idea.
Indeed, it may be seen as a combination of: 1) the model of Weitzman on
recombinant growth, 2) the Kortum’s model, 3) the Pareto distribution of
degrees in random growing networks, 4) the analysis of Adam and Jaffe
(1996) on “patent classes”, 5) the attachment algorithm in Vasquez (2003),
and 6) the notion of stable distributions.

Within the present framework, the two main issues are: 1) what is the
productivity of an idea? and 2) how the existing ideas are selected? The
first issue is analyzed in this section while the second needs a model of the
innovator. We will consider this in Section 2.3 and 2.4.

To evaluate the productivity of a recipe it is useful to consider how the
productivity of a given recipe could be improved. An obvious way is to
replace one operation by a more effective one. For example, to perform “the
mashing the chocolate seeds” with an electric device. In our framework,
this substitution is associated to the production of a new idea. Another way
the productivity may increase is when one of the steps is improved without
replacing any of the parent ideas. This mainly happens when that particular
operation is also used in many other recipes. For example, when “mashing
with stones” is used in many other situations then this operation is likely
to become more effective. This type of spilovers across ideas could be called
”learning-by-adoption”.

We formalize the economic situation described above as follows. First,
we assume that the productivity of an idea i, noted ai, may be written as

ai = Ĥi(Ai, si1, ..., siN(t))

where Ai is the intrinsic productivity of idea i, sij represents the contribution
of idea j and Ĥi is a continuous function. In this formulation all N(t)
available ideas at time t contribute to the productivity. Clearly the role
of the existing ideas on the productivity of idea i depends on how related
these are to idea i, i.e. their “distance” from idea i. At the time an idea
is produced it is only linked to its parents. Consequently, we focus on the
role of the immediate parents but we include the possibility of a diffuse
beneficial effect of the stock of ideas. Let M(i) be the set of the m parents
to idea i. The contribution of the parents is assumed to be a weighted sum
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of their productivity, i.e. sij = θijaj where θij represents the importance
of parent j ∈ M(i) in i’s productivity. The θi1, ..., θiM(i) are assumed to be
non-negative, possibly random, weights adding to one.

The strength of the effect of the productivity of the parents on the pro-
ductivity of idea i may also depend on the remaining existing N(t)−m ideas
included in Hi. We identify this effect to the diffuse economy-wide spillover.
The spillover arising from all N(t) ideas is noted S(N(t)). Then we obtain

ai = S(N(ti))Hi(Ai, si1, ..., siM(i))

where Hi is a continuous function and ti is the date of creation of idea i.
For the remaining of this section we will ignore the economy-wide spilovers
but they will be reintroduced in Section 3.

We further simplify the model by assuming that Hi admits an anony-
mous, affine and stationary representation. The overall productivity of an
idea i is assumed to be

ai = Ai +
∑

j∈M(i)

sij = Ai + b
∑

j∈M(i)

θij aj

where b is a constant positive factor. The value of the aj could be obtained
with a similar expression. Note that as the parents to idea i are older
then idea i these parents benefit from their own offsprings, i.e. the more
recent innovations in which they are involved. Let the neighbors of node j
be denoted k ∈ M(j). To simplify, we consider uniform weights, and take
expectations of Aj and ak, denoted A and a. Then

aj = A + b
∑

k∈M(j)

a = A + ba(m + kin
j )

We finally obtain

ai = Ai + B1 + B2

∑

j∈M(i)

θijk
in
j .

where B1 and B2 are constants independent of i. In the present framework,
the productivity of an idea depends on the number of offsprings to the
parents of i. Consequently, the “potential” productivity of an idea increases
with time (as the in-degree increases). However, we assume that the idea is
implemented at the time it is discovered. Finally, we assume that when an
idea is produced and implemented its total productivity is revealed. This
information is not updated.

5



2.2 Knowledge structure and the costs of innovation

We assume that the innovator cannot keep track of the global evolution
of the entire network and in particular that he has no knowledge of the
current value of the connectivity of the existing ideas. Indeed, assume that
at time t an idea i(i1t , i

2
t , ..., i

m−1
t , imt ) is produced. Clearly, its composition

and productivity are revealed and become public. However, as the network
evolves the nature and number of links ki associated to idea i change. So,
the initial information is not anymore accurate at any later date. However,
assuming that the innovator has no global knowledge of the network does not
rule out some sort of local knowledge. We assume that once the innovator
understands an idea he is able to randomly select one of the edges linking
this idea to its parents. For example in the case of patents, this means
that the innovator has access to the list of cited references. In this way the
innovator can “walk on the network” and explore the network with only
local information. We will describe this algorithm in Section 2.4.

