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a b s t r a c t

We develop easy-to-implement tests for return predictability which, relative to extant
tests in the literature, display attractive finite sample size control and power across a
wide range of persistence and endogeneity levels for the predictor. Our approach is based
on the standard regression t-ratio and a variant where the predictor is quasi-GLS (rather
than OLS) demeaned. In the strongly persistent near-unit root environment, the limiting
null distributions of these statistics depend on the endogeneity and local-to-unity
parameters characterising the predictor. Analysis of the asymptotic local power functions
of feasible implementations of these two tests, based on asymptotically conservative
critical values, motivates a switching procedure between the two, employing the quasi-
GLS demeaned variant unless the magnitude of the estimated endogeneity correlation
parameter is small. Additionally, if the data suggests the predictor is weakly persistent,
our approach switches to the standard t-ratio test with reference to standard normal
critical values.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A large body of empirical research has been undertaken investigating whether stock returns can be predicted using
ublicly available data. A wide range of financial and macroeconomic variables has been considered as putative predictors
or returns, including: valuation ratios such as the dividend–price ratio, dividend yield, earnings–price ratio, and book-
o-market ratio; various interest rates and interest rate spreads, and macroeconomic variables including inflation and
ndustrial production; see, for example, Fama (1981), Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller
1988a,b), Fama and French (1988, 1989) and Fama (1990).

Empirical evidence on the predictability of returns largely derives from inference obtained from predictive regressions
nd, as such, the size and power properties of tests from these regressions are of fundamental importance. These depend
n the time series properties of the predictor used, in particular its degree of persistence and endogeneity. Data analysis
resented in, among others, Campbell and Yogo (2006) [hereafter CY] and Welch and Goyal (2008), suggest that many
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of the variables used in predictive regressions are highly persistent with autoregressive roots close to unity, and that a
strong negative correlation often exists between returns and the predictor’s innovations, such that the predictive regressor
is endogenous.

A number of likelihood-based predictability tests have been developed, designed to be asymptotically valid when the
redictor is strongly persistent and endogenous; see, in particular, Cavanagh et al. (1995), Lewellen (2004), CY and Jansson
nd Moreira (2006). These approaches are based on a formulation where the predictor, xt−1 say, is assumed to follow a
irst-order autoregression with a local-to-unity coefficient φ = 1 − c/T , where c is a finite unknown constant and T
s the sample size. Of these, the Q test of CY is widely viewed as the state of the art methodology in the literature for
esting the predictability of stock returns with highly persistent regressors. A major drawback with these tests, however,
s that they are invalid if the predictor is weakly persistent (stationary). Alternative tests based on instrumental variable
IV] estimation have also been developed; see, among others, Phillips and Magdalinos (2009), Kostakis et al. (2015) and
reitung and Demetrescu (2015). Here a stochastic instrument is constructed from the predictor which, by design, is less
ersistent than a local-to-unity process. The IV-based tests are asymptotically valid regardless of whether the predictor
s local-to-unity or weakly persistent, but their power is not as high as the likelihood-based tests when the predictor
s strongly persistent. Breitung and Demetrescu (2015) therefore also propose a combined instrument test using two
nstruments: the first as described above, the second a trending variable independent of the predictor. This test is designed
uch that, in large samples, it selects the second instrument when the predictor is local-to-unity but reverts to the first
nstrument otherwise. A significant drawback, however, is that it can only be implemented as a two-tailed test and so if
he direction of predictability is known, it can have significantly lower power than one-sided tests.

An alternative approach, designed to retain good power regardless of whether the predictor is weakly or strongly
ersistent, is considered in Elliott et al. (2015) [hereafter EMW]. EMW note that as the local-to-unity parameter c → ∞,
he predictive regression essentially reduces to a standard time-series regression with a weakly dependent regressor.
onsequently, standard likelihood-based inference, in particular a test comparing the regression t-ratio with standard
ormal critical values, is an appropriate methodology. They therefore propose a hybrid test which switches between a
est based on a weighted average (local asymptotic) power criterion valid when c is “small” but reverts to a standard
ime-series test when c is “large”. In practice the choice of switching function is necessarily arbitrary; EMW propose a
witching rule based on an estimate of c . The weighted average power criterion test adopted by EMW is computationally
nvolved, and the test is also based on the assumption that the predictor cannot be locally explosive (i.e. negative values
f c are not allowed), an assumption not required for the tests of CY, Kostakis et al. (2015) or Breitung and Demetrescu
2015).

In this paper we explore further how one can develop an approach to predictive regression testing which retains both
ood size properties and strong power profiles regardless of the degree of persistence of the predictor. Our approach is
ocused on easy-to-implement tests using regression t-ratios. In the near-unit root case, we base our proposed testing
trategy on the use of two t-statistics: the first is the standard t-ratio test discussed above, the second is one where the
redictor has been demeaned using the quasi-GLS demeaning method of Elliott et al. (1996), rather than OLS demeaning
s with the standard t-ratio. The limiting null distributions of these statistics depend on both the endogeneity correlation
arameter and the local-to-unity parameter characterising the predictor. We therefore propose a feasible method for
btaining asymptotically conservative critical values and provide response surfaces for practical use. An analysis of the
symptotic local power functions of the resulting conservative tests shows that in the empirically most relevant case
here a significant negative correlation exists between returns and the predictor’s innovations, the test for positive
redictability based on quasi-GLS demeaning is significantly more powerful than that based on OLS demeaning. This
elationship reverses when testing for negative predictability. Consequently, when testing for positive predictability, our
ecommended procedure in the near-unit root environment is to use the conservative standard t-ratio when the estimated
ndogeneity correlation is either positive or “small” and negative, but to use the conservative test based on the quasi-GLS
-ratio otherwise. Further, in common with EMW, if the data suggest the predictor is weakly persistent, we propose
witching into the standard t-ratio test with reference to standard normal critical values. However, in contrast to EMW,
e do not base our switching function on an (inconsistent) estimate of c , but rather on the familiar augmented Dickey–
uller [ADF] normalised bias coefficient unit root test, with MBIC lag selection as developed in Ng and Perron (2001). Our
pproach has the advantage of not needing to exclude the possibility of locally explosive predictors, and we show that our
ecommended procedure delivers effective finite sample size control and attractive power profiles across a wide range of
orrelation parameters and degrees of predictor persistence.
The remainder of the paper is organised as follows. Section 2 introduces the predictive regression model which we

ill consider in this paper together with the assumptions we place on this data generating process [DGP]. In Section 3
e present the details of our hybrid switching-based test procedure and establish its asymptotic properties. Here we also
utline our method for obtaining asymptotic critical values. In Section 4 we investigate the finite sample size and power
roperties of our proposed hybrid test, comparing with the leading tests in the literature. These results suggest that the
ewly proposed hybrid test performs well and compares very favourably with extant tests, including its most obvious
omparator test from EMW, offering simple yet highly effective methods for predictability testing. Section 5 contains a
hort empirical example using monthly U.S. stock returns data. Section 6 concludes. An on-line supplementary appendix

ontains a proof of Theorem 1 and additional material relating to the numerical simulation studies in Sections 3.2 and 4.
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2. The predictive regression model

