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Abstract

The k -means data clustering algorithm, whilst widely popular, is not

without its drawbacks. In this work, we are particularly interested in the

sensitivity of k -means to its initialisation, in the form of a set of initial cen-

troids. Since the cluster recovery performance of k -means can potentially be

improved by better initialisation, numerous algorithms have been proposed

with the intention of producing better initial centroids. However, despite

several decades since k -means was first formalised, it is still unclear which

initialisation algorithm should be used in any particular clustering scenario.

With this in mind, we empirically compare 17 published k -means initialisa-

tion algorithms by running them against 6,000 synthetic and 28 real-world

data sets. The synthetic data sets were produced under many different

configurations, allowing us to explore how each algorithm performs in each

scenario. Hence, the results of our experiments may be particularly useful

for those considering k -means for a non-trivial clustering scenario.

This work also introduces a new set of software libraries originally de-

veloped for use as part of our experiments, including implementations of

the k -means initialisation algorithms covered in this work, along with data

cleaning and data generation tools. These tools are made freely available to

the wider community under a permissive open source licence. This is done

in part to make sure that the research presented is replicable, but also in

the hope that the research and results shared here may be of value to future

researchers and developers in the field. As with all open source projects,

contributions from the wider community are invited.

It is intended that the research should be placed in its historical context,

and so we conduct an extensive literature review, including an overview

of previous comparable surveys, followed by more detailed coverage of the

specific algorithms included in our survey as described in the respective

original literature.
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1 Introduction

1.1 Data clustering

Data clustering is an important and extensively-studied technique in the

fields of exploratory data analysis, data mining and pattern recognition.

It comprises data-driven algorithms capable of partitioning unlabelled data

into meaningful groups, each composed of similar entities. Such algorithms

are widely used to address practical problems in various areas of research

such as business, medicine, geographical information systems and many

more [1, 2, 3, 4].

The main aim of any clustering algorithm is to partition a data set with

points {x1, x2, ..., xN} in the V -dimensional space RV [5] into K clusters

S = {S1, S2, ..., SK}, so that each cluster is composed of homogeneous data

points. Homogeneity in this case is typically defined with the help of a

similarity or dissimilarity measure (for details, see Section 1.2). There has

been a considerable amount of research effort in data clustering, leading to

many algorithms applying different strategies to partition a given data set.

We direct interested readers to the many surveys such as [6, 7, 8] and the

references therein.

Data clustering algorithms can broadly be categorised into three main

classes: partitional, hierarchical, and density-based. In their original form,

partitional clustering algorithms identify K clusters in a data set, so that

each data point is assigned to exactly one cluster and no data point is left

unassigned. In this way, the intersection of any two clusters Si, Sj ∈ S

with i 6= j is empty, and clusters can be described as exclusive. Versions of

these algorithms have been developed using fuzzy logic so that a data point

belongs to each of the K clusters with different degrees of membership,

typically between 0 and 1, in total summing to 1 [9].

Hierarchical clustering algorithms identify more than one cluster along

with the tree-like relationship that exists between them. In other words,

clusters may be nested within other clusters. The usual approaches are

top-down (divisive) and bottom-up (agglomerative).

Density-based clustering algorithms define clusters as contiguous areas
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of higher density separated by contiguous areas of lower density. This ap-

proach is particularly suited to data containing outliers—data points differ-

ing greatly from others in the data set—or noise [4]. The density of an area,

or density thresholds, can be calculated in a number of ways, as can the

distance between clusters, and indeed the interpoint distance (for details see

[10, 11], and references therein).

A further dichotomy that can be made is that clustering can be described

as complete or partial [4]. In a complete clustering, every data point is

assigned to a cluster. By contrast in partial clustering this may not be the

case, and data points may remain unassigned. This approach is suited to

scenarios where it cannot be assumed that every data point belongs to a

meaningful group and therefore may, as with density-based clustering, may

also be suited to data containing outliers, for example.