Assuming that the composition and productivity of ideas is public does
not imply that understanding and using ideas is costless. The use of ideas
requires some sort of previous knowledge because it is necessary to under-
stand the composing ideas. Therefore, when an idea is considered for a
combination some resources are needed. The cost associated to this exercise
is precisely the time needed to acquire the necessary specific knowledge.

The previous remarks imply that the cost of producing an idea depends
on how “innovative” it is, in particular how many new ideas the innovator
includes in the combination. The innovator can undertake several actions,
each characterized by their own cost. We consider two polar sequences of
actions.

In Scenario 1 we assume that the innovation consists of replacing idea
im in a known existing combination produced at time s < t, denoted
idea is. Formally, the innovation takes the form it(i1t , i

2
t , ..., i

m−1
t , imt ) =

it(i1s, i
2
s, ..., i

m−1
s , imt ). The expected costs can be decomposed into: 1) the

time needed to understand the initial idea is in view to use it as a seed to
the innovation (cost cI), 2) the time needed to understand the new idea imt
(cost cN ) and, 3) the cost of changing one idea (or operation) among the
m ideas (cost cR). Finally, we assume the existence of a production cost c.
The total expected cost is then c + cI + cR + cN . In the chocolate cake
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example, when the hands are replaced by an electric device the cost of the
new recipe includes all four costs cI , cR, cN and c.

In Scenario 2 the innovator selects m new ideas. This possibility is more
innovative. Which of the two scenari is cheaper depends on whether the
cost of understanding the “seed” plus the cost of a replacement is smaller
or larger than the cost to understand m − 1 of its m parent ideas, i.e.
cI < (m− 1)cN − cR or cI ≥ (m− 1)cN − cR. We will consider both cases.

We also assume that many of the combinations are not feasible (fertile)
so that the actual cost is larger than c + cI + cR + cN . We assume that
cN , cR << 1 and that the probability of a feasible combination p is small,
0 < p << 1. Furthermore, we assume that only once the combination is
feasible the idea is produced at the cost c.

.
Remark: Any existing idea is(i1s, i

2
s, ..., i

m−1
s , ims ) used to produce an in-

novation via the substitution of its mth idea, is in fact an innovation pro-
duced in some previous period s. As this can be far apart from period t the
knowledge used to understand idea is may suffer some sort of depreciation.
However, as a first approximation we neglect this type of aging of knowl-
edge. Note that this type of time evolution is different in nature than the
increase in productivity of an elementary step due to learning-by-adoption.

2.3 Innovators

In period t there is a continuum of innovators indexed by h ∈ [0, R(t)] , where
R(t) is endogenously determined. Note that as the stock of discovered ideas
is known to everybody it is irrelevant to keep track of who discovered what
so that the age of the innovator is irrelevant. We assume that the innovator
has access to the credit market, so he is only concerned by the expected
profit of innovation. We also assume that the innovator does not choose the
sector j.

As the innovator maximizes the expected profits of his activity we need
to find the expected duration of the monopoly and the probability π(t) that
the idea is patentable. This can be computed as in Kortum (1997). Then the
expected return of an innovation is π(t)V (t) where V (t) is the the expected
value of a patent discovered at date t. The behavior of the innovator is

MaxEt[π(t)V (t)− c(t)]
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where c(t) is the cost.

The cost c(t) depends on the way the idea is obtained. As seen in the
previous section, we mainly focus on two polar cases. When cI < (m −
1)cN − cR, Scenario 1 minimizes the costs. In this case the innovator start
by selecting at random one of the existing ideas to produce good j. This idea
is used a “seed” and it is “muted” by selecting one of the m parent ideas
and replacing it with some other existing idea. More precisely, the m − 1
elements of an existing idea i(i1, i2, ..., im−1, im) are combined together with
an existing idea imt so that the new idea is now it(i1t , i

2
t , ..., i

m−1
t , imt ) with

i1t = i1, i2t = i2, ..., im−1
t = im−1. Note that the indices 1, ..., m are randomly

numbered so that choosing the idea m is without loss of generality. Note also
that to select a popular idea as the initial “seed” to the innovation would
not increase the expected productivity of the final innovation. Finally, if
cI < (m− 1)cN − cR then the costs are minimized with Scenario 2. In this
case, all m parents are chosen independently. We will see in the next section
how these ideas are chosen.