Let yt denote the (excess) stock return in period t and xt−1 denote a scalar variable observed at time t − 1 which
s considered to be a putative predictor for yt . Following Kostakis et al. (2015) and Jansson and Moreira (2006), among
thers, the predictive regression model we consider is specified as

yt = αy + βxt−1 + ϵyt , t = 2, . . . , T (1)

here xt is an observed process, specified according to

xt = αx + st , t = 1, . . . , T (2)
st = φst−1 + ψ(L)ϵxt , t = 2, . . . , T (3)

where ψ(L) := 1 +
∑

∞

j=1 ψjLj satisfying ψ(1) ̸= 0 and
∑

∞

j=1 j|ψj| = ψ̄ < ∞, and where it is assumed that s1 is a
mean zero Op(1) random variable. The innovations ϵt := (ϵxt , ϵyt )′ are assumed to form a (bivariate) martingale difference

sequence with respect to the natural filtration F t = σ (ϵt , ϵt−1...), with covariance matrix E(ϵtϵ′
t |F t−1) =

[
σ 2
x σxy
σxy σ 2

y

]
, and

where supt E[∥ϵt∥
2+κ

] < ∞ for some κ > 0, ∥ · ∥ denoting the Euclidean norm. We define the correlation between the
innovations to be ρxy := σxy/σxσy.

Our interest in this paper centres on developing tests of the null hypothesis that yt is not predictable by xt−1,
i.e. H0 : β = 0 in (1). The alternative hypothesis is that yt is predictable by xt−1, in which case β ̸= 0. Moreover these
tests need to allow the shocks driving the predictor, ϵxt in (3), to be correlated with the unpredictable component of stock
returns, ϵyt in (1), as occurs when ρxy ̸= 0. As discussed in the Introduction it is important for practical purposes that
the tests we develop are efficacious without knowledge of whether the predictor variable xt in (1) is weakly or strongly
persistent. Formalising, we therefore allow φ in (3) to satisfy one of the following two assumptions:

Assumption S. Strongly persistent predictor: The autoregressive parameter φ in (3) is local-to-unity with φ := 1 − cT−1

where c is a fixed constant.

Assumption W. Weakly persistent predictor: The autoregressive parameter φ in (3) is fixed and bounded away from unity,
|φ| < 1.

Remark 1. Many commonly used predictors are strongly persistent, exhibiting sums of sample autoregressive coefficients
which are close to or only slightly smaller than unity. Near-integrated asymptotics have been found to provide better
approximations for the behaviour of test statistics in such circumstances; see, inter alia, Elliott and Stock (1994). However,
not all (putative) predictors are strongly persistent and a large part of the literature works with models which take xt to
be generated from a stable autoregressive process; see, for example, Amihud and Hurvich (2004). We therefore allow for
either of these possibilities to hold for xt . □

Remark 2. Assumption S also allows for the case where c < 0 such that xt is locally explosive. While some predictive
regression tests in the literature, including the tests proposed in EMW and Lewellen (2004), impose the condition that
c ≥ 0 (equivalently, φ ≤ 1), CY, p. 54, provide a discussion on why it might not be sensible to restrict c to be non-
negative in practice. Moreover, in their empirical analysis CY find that many of the predictors they consider, most notably
the dividend–price ratio, have confidence intervals for φ that include values greater than 1. This may well be a result
of local explosivity in the price series, as is well documented in the literature on financial bubbles; see, among others,
Phillips et al. (2011, 2015). □

Remark 3. The conditions placed on the errors above essentially coincide with Assumption INNOV(i) of Kostakis et al.
(2015, p. 1512) and impose conditional homoskedasticity on ϵt . This is done to simplify our presentation, but it would
be possible to allow for conditional heteroskedasticity of the form considered in Assumption A.1 of CY without altering
the large sample results which follow under Assumption W . Under Assumption S, as in Kostakis et al. (2015, p. 1516), an
assumption of the form given in their INNOV(ii), op. cit., p.1512, would be needed and the predictive regression t-ratios
we discuss in Section 3 would need to be implemented using White standard errors rather than OLS standard errors. □

3. Regression-based predictability tests

The simplest possible regression-based test for H0 : β = 0 is based on the t-ratio associated with the OLS estimate of
β from (1) . Defining α̂y := (T − 1)−1 ∑T

t=2 yt and α̂x := (T − 1)−1 ∑T
t=2 xt−1 this is identical to the t-statistic associated

with the OLS estimate of β in the regression
(yt − α̂y) = β(xt−1 − α̂x) + vt , t = 2, . . . , T (4)

3
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which is therefore defined as

T :=

∑T
t=2(xt−1 − α̂x)(yt − α̂y)√
σ̂ 2
v

∑T
t=2(xt−1 − α̂x)2

(5)

where σ̂ 2
v is the usual OLS residual variance estimate from (4).

The representation in (4) serves to make clear two very important aspects of the basic statistic T . First, T is based
on separate OLS demeaning of both yt and xt−1. Under weak persistence of xt , α̂x is a consistent estimator of αx, while
α̂x = Op(T 1/2) under strong persistence. Second, T is based on estimation that takes no account of the endogeneity present
between the predictor and the regression error in (1) and, as we will see in Theorem 1, has a limiting null distribution
that, under Assumption S, depends on both c and on ρxy when c ̸= 0. In contrast, under Assumption W , where xt is
weakly persistent, T has a standard normal limiting null distribution and is asymptotically optimal under Gaussianity;
see Jansson and Moreira (2006, p. 704).

Under strong persistence, the literature to date has largely focused on the endogeneity issue. As discussed in the
Introduction, analogous tests to T based on instrumental variable estimation of (1) have been considered in, among
others, Kostakis et al. (2015) and Breitung and Demetrescu (2015). Other approaches which are more powerful when
xt is strongly persistent, including Lewellen (2004) and CY, fall within the general control variable approach outlined
in Elliott (2011). Here (1) is augmented by an additional regressor used as a proxy for the current period innovation
driving the predictor, ϵxt .1 As discussed in Jansson and Moreira (2006, p. 691), such procedures are asymptotically biased
(so power can fall below the nominal level for alternatives sufficiently close to the null) as a result. The most popular
example of this approach is CY’s Q test. This is based around the infeasible t-statistic on β when (xt − φxt−1) is added
as a regressor to (1). CY develop a feasible version of this test, using the approach of Cavanagh et al. (1995), based on a
Bonferroni confidence interval for β formed from the sequence of such statistics across φ and a confidence interval for φ
(equivalently c) formed from the well-known quasi-GLS demeaned ADF unit root statistic of Elliott et al. (1996). While
Jansson and Moreira (2006) develop asymptotically uniformly most powerful tests which are asymptotically unbiased,
their simulation results show that the Q test of CY has higher power in finite samples for most alternatives.

