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Abstract  Moving average (MA) is a time series model 
often used for pattern forecasting and recognition. It 
contains a noise that is often assumed to have a Gaussian 
distribution. However, in various applications, noise often 
does not have this distribution. This paper suggests using 
Laplacian noise in the MA model, instead. The comparison 
of Gaussian and Laplacian noises was also investigated to 
ascertain the right noise for the model. Moreover, the 
Bayesian method was used to estimate the parameters, such 
as the order and coefficient of the model, as well as noise 
variance. The posterior distribution has a complex form 
because the parameters are concerened with the 
combination of spaces of different dimensions. Therefore, 
to overcome this problem, the Markov Chain Monte Carlo 
(MCMC) reversible jump algorithm is adopted. A 
simulation study was conducted to evaluate its 
performance. After it has worked properly, it was applied 
to model human heart rate data. The results showed that the 
MCMC algorithm can estimate the parameters of the MA 
model. This was developed using Laplace distributed noise. 
Moreover, when compared with the Gaussian, the 
Laplacian noise resulted in a higher order model and 
produced a smaller variance. 

Keywords  Bayesian, Laplacian, Moving Average, 
Reversible Jump MCMC 

1. Introduction
Moving average (MA) is often used to model data in 

various fields of life. Studies on its application is seen in 
several literatures, such as [1], [2], [3], [4], and [5]. In fact, 
Reghunath et al. in [1] used MA to analyze water resource 
data. The model was used to determine the long-term 
trends in groundwater fluctuations. To eliminate seasonal 
effects on this fluctuation, the 12th order MA was used to 
model water source data. Furthermore, Akrami et al. in [2] 
used it to analyze rainfall data. To observe long and 
short-term trends, several MA models with different 
orders were examined. Silva de Souza et al. in [4] used it 
for profitability checks in technical analysis on the stock 
market. An automated trading system was developed 
based on moving averages from previous prices. 
Meanwhile, Gautam and Abhishekh in [5] used the model 
to analyze the data of fuzzy time series by reducing 
fluctuations. 

Researchers like in [6] and [7] used the Gaussian 
distributed noise. Meanwhile, Middleton et al. in [6] used 
the type that contained Gaussian to model the noise 
channel. Safi in [7] examined the heteroscedastic 
autocorrelation function of residue in MA. Therefore, in 
determining this functions, the model was assumed to 
have Gaussian noise. 

In various applications, mathematical models often 
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have non-Gaussian noise, such as [8], [9], [10], and [11]. 
Jureckova et. al. in [8] examined non-parametric tests in 
linear autoregressive models that use Pareto noise. Also, 
Zhang in [9] examined the autoregressive type that uses 
G-GARCH as noise. Suparman in [10] developed a 
stationary model that has exponentially distributed noise. 
In addition, an inversible moving range type was 
developed, which has exponentially distributed noise. In 
this autoregressive and moving average model, the order 
is assumed to be unknown, hence the posterior 
distribution has a complicated shape. To determine the 
Bayesian estimator, the research adopted the MCMC 
reversible jump algorithm. 

Conversely, Laplace distributed noise was also 
investigated by several researchers, such as [12] and [13]. 
Minchole et. al. in [12] detected that changes in body 
position from the ECG use Laplacian noise. Also, 
Miertoiu and Dumitrescu in [13] investigated the signal 
representation that rarely uses Laplacian noise. 

However, MA with Laplacian has not been studied. 
Therefore, this research proposed the development of the 
model with Laplacian, which is then used for the human 
heart rate data. The Laplacian was also compared with 
Gaussian to determine the effect of noise on MA models. 

2. Background and Methodology 
The Bayesian method was used to estimate the MA 

model parameters, such as its order, coefficients, and 
noise. In this method, the parameters were treated as 
random variables that are assumed to have a certain 
distribution, known as "prior." This was combined with 
the likelihood function for data, which produced a 
posterior distribution. In this case, the order of the MA 
model is also a parameter. Therefore, the shape of 
posterior distribution becomes very complex, which 
makes it difficult to explicitly determine the Bayes 
estimator. To determine this, the Markov chain Monte 
Carlo (MCMC) reversible jump algorithm was adopted 
[14]. The basic idea of this was to create a Markov chain. 
This chain was designed, hence its limit distribution 
approached the posterior for the parameters. Also, the 
algorithm uses 3 transformations, such as birth and death 
of the order, as well as coefficient change. The 
performance of this algorithm was evaluated using 
simulation studies and it was applied to model human 
heart rate data.  