Because not all combinations are fertile the cost of innovation is likely
to be larger than the one associated to the two Scenaria described above.
Indeed, when a combinations is unfeasible or unproductive the innovator is
forced to proceed to further replacements. Independently of the chosen Sce-
nario these further successive replacements affect the same parent. Indeed,
provided, all the costs c, cI , cR and cN are non zero, replacing one idea at
a time is a way to come up with an innovation at the minimal cost. Fur-
thermore, there is no benefit of making simultaneous substitutions as the
quality of the innovation is ex-ante independent of how many changes are
made to the original innovation. The single replacement appears to be the
optimal strategy. However, all the results would hold if the innovator would
randomly select which of the parent to substitute at each step (provided
pm << 1). Finally, note that because replacing ideas is not costless a single
sequential replacement at a time maximizes the number of feasible ideas for
a given cost.

What is the average cost of a feasible invention? We may normalize this
average cost of creation to unity. As the probability of a combination to
be feasible is small, p << 1, a large number of unfeasible combinations is
tried before a feasible one is obtained. Consequently, the process can be
approximated by a Poisson process of parameter λ = average number of
feasible combinations per unit interval when walking on the network = 1.
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Consequently, even though the model is in continuous time, on average one
node per unit time interval is added to the network of ideas for producing
good of variety j. In other words, ideas arrive to each individual researcher
as a Poisson process normalized to unity. Finally, this implies that the
number of techniques for producing good j discovered between t and s is a
Poisson distribution with parameter K(s)−K(t) where K(t) is the stock of
past research evaluated at time t.

2.4 The innovator’s optimal behavior

There is still the question of how to come up with the best possible inno-
vation. Assume that cI < (m − 1)cN − cR (the other case can be treated
similarly). In this case, starting from a known existing idea and proceeding
to one substitution at a time, minimizes the costs. However, the quality of
the innovation depends on how the mth idea is chosen. Given the ignorance
on the present productivity of ideas, the best action is the one that leads
to the node (idea) with the highest in-degree. However, because of the lack
of global visibility on the network links it is not possible to pick this node
directly. The innovator needs to proceed in an indirect way.

A possibility is to select a node at random. However, the agent can do
better. Indeed, we assume that once the innovator understands a node he
has the possibility to follow one of the incoming edges connecting the node
with the rest of the network. We assume that this occurs with a probability,
or efficiency, 0 ≤ qc ≤ 1. For example, in the case of patents the innovator
can follow the links as indicated by the list of cited references. Given the
available information, the optimal choice is to randomly select one of these
edges, at least when possible. Finally, as not all combinations are feasible,
the innovator continues his walk on the network until he reaches a compatible
combination. Intuitively, this simple algorithm favours nodes with higher
in-degree because there are more paths leading to them.

The walking algorithm: The rule to find a mth idea is as follows:

• Step 1: The innovator picks a node by a random draw.

• Step 2: With probability qc , 0 ≤ qc ≤ 1, the innovator follows one of
the edges incoming into the node under consideration. With probabil-
ity 1− qc the innovator jumps (for example by mistake) to a random
node and the search stops.
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• Step 3: With probability p, 0 < p < 1, the node attached at the other
end of the edge is selected and the search stops. With probability 1−p
the innovator go to Step 2.

Similar rules have been considered by several authors (e.g. Vazquez
(2003), Saramaki and Kaski (2004), Evans and Saramaki (2005) and Jackson
and Rogers (2006)). When there are no mistakes, i.e. qc = 1, it has been
shown that in the limit case where the mean-field approach is valid the local
algorithm implements the linear preferential attachment rule: the imt idea is
chosen as if a node j of degree kj would be selected according to a probability
Πj of the form

Πj =
kj∑
j′ kj′

where j′ = 1, ..., N(t) spans over the entire network. An important result
of random growth literature is that linear preferential attachment leads, at
least asymptotically, to a scale free distribution in the nodes’ degrees. Note
that the distinction between in-degree and total degree is irrelevant at this
stage.

In the present framework the algorithm also induces a cumulative dis-
tribution for the incoming degrees which is asymptotically scale free.

Lemma 1 Given that the nodes’ degrees are not correlated, the individually
optimal process of innovation is such that

a) Choice of the “seed” idea. If cI < (m−1)cN −cR then the innovator
selects one existing idea at random and keeps m − 1 of its parents,
each selection occurring with a probability qc. When a parent is not
selected, an existing random idea is selected with probability 1− qc. If
cI ≥ (m− 1)cN − cR then the initial “seed” idea is obtained choosing
m − 1 ideas according to Step 1 and Step 2 of the walking algorithm
modified such that p = 1.

b) Choice of the mth idea. The mth idea is chosen according to the Steps
1, 2 and 3 of the walking algorithm described above.

c) Degree distribution. Assume that the number of innovators grow at a
constant rate g. Assume also that the innovator behaves optimally as
in a) and b). Then, within the validity of the mean-field approximation,
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the resulting network of ideas is such that the in-degrees of the nodes
follow a translated power law

P [kin
i ≤ k] = 1− (

c1

k + c1
)ξ

where c1 a strictly positive parameter. If cI < (m−1)cN −cR then ξ =
log(1 + g)[g[(qc

m−1
m + pf(qc)]]−1 while otherwise ξ = log(1 + g)[g[(qc +

pf(qc)]]−1.