As noted above, the standard t-ratio T is based on OLS demeaning of both yt and xt−1. It is, however, well known in the
literature that where a series is strongly persistent it can be advantageous to quasi-GLS demean it, as proposed in Elliott
et al. (1996), rather than use OLS demeaning. Indeed, CY adopt the quasi-GLS demeaned ADF statistic in constructing the
Bonferroni-type confidence interval for c that forms the basis of their predictability test, arguing that they do so because
of the superior local power properties of the quasi-GLS demeaned ADF test relative to the standard OLS demeaned ADF
test. In particular, Elliott et al. (1996, p. 814) comment that “... where a deterministic mean or trend is present, power
can be improved considerably over the standard Dickey–Fuller test by modifying the method employed to estimate the
parameters characterising the deterministic term.” Elliott et al. (1996) develop a class of feasible near-efficient unit root
tests. But the asymptotic local power functions of these tests are essentially indistinguishable from the asymptotic local
power function of an ad hoc quasi-GLS demeaned regression-based ADF test despite this test not being based on any formal
optimality criterion; see, in particular Figures 2 and 3 of Elliott et al. (1996, pp. 823–4). Similarly, the MZGLS

α test of Ng and
Perron (2001), although again not based on any formal optimality criterion, also has an asymptotic local power function
that is indistinguishable from the near-efficient tests of Elliott et al. (1996) and superior power than the corresponding
MZα test based on OLS demeaning considered in Stock (1999) and Perron and Ng (1996).

One may therefore conclude that it is largely the quasi-GLS method of demeaning that brings about this power
advantage over the standard OLS demeaned unit root tests. Indeed, as Elliott et al. (1996, p. 823–24) argue “Since the
difficulties with the standard tests are associated with inefficient estimates of the trend parameters, it is reasonable to
expect that modified estimates could improve their performance.” It therefore seems worth investigating whether the
same applies in the current situation. Consequently, rather than focusing on predictive tests in the strongly dependent
case that are driven by a formal asymptotic optimality property, we will explore whether, and if so in what settings, using
quasi-GLS demeaning of the persistent predictor can deliver tests with good power. Indeed, as will be shown in Theorem 1
below, under strong persistence the limiting distribution of T features a component which is a weighted combination of
two distributions, the first of which is the local alternative limit distribution of the OLS-demeaned Dickey–Fuller statistic
and the second is standard normal. The Dickey–Fuller component dominates the standard normal component when the
degree of endogeneity |ρxy| is large. Where the degree of endogeneity is small the reverse holds and so here we might
not necessarily expect to see any gains from using a test based on quasi-GLS demeaning the predictor. As we will see
in Section 3.2, an exploration of the asymptotic local power functions of (asymptotically) conservative implementations
(needed to account for the dependence on c and ρxy under the null) of the tests shows that quasi-GLS demeaning of the
persistent predictor can indeed deliver power gains relative to T for moderate to large ρxy in the strongly persistent case.

To define the t-ratio from the predictive regression where the predictor regressor is quasi-GLS demeaned, we first
need to define the quasi-GLS estimate of αx. This is obtained from the OLS regression of (x1, x2 − φ̄x1, . . . , xT − φ̄xT−1)

1 A proxy is needed because ϵxt is unobservable as both αx , the unconditional mean of xt in (2), and the autoregressive parameter, φ, in (3) are
nknown. These parameters cannot be estimated at a sufficiently fast rate such that a proxy based on an estimate of ϵxt delivers (under Gaussianity)
n asymptotically efficient test with a standard normal limiting null distribution, as would be obtained if α and φ were known.
x

4



D.I. Harvey, S.J. Leybourne and A.M.R. Taylor Journal of Econometrics xxx (xxxx) xxx

e
t
t

w

n

3

t
l
l
w

w

w
W

R
t
s
n

R
c
s
f
a
f
e
s

on (1, 1 − φ̄, . . . , 1 − φ̄) where φ̄ := 1 − c̄/T with c̄ = 7; see Elliott et al. (1996) for further details. We denote this
stimator α̃x. Under strong persistence α̃x = Op(1) and, hence, it is not divergent, unlike its OLS counterpart α̂x. Based on
he quasi-GLS demeaned predictor, we can define the corresponding t-statistic associated with the OLS estimate of β in
he regression

(yt − α̂y) = β(xt−1 − α̃x) + vt (6)

hich is, hence, defined as

T ′
:=

∑T
t=2(xt−1 − α̃x)(yt − α̂y)√
σ̃ 2
v

∑T
t=2(xt−1 − α̃x)2

(7)

where σ̃ 2
v is the OLS residual variance estimate from (6). Notice that we retain OLS demeaning of yt because, under the

ull, yt = αy + ϵyt is not strongly persistent and so GLS demeaning would not be appropriate.

.1. Asymptotic distributions of T and T ′

In this subsection we consider the asymptotic behaviour of the T and T ′ statistics. Predictive regressions for stock
returns typically exhibit a small R2 and low signal-to-noise ratios (see, inter alia, Campbell, 2008, and Phillips, 2015) so
hat departures from the null, should predictability be present, are likely to be small. Consequently, we will establish the
arge sample behaviour of the tests under local alternatives such that the slope parameter β in (1) is local-to-zero. The
ocalisation rate (or Pitman drift) will need to be such that β is specified to lie in a neighbourhood of zero which shrinks
ith the sample size, T . The appropriate Pitman drift is dictated by whether xt is strongly or weakly persistent. Where xt

is strongly persistent, such that Assumption S holds, the appropriate local alternative is given by H1,S : β = gT−1
√
σ 2
y /ω

2
x ,

here g is a finite constant and where ω2
x := σ 2

x ψ(1)2 is the long run variance of xt . For weakly persistent xt , such that
Assumption W holds, the appropriate local alternative is given by H1,W : β = gT−1/2

√
σ 2
y /ψ

2
x , where ψ2

x is the short run
variance of xt , and g is again a finite constant. The different localisation rates reflect the fact that near-integration implies
a much stronger signal from the predictor xt−1.

