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Abstract In this paper, we present and compare the accuracy of two types of classi-
fiers to be used in a Brain–Computer Interface (BCI) based on the P300 waveforms 
of three post-stroke patients and six healthy subjects. Multilayer Perceptrons (MLPs) 
and Support Vector Machines (SVMs) were used for single-trial P300 discrimina-
tion in EEG signals recorded from 16 electrodes. The performance of each classifier 
was obtained using a five-fold cross-validation technique. The classification results 
reported a maximum accuracy of 91.79% and 89.68% for healthy and disabled 
subjects, respectively. This approach was compared with our previous work also 
focused on the P300 waveform classification.

Keywords P300 · Multilayered perceptron · Support vector machines · Stroke 
patients

1 Introduction

A Brain–Computer Interface (BCI) is a system that records, analyzes, and clas-
sifies brain signals to control an external device or a computer. Also, it allows 
healthy subjects or patients to communicate through brain activity [1]. The elec-
troencephalographic signals (EEG) are a suitable and common way to register and 
analyze brain signals while a subject develops different sorts of mental activities. 
Some of these, such as resting states and cognitive tasks, are specially studied for
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BCI design purposes. Different paradigms such as motor imagery (MI), oddball,
and steady-state visual evoked potential (SSVEP) [2], elicit specific potentials that
are then used to build BCI systems. Speller is one application of a BCI based on the
P300waveformwhich is commonly used as an alternative communicationway, espe-
cially for disabled people. This application uses the oddball paradigmwhich consists
of showing infrequent stimulus (targets) blended with irrelevant stimuli sequences
(non-targets). For each target, 300 ms after, the P300 waveform is elicited and can
be identified in the EEG [3]. This paradigm requires less training periods than others
[4], thereby making it a successful tool for BCI design [5].

In [5], a system for the detection of visual P300 in healthy and disabled subjects
was developed. Bayesian Linear Discriminant Analysis (BLDA) was tested for the
classification of visual P300. The best classification accuracywas on average 94.97%,
and the maximum bit rate reached for the disable subjects was 25 bits per minute.
EEG data in [6] was classified using a Backpropagation Neural Network (BPNN).
The authors achieved a score classification of 96.3% and 96.8% for disabled and
healthy subjects. The best bit rate was 21.4 and 35.9 bits per minute for disabled and
healthy subjects, respectively. A support vector machine (SVM) algorithm and one
modification of the speller (6 × 6 to 4 × 10) were proposed in [7] to classify the
P300 visual evoked potential. The data from six healthy subjects were analyzed, and
the results reported an average accuracy of 75%. In [8], it was developed a P300 BCI
system based on ordinal pattern features and Bayesian Linear Discriminant Analysis
(BLDA). Their best bit rate was 16.715 bits per minute for disabled subjects and
26.595 bits per minute for healthy subjects. A stepwise linear discriminant analysis
(SWLDA) was proposed in [9] to classify P300 waves from a 6 × 6 speller. The
results from eight healthy subjects reported an average accuracy of 92%. In [10], a
Hidden Markov Model (HMM) was used to classify EEG data of a 6 × 6 speller
reaching a classification result of 85% offline and 92.3% online.

About Smart Homes using BCI, in [11], the authors proposed a random forest
classifier for P300 classify from three subjects. The best classification accuracy for
the subjects was on average 87.5%. A 6 × 6 character speller and icon speller were
compared and their performance analyzed in [12] for nine subjects. The authors
achieved a score classification of 80% for character speller and 50% for icon speller.
A Stepwise Linear Discriminant Analysis (SWLDA) was used to classify EEG data
from one subject with Amyotrophic Lateral Sclerosis (ALS) using a 6 × 6 row–
column speller to control television in [13]. The classification accuracy was 83%.
Regarding Virtual Reality Environments (VRE), [14] proposed to control a smart
home application using different speller masks (i.e., music, tv channels, etc.) testing
with twelve subjects. Average classification accuracy of 75% was reported.

This work presents a P300-based BCI for post-stroke people and healthy people.
The output of this BCI can be used to control home appliances. The aim of this work
is to discriminate the presence of the P300 waveform in EEG from 16 channels using
Multilayer Perceptron (MLP) andSupportVectorMachine (SVM)classifiers.Results
outperformed our previous work [15]. This work is presented as follows: In Sect. 2
is presented the experimental procedure including participants, experimental setup,
and EEG acquisition. The methods are presented in Sect. 3 which describes prepro-
cessing, feature vectors, and classifiers. The results and discussion are presented in
Sect. 4. Finally, we present the conclusions and future work in Sect. 5.