The selection of which clustering approach to employ is not necessar-

ily straightforward. Indeed, the definition of what constitutes a cluster or

a “good” clustering solution may not always be clear, and can be highly

specific to the particular application in question [4]. Thus, the choice of

clustering approach may have to be driven by the nature of the data and

the aims of the researchers involved [12]. The difficulties involved have even

led to the question of whether clustering is an art or a science being raised

[13].

1.2 k-means

In this work, we are interested in a particular data clustering algorithm,

k -means [14, 15]. This is arguably the most popular partitional clustering

algorithm there is [7, 2], and implementations of k -means can be found in

major software packages used for data analysis, including MATLAB, R, and

Python’s scikit-learn library [16, 17, 18].

k -means aims to partition a data setX containingN points intoK homo-

geneous clusters S = {S1, S2, ..., SK}. The dissimilarity between xi, xt ∈ X
can be measured using the squared Euclidean distance

d(xi, xt) =
V∑
v=1

(xiv − xtv)2, (1.1)

where V is the number of features describing each xi ∈ X. Each cluster

2



Sk ∈ S is represented by a centroid ck ∈ RV , which—assuming dissimilarity

is measured using Euclidean distance—is the component-wise mean over all

xi ∈ Sk. That is ckv = |Sk|−1
∑

xi∈Sk xiv for v = 1, 2, ..., V . Given all of the

above, we can see that k -means minimises the criterion

W =
K∑
k=1

∑
xi∈Sk

d(xi, ck). (1.2)

This, therefore, is the objective function for k -means. The above has been

given several names, but here and throughout we use the term Sum of

Squared Errors or SSE.

The steps of the k -means algorithm are show in Algorithm 1.

Algorithm 1: The k -means Algorithm

1. Select K centroids C = {c1, c2, ..., cK}, using a chosen
initialisation strategy.

2. For each xi ∈ X, calculate the distance between xi and each
ck ∈ C using (1.1). Assign xi to the cluster Sk represented by
the nearest ck.

3. Update each ck ∈ C to the component-wise mean over all
xi ∈ Sk.

4. If Step 3 produced changes to the centroids, go to Step 2.
Otherwise, the algorithm has converged.

The strengths of the k -means algorithm are well-documented:

1. The k -means algorithm is relatively straightforward to understand and

implement.

2. The algorithm is computationally efficient, with linear time complexity

with regard to the number of data points N [19, 20, 21].

3. Given an initial set of centroids, k -means is proven to converge deter-

ministically in a finite number of steps [20, 22].

That k -means will always converge can easily be understood if we con-

sider that for a given data set, there are only ever a finite number of possible

3



clusterings, specifically KN , and that k -means monotonically decreases SSE,

in other words will never move from one clustering solution to a worse solu-

tion [23].

We acknowledge that despite its strengths and popularity, k -means is

not without its weaknesses:

1. The algorithm will find K clusters even in non-grouped data.

2. Use of the Euclidean distance (1.1) can lead to a bias towards spherical

or Gaussian clusters.

3. Clustering is performed based on all features, and all features have the

same weight of contribution to the clustering. In other words, there

is no direct support for scenarios where different features may have

different degrees of relevance.

4. The algorithm can be sensitive to outliers, since an outlier will always

be assigned to a cluster.

5. Given an initial candidate solution, in the form of K initial centroids,

k -means will converge to a local optimum, but is not guaranteed to

arrive at the global optimum. Thus k -means is highly dependent on

the selection of initial centroids.

In this work, we are primarily interested in point (5). The tendency of

k -means to arrive at a non-globally optimal solution is perhaps the most

salient and problematic of its shortcomings. Indeed this issue is noted in

countless published works describing k -means.

We can define local optima in this scenario by noting that for any locally

optimal clustering solution for a given dataset, there exists a solution with

a lower value for SSE as per the objective function (1.2). In fact, [24, 25]

calculate that for a dataset of modest size, with N = 200 and V = 8, there

are potentially thousands of local optima which could be arrived at.