In Theorem 1 we now report the asymptotic distributions of the T and T ′ statistics under both the null and local
alternatives for the case where xt is strongly persistent. In Theorem 2, the proof of which is entirely straightforward and
is therefore omitted, we subsequently present the corresponding limit for T for the case where xt is weakly persistent.

Theorem 1. Let yt and xt be generated according to the model in (1)–(3) under the conditions stated in Section 2 and let
Assumption S hold. Let the regression t-statistics T and T ′ be as defined in (5) and (7), respectively. Then, as T → ∞, under
H1,S :

(i) T ⇒ g

√∫ 1

0
W̄1c(r)2dr +

∫ 1
0 W̄1c(r)d

{
ρxyW1(r) +

√
1 − ρ2

xyW2(r)
}

√∫ 1
0 W̄1c(r)2dr

=: S(g, ρxy, c)

(ii) T ′
⇒ g

∫ 1
0 W̄1c(r)2dr√∫ 1
0 W1c(r)2dr

+

∫ 1
0 W̄1c(r)d

{
ρxyW1(r) +

√
1 − ρ2

xyW2(r)
}

√∫ 1
0 W1c(r)2dr

=: S ′(g, ρxy, c)

here “⇒” denotes weak convergence and where W1(r) and W2(r) are independent standard Brownian Motions, W̄1c(r) :=

1c(r) −
∫ 1
0 W1c(s)ds with W1c(r) :=

∫ r
0 e−(r−s)cdW1(s).

emark 4. Theorem 1 highlights that for both the statistics considered the offset seen in their limiting distributions under
he local alternative H1,S , and hence their asymptotic local power, is a function of the drift parameter g and a different
tatistic–specific stochastic offset term. Under the null hypothesis, H0, the asymptotic distributions of both statistics are
on-standard and depend on ρxy and c . When ρxy = 0, T has a N(0, 1) limiting distribution under H0.

emark 5. The limiting null distribution of T is seen from the representation in Theorem 1 to be a weighted average of two
omponents, the first

∫ 1
0 W̄1c(r)dW1(r)/(

∫ 1
0 W̄1c(r)2dr)1/2 is the local alternative limit of the OLS-demeaned Dickey–Fuller

tatistic, while the second
∫ 1
0 W̄1c(r)dW2(r)/(

∫ 1
0 W̄1c(r)2dr)1/2 is, as noted in Remark 4, a standard N(0, 1) distribution. The

ormer dominates this weighted average when |ρxy| is large, while the latter dominates when |ρxy| is small. Consequently,
nd as discussed earlier, where the degree of endogeneity is small we would not anticipate the possibility of any gains
rom quasi-GLS, rather than OLS, demeaning of the predictor, but where significant endogeneity is present this possibility
xists. We will explore this further in Section 3.2 by comparing the asymptotic local power properties of (asymptotically)
ize controlled tests based on T and T ′ under strong persistence, across a range of values of the endogeneity parameter ρxy.
5
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Theorem 2. Let yt and xt be generated according to the model in (1)–(3) under the conditions stated in Section 2 and let
ssumption W hold. Then, as T → ∞, under H1,W , T ⇒ N(g, 1).

emark 6. The result in Theorem 2 demonstrates that, under Assumption W , T has a standard normal limiting null
istribution. Notice that, unlike under Assumption S, the local power offset under H1,W is deterministic and equals the drift
arameter, g . Indeed, as noted in Jansson and Moreira (2006, p. 704), under Assumption W the test based on T is asymp-
otically optimal under Gaussianity. We do not present the corresponding limiting distribution for T ′ under Assumption

because it can be shown to depend on the distribution of s1. The hybrid testing scheme, denoted Thyb, that we will
ubsequently develop in Section 3.3, is designed such that it never selects T ′ in large samples under Assumption W and,
hence, we will not need the limiting distribution of T ′ to establish the limiting distribution of Thyb under Assumption W .

3.2. Asymptotic size and local power comparisons of T and T ′ under strong persistence

Under strong persistence, we can use the limiting representations given in Theorem 1 to compare the asymptotic
sizes and asymptotic local powers of tests based on the T and T ′ statistics for a range of values of the relevant nuisance
parameters on which these depend, ρxy and c. For a given value of ρxy, the main issue is that the asymptotic critical values
f T and T ′ depend on c , which is unknown, but, unlike ρxy, is not consistently estimable. To make asymptotic size and,
ubsequently, asymptotic power comparisons meaningful, we adopt a scheme for simulating critical values that will, by
esign, deliver asymptotically conservative tests. We will illustrate this in the context of a one-sided upper-tailed test for
he alternative of β > 0, but the same approach can be used in an obvious way for lower-tailed and two-tailed tests.

The steps to obtaining asymptotically conservative critical values for tests based on T and T ′ are as follows:

1. For a given value of ρxy, simulate the null distributions S(0, ρxy, c) and S ′(0, ρxy, c) for different c across an interval
c ∈ [cmin, cmax].

2. At each value of c , compute the respective λ-level upper-tail critical values, cvλ(ρxy, c) and cv′

λ(ρxy, c) say.
3. Set the λ-level critical values for T and T ′ equal to cvλ(ρxy) := maxc∈[cmin,cmax] cvλ(ρxy, c) and cv′

λ(ρxy) :=

maxc∈[cmin,cmax] cv
′

λ(ρxy, c).

Using cvλ(ρxy) and cv′

λ(ρxy) will yield correct λ-level sized tests based on T and T ′ in the case where c =

argmaxc∈[cmin,cmax] cvλ(ρxy, c) and c = argmaxc∈[cmin,cmax] cv
′

λ(ρxy, c), respectively, and give conservatively sized tests for
all other values of c. We simulated critical values in this manner for a significance level λ = 0.05, approximating the
Brownian motion processes in the limiting functionals using IIDN(0, 1) random variates, with the integrals approximated
by normalised sums of 1,000 steps based on 10,000 Monte Carlo replications. This was carried out for cmin = −5 and
cmax = 50 on the grid c ∈ {cmin, cmin + 1, . . . , cmax − 1, cmax}, thereby covering the locally explosive, unit root and local to
unit root cases. For ρxy we consider the grid ρxy ∈ {−0.950,−0.925,−0.900, . . . , 0.900}. We will refer to the two tests
where T and T ′ are compared with their asymptotically conservative critical values as Tcon and T ′

con, respectively.
Fig. 1 graphs the asymptotic sizes (i.e. g = 0) and asymptotic powers for g = 10 for Tcon and T ′

con. Sizes are plotted
across c ∈ {−5,−4, . . . , 49, 50} and powers across c ∈ {0, 1, . . . , 49, 50} (we do not include negative values of c
here to prevent them dominating the local power plots). Panels (a)–(b), (c)–(d), (e)–(f) and (g)–(h) report results for the
representative values ρxy = −0.9, −0.5, 0 and 0.5, respectively, while Figure S1 in the Supplementary Appendix reports
results for the larger set of values ρxy = {−0.9,−0.7,−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5, 0.7, 0.9}. For future reference, we
also show the asymptotic size of T evaluated at its 0.05-level critical value appropriate under weak persistence or when
ρxy = 0, i.e. −1.645; this is denoted TN .