Proof: See Appendix. QED.

We would like to make some remarks.

i) In both Scenario 1 and Scenario 2 the distribution of degrees is a dis-
placed power law. Many other scenarios would also generate power
laws as can be seen from the proof of Lemma 1. The robust appears
quite robust to changes in the cost structure and in the search algo-
rithm.

ii) The exponent of the Pareto distribution obtained in the Lemma de-
pends the probability of mistake (qc), the fertility (p) and the growth
rate of the research effort (g). However, even in a deterministic case
the power law of productivity would appear.

iii) The applicability of Lemma 1 is not restricted by the assumption of
absence of correlation between the degrees. Strictly speaking corre-
lations do exist even in the standard Barabasi and Albert model for
finite size but disappears as the network grows. A similar pattern
is observed by Vazquez (2003) and Evans and Saramaki (2005) for
networks generated by “walks on the net” with and without errors.
The absence of correlation between the nodes’ degrees is then a good
approximation for the type of networks considered here.

iv) In the “walking algorithm” as soon as the walk on the network is
interrupted and the innovator jumps to a random node the search
stops. We could instead assume that the search continues after the
jump. The network would evolve as in the case qc = 1.

As a general remark, note that the search algorithm is the optimal rule
given the cost structure and rewards. However, we could also take linear

11



preferential attachment as a primitive, i.e. a property of the innovator’s be-
havior. Indeed, linear preferential attachment can be given a direct intuition
not based on local knowledge: in the presence of global but noisy knowledge
one may assume that ideas that have been often used in the combinations
are likely to be more productive, everything else being equal. Consequently,
popularity or visibility, is a key property the uniformed innovator should
look for.

3 The law for productivity

The productivity of an idea is a function of the intrinsic productivity of
the idea and of the weighted sum of the in-degrees of the neighbors, all
random variables. As only the asymptotic behavior of the ai will matter
in the analysis (see below), either the in-degree, kin

j , or the total degree,
kj = m + kin

j , may be considered. Without lack of generality, we adopt the
in-degree as it characterizes the number of new recipes using or referring to
idea j. Ignoring the diffuse spillover, productivity is formally defined as

ai = Ai + B1 + B2

∑

j∈M(i)

θijk
in
j

Note that the idea is implemented at the time it is produced, so any idea i
has exactly m neighbors all of them being “parents”. The results in Lemma
1 indicates that the random network grows in a way such that the cumu-
lative distribution of degrees is a translated power function with a shift c1

and an exponent ξ. Furthermore, the way the parent ideas j ∈ M(i) are
chosen implies the absence of correlations across them. Consequently, the
non-intrinsic part of the ai is a sum of independent random variables
distributed according to power laws with the same exponent. Indeed, the
translation parameter c1 may simply be integrated in the B1 constant. It
is also important to note that the sum involves a finite but possibly large
number of random variables.

The analysis in Kortum (1997) shows that to obtain results on the long
run behavior of the economy it is not necessary to know the exact dis-
tribution of the ai’s. Indeed, the observed trend in productivity and in
research are obtained in Kortum’s model provided the search distribution
F (a) = P [ai ≤ a] is in the basin of attraction of the Frechet extreme value
distribution. This is the case if and only if the distribution has unbounded
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upper support and is asymptotically a power law. The next Lemma is there-
fore relevant.

Lemma 2 Assume that the conditions ensuring the validity of Lemma 1
hold and that ξ ∈ (0, 2). Let m be the number of parental ideas used in
innovation. In the case with deterministic weights θ, the productivity of ideas
follows a distribution Fm(a) = P [ai ≤ a] with unbounded upper support and
such that for all c

lim
m→∞ lim

a→∞
P [ai > a]
P [ai > ca]

= lim
m→∞ lim

a→∞
1− Fm(a)
1− Fm(ca)

= cξ

When the weights are random the same result holds provided there exists
δ > 0 such that Eθξ+δ

ik < ∞ for each 1 ≤ k ≤ m.