3. Result and Discussion 
This section explained the functions of data, posterior 

and prior distribution, as well as MCMC reversible jump 
in determining Bayes estimators. 

3.1. Likelihood Function 

For example, 𝑥1, … , 𝑥𝑛 are data and n is the amount. 

Therefore, it is said to be modeled by the 𝑞𝑞 order MA, 
written as 𝑀𝐴(𝑞𝑞), when it satisfies the equation 

𝑥𝑡 = 𝑧𝑡 + ∑ 𝜃𝑗𝑧𝑡−𝑗
𝑞
𝑗=1              (1) 

The magnitudes of 𝜃1, … ,𝜃𝑞 express the coefficients 
of the 𝑀𝐴(𝑞𝑞)  model. Meanwhile, the variables of 
𝑧𝑡 (𝑡 = 1, … . ,𝑛) express noise. This was assumed to be a 
Laplace distribution with 𝛽  parameter. Therefore, the 
probability function for 𝑧𝑡 is written as follows 

𝑔(𝑧𝑡|𝛽) = 1
2β

 𝑒𝑥𝑝 − |𝑧𝑡|
𝛽

           (2) 

Furthermore, the probability function for 𝑥𝑡  can be 
determined using the variable transformation between 𝑥𝑡 
and 𝑧𝑡. The function of 𝑥𝑡 can be stated as follows 

𝑔(𝑥𝑡|𝛽) = 1
2β

 𝑒𝑥𝑝 −
�∑ 𝜃𝑗𝑧𝑡−𝑗
𝑞
𝑗=1 +𝑧𝑡�

𝛽
       (3) 

For example, 𝑥 = (𝑥1, … , 𝑥𝑛) and 𝜃(𝑞) = �𝜃1, … ,𝜃𝑞�. 
Hence, the function can be stated as follows 

𝑓�𝑥�𝑞𝑞,𝜃(𝑞),𝛽� = �
1
2β

 𝑒𝑥𝑝 −
�∑ 𝜃𝑗𝑧𝑡−𝑗

𝑞
𝑗=1 + 𝑧𝑡�

𝛽

𝑛

𝑡=𝑞+1
 

= � 1
2β
�
𝑛−𝑞

𝑒𝑥𝑝 − 1
𝛽
∑ �∑ 𝜃𝑗𝑧𝑡−𝑗

𝑞
𝑗=1 + 𝑧𝑡�𝑛

𝑡=𝑞+1     (4) 

The amount of 𝑧𝑡  is calculated using the following 
equation 

𝑧𝑡 = 𝑥𝑡 − ∑ 𝜃𝑗𝑧𝑡−𝑗
𝑞
𝑗=1            (5) 

for 𝑡 = 𝑞𝑞 + 1, … ,𝑛 and 𝑧𝑡 = 0 for t = 1, 2, … ,q. 
The 𝑀𝐴(𝑞𝑞) model is inversible when the coefficients 

of 𝜃1, … ,𝜃𝑞 fulfill the 𝐼𝑞 inversibility area where 

𝐼𝑞 = �𝜃(𝑞) ∈ 𝑅𝑞�1 + 𝜃1𝑎 + 𝜃2𝑎2 + ⋯+ 𝜃𝑞𝑎𝑞 ≠ 0, |𝑎| ≤ 1� 

For large order values, the area is very difficult to 
identify. Therefore, a transformation is needed to 
overcome this problem. For example, 𝜌1,𝜌2,⋯ ,𝜌𝑞 
express the inverse partial autocorrelation functions that 
correspond to the 𝑀𝐴(𝑞𝑞) model. 𝐺 is a transformation 
from �θ1, … , θq� ∈ 𝐼𝑞  to �𝜌1,𝜌2,⋯ ,𝜌𝑞� ∈ (−1,1)𝑞 
where 𝐼𝑞  is the inversibility area [15]. Therefore, this 
transformation can easily be used to identify areas of 
inversibility even for large orders. The 𝑀𝐴(𝑞𝑞) model is 
inversible only when� 𝜌1,𝜌2,⋯ ,𝜌𝑞� ∈ (−1,1)𝑞 .Also, the 
function for 𝑥 can be rewritten as follows 