Consider first the case where ρxy = −0.9. Regarding the asymptotically conservative tests, Tcon and T ′
con, we observe

that Tcon maximises its asymptotic size (i.e., has asymptotic size of 0.05) for c just below 0. Importantly, it is also generally
very undersized for positive c. In contrast, T ′

con, which maximises its asymptotic size at c = 0, has a very flat size profile
across c , never dropping much below 0.05. The pattern of asymptotic size behaviour in TN essentially magnifies the pattern
observed with Tcon, but with very bad oversize for small c. In terms of local power, between Tcon and T ′

con, it is clear that
T ′
con offers substantially more power unless c is very small, with Tcon suffering due to its undersize outside of the small c

range. The local power plot for TN is not meaningful here because of its severe oversize.
When ρxy = −0.5, the main feature we observe is that Tcon is now less undersized for positive c compared to when

ρxy = −0.9 (and consequently TN is less oversized), while the size behaviour of T ′
con is little changed. On comparing the

powers, we see that Tcon remains somewhat less powerful than T ′
con unless c is small, although the deficit is somewhat

reduced.
Results for ρxy = 0 show that Tcon has size independent of c and coincides exactly with that of TN at 0.05, however

T ′
con tends towards undersize unless c is large. In terms of power, this behaviour translates into Tcon (i.e. TN ) being more

powerful than T ′
con unless c is large, where the powers of Tcon and T ′

con are very close to each other.
Finally, when ρxy = 0.5, both Tcon and T ′

con tend to be undersized for smaller c , with T ′
con slightly more so. However,

the power gains of Tcon over T ′
con remain evident for the smaller values of c. Also, we see that TN always has slightly lower

size than Tcon, and so as a consequence its powers are always slightly lower.
One obvious feature is the substantial asymmetry of the size and power profiles of Tcon (and TN ) and T ′

con between
′
ρxy = 0.5 and ρxy = −0.5. For ρxy = −0.5, Tcon clearly possesses a better power profile than Tcon while the opposite is

6
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Fig. 1. Asymptotic size (g = 0) and local power (g = 10) of nominal 0.05-level tests based on the model in Eqs. (1)–(3) with innovation correlation
ρxy; Tcon: , T ′

con: , TN : .
7
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true for ρxy = 0.5. This pattern of T ′
con displaying better overall power properties for substantially negative ρxy and Tcon

outperforming T ′
con for positive ρxy extends to the expanded set of ρxy results reported Figure S1 of the Supplementary

Appendix, and on the basis of these it appears that T ′
con has arguably the better power properties whenever ρxy < −0.1

and that Tcon is better otherwise. While these results and conclusions are drawn for the single point g = 10 under
the alternative, similar patterns of relative power performance arise for other values of g , as seen in Figure S2 of the
Supplementary Appendix where results for g = 5 and g = 20 are reported, reinforcing the general result that T ′

con has
better power when ρxy < −0.1 and Tcon better otherwise. In unreported simulations, we also found that similar relative
power patterns are obtained when using the 0.10 and 0.01 significance levels.

While we have focused the foregoing analysis on upper-tail testing against the alternative β > 0, lower-tail testing
of the alternative β < 0 can be carried out in an analogous fashion. To test β < 0, for Tcon and T ′

con we simply replace
cvλ(ρxy) and cv′

λ(ρxy) with −cvλ(−ρxy) and −cv′

λ(−ρxy), respectively. Consequently, an identical pattern of asymptotic
sizes and powers obtains for lower-tailed tests but with ρxy replaced with −ρxy. That is, for lower-tailed tests, T ′

con has
better overall power when ρxy > 0.1 with Tcon superior otherwise. Two-sided λ-level tests can be conducted by taking
the union of rejections of the lower-tail and upper-tail tests, each conducted at the (λ/2)-level.

3.3. A hybrid testing procedure

We now propose a hybrid testing procedure that is designed to capitalise on the power optimality of the standard
t-test TN under weak persistence, and the relative local power advantages of Tcon and T ′

con under strong persistence for
different values of ρxy. Specifically, we consider an approach that, for upper-tail testing (lower-tail testing), (i) uses Tcon
nder strong persistence if ρxy > −0.1 (ρxy < 0.1), (ii) uses T ′

con under strong persistence if ρxy < −0.1 (ρxy > 0.1), (iii)
ses TN under weak persistence (for both upper- and lower-tail testing). Below we detail how to operationalise such an
pproach for practical implementation. We require the use of two switching mechanisms. Part (iii) involves a switching
pproach similar to that of EMW, whereby the standard test TN is selected when evidence of a weakly persistent predictor
s present. In the absence of such evidence, a secondary switching mechanism is needed to determine whether Tcon or
′
con should be applied, this time on the basis of a consistent estimate of ρxy.
In the first switching mechanism, we determine whether the predictor variable is strongly or weakly persistent on the

asis of a standard unit root test. For the unit root test we use the ADF normalised bias coefficient unit root test

ADFπ :=
T π̂

1 −
∑p

i=1 γ̂i,p

where π̂ and γ̂i, i = 1, . . . , p are obtained from the estimated OLS ADF regression equation

∆xt = µ̂+ π̂xt−1 +

p∑
i=1

γ̂i∆xt−i + ϵ̂xt . (8)

The lag truncation parameter, p, in (8) needs to satisfy the standard rate condition that as T → ∞, 1/p + p3/T → 0. In
practice, the lag length p can be selected by any suitable information criterion. In the numerical work which follows we
will use the modified Bayes information criterion [MBIC] of Ng and Perron (2001) as we found this to deliver the best finite
sample performance among popularly used lag selection rules. In the context of the MBIC rule, we used the modification
suggested by Perron and Qu (2007), and the maximum permitted lag order p was set to pmax =

⌊
12(T/100)1/4

⌋
(⌊.⌋

denoting the integer part), as in Ng and Perron (2001).
Under Assumption S, ADFπ = Op(1), while under Assumption W , ADFπ diverges to minus infinity. Consequently,

employing any fixed critical value for ADFπ , cvADF say, would ensure that TN would be selected asymptotically under
weak persistence since Pr(ADFπ < cvADF ) → 1. However, in finite samples we found such a cut-off rule can lead to TN
being selected too often under strong persistence, leading to over-sizing of the resulting hybrid procedure. We therefore
implement Thyb with a sample size dependent critical value, cvADFT = −4T 1/2, a choice motivated from extensive Monte
Carlo simulation evidence for a range of values of T , ρxy and c. Under weak persistence, ADFπ diverges to infinity at a rate
faster than T 1/2, hence TN is selected asymptotically under weak persistence since Pr(ADFπ < cvADFT ) → 1.