Proof: See the Appendix. Q.E.D.

The limit on m is due to the fact that the productivity of an innovation
is related to the productivity of its parents and these follow translated power
laws and that for large m the sum of power laws can be approximated by a
power law. From Lemma 2 we get the following Theorem.

Theorem 1 Subject to the validity of the conditions stated in Lemma 1,
the productivity of innovations follows asymptotically in a and m a Pareto
distribution

P [ai > a] ' a−ξ

where ξ = log(1 + g)[g[(qc + pf(qc)]]−1.

The result in Theorem 1 is very robust as it is driven by the fact that
the innovator has only local knowledge and that the expected productiv-
ity increases with the in-degree of the parents. Indeed, this provides the
innovator with incentives to replicate linear preferential attachment, which
is known to be responsible for the power law for the degrees. It should be
noted that the fact that the tail is a power law does not depend on the exact
form of the beliefs of the innovator, as long as he believes in the existence
of positive externalities.

As in Kortum (1997), an economy-wide externality associated with the
total stock of ideas, can be reintroduced. This produces a second channel
through which the productivity can grow. His model correctly predicts the
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data provided the externality has the form S(N) = Nγ where N is the stock
of ideas and 0 ≤ γ < ∞. Note that the existence of this externality which
increases the probability that a given level of efficiency is obtained is not
required for growth but improves the fit of the model with the observed
trends in the data. In the present model the global externality affects the
productivity of an idea i in the following way

ai = Nγξ[Ai + B1 + B2

∑

j∈M(i)

θijk
in
j ]

where γ is a parameter describing the economy-wide spillover. The results
in Lemma 2 are easily adapted to include this term. We then obtain the
following result.

Corollary 1 Subject to the validity of the condition in Theorem 1, Propo-
sition 3.3 and Proposition 3.4 in Kortum (1997) hold without the need of
Assumption 3.2. In particular, the long run productivity growth rate takes
the form (1 + γ)n/ξ where n is the population growth rate and γ character-
izes the global spillover associated to the stock of research effort. The value
of ξ linearly depends on log(1 + g)/g where g is the equilibrium growth in
research effort.

The Corollary shows that long run productivity growth is (1+γ)n/ξ. For
large m, in the present model ξ = log(1+g)[g[(qc+pf(qc)]]−1. Consequently,
the value of the growth rate of output depends on the growth of research
effort which is endogenously generated (this can easily be computed using
Proposition 3.4 in Kortum (1997)). The probabilities p and qc affect the
value of the parameter ξ so that, according to the expression given above,
can then take any value between 0 and∞. As in Kortum (1997) the arbitrage
between ξ and γ allows to approach the observed level of research intensity
and the renewal data compatible with observed aggregate hazard rate.

Finally, the additive specification for the productivity of ideas introduced
in Section 2 may seem inappropriate because in the limit the role of the
intrinsic productivity of the idea vanishes. We Here we consider instead the
case in which the productivity has the form

ai = N(t)γξHi(Ai, ai1, ..., aiNi) = N(t)γξ[δi + δ][B + b
∑

j∈M(i)

θjk
in
j ]
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The nice feature of this formulation is that the intrinsic productivity of
the idea remains relevant even in the limit of large degrees. The result of
Theorem 1 and Corollary 1 remain true.

Corollary 2 Let ai = N(t)γξ[δi + δ][B + b
∑

j∈m(i) θjk
in
j ]. Subject to the

validity of the condition in Theorem 1, Proposition 3.3 and Proposition 3.4
in Kortum (1997) hold without the need of Assumption 3.2. In particular,
the long run productivity growth rate takes the form (1+γ)n/ξ where n is the
population growth rate and γ characterizes the global spillover associated to
the stock of research effort. The value of ξ linearly depends on log(1 + g)/g
where g is the equilibrium growth in research effort.

Proof: See Appendix. Q.E.D.

4 Policy implications

The model can be used to analyze the effects of possible government policies
designed to increase growth. In the next few lines we focus on three options.