Another definition [26] of a local optimum is that it is a clustering so-

lution that cannot be improved by moving single points between clusters,

whereas the global optimum solution cannot be improved in any way.

Given this dependence on the selection of initial centroids, many diverse

algorithms have been proposed with the intention of identifying “better”

initial centroids for k -means. Such proposed solutions include employing
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genetic algorithms [27], binary search [19], kd -trees [28], probability distri-

bution [23] and more. Proposed algorithms may be deterministic or non-

deterministic. Section (2.1) presents a number of surveys and comparisons.

We note that despite the considerable research effort invested in the

subject, there appears to be little to no clear guidance on which initiali-

sation strategies might be most appropriately applied to specific clustering

endeavours. It is this guidance to which this work seeks to contribute.

1.3 Outcomes

There are two main facets to this work. The first is an extensive empirical

comparison of 17 k -means initialisation algorithms, involving running the

algorithms against 6,000 synthetic data sets and 28 freely-available real-

world data sets. The data sets are described in Section 3.1. The results of

the experiments are reported and discussed in Section 4 with the intention

of contributing to the guidance described above.

The second main facet is the development of an open source software

library written in Python, and comprising:

• An example implementation of k -means

• Implementations of the 17 k -means initialisation algorithms

• A small framework to run the algorithms (including the use of paral-

lelisation where available) and pass the resulting centroids to k -means

• The synthetic data set generation tools used to prepare the experi-

ments

• The tools used for downloading and cleaning the real-world data sets

used in the experiments

This work is presented in several sections. Section 2 is comprised of a full

background to our research, including a literature review of prior surveys

of k -means initialisation algorithms and other related works, followed by a

detailed description of each of the algorithms covered in our experiments.

Section 3 describes our experimental methodology, while our results and

discussion thereof are presented in Section 4. Finally, the software libraries

developed to facilitate our experiments are introduced in Section 5.
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2 Background and Literature Review

In this section we cover a selection of the research which precedes and informs

the current work. Section 2.1 is a summary review of prior surveys and

empirical comparisons of k -means initialisations, along with related research

works of a similar nature which provide context for the current work. Section

2.2 describes the 17 initialisation algorithms compared in our experiments,

including formal listings of the steps of those algorithms where appropriate.

2.1 Prior surveys

Several surveys and empirical comparisons of k -means initialisation algo-

rithms have previously been published. These vary greatly in extent in

terms of number of algorithms and data sets used, and may have disparate

underlying aims. This section is intended to provide context for our research

by presenting a brief overview of a number of such surveys.

2.1.1 Peña & Lozano 1999

In what may be the earliest survey of its kind to be published, Peña &

Lozano [29] present an empirical comparison of four k -means initialisation

algorithms run against just three data sets.

The algorithms explored are: i) a completely random partitioning of the

data set, which we term Random Partition and describe in Section 2.2.1; ii)

the selection of random points, also known as observations, from the data set

as initial centroids, which we term Random Centroids and describe in Sec-

tion 2.2.2; iii) an algorithm described by MacQueen [14], which is essentially

Random Centroids, but with a modification whereby initial centroids are re-

calculated as each remaining data point is sequentially assigned to them; and

iv) the Kaufman Approach (KA) presented in [30] and formally described

in [29, Figure 3]. In this last approach, the first initial centroid is taken to

be the most central point in the data set, and subsequent initial centroids

are selected individually from the as-yet unselected data points, choosing

the point which would have the highest number of data points assigned to it
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were it selected. The process continues until K initial centroids have been

chosen. Of the four algorithms covered, three are non-deterministic with

only KA being deterministic.

The data sets used are three well-known real-world data sets, specifically

Iris, Ruspini and Glass sourced from the UCI Machine Learning Repository

[31].