In the second switching mechanism, which is operational whenever weak persistence is not detected, selection
between Tcon and T ′

con is made on the basis of the ρxy estimator

ρ̂xy :=

∑T
t=2 ϵ̂xt ϵ̂yt√∑T

t=2 ϵ̂
2
xt

∑T
t=2 ϵ̂

2
yt

where the ϵ̂yt are the OLS residuals from regressing yt on a constant and xt−1, and ϵ̂xt are the ADF residuals from (8). This
estimator is consistent for ρxy under either Assumption S or Assumption W . In practice then, for Tcon and T ′

con we use the
critical values cvλ(ρ̂xy) and cv′

λ(ρ̂xy) as estimates of cvλ(ρxy) and cv′

λ(ρxy). To automate selection of an appropriate critical
value we calculated a response surface by OLS regressions of cvλ(ρxy) and cv′

λ(ρxy) on [1, ρxy, ρ2
xy, . . . , ρ

8
xy] for the grid of

values ρ = {−0.90,−0.85, . . . , 0.9} (37 data points). The response surface coefficient estimates are given in Table 1 for
xy

8
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Table 1
Response surface coefficient estimates for Tcon and T ′

con .
Regressor cvλ(ρxy) cv′

λ(ρxy)

λ = 0.1 λ = 0.05 λ = 0.025 λ = 0.01 λ = 0.1 λ = 0.05 λ = 0.025 λ = 0.01

1 1.346 1.707 2.004 2.434 1.293 1.648 1.950 2.377

ρxy −0.819 − 0.802 −0.765 −0.726 −0.242 −0.225 −0.285 −0.382

ρ2
xy 1.928 2.314 1.947 1.257 −0.055 0.323 0.200 −0.171

ρ3
xy −0.402 − 0.377 −0.602 −0.736 −0.316 −0.275 −0.186 0.414

ρ4
xy −5.008 − 6.970 −5.131 −2.385 0.493 −1.447 −0.559 0.209

ρ5
xy 0.825 1.013 0.965 1.448 0.401 0.432 −0.005 −0.984

ρ6
xy 7.040 10.279 6.692 1.972 −0.808 2.603 0.224 −0.504

ρ7
xy −0.470 − 0.705 −0.350 −0.762 −0.200 −0.290 0.219 0.693

ρ8
xy −3.607 − 5.417 −3.154 −0.479 0.459 −1.581 0.236 0.434

the usual values of λ (the R2 from the response surface regressions exceeded 0.999 in all cases), and the response surface
ritical value is obtained as the fitted value from the corresponding estimated regression.
To summarise, our suggested hybrid double switching-based testing procedure, which we denote by Thyb, is defined

s follows:

1. If ADFπ < −4T 1/2 perform TN (T with a standard normal critical value).
2. Otherwise:

(a) For upper-tail tests against the alternative β > 0,

if ρ̂xy > −0.1 perform Tcon (T with conservative critical value cvλ(ρ̂xy))
if ρ̂xy < −0.1 perform T ′

con (T ′ with conservative critical value cv′

λ(ρ̂xy))

(b) For lower-tail tests against the alternative β < 0,

if ρ̂xy < 0.1 perform Tcon (T with conservative critical value − cvλ(−ρ̂xy))
if ρ̂xy > 0.1 perform T ′

con (T ′ with conservative critical value − cv′

λ(−ρ̂xy))

In the next section we explore the efficacy of this hybrid testing approach in delivering a procedure with reliable size
nd attractive power, relative to existing tests in the literature, across a wide range of correlation parameters ρxy and
egrees of predictor persistence.

. Finite sample size and power

We examine the finite sample size and power properties of the Thyb procedure and compare these with the prominent
ests in the predictive regression testing literature. Specifically, the tests we employ as comparators are CY’s Q test; BD, the
nstrumental variable test of Breitung and Demetrescu (2015) using their recommended sine and fractional instruments
denoted BD); the test of Kostakis et al. (2015) (denoted IVX), and the test of EMW (denoted EMW ). Note that we compare
ith the original Q test of CY, rather than a modified variant that can control size under weak persistence, because EMW

ind in their supplement that the modified test has lower power than the original test for moderate values of c , and
s dominated by the EMW test, and also because the original Q test is the one implemented by practitioners, hence it
resents a more useful point of comparison. We do not report the test of Jansson and Moreira (2006) because, as noted
arlier, the Q test has higher power than this test in finite samples for most alternatives.
We generate data for a sample size T = 200 from the model (1)–(3) with (ϵxt , ϵyt )′ ∼ IIDN (0, I2), ψ(L) = 1 and

drawing s1 as a standard normal variate. We set αy = αx = 0 as all the tests considered are invariant to these constant
terms. We examine rejection frequencies for φ ∈ {1.025, 1, 0.975, 0.95, 0.875, 0.75, 0.5, 0}, thereby varying xt between
an explosive and white noise process, for ρxy = {−0.9,−0.5, 0, 0.5, 0.9}, with β = 0 and β > 0 corresponding to size
and power respectively. The reported results are based on 10,000 Monte Carlo replications.

We conduct a 0.05-level upper tail test for Thyb, Q and EMW ; a 0.10-level two-tailed test for BD (recall that this test
can only be run as a two-tailed test) and consider two variants of IVX: a 0.05-level upper tail test and a 0.10-level two-
tailed test, denoting these as IVX1 and IVX2 respectively. The Q tests were computed using the code provided by CY.2 To
implement EMW , we adopt their switching function so that the standard test T based on (4) is applied if a (non-consistent)
estimate of the local offset c is at least 130, while their weighted average power criterion-based test is applied otherwise,

2 The CY routines are downloadable from: http://jfe.rochester.edu/data.htm.
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using the sample statistics and long run correlation estimator specified on p. 697 of Jansson and Moreira (2006), together
with the routines provided by EMW.3 For the estimate of c we use the natural estimator from (8), −T π̂ , and when the
tandard T test is used in EMW , we follow EMW’s approach of setting the critical value to the usual value of 1.645 for
on-negative estimates of the long run correlation parameter, but to set it to 1.7 for negative estimates. In calculating the
VX1 and IVX2 tests we implemented the finite-sample correction factor outlined in Kostakis et al. (2015, p. 1516). Although
he innovations in (3) are generated without serial correlation, we do not assume knowledge of this when running the
ests (as would be the case in practical applications). For Q we set pmax =

⌊
12(T/100)1/4

⌋
, in line with the pmax setting

used in Thyb, while for IVX and EMW , long run variances are calculated using a Bartlett kernel with lag truncation
⌊
T 1/3

⌋
(BD requires no serial correlation correction).