A first possible policy would be to improve the public visibility of the
network of innovations. For example, ranking of innovations reflecting their
popularity and the relevance of the sources citing them could be produced,
as is the case for scientific papers. Clearly, whenever the innovator has some,
possibly noisy, global knowledge about the degree of the nodes, this informa-
tion would used by the innovator to favor high degree nodes. The induced
choice rule rewards more than linearly the degree. As a first approximation
we may consider that this non-linear attachment rule produces a pattern of
growth similar to the one associated to the “superlinear preferential attach-
ment” rule Πi ∼ kη

i , with η > 1. It is known that the behavior of the network
depends on how far η is from unity. For large values, a winner-takes-all pat-
tern arise in which almost all nodes have m links and a gel node has all
the remaining links, i.e. the network evolves toward a gelation pattern. An
example of such an idea could be the “wheel”. With superlinear preferential
attachment, the idea of the wheel would be used again and again in almost
all combinations. Consequently, its degree would increase rapidly while the
remaining ideas would have a small degree. The productivity of new ideas
will suffer from the fact that the m−1 other ideas have to be chosen from the
pool of ideas with low degree. It is likely that the economy would eventually
stop to grow. Clearly, this version of the model should be considered with

15



“granum salis”. In particular, it is likely that before reaching the extreme
gelation pattern the marginal positive effect of local spilovers would vanish.

In the model, knowledge is public. This hypothesis, which implies an
extreme intertemporal spillover, is standard in the literature, e.g. Aghion
and Howitt (1992). However, it can be argued that each innovator knows
better the ideas he discovered himself. In this situation, the cost of replacing
an idea in it to produce it+1would be lower when the innovator discovered
himself idea it. This would induce the innovator to keep trying innovating
in areas close to his own prior ideas. As for each given innovator this set
is small, eventually the innovators will run out of new combinations. As
new combinations become more expensive growth would slow down. Con-
sequently, policies aiming at making public the information concerning the
content of patents are expected to be useful for long run growth.

A policy which is expected to be beneficial in all situations is one in-
tended to facilitate the testing of ideas, i.e. reveal their productivity. Imple-
menting and testing ideas typically requires large quantities of both physical
and human capital. This fact has been interpreted by the literature as an
indication that resources should be devoted in priority to implementation
rather than to pure research. However, growth could be indirectly stimu-
lated by investments in testing techniques. In this perspective, one of the
benefits of the “IT revolution” would be to ease the testing of ideas through
“cheap” simulation. In other words, growth would benefits from any policy
sustaining investments in this type of “IT”.

5 Related literature

A few papers try to propose a microeconomic model of technological progress
based on combinations of ideas. Similarly to the present paper, Weitzman
(1998) assumes that technological progress occurs through (re)combinations
of existing ideas. However, in his model progress is only associated to the
number of ideas, i.e. productivity depends on the stock of innovations. Note
that this assumption is very common in the “endogenous growth literature”
and is similar to our way to model economy-wide spilovers but not the
local spilover effect. Another feature of the model proposed by Weitzman
is that ideas combine automatically, without any selection. In his model,
what shapes the dynamics of output is the resource requirements associated
to the production of viable innovations and not the distribution of their
productivity.
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In our framework, the selection and quality of existing ideas play a major
role. In this respect the present paper is in the spirit of models including a
technology space. Several papers model progress as a selective process via
the introduction of a distance between firms or recipes. In particular, Auer-
swald, Kauffman, Lobo and Shell (2000) assume that there is an existing
distribution of uncovered recipes and that trials reveals its topology. The
distance between two recipes matters in the sense that the closest ones have
more chances of being uncovered. Similarly to the present paper, in Auer-
swald et al. externalities arise between close recipes. The model describes
well learning curves but as the technology landscape is exogenously given
and finite the model is not helpfull to explain sustained long-run growth.

In Olsson (2000) and Olsson (2005) recipes are points of the positive
orthant of a Euclidean space. The available knowledge is then a subset
of the positive orthant. The boundary of this set defines a technological
frontier. Incremental progress, or normal science, consists in convexifying
the set of available knowledge. The idea is appealing but the nature of the
technological space is ad-hoc. On the other hand, Peretto and Smulders
(2002) assume that the size of the market increases the distances between
firms because these become more specialized. As in our model, spilovers
exist but these are reduced when the general increase in the distances occur.
The model is able to eliminate the disturbing scale effect but not to fully
endogeneise the distribution of productivity.

Finally, related to our paper is also the standard quality ladder literature.
Indeed, at least since Schumpeter, the literature has considered models in
which progress is associated to sequential innovations in a partially ordered
network of commodities. Kelly (2001) proposes such a model of linkage
formation. As in the other models described above, there is no natural
notion of distance across innovations. For example, Kelly (2001) simply
assumes that innovation in Sector j is affected by research in Sector j-1 and
j+1. The ladder is exogenous.