A notable aspect of the Peña & Lozano survey is its concern for reducing

the effects of “instance order”, in other words the order of points within the

data set, which is stated to be one of the two key factors influencing the

clustering performance of k -means, alongside the choice of initial centroids.

However, the implementation of k -means used, [29, Figure 1], appears to be

slightly distinct from the more widely-accepted algorithm described in for

example [1], [25] and in Algorithm 1 above. The key difference is that in

the modified k -means, centroids are recalculated every time a data point is

reallocated to a different cluster, rather than after each full iteration over

the k -means assignment and update steps, Steps 2 and 3 of Algorithm 1. In

this way, we can see that the order of data points will influence the choice

of initial centroids.

It is also interesting that while the survey treats the MacQueen algorithm

as a k -means initialisation algorithm—as which it might certainly be used—

at no point does the original author claim it to be such, rather, stating it

to be “the k -means procedure” itself [14, p. 283]. We conjecture that the

procedure described by MacQueen may represent what was termed k -means

prior to the work of Forgy [15].

Finally, we note that, unlike many practitioners in later years, Peña

& Lozano do not presume to know the number of clusters K in advance.

Rather, several values are explored for each data set, for example values of

2, 7 and 10 for the Glass data set.

Results are compared to the output of a Genetic Algorithm (GA) devel-

oped by Peña & Lozano, an approach which they deem to have the potential

to evolve towards the global optimum with probability arbitrarily close to

1. The results indicate that the KA and Random Partition initialisations

consistently outperform the MacQueen and Random Centroids approaches

in terms of cluster recovery. Furthermore, KA outperformed Random Par-

tition on two out of three data sets. Still, the authors of [29] recommend

continued usage of the more traditional Random Partition approach until
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more research into KA has been performed.

2.1.2 He et al. 2004

He et al. present a comparative study of initialisation methods for itera-

tive refinement clustering algorithms, using k -means as a specific example

[32]. k -means is chosen due to its simplicity, its satisfactory clustering per-

formance especially where input data displays a Gaussian distribution, and

also the fact that k -means initialisation methods may easily be applied to

other iterative refinement algorithms. He et al. state that very few such

surveys had been carried out at the time of their writing, and so endeavour

to fill this gap in the literature.

Their study includes five initialisation algorithms including Random

Centroids; a slightly modified version of Random Centroids based on pertur-

bation of the mean of the input data, termed R-MEAN [33]; the Kaufman

Approach covered by Peña & Lozano [29] (see Section 2.1.1); and the Kat-

savounidis, Kuo & Zhang (KKZ) algorithm we discuss in Section 2.2.4. The

KKZ algorithm was also published in 1994, so might be considered to be

cutting edge at the time the He et al. survey was conducted.

The final algorithm considered is the Simple Cluster Seeking method

(SCS) [34], an early k -means variant implemented in the SAS commercial

data analytics software. He et al. acknowledge that SCS was not originally

conceived as an initialisation algorithm, rather as a clustering method in

its own right. They further note that it suffers from the drawback of being

sensitive to the ordering of the input data points, and also that it requires

an additional threshold parameter to be supplied.

The algorithms are run against 25 two-dimensional synthetic data sets—

the results from three of which are reported—and four real-world data sets.

Results are compared using the “Cluster Compactness” (Cmp) and “Cluster

Separation” (Sep) indices from [35].

In terms of findings, He et al. report that for synthetic data sets, there

is little to choose between each method when considering the Cmp index,

however SCS and KKZ show markedly better performance than the other

methods in terms of the Sep index. Generally speaking, experiments using

the real-world data sets lead to results consistent with those from synthetic

data sets. In concluding, He et al. appear to favour KKZ over SCS due

to the latter’s shortcomings discussed above, not least the requirement for
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an additional parameter to be set, whereas the operation of KKZ is fully

automated.