The simulation results are shown in Figs. 2–6. Considering first the sizes of the tests across the different φ and ρxy
settings, the newly proposed Thyb test displays excellent finite sample size control across the full range of persistence and
correlation parameters, with very little deviation from nominal size, apart from some undersize for positive ρxy in the
more persistent cases. Of the existing competitor tests, BD and IVX2 also demonstrate decent size behaviour, while the
remaining tests can be badly size distorted. Specifically, EMW does not control size for explosive processes, e.g. size is
close to one for ρxy = −0.9 and close to zero for ρxy ≥ 0; also EMW displays substantial oversize for moderate and small
values of φ when ρxy > 0. On the other hand, Q is severely oversized when φ = 0 and also suffers severe undersize when
φ = 1.025 and ρxy = 0.5, and IVX1 can be badly oversized for more persistent series when ρxy is negative. That EMW does
not control size for explosive processes and Q does not control size for white noise processes is not surprising given that
these tests are not designed to be valid in such circumstances. However, the severe size distortions displayed for these
settings highlight the sensitivity of these tests to departures from the persistence assumptions under which they were
derived, and the contrast with tests such as Thyb, which offer robustness to a much broader set of persistence parameters,
is stark.

Turning attention to the power performance of the procedures, for ρxy = −0.9 (Fig. 2), we find that for the explosive
etting φ = 1.025, the correctly sized tests Thyb and IVX2 have very similar power profiles, lying only a little below those
f BD and IVX1 which are modestly oversized in this case. The power of Q is very low in comparison to the other tests
ere, while comparison with EMW is not meaningful due to it having a size close to one. In the unit root case φ = 1, EMW
ominates all other tests in terms of power; it appears that exclusion of robustness to the case of explosive predictors
ffords the EMW test the opportunity of greater power in the unit root setting. Of the other tests, Thyb is next best for
mall departures from the null while Q offers some gains over Thyb for larger β , while both of these tests offer significant
power advantages over IVX2 and BD (IVX1 is oversized and hence cannot be compared in terms of power). As the process
becomes less persistent, the power advantages of EMW are very quickly eliminated, with Thyb offering the best power
profile (of the correctly sized tests) even for φ = 0.975. For ρxy = −0.9, the overall picture is one of Thyb offering the best
power profile for all values of φ except φ = 1 where EMW dominates.

When ρxy = −0.5 (Fig. 3), similar comments apply to the explosive and unit root cases, although in the unit root
case, the power gains of EMW over Thyb are not as marked. For φ = 0.975, 0.95 and 0.875, the power profiles of EMW ,
Thyb and Q essentially coincide, and are the best performing tests for these degrees of persistence. When φ = 0.75 and
0.5, power gains of Thyb over EMW and Q are seen, the magnitude of which can be quite substantial in the φ = 0.5
case. For the white noise setting φ = 0, Thyb and EMW again coincide while Q is badly oversized and has poor power.
In the case of ρxy = 0 (Fig. 4), with the exception of the explosive case (where EMW has very low size and power), the
Thyb, EMW , Q and IVX2 tests share very similar properties (EMW offers some small power gains for the most persistent
settings), while IVX1 and BD lag behind in terms of power performance. When ρxy = 0.5 (Fig. 5), Thyb performs best for
an explosive predictor, with EMW and Q displaying considerably lower power here, while EMW offers the best power
profile for φ = 1, 0.975 and 0.95. However, as the persistence parameter decreases further, EMW first becomes oversized
(as noted above) with Thyb providing the best power of the correctly sized tests, until φ = 0 when the power profiles
of EMW and Thyb again coincide. Finally, for ρxy = 0.9 (Fig. 6), a generally more exaggerated picture of the ρxy = 0.5
results is seen, with Thyb dominant for φ = 1.025, EMW markedly best for φ = 1 and 0.975, but then EMW suffering from
oversize for smaller φ with Thyb being the best performing test of those correctly sized. Across Figs. 3–6, Thyb and EMW
arguably emerge as the tests with the best overall power profiles, with each test offering relative power advantages over
the other in different settings. However, of these two procedures, Thyb is alone in also offering reliable size control across
the full range of persistence and correlation settings.

In the Supplementary Appendix, Figures S3–S20 report results for cases where additional serial correlation is permitted
in the predictor series, with st of (2) specified as st = φst−1 + ut , ut = δut−1 + ϵxt − θϵx,t−1, with simulations conducted
for θ = ±0.5 and δ = ±0.5. We find that Thyb retains its feature of never being subject to large upward size distortions,
in contrast to Q and EMW whose sizes can vary dramatically for different combinations of φ, ρxy, δ and θ . For example, Q
can now display substantial oversize for φ = 1.025 across all values of ρxy, as well as an increased range of less persistent
φ cases, especially when ρxy > 0, while the oversize seen for EMW in Figs. 2–6 for small and moderate φ when ρxy > 0
can now extend to the φ = 0 case and sometimes become more pronounced. When the tests are approximately correctly

3 The EMW routines are downloadable from: https://www.econometricsociety.org/content/supplement-nearly-optimal-tests-when-nuisance-
parameter-present-under-null-hypothesis-0.
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Fig. 2. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9; Thyb: , Q : , BD: , IVX1: , IVX2: - - -, EMW : .

ized so that meaningful power comparisons can be made, the same broad patterns emerge as in Figs. 2–6, albeit with

ome differences in the magnitudes of the relative power gains/losses.
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Fig. 3. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5; Thyb: , Q : , BD: , IVX1: , IVX2: - - -, EMW : .