6 Conclusion

The paper proposes a model in which technological progress is endogenous
and the outcome is compatible with the available data on output growth,
research effort and research productivity. The basic ingredients are that:
1) new ideas are combinations of existing ideas, 2) there exists positive
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spillovers across related ideas, and 3) the innovator has no global knowledge
of the network of ideas but is able to follow, at some cost, the parenthood
links once he understands an idea. The obtained productivity pattern is
driven by the fact that the innovator focuses his efforts on strenghtening local
spilovers through appropriate combinations because he has no command on
the other factors affecting the productivity of the ideas, and therefore their
expected returns.

The model can be used to analyze the effects of possible government
policies designed to increase growth. The model surprisingly predicts that
a policy that improves the public visibility of the network of innovations,
as ranking of innovations, would not be beneficial. On the other hand,
policies that reduce the cost of testing new ideas, as stimulation of the IT
sector devoted to simulation, are expected to be very beneficial for growth.
Finally, the assumption of public information is crucial. Any policy reliving
imperfect information on the content of innovations would be beneficial.
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8 Appendix

8.1 Proof of Lemma 1

Concerning part a) of the Lemma, the innovator selects at random the
“seed” because selecting a popular idea instead would not increase the ex-
pected productivity of the final innovation. Concerning part b), the optimal-
ity of the search algorithm is a consequence of the lack of global information,
the structure of costs and the existence of local spilovers affecting the pro-
ductivity of the parents. Concerning part c) of the Lemma, we first assume
that the mean-field approximation is valid (as in Theorem 1 in Jackson and
Rogers (2006)). The proof depends on whether Scenario 1 or Scenario 2
minimize the costs.

8.1.1 Case 1: cI < (m− 1)cN − cR.

The innovator first selects at random an existing idea i and aims at keeping
m − 1 of its m parents. However, each of these parents will effectively be
reached and selected with a probability qc while with probability 1 − qc

the innovator selects another idea at random. Then the probability that a
node j gets a new attachment in this way is m−1

m
qc

N(t)k
in
j where N(t) is the

stock of nodes (ideas) at time t. Indeed, j has kin
j incoming edges connected

to neighboring ideas that have j as a parent and the probability to hit a
given node with a random draw is 1

N(t) . Finally, m−1
m corresponds to the fact

that the parent is disregarded with a probability 1
m . Second, node j may be

selected by a random draw when the innovator ignores one of the m − 1
parents as described above. Furthermore, j may also be selected when the
the innovator stops (by mistake) his walk on the network to find the mth

node. The probability that this occurs is (1− qc)((m− 1) + 1) 1
N(t) . Thirdly,

a node j may also be selected when the walk on the network passes through
node j and ends exactly on node j (with probability p). This is possible
only if the walk passes through one of its kin

j parental neighbors, say node
jj. Now, node jj may be reached in several ways. First, it may be selected
directly by a random draw, with probability 1

N(t) . The probability that node
j gets a new link through this channel is then p 1

N(t)k
in
j . Node jj may also

be selected as a result of a walk along one of its incoming edges. Assuming
that a parental neighbor of jj was directly hit by the random draw, the
probability would be 1

N(t)k
in
jj qcpkin

j . Taking expected values (as allowed by
the mean field approximation) we get 1

N(t)qcpmkin
j . Indeed, the expected

value for kjj is given by 2mN(t)/N(t) because m edges are created when
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each of the N(t) nodes are added. Finally, as kjj = m + kin
jj we get that

E[kin
jj ] = m. In fact, the same logic applies to the parents of the parents

of the parents and so on. Finally, the exact value of the overall probability
that node j is selected is given by the sum over the entire network of all
walks ending on node j. In other words, the expression is a series in pc.We
denote this series by f(pc), the first two terms being those calculated above.

Then in the mean-field approximation the expression for the rate of
change of the inward degree kin

i (t) of node i at time t is

dkin
i (t)
dt

=
•
N(t)

[
m− 1

m
qc

kin
i (t)
N(t)

+ m(1− qc)
1

N(t)
+ p

kin
i (t)
N(t)

[f(qc)]
]

where
•
N(t) is the rate at which new nodes are added to the network.

There is a mass R(t) of innovators at time t. There is also a contin-
uum of goods indexed by j, j ∈ [0, 1] . As innovators are assigned randomly
to each good, there are R(t) innovators trying to come up with an inno-
vation pertaining to the production of good j. We assume that number of

innovators grow at a constant rate g, i.e.
•
R(t)
R(t) = g or R(t) = R(0)egt.