Table 1 Subjects information

Subject Age Gender Diagnosis

S01 33 Male Healthy

S02 21 Male Healthy

S03 20 Male Healthy

S04 21 Male Healthy

S05 24 Male Healthy

S06 29 Male Healthy

S07 20 Male Hemorrhagic post-stroke

S08 52 Female Ischemic post-stroke

S09 55 Male Ischemic post-stroke

2 Experimental Procedure

2.1 Participants

The volunteers are grouped by healthy and disabled subjects, aged between 20 and
55. Table 1 shows the age, gender, and medical diagnosis of each volunteer. The
six healthy participants (S01 to S06) acted as the control group for the three post-
stroke patients (S07 to S09). Subject S08 exhibited limited spoken communication
and was able to perform restricted movements of his legs. Subject S07 exhibited
reduced spoken communication skills and was able to perform movements with his
extremities. Finally, subject S09 was able to perform restricted movements with his
hands and arms. The Ethics Committee from the Universidad Peruana Cayetano
Heredia issued the ethical approval for the experiment and informed written consent.
All participants that opted to participate were also informed about the academic
objective of the research, as well as ensured preservation of their anonymity.

2.2 Experimental Setup

Six images that are placed in two rows and three columns, above a white background
as shown in Fig. 1, were displayed on the screen of a computer. Each image represents
an option that provides the subject the capability to interact with another individual
or with its surroundings without speaking or moving his arms [5].

The protocol of the experiment, based on Hoffmann’s [5], is displayed in Fig. 2.
As can be seen, one image (out of six) is flashed in a random sequence during the
first 100 ms, and during the next 300 ms, as shown in Fig. 2, a white background is
displayed. This process is repeated until the completion of the six images sequence.
The group of six images randomly flashed is called one block, and one run represents



Fig. 1 Display of six images on a computer screen

Fig. 2 Stimuli timing diagram used in each experiment

the interval between 20 and 25 blocks, which are also chosen randomly in each exper-
iment. The database contains four recording sessions per subject, and each session
includes six runs. All subjects who participate in this experiment were forbidden to
talk and were told to count howmany times the image they were told to pay attention
to appear on the screen. Each session was separated by one break of 10 min, and two
sessions were performed per day.

2.3 EEG Acquisition

The EEG signals were recorded using an electroencephalograph of the brand g.tec.
Sixteen bipolar electrodes (Fz, FC1, FC2, C3, Cz, C4, CP1, CP2, P7, P3, Pz, P4, P8,
O1, O2, and Oz) were placed in accordance with the international 10/20 system in
order to record the brain signals. The ground and reference electrode were placed
at the right mastoid and at the left earlobe, respectively. Also, the EEG signals were
sampled at 2400 Hz. Figure 3 displays the experiment setup. Furthermore, the C++
programming language and MATLAB R2016a were used to analyze the EEG data.



Fig. 3 Subject in P300 speller experiments

3 Methods

3.1 Preprocessing

A six-order bandpass Butterworth filter with cut-off frequencies 1 and 15 Hz was
used to filter the EEG data after it was downsampled from 2400 to 120 Hz. For each
electrode, all data samples between 0 and 1000 ms posterior to the beginning of the
stimulus were extracted obtaining 120 samples per trial. Artifacts were eliminated
by winsorization: each channel signal under the 10th percentile and above 90th
percentile was replaced by the 10th percentile or the 90th percentile, respectively
[5]. Finally, the data was standardized.

3.2 P300 Classification

Feature Vectors and Training Matrices The feature vector construction begins
rearranging the data from a single trial. Specifically, the samples of each channel are
concatenated with the others in the following way:

V = [
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16
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]

where for a single sample Ski , i indicates the channel to which it belongs and k its
position with respect of time. The vectors obtained from all the trials present in the
four sessions of a subject are stacked shaping the training and testing matrices. Each



Fig. 4 EEG signal processing block diagram

trial, and therefore each V , has a label associated which points out the presence of a
P300 waveform in it. When that is the case, the trial is considered as target and when
not, non-target.

Since there is an uneven amount of trials target and non-target, due to the experi-
mental procedure for EEG recording, a balanced process is required before training
to avoid biasing in classification. The same number of target trials is chosen randomly
from a non-target trial pool, resulting in an even-class matrix. Two types of classi-
fiers will use these matrices for their training process: Multilayered Perceptron and
Support Vector Machine. The whole process is illustrated in Fig. 4.