𝑓�𝑥�𝑞𝑞,𝜃(𝑞),𝛽� = ∏ 1
2β

 𝑒𝑥𝑝 −
�∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗
𝑞
𝑗=1 +𝑧𝑡�

𝛽
𝑛
𝑡=𝑞+1 =

� 1
2β
�
𝑛−𝑞

𝑒𝑥𝑝 − 1
𝛽
∑ �∑ 𝐺−1(𝜌𝑗)𝑧𝑡−𝑗

𝑞
𝑗=1 + 𝑧𝑡�𝑛

𝑡=𝑞+1     (6) 

where 𝐺−1 is the inverse transformation of 𝐺. 

3.2. Prior Distribution 

The MA parameter is seen as a variable with prior 
distribution. The distribution for this model order is 
binomial with 𝑞𝑞𝑚𝑎𝑥 and 𝜆 parameters. 
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𝜋(𝑞𝑞|𝜆) = 𝐶𝑞
𝑞𝑚𝑎𝑥𝜆𝑞(1 − 𝜆)𝑞𝑚𝑎𝑥−𝑞       (7) 

The value of 𝑞𝑞𝑚𝑎𝑥 is limited to order 10. Meanwhile, 
the binomial distribution was chosen because it is a 
conjugate. It means that if the beta distribution is used as a 
prior, a posterior of binomial likelihood will also be the 
beta distribution. For example, 𝜌(𝑞) = �𝜌1,𝜌2,⋯ ,𝜌𝑞�. The 
prior or 𝜌(𝑞) given the value of order 𝑞𝑞  is a uniform 
distribution at intervals (−1, 1)𝑞 

𝜋�𝜌(𝑞)�𝑞𝑞� = 1
2𝑞

                (8) 

Finally, the prior distribution for 𝛽  is the Gamma 
inverse with parameters 𝑢 and 𝜈 

𝜋(𝛽|𝑢, 𝜈) = 𝜈𝑢

Γ(𝑢)
𝛽−(𝑢+1)𝑒𝑥𝑝 − 𝑣

𝛽
       (9) 

where the value of 𝑢  is set to egual 1. The prior 
distribution for MA model order contains hyperparameter 
𝜆 and that for 𝛽 contains 𝑣. The hyperprior distribution 
for 𝜆  is uniform at intervals (0.1). Meanwhile, 𝑣  is of 
Jeffreys 𝜋(𝜈) ∝ 1

𝜈
. Therefore, the combined distribution of 

prior and hyperprior can be written as follows 

𝜋�𝑞𝑞,𝜌(𝑞), 𝜆,𝛽, 𝑣�= 
= 𝐶𝑞

𝑞𝑚𝑎𝑥𝜆𝑞(1 − 𝜆)𝑞𝑚𝑎𝑥−𝑞 1
2𝑞

 𝜈
𝑢

Γ(𝑢)
𝛽−(𝑢+1)𝑒𝑥𝑝 − 𝑣

𝛽
1
𝜈
 (10) 

3.3. Posterior Distribution 

By using the Bayes theorem, the posterior distribution 
for �𝑞𝑞,𝜌(𝑞), 𝜆,𝛽, 𝑣� can be stated as follows 

𝜋�𝑞𝑞,𝜌(𝑞), 𝜆,𝛽, 𝑣�𝑥� = 

=  �
1
2β�

𝑛−𝑞

𝑒𝑥𝑝 −
1
𝛽� �� 𝐺−1�𝜌𝑗�𝑧𝑡−𝑗

𝑞

𝑗=1
+ 𝑥𝑡�

𝑛

𝑡=𝑞+1
 

𝐶𝑞
𝑞𝜆𝑞(1 − 𝜆)𝑞𝑚𝑎𝑥−𝑞

1
2𝑞

 
𝜈𝑢

Γ(𝑢)𝛽
−(𝑢+1)𝑒𝑥𝑝 −

𝑣
𝛽

1
𝜈

 