Based on our simulation results, we conclude that Thyb offers appealing size and power properties when compared

o the leading currently available testing procedures. It would be fairly naïve to believe, a priori, that any one test
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Fig. 4. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0; Thyb: , Q : , BD: , IVX1: , IVX2: - - -, EMW : .
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Fig. 5. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5; Thyb: , Q : , BD: , IVX1: , IVX2: - - -, EMW : .
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Fig. 6. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9; Thyb: , Q : , BD: , IVX1: , IVX2: - - -, EMW : .
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Table 2
Application to monthly U.S. S&P 500 returns, 1980:1–2017:12.
Predictor ρ̂xy ADFπ Thyb = Thyb BD IVX1 IVX2 Q EMW

Dividend payout ratio −0.07 − 39.84 Tcon 0.19 0.46 0.14 0.02
Earnings–price ratio −0.58 − 16.22 T ′

con 0.68 0.91 1.06 1.12
Dividend–price ratio −0.99 − 3.92 T ′

con 0.91 0.32 0.85 0.72
Dividend yield −0.04 − 4.15 Tcon 1.80** 0.76 0.96 0.93 **
Default yield spread −0.13 − 23.81 T ′

con −0.01 0.07 −0.31 0.09
Long-term yield −0.13 − 2.92 T ′

con 0.08 0.19 −0.25 0.06
Default return spread 0.24 −280.05 TN 1.98** 2.37 1.80** 3.25* ** **
Stock variance −0.36 −126.52 TN −3.19*** 12.94*** −3.32*** 11.00*** ** **
Net equity expansion 0.03 − 17.51 Tcon 0.09 0.96 0.14 0.02
Inflation rate 0.00 − 44.76 Tcon −0.41 0.29 −0.87 0.76
Treasury bill rate −0.02 − 7.87 Tcon 0.01 0.08 −0.53 0.28
Term spread −0.02 − 28.33 Tcon 0.26 0.06 0.45 0.20
Book-to-market value ratio −0.66 − 5.77 T ′

con 0.38 0.02 0.23 0.05

Notes:
The column labelled ‘‘Thyb =’’ states which of the constituent tests is selected in the hybrid test Thyb .
*Denotes rejection at the 0.10-level.
**Denotes rejection at the 0.05-level.
***Denotes rejection at the 0.01-level.

procedure would have the best finite sample size and power properties across the full constellation of settings that we
have examined, i.e. a wide spectrum of values of the persistence level in the predictive regressor and the correlation
coefficient between the innovations in the model. However, Thyb does appear to perform consistently well in terms of both
size and power across these settings, never seemingly showing a substantial weakness in either dimension, something
which appears to be rather less true of its extant competitors.

5. An empirical illustration

To illustrate the use of our proposed test in practice, we apply it, together with its competitors, to the monthly U.S.
annual equity series analysed in Welch and Goyal (2008), using updated data for the period 1980:1–2017:12 (T = 456)
hich is available at http://www.hec.unil.ch/agoyal/. Our dependent variable, yt , is the S&P 500 value-weighted log excess
eturn and for xt we consider thirteen putative predictor variables: the dividend price ratio, earnings–price ratio, dividend-
ayout ratio, dividend yield, default yield spread, long-term yield, default return spread, stock variance, net equity
xpansion, inflation rate, Treasury bill rate, term spread and the book-to-market value ratio. Detail of the construction of
hese predictors can be found in Welch and Goyal (2008). The test procedures are all applied with the same settings and
erial correlation corrections as used in Section 4. We conduct one-sided upper-tail tests for Thyb, EMW , Q and IVX1 (with
he exception of the stock variance predictor for which we apply lower-tail tests), and two-sided tests for BD and IVX2;
he tests are implemented at the 0.10, 0.05 and 0.01 significance levels for Thyb, BD, IVX1 and IVX2, and at the 0.05-level
for EMW and Q (again using the code provided by EMW and CY, respectively).

The results are presented in Table 2, along with the values of ρ̂xy and ADFπ (in this application, cvADFT = −4T 1/2
=

−85.4). There are three cases where one or more of the tests reject at the 0.10-level or above: the dividend yield, default
return spread and stock variance. For the dividend yield, only Thyb and Q reject; here ρ̂xy is close to zero so we would
expect Thyb and Q to give similar results, although interestingly none of the other tests reject, including EMW . Due to the
persistence in this predictor, as evidenced by the small value of ADFπ , Thyb is here using Tcon. In the case of the default
return spread, all tests but BD exhibit rejections, while for the stock variance all the tests reject. The values of ADFπ for
these two predictors suggest very low levels of persistence, with Thyb using TN and EMW also switching into the standard
t-test. In summary, fairly limited evidence of return predictability is found across the set of predictors considered, but it
is clear that Thyb uncovers at least as much evidence for predictability as any of its comparator tests.

6. Conclusions

We have developed new and easy-to-implement tests for predictability based on computationally simple regression
t-ratios and a switching rule based on a conventional normalised bias ADF statistic implemented with the MBIC lag
selection rule of Ng and Perron (2001). In particular, together with the standard t-ratio from the OLS regression of returns
on a constant and a lagged predictor, we have discussed a t-ratio from a variant of the standard predictive regression
where the OLS demeaned returns are regressed on the quasi-GLS demeaned lagged predictor. Where the predictor is
strongly persistent, we have proposed a feasible method for obtaining (conservative) asymptotic critical values for tests
based on each of these statistics and associated response surfaces have been provided. An analysis of the asymptotic local
power functions of the resulting (asymptotically) conservative tests in the case where the predictor is strongly persistent

showed that these vary considerably with the endogeneity correlation parameter. We consequently suggest applying
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either the conservative standard t-ratio or its quasi-GLS variant, according to the magnitude of the estimated endogeneity
correlation parameter. Where the predictor is weakly persistent the standard t-ratio compared to standard normal critical
values is optimal under Gaussianity. We therefore propose a switching testing procedure, similar in approach to that
considered in Elliott et al. (2015), whereby one of the two conservative tests is performed, as outlined above, unless the
normalised bias ADF statistic indicates that the predictor is weakly dependent, in which case we compare the standard
t-ratio with standard normal critical values. Monte Carlo simulations presented suggest that our hybrid test compares
very favourably with the leading tests for predictability in the literature, offering arguably the best trade-off of in terms
of overall finite sample size and power properties across a broad diversity of persistence and endogeneity settings.

We conclude with a suggestion for further research. Like the vast majority of the published tests in this literature we
have considered the case of a single predictor. Some published papers have considered multiple predictors simultaneously,
most notably the IV-based tests of Kostakis et al. (2015) and Breitung and Demetrescu (2015). Both of these, however,
assume that either all of the predictors are weakly persistent, or all of the predictors are strongly persistent, thereby
disallowing sets of predictors with mixed orders of persistence. The bootstrap tests of Bauer and Hamilton (2018) also
allow for multiple predictors, but again make the same assumption. Amihud et al. (2009) also allow for multiple predictors
but these must all be weakly dependent. Under the assumption of a common order of persistence, it may be possible to
generalise the approach outlined in this paper to accommodate multiple predictors. Investigating this possibility and how
well it works in practice compared to the other tests mentioned above is beyond the scope of the present paper but would
constitute an interesting topic for further research.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.01.004.
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