Multilayered Perceptron Architecture Authors, like [16], had used neural
networks to discriminate the presence of ERPs in EEG signals. Multilayer Percep-
trons (MLPs) are neural nets that can be described as function approximators [17].
Multiple parameters, like weights and biases, are adjusted in the training stage trying
to match known outputs (target or non-target) with specific inputs (trials data). This
process results in a model able to predict the class or label of future new inputs with
similar characteristics.

The number of inputs, hidden layers, outputs, and total neurons defines MLP
architecture. Modifying these can completely change its behavior and could also
affect its capacity to find patterns and learn from them [18]. The architecture proposed
here for P300 discrimination consists of a net with four hidden layers of 60, 40, 30,
and 20 neurons on each, respectively. Each neuron has a hyperbolic tangent sigmoid
as its activation function, except for the output one, which is a logistic sigmoid.

Support Vector Machine It is a machine learning algorithm for binary classifica-
tion. The idea behind its classification criteria is the construction of a decision hyper-
plane in a high dimensional feature space were input vectors are mapped [19]. This
decision boundary can be linear or nonlinear depending on the kernel employed, and
it has a direct impact on themodel generalization or learning capability.AnSVMwith
a Gaussian or radial basis function (RBF) kernel is trained for P300 discrimination
in EEG signals.

Classifiers Training and Validation The classification accuracy of each classifier is
obtained after fivefold cross-validation. For the MLPs, the inputs were renormalized
from −1 to 1 before these enter the net. In each subject training stage, the number
of epochs used was defined trying to achieve the net full convergence. All subjects



required only 150 epochs except for subjects S03, S04, and S07, which required
300, 2000 and 2500 epochs, respectively. The algorithm used in the MLPs training
process was the scaled conjugate gradient backpropagation. The training stage for
each MLP took approximately three minutes using an Nvidia GTX 1050 Graphics
Processing Unit (GPU) for the calculations; and for the SVM classifiers, it took less
than one minute in an Intel Core i7 CPU.

4 Results and Discussions

In this section, we compare the performance of the classifiers for all the subjects.
Table 2 presents the classification accuracy of the two classifiers in the training and
testing stage. It also highlights which of the two classifiers obtained higher results
in testing for a single subject. Overall, the performance of each healthy subject was
similar and above 80% with the exception of S04. Clearly, the MLP model achieved
a higher precision in classification over the SVM one. Nonetheless, both classifiers
can be used for the design of a P300 based BCI.

The performance of patients S08 and S09 was similar and even better than most
healthy subjects. The P300 waveform in subjects S01 and S08 was apparently easily
recognized by the MLP yielding the highest accuracies in classification. However,
patient S07 performance was the lowest in comparison with the rest. A possible
explanation for this is the patient critical condition (hemorrhagic stroke). Our results
show that patients who had suffered ischemic strokes are able to use a BCI based on
the P300 paradigm as their average classification accuracy is greater than 80%. In
comparisonwith our previouswork [15], both classifiers presentedhere outperformed
the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) ensemble for the healthy
subjects (S01, S02, S03, and S06) and post-stroke patients (S08 and S09).

Table 2 Cross-validated classifiers accuracy

Subject MLP RBF SVM

Training (%) Testing (%) Training (%) Testing (%)

S01 100 91.79 99.06 91.51

S02 100 80.28 97.27 79.07

S03 100 85.32 97.05 83.90

S04 100 75.70 95.18 78.89

S05 100 84.94 97.60 83.40

S06 100 83.00 97.56 81.65

S07 100 68.73 92.82 69.21

S08 100 89.68 97.68 85.46

S09 100 86.98 98.16 87.43

Bold indicates the two classifiers obtained a higher classification accuracy for a specific subject



5 Conclusions and Future Work

A comparison between the SVM and MLP classifiers for P300 discrimination in
EEG signals was presented. Both obtained significant results for the two types of
subjects present in this study. Patients who had suffered an ischemic stroke seem to
be suitable users of a P300-based BCI since their performances were similar to the
healthy ones. However, patients with more critical conditions, like the one who had
experienced a hemorrhagic stroke, may require another type of classifier with more
learning capabilities or a longer training period.

As future work, we intend to validate these classifiers with more post-stroke
patients and include amyotrophic lateral sclerosis (ALS) ones.Wewill also extend the
methodology presented in this work by employing deep learning tools and extreme
learning machine algorithms.
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