= �
1
2�

𝑛−𝑞

�
1
β�

𝑛−𝑞−1

𝑒𝑥𝑝 

−
1
𝛽
� �� 𝐺−1�𝜌𝑗�𝑧𝑡−𝑗

𝑞

𝑖=1
+ 𝑥𝑡�

𝑛

𝑡=𝑞+1
 

𝐶𝑞
𝑞𝑚𝑎𝑥𝜆𝑞(1 − 𝜆)𝑞𝑚𝑎𝑥−𝑞 1

2𝑞
 𝜈
𝑢−1

Γ(𝑢)
𝛽−(𝑢+1)𝑒𝑥𝑝 − 𝑣

𝛽
  (11) 

Parameter space is a combination of those with different 
dimensions. This makes it difficult to analytically 
determine the Bayes estimator. Therefore, the MCMC 
reversible jump algorithm was used to achieve this. 

3.4. Reversible Jump MCMC 

Simulation of posterior distribution for parameters was 
performed in 2 stages, which are conditional simulation 
for(𝜆,𝛽, 𝑣) when given �𝑞𝑞,𝜌(𝑞)� and for �𝑞𝑞,𝜌(𝑞)� when 
given (𝜆,𝛽, 𝑣). Meanwhile, the conditional distribution for 
(𝜆,𝛽, 𝑣) when given �𝑞𝑞,𝜌(𝑞)� is a multiplication results 
of the Gamma inversion, Binomial, and the Gamma 

distribution. Therefore, the conditional simulation 
for (𝜆,𝛽, 𝑣)  when given �𝑞𝑞,𝜌(𝑞)�  can be performed as 
follows: 

𝛽 ∼  𝐼𝐺 �𝑛 − 𝑞𝑞,𝑣 + � �� 𝐺−1�𝜌𝑗�𝑧𝑡−𝑖
𝑞

𝑖=1
+ 𝑥𝑡�

𝑛

𝑡=𝑞+1
�,  

𝜆 ∼ 𝐵(𝑞𝑞 + 1, 𝑞𝑞𝑚𝑎𝑥 − 𝑞𝑞 + 1), 𝜐 ∼ 𝐺(𝑢,
1
𝛽) 

However, conditional distribution for �𝑞𝑞,𝜌(𝑞)�  with 
(𝜆,𝛽, 𝑣) has a complex form. Therefore, the simulation 
for �𝑞𝑞,𝜌(𝑞)� with (𝜆,𝛽, 𝑣)  is performed using the 
MCMC algorithm. This uses 3 types of transformation, 
such as coefficient change, birth, and death of the order 
[10]. 

3.4.1. Coefficient Change 

For example, 𝑤 = �𝑞𝑞,𝜌(𝑞)� is the old Markov Chain 
and 𝑤∗ = �𝑞𝑞∗,𝜌∗(𝑞∗)�  is the new. The change in the 
coefficient of MA model does not alter the order value. 
Meanwhile, the alteration from 𝑤 to 𝑤∗ was performed 
in two steps. Firstly, value 𝑞𝑞∗ =q was taken, secondly, 
𝑖 ∈ {1, … , 𝑞𝑞}  was chosen and 𝜌𝑖∗ = 𝑏  where 
𝑏~𝑈(−1,1)  were defined. The ratio between the 
likelihood function 𝑓(𝑥|𝑤∗) and 𝑓(𝑥|𝑤) can be stated as 
follows: 

𝑓(𝑥|𝑤∗)
𝑓(𝑥|𝑤)

=
𝑒𝑥𝑝−1𝛽∑ �∑ 𝐺−1(𝜌𝑖

∗)𝑧𝑡−𝑖
𝑞
𝑖=1 +𝑥𝑡�𝑛

𝑡=𝑞+1

𝑒𝑥𝑝−1𝛽∑ �∑ 𝐺−1(𝜌𝑖)𝑧𝑡−𝑖
𝑞
𝑖=1 +𝑥𝑡�𝑛

𝑡=𝑞+1
   (12) 

The ratio between prior distribution for 𝑞𝑞∗ and for 𝑞𝑞 is 
𝜋(𝑞∗)
𝜋(𝑞)

= 1. Meanwhile, the ratio between conditional prior 
for 𝜌∗ when given 𝑞𝑞∗  and conditional prior distribution 
for 𝜌  with 𝑞𝑞  is 𝜋(𝜌∗|𝑞∗)