As each innovator produces one innovation per unit interval in the contin-
uum formalization they innovate at a unit rate. The stock of innovations

is N(t) =
∫ t
0 R(s)ds = R(0)1

g [egt − 1] ' R(0)1
gegt and

•
N(t) = R(0)egt. So,

•
N(t)/N(t) ≈ g. Consequently, in the mean-field approximation the expres-
sion for the rate of change of the in-degree kin

i (t) of node i at time t is

dkin
i (t)
dt

= gqc
m− 1

m
kin

i (t) + gm(1− qc)
1

N(t)
+ gp

kin
i (t)
N(t)

[f(qc]

Collecting the terms we get

dkin
i (t)
dt

= gm(1− qc) + g[qc
m− 1

m
+ pf(qc)]kin

i (t) ≡ c1k
in
i (t) + c2

By construction a node i born in period ti has a nill in-degree in period ti,
i.e. kin

i (ti) = 0. The solution to the differential equation is of the form

kin
i (t) =

(
c2

c1

)
ec1(t−ti) − c2

c1
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where c1 and c2 are the time independent constants defined above. Then
it can be seen (see e.g. Lemma 1 in Jackson and Rogers (2006)) that the
associated cumulative distribution for the in-degree is

P [kin
i ≤ k] = 1−

(
c2
c1

k + c2
c1

)ξ

with ξ = [log(1+g)]/c1 = log(1+g)

g[(qc
m−1

m
+pf(qc)]

.

8.1.2 Case 2: cI ≥ (m− 1)cN − cR.

The innovator creates a new idea by selecting m existing idea, each with a
probability qc. In this case the first term in the differential equation becomes
simply because mqckin

i (t)
mN(t) = qckin

i (t)
N(t) .

dkin
i (t)
dt

= gm(1− qc) + g[(qc + pf(qc)]kin
i (t) ≡ c′1k

in
i (t) + c′2

The type analysis of Case 1 gives the same cumulative function P [kin
i ≤

k] as above but with c′1 and c′2 as constants. Q.E.D.

8.2 Proof of Lemma 2

Consider first the case in which the weights θ are deterministic. Without
lack of generality assume that all weights are identical. Then the m random
variables follow independent and identical translated power laws. The trans-
lation parameter c1 may be included in the constant term B1. Note that
c1 does not depend on m for large values of m. The productivity of ideas
then follows a sum of standard power laws. For sufficiently large m, the
sum of the Pareto distribution may be approximated by a stable distribu-
tion. Indeed, both Condition i) and ii) in Theorem 1.8.1 in Samorodnitsky
& Taqqu (1994)) hold. In particular, aξ[1− FK(a) + FK(−a)], where FK is
the cumulative function of each power law of parameter ξ, is slowly vary-
ing at infinity. On the other hand, Theorem 1.1.2 in Samorodnitsky and
Taqqu (1994) shows that stable random variables have an asymptotic be-
havior equivalent to a power law. For 0 < ξ < 2, ξ 6= 1, the asymptotic
behavior of the tail probability of an ξ−stable distribution is given by

F
(0)
ξ (a) = 1− [aξΓ(1− ξ) cos(πξ/2)]−1
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as can be seen from Samorodnitsky & Taqqu (1994), Property 1.2.15 (see

also Zaliapin et al. (2005)). Therefore

lim
a→∞

1− F (a)
1− F (ca)

=
[aξΓ(1− ξ) cos(πξ/2)]−1

[(ca)ξΓ(1− ξ) cos(πξ/2)]−1
= cξ

When the weights are random the result is obtained using Breinman (1965)
and Lemma 2.1 in Davis and Resnick (1996). Q.E.D.

Remark: The distribution of a sum of m Pareto distributed random
variables can also be approximated, for sufficiently large m, by noticing
that the largest of the realizations of the individual variables has the same
magnitude as the sum (see Zaliapin et al. (2005), Section 3).

8.3 Proof of Corollary 2

The density of a product of two random variables Z = XY, with f(x) and
h(y) being their densities, is given by

g(z) =

∞∫

0

1
x

f(x)h(
z

x
)dx

Let f(x) be the density of the intrinsic productivity. First, assume that the
distribution of the spilovers is exactly a power law so that h(y) = ( y

γk
)−ξ−1.

In this case we get

g(z) =

∞∫

0

1
x

f(x)h(
z

x
)dx =

∞∫

0

1
x

f(x)(
z

γkx
)ξ−1dx =

= zξ−1

∞∫

0

1
x

f(x)(
1

γkx
)ξ−1dx ∼ zξ−1

The argument needs to be modified as the distribution of spilovers is
not an exact power law. However, we have seen that for large values the
dominant term of the cumulative function is

F
(0)
ξ (a) = 1− [aξΓ(1− ξ) cos(πξ/2)]−1

Therefore, for large values the density function is also a power law of degree
a−ξ−1. The previous result then applies asymptotically. QED
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