2.1.3 Steinley & Brusco 2007

Just three years after the He at al. survey described above, Steinley & Br-

usco [25] present a critical evaluation comparing a significantly more exten-

sive 12 techniques for initialising k -means clustering. These include the Mil-

ligan, Bradley & Fayyad and Intelligent k -means approaches—all described

in Section (2.2)—along with the strategies implemented by two commercial

statistical and analytical software packages, SAS and SPSS.

Whilst it is not explicitly stated, it may be reasonable to assume that

the approach ascribed in [25, p. 105] to SAS is the SCS approach described

under He at al. above. Certainly both appear to suffer from the data

instance order effects identified by He et al.

Steinley & Brusco state that at the time of their writing, the cluster re-

covery performance of these algorithms had not been directly compared, and

so perform two experiments which are termed Simulation 1 and Simulation

2.

In Simulation 1, all 12 algorithms are run against synthetic data sets

generated using the techniques described in [36]. The data sets varied in

several ways, including: the number of clusters K ∈ {4, 6, 8}; the number

of features V ∈ {4, 6, 8, 10}; and the degree and type of overlap. In this

simulation, Steinley & Brusco chose not to vary the number of data points,

consistently using 200 per data set, having previously found [37, 24, 38] this

particular variation to have “negligible” effects on cluster recovery for the

number of clusters and features under investigation.

Alongside comparing initialisation algorithms, Steinley & Brusco also re-

port on within-data set effects across all algorithms, finding that factors such

as the number of features V and clusters K have very little bearing on the

relative success of each initialisation method. By contrast the methods were

highly sensitive to the relative density and overlap of the clusters. These

findings should be taken within the context of the experiments, however,

where only a small number of clusters and features were considered.

Simulation 2 is similar to Simulation 1, but requires the processing of

greater amounts of data. Here, K ∈ {5, 10, 20}, V ∈ {25, 50, 125} and in this

simulation the number of data points is varied, with N ∈ {200, 1000, 5000}.
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For practical reasons, in this simulation the size and relative density of

clusters is kept constant.

In this simulation, the Milligan method again consistently displays the

most successful cluster recovery across all sets of factors. However, it is

noted that this method requires the generation of a proximity matrix of size

N×N , which may be prohibitive due to the limitations of available computer

memory. In such cases, Global k -means (Section 2.2.6) is recommended. The

survey authors further recommend the use of Random Partition with many

thousands of restarts in cases where a practical time limit is not necessary.

2.1.4 Celebi et al. 2013

Celebi et al. [39] perform a comparative study of eight linear time complex-

ity k -means initialisation algorithms incorporating an empirical compari-

son. Six of the algorithms are non-deterministic, including: Random Par-

tition, attributed by the survey authors to Forgy [15]; Random Centroids,

attributed by the survey authors to MacQueen [14]; Bradley & Fayyad; and

k -means++, described in Section (2.2). Two deterministic algorithms are

also considered, namely “PCA-Part” and “Var-Part” as presented by [40].

The algorithms are compared using 32 real-world data sets and a consid-

erable number of synthetic data sets. Generation of the synthetic data sets

employs 576 configurations varying in: cluster overlap; number of features

V ranging from 2 to 64; number of data points N ranging from 1,024 to

65,536; and number of clusters K ∈ {2, 4, 6, 8, 10, 12}. Furthermore, data

sets are generated at three clustering complexity levels, defined as a function

of Rand index [41], van Dongen [42], and Variation of Information [43]. In

total, 12,288 data sets are generated.

One of the central aims of the survey is to compare, alongside cluster re-

covery performance, the computational efficiency of the algorithms, defined

as the total CPU time incurred by the initialisation algorithm itself, plus

k -means. Perhaps counter-intuitively, it is found that there is very little

discrepancy in this regard between the algorithms, and this is attributed to

the observation that more elaborate initialisation algorithms tend to lead to

k -means requiring fewer iterations to converge, and vice versa. It is of course

noted that in practical use, non-deterministic algorithms will typically be

restarted numerous times, which will increase execution time proportion-

ately.
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In reporting their results, Celebi et al. make several recommendations:

• Random Partition and Random Centroids should not be used.