𝜋(𝜌|𝑞)
= 1.  Also, the ratio between 

instrument distribution 𝑞𝑞(𝑤∗,𝑤)  and 𝑞𝑞(𝑤,𝑤∗) is: 

𝑞(𝑤∗,𝑤)
𝑞(𝑤,𝑤∗)

= �(1+𝑢𝑖)(1−𝑢𝑖)
(1+𝑟𝑖)(1−𝑟𝑖)

�
1/2

            (13) 

𝛼𝑐(𝑤,𝑤∗)  is the acceptance probability for the 
coefficient change, which is written as follows: 

𝛼𝑐(𝑤,𝑤∗) = 𝑚𝑖𝑛 �1, 𝑓(𝑥|𝑤∗)
𝑓(𝑥|𝑤)

𝑞(𝑤∗,𝑤)
𝑞(𝑤,𝑤∗)

�     (14) 

3.4.2. Birth of the order 

For example, 𝑤 = �𝑞𝑞,𝜌(𝑞)� is the old Markov chain 
and 𝑤∗ = �𝑞𝑞∗,𝜌∗(𝑞∗)� is the new. The birth of MA alters 
the order and coefficient value of the model. Meanwhile, 
change from 𝑤  to 𝑤∗  was performed in two steps. 
Firstly, 𝑞𝑞∗ = 𝑞𝑞 + 1  was taken, secondly, 𝑤∗ = (𝑤, 𝑏) 
where 𝑏~𝑈(−1,1) was defined. The ratio between the 
function 𝑓(𝑥|𝑤∗) and 𝑓(𝑥|𝑤) can be stated as follows: 

𝑓(𝑥|𝑞∗,𝜌∗)
𝑓(𝑥|𝑞,𝜌)

=
𝑒𝑥𝑝−1𝛽∑ �∑ 𝐺−1(𝜌𝑖

∗)𝑧𝑡−𝑖
𝑞
𝑖=1 +𝑥𝑡�𝑛

𝑡=𝑞+1

𝑒𝑥𝑝−1𝛽∑ �∑ 𝐺−1(𝜌𝑖)𝑧𝑡−𝑖
𝑞
𝑖=1 +𝑥𝑡�𝑛

𝑡=𝑞+1
� 1
2β
�   (15) 

The ratio between the prior distribution for 𝜌∗ and p 
for 𝑞𝑞 is 
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𝜋(𝑞∗)
𝜋(𝑞)

= 𝑞𝑚𝑎𝑥−𝑞
𝑞+1

𝜆
1−𝜆

               (16) 

Also, the ratio between conditional prior distribution for 
𝜌∗ when given 𝑞𝑞∗ , and for 𝜌 with 𝑞𝑞 is 𝜋(𝑞∗)

𝜋(𝑞)
= 1. This 

can be written as: 
𝜋(𝜌∗|𝑞∗)
𝜋(𝜌|𝑞)

= 1
2
              (17) 

The ratio between the distribution of the instrument 
𝑞𝑞(𝑤∗,𝑤) and 𝑞𝑞(𝑤,𝑤∗) depending on the value of when 
𝑎 < 0 is: 

𝑞(𝑤∗,𝑤)
𝑞(𝑤,𝑤∗)

= 1
𝑢+1

                (18) 

Meanwhile, when 𝑎 > 0 , the ratio between the 
distribution of instrument 𝑞𝑞(𝑤∗,𝑤) and 𝑞𝑞(𝑤,𝑤∗) is: 

𝑞(𝑤∗,𝑤)
𝑞(𝑤,𝑤∗)

= 1
1−𝑢

             (19) 

𝛼𝑏(𝑤,𝑤∗)  is the acceptance probability for birth of 
order, which can be written as follows: 

𝛼𝑏(𝑤,𝑤∗) = 𝑚𝑖𝑛 �1, 𝑓(𝑥|𝑞∗,𝜌∗)
𝑓(𝑥|𝑞,𝜌)

𝜋(𝑞∗)
𝜋(𝑞)

𝜋(𝜌∗|𝑞∗)
𝜋(𝜌|𝑞)

𝑞(𝑤∗,𝑤)
𝑞(𝑤,𝑤∗)

�   (20) 

3.4.3. Death of Order 
The death of the MA model order was different from the 

transformation. For example, 𝑤 = �𝑞𝑞 + 1,𝜌(𝑞+1)�  is the 
old markov chain and 𝑤∗ = (𝑞𝑞,𝜌𝑞) is the new. The birth 
changes the order and coefficient value of the model. Also, 
alterations from 𝑤 to 𝑤∗ are made in two steps. Firstly, 
𝑞𝑞∗ = 𝑞𝑞 was taken, and secondly, 𝑤∗ = 𝑤 ∖ �𝜌𝑞+1� was 
defined. 𝛼𝑑(𝑤,𝑤∗) is the acceptance probability for the 
death of the order, which can be written as follows: 

𝛼𝑑(𝑤,𝑤∗) = 𝑚𝑖𝑛 �1, 1
𝛼𝑏(𝑤,𝑤∗)

�         (21) 

3.5. Simulation 

The performance of MCMC reversible jump algorithm 
was tested using simulation study. This addresses two MA 
models. The first assumes that noise is Laplacian 
distributed. Meanwhile, the second model assumes that 
noise is Gaussian. 

3.5.1. Laplacian Noise 

For the first simulation, 250 synthesis time series were 
made according to equation (1) with Laplacian distributed 
noise. This was given in equation (2). Meanwhile, the MA 
model parameters are stated in Table 1. The maximum 
order is limited to order 10, 𝑞𝑞𝑚𝑎𝑘𝑠 = 10. 

Table 1.  Synthesis time series parameter (Laplacian noise case) 

𝑞𝑞 (𝜃1,𝜃2, 𝜃3) 𝛽 

3 (0.57,−0.55,−0.99) 2 

The resulting time series is presented in Figure 1. 

 

Figure 1.  Synthesis time series (Laplacian noise case) 

Furthermore, the parameters were estimated based on 
the synthesis time series. The MCMC reversible jump 
algorithm was used to estimate the parameters. Also, it 
was run in 20,000 iterations with a burn-in period of 5000. 
The histogram for the order is presented in Figure 2. 

 

Figure 2.  Histogram for order q (Laplacian noise case for synthesis time 
series) 

Figure 2 showed that the maximum frequency was 
reached in order 3. Therefore, the estimator for 𝑞𝑞  is 
𝑞𝑞� = 3. Given 𝑞𝑞� = 3, the results of the model coefficients 
are presented in Table 2.  

Table 2.  Estimation results of MA parameters (𝑞𝑞� = 3) 

𝑞𝑞� �𝜃�1,𝜃�2,𝜃�3� 𝛽̂ 

3 (0.59,−0.51,−0.93)  2.56 

Comparing Table 1 and 2, the estimated values of the 
parameters are close to the actual values. The simulation 
showed that the algorithm can estimate the parameters that 
have Laplacian distributed noise. 

3.5.2. Gaussian Noise 
For the second simulation, 250 synthesis time series 

were made according to equation (1) but the noise is 
Gaussian distributed, which is obtained by the following 
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equation: 

𝑔(𝑧𝑡|𝛽) =
1

√2𝜋𝜎2
 𝑒𝑥𝑝 −

1
2𝜎2

𝑧𝑡2 

The MA model parameters are shown in Table 3. As in 
the first simulation, the order is limited to order 10, 
𝑞𝑞𝑚𝑎𝑘𝑠 = 10. 

Table 3.  The synthesis time series parameter (Gaussian noise case) 

𝑞𝑞 (𝜃1, 𝜃2) 𝜎 

2 (−1,53, 0.57)  4 

The resulting time series is presented in Figure 3. 

 

Figure 3.  Synthesis time series (Gaussian noise case) 

Furthermore, the parameters are also estimated based 
on the synthesis time series. The MCMC was also used to 
estimate the parameters. As in the first simulation, the 
algorithm was also run in 20,000 iterations with a burn-in 
period of 5000. The histogram for the order is presented in 
Figure 4. 

 
Figure 4.  Histogram for order q (Gaussian noise case for synthesis time 
series) 

 
 

Figure 4 showed that the maximum frequency was 
reached in order 2. Therefore, the estimator for 𝑞𝑞  is 
𝑞𝑞� = 2. Given 𝑞𝑞� = 2, the results of the model coefficients 
are presented in Table 4. 