• Where data sets are very large and and applications are time-critical,

a deterministic algorithm—in this case Var-Part or PCA-Part—should

always be chosen.

• Conversely, where data sets are small enough, Bradley & Fayyad and

the “greedy” variant of k -means++ are recommended, since these par-

ticular non-deterministic algorithms converge quickly enough that it

is feasible to run them with many hundreds of restarts in a reasonable

time frame.

A final interesting observation is that in scenarios where only an ap-

proximate clustering is required, the latter two algorithms and the two de-

terministic algorithms can potentially provide sufficiently successful initial

clusterings that k -means may not need to be run at all.

2.1.5 Zahra et al. 2015

Zahra et al. [44] compare 20 initialisation algorithms within the context of

exploring the use of a k -means clustering-based algorithm in recommender

systems. Recommender systems guide users through overwhelming quan-

tities of data towards resources which might be of particular interest. A

familiar application of this is seen on e-commerce websites where products

are recommended based on previous purchases.

The algorithms covered include Random Centroids (described in Section

2.2.2) and k -means++ (Section 2.2.10), whilst the remaining 18 are novel.

The algorithms are run against five data sets including book and movie rat-

ings data, and music listening data from Last.fm, with the aim of clustering

users.

Given the specific context, and that so many of the algorithms are novel,

the paper is perhaps not exactly to be described as a survey, and results

must only be generalised with some caution. However, since it empirically

compares k -means initialisation algorithms, there is clear relevance to the

current work.

Algorithms include several which apply uniform, hypergeometric or Pois-

son distribution to the data and then use the Random Centroids approach
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to select initial centroids. Further algorithms exploit the concept of “power

users”, for example KMeansPlusPower, which selects as initial centroids K

users based on the number of ratings a user has provided.

Results are explored in great detail, and the analysis is highly spe-

cific to the recommender system problem, so interested readers are di-

rected to the original paper. That said, the results of two algorithms,

KMeansPlusProbPower and KMeansPlusLogPower tend to stand out in terms of

criteria such as within-cluster similarity and Mean Absolute Error. These

two algorithms again exploit the “power user” concept, both identifying the

most “powerful” user as the first initial centroid, and selecting as subse-

quent centroids users with increasing probability based on various measures

of dissimilarity to selected centroids. This may suggest that incorporating

knowledge of the problem domain into the design of initialisation algorithms

could be an interesting avenue for further research.

A further conclusion presented is that while a k -means-based approach

can bring cost savings and efficiency enhancements to recommender systems,

the suitability of a hard partitioning approach to clustering in a scenario

where users may have complex, diverse opinions may be questioned. For

this reason, fuzzy approaches such as Fuzzy C-means (FCM) are often used

[44, p. 182]. It is demonstrated that improved initial centroid selection can

yield even greater improvements in clustering performance for FCM than

for k -means.

2.1.6 Do Carmo Nicoletti & de Oliveira 2019

Do Carmo Nicoletti & de Oliveira [45] present an empirical evaluation of

five k -means initialisation algorithms, expanding on their previous work in

[46]. The algorithms covered include k -means++ (Section 2.2.10), Single

Pass Seed Selection (Section 2.2.12), and Khan & Ahmad’s Cluster Center

Initialization Algorithm [47].

In all, 14 data sets are used. Seven of these are real-world data sets, in-

cluding six sourced from the UCI Machine Learning Repository [31], and the

Ruspini data set found in [48]. The remaining seven are synthetic data sets

sourced from prior publications including [49, 50] and from online sources.

Experiments are run against each data set using 20 restarts for the

non-deterministic algorithms. Three cluster validity indices (CVIs) are em-

ployed, namely the Dunn index, Silhouette index and Rand index, which is
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the precursor to ARI (Section 3.2), and not corrected-for-chance.