Table 4.  Estimation results of MA model parameters (𝑞𝑞� = 2) 

𝑞𝑞� �𝜃�1, 𝜃�2� 𝜎� 

2 (0.55,−0.59)  5.08 

As in the first simulation, comparing the Table 3 and 4, 
the estimated values of the parameters are close to the 
actual. This simulation study showed that the MCMC 
algorithm can estimate the parameters of the MA model 
that have Gaussian distributed noise. 

3.6. Heart Rate Data 

Heart rate is the number of cardiac cycles per minute. 
The heart is an organ that responds in the same manner as 
other excitable tissues. In fact, it hypertrophy and 
becomes stronger when a person exercises. In the absence 
of exercise, this organ continues to pump blood 
throughout the body to facilitate tissue repair and recovery. 
Studies on heart rate can be found in a variety of 
literatures, such as [16] and [17], and [18].  

In this paper, the authors use MA to model human heart 
rate data. The number of beats per minute was recorded 
for 100 minutes. The recording data are presented in 
Figure 5.  

 

Figure 5.  Heart rate data 

3.6.1. Laplacian Noise 
In this first case, this rate was modeled by MA with 

Laplacian distributed noise. Meanwhile, the MCMC 
algorithm was implemented to estimate the parameters 
with Laplacian noise. The algorithm was run in 100000 
iterations with a burn-in period of 10000. Figure 6 showed 
a histogram for the order. 
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Figure 6.  Histogram for order q (Laplacian noise case for heart rate 
data) 

Figure 6 showed that the maximum frequency was 
reached in order 10. Therefore, the estimator for 𝑞𝑞 is 
𝑞𝑞� = 10. Given q = 2, the results of the model coefficients 
are presented in Table 5. 

Table 5.  Estimation results of MA parameters (𝑞𝑞� = 10) 

𝑞𝑞� �𝜃�1,𝜃�2,𝜃�3. 𝜃�4,𝜃�5, 𝜃�6,𝜃�7, 𝜃�8,𝜃�9,𝜃�10� 𝛽̂ 

10 (1.88, 2.65, 3.20, 3.38, 3.26, 2.84, 2.2, 1.49. 0.8, 0.27)  7.897 

3.6.2. Gaussian Noise 
In this second case, the rate was modeled with the 

Gaussian distributed noise. The MCMC was implemented 
to estimate the parameters. Furthermore, the algorithm 
was run in 100000 iterations with a burn-in period of 
10000. Figure 6 showed a histogram for the order.  

 

Figure 7.  Histogram for order q (Gaussian noise case for heart rate data) 

Figure 7 showed that the maximum frequency was 
reached in order 10. Therefore, the estimator for 𝑞𝑞 is 
𝑞𝑞� = 7. Given 𝑞𝑞� = 7, the results of the model coefficient 
are presented in Table 6. 

Table 6.  Estimation results of MA parameters (𝑞𝑞� = 7) 

𝑞𝑞� �𝜃�1, 𝜃�2,𝜃�3. 𝜃�4,𝜃�5,𝜃�6, 𝜃�7� 𝛽̂ 

7 (1.51, 1.86, 1.97, 1.76, 1.38, 0.85, 0.36)  166.02 

When the model with Laplacian noise was compared to 
the MA with Gaussian, the Laplacian noise resulted in a 
higher order model. Conversely, it produced a model with 
smaller noise variance. 

As in [19], research related to the MA model can be 
extended into a piecewise constant MA model. The MA 
model is a special case of the piecewise constant MA 
model when the number of MA models is only one. 

4. Conclusions 
This research resulted in the development of MA, 

which is the model with Laplacian noise. Also, the 
Bayesian approach was used to estimate the model, and 
the order was assumed as a parameter. Furthermore, the 
MCMC reversible Jump algorithm was applied to 
generate a Markov chain. This chain was designed, and 
the limit distribution approached the posterior for the 
parameter. This was then used to determine the Bayes 
estimator. 

Simulation study showed that the MCMC algorithm can 
estimate the order and coefficient of the MA model, and 
noise variance. Also, the human heart rate was modeled 
by MA with Gaussian and Laplacian noises. This was 
implemented to ascertain a suitable MA for the heart rate. 
Laplacian noise produced a model that has a higher order 
than Gaussian noise. The advantage of this is that those 
with Laplacian has a smaller noise variance than a model 
with Gaussian. 
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