Results are presented and discussed individually in some detail for each

data set, k -means with Random Centroids (Section 2.2.2) being used as a

baseline for comparison. In concluding, do Carmo Nicoletti & de Oliveira

observe that no one algorithm clearly emerged as the most successful, but

that Cluster Center Initialization Algorithm and Single Pass Seed Selection

generally showed good results.

An interesting further observation is that results from the three CVIs

do not always agree. For example, cases are identified in which Rand index

indicates a relatively successful cluster recovery rate, and yet Dunn, an

internal CVI, reports that the quality of clustering is low. This seems to

occur in particular where clusters are not particularly dense or spherical.

2.1.7 Fränti & Sieranoja 2019

Fränti & Sieranoja [51] seek to investigate some of the main factors—specifically

data set characteristics—which can lead to the deterioration of k -means per-

formance, and the extent to which better initialisation can alleviate this

deterioration.

Nine algorithms are used in the experiments including Random Cen-

troids, Random Partition, k -means++ and Bradley & Fayyad. The remain-

ing five might conceivably be described as novel, each having been developed

with the intention of exemplifying distinct styles of initialisation algorithm.

The styles are referred to by the names Maxmin (for example Erisoglu, Calis

& Sakallioglu, Chiang & Mirkin [52]), Sorting ([53, 54]), Projection-based

([55, 56]), Luxburg [13] and Split ([57]).

As with Zahra et al. above, the specific aims and the choice of algorithms

might raise the question of whether the Fränti & Sieranoja work may strictly

qualify as a survey. However, it does empirically compare k -means initial-

isation algorithms, and furthermore we find the exploration of how far the

performance of k -means may be improved by the choice of initialisation to

provide highly relevant context for the current work.

The experiments make use of a suite of data sets termed “clustering basic

benchmark”, developed by Fränti & Sieranoja and introduced in [21]. The

data sets vary in several characteristics, specifically: number of clusters K;

dimensionality V ; cluster overlap; structure (termed “Birch”, as two data

sets from [58] are included); and balance, in other words the relative number
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of data points per cluster. This last, we term “cardinality” in this work.

The clustering basic benchmark is designed to offer a controlled environ-

ment consisting of data sets which are known to be able to be “solved”—in

other words correctly clustered—using SSE as the objective function. Thus

any clustering failures (defined in [51] as the inability to find the correct

clustering within 5,000 restarts) must be ascribed to the choice of clustering

algorithm rather than of objective function. To further this aim, the suite

is designed to provide a sufficiently challenging clustering problem whereby

only very good algorithms will successfully locate the correct centroids.

The experiments presented are rigorous, and the detailed results cer-

tainly make for interesting reading: in general, the choice of k -means ini-

tialisation is deemed to have limited influence on the clustering performance

of k -means when compared to simply performing more restarts of a random

initialisation. The main exception to this finding is the scenario whereby

clusters are clearly separated, in other words display little or no overlap.

With more overlap, k -means itself displays good performance, but as over-

lap decreases, the choice of initialisation becomes crucial. In such cases,

Maxmin, Luxburg and Split perform the best, in extreme cases solving the

data sets without requiring k -means iterations at all. The implication here

is that improved performance is achieved by employing a more appropriate

algorithm altogether, rather than the choice of k -means initialisation.

2.2 Algorithms covered

In this section we present each of the k -means initialisation algorithms ex-

plored in our experiments. For each algorithm we offer a brief summary,

noting where possible the original authors’ motivations for the design of

their algorithms. The summary is followed where appropriate by a concise

formal listing of the steps of the algorithm. Having had to track down and

decipher the published algorithms ourselves, we believe that bringing all of

the algorithms together in one place and presenting them in a consistent,

formal manner is a valuable contribution to the literature.

A further fundamental motivation for this section is that, in order to

ensure the reproducibility of our work, we state any assumptions that were

made or arbitrary decisions that had to be taken in reproducing the pub-

lished experiments. This latter includes, for example, values chosen for any
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parameters required, and the reasons motivating the selection of values for

said parameters.

Finally, in this section we report any difficulties which were encountered

in running the algorithms against the many data sets used in our experi-

ments, since in not all of the 1,874,708 individual experimental runs was it

possible successfully to find results1.

2.2.1 Random Partition

This initialisation is the simplest and almost certainly the oldest initialisa-

tion strategy there is, dating from Forgy’s 1965 work on k -means [15]. This

method involves partitioning the data set entirely at random, effectively by

assigning each data point xi ∈ X a uniformly random number from 1, ...,K.

Clearly there is no intelligence or logic motivating the design of this algo-

Algorithm 2: Random Partition

Input: Data set X; number of clusters K
Output: Initial centroids

1. Assign each xi ∈ X to a cluster Sk ∈ S, chosen uniformly at
random.

2. The initial centroids are the component-wise means of each
cluster.

rithm, and initial clusters will display no homogeneity whatsoever, except by

coincidence. This seems to contradict the inherent aim of clustering. That

being said, the minimal computational overhead involved may in many cases

be desirable.

As a non-deterministic algorithm, it is conventional to re-run or “restart”

the algorithm many times, selecting the initial centroids leading k -means to

the most successful cluster recovery from all restarts. It is common to see

10-50 restarts used, while at the upper extreme [24, 25] recommend 5,000 or

more restarts where this is practically feasible. As discussed in Section 3.3,

we perform 50 restarts for each non-deterministic algorithm we experiment

with.

Despite its rather basic nature, we include this algorithm as the original

1The precise numbers of unsuccessful runs are shown in Table C.1 of Appendix C.3.
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k -means initialisation, and as a baseline against which more elaborate algo-

rithms may be compared. Indeed, subsequent initialisation algorithms are

often compared against Random Partition in their original publication.

2.2.2 Random Centroids

This is another “random” approach, but in this case rather than all data

points being assigned to random clusters, K points are selected uniformly

at random from the data set. Given data with reasonably well-defined clus-

ters, it is easy to see that randomly-selected data points are more likely to

fall within more densely-populated areas, and therefore clusters. That said,

the algorithm offers no protection from two or more initial centroids being

selected from the same densely-populated area of the data, nor does it pro-

vide any guarantee that outlying data points will not be selected as initial

centroids.

This approach is often attributed in the literature to Forgy, though this is

refuted by [39] and in particular by MacQueen in 1967 [14, p. 294], who both

explicitly state that that work employed Random Partition. The survey by

Celebi et al. (Section 2.1.4) attributes Random Centroids to MacQueen.

Random Centroids is used as the initialisation strategy for Continuous

k -means [59], and [25] attributes the method to that work. However, as

Continuous k -means comprises both an initialisation and a modification to

the update step (Step 3) of k -means itself, in this work we consider only the

initialisation.

As with Random Partition, this algorithm is often used a basis for com-

paring novel k -means initialisation algorithms, so we find it important to

include it in this work. As with all non-deterministic algorithms, we per-

form 50 restarts.

2.2.3 Milligan

Milligan 1980 [60] seeks to examine “the effect of six types of error perturba-

tion on fifteen clustering algorithms”, but in doing so provides an interesting

side-by-side comparison of the performance of the algorithms themselves.

The algorithms used include hierarchical algorithms such as Single Link,

Weighted Average and Ward’s Minimum Variance [61], along with methods

attributed to Forgy [15] and MacQueen [14].

16



It is found that k -means can produce “excellent” cluster recovery perfor-

mance when initial seeds are obtained from hierarchical clustering methods

[60, p. 339]. In the same year, Milligan & Isaac [62] find Ward’s method

to give generally good results when clusters are well separated. Thus, both

Peña & Lozano in their 1994 survey (see Section 2.1.1) and Steinley & Brusco

in their 2007 survey (see Section 2.1.3), suggest using this as an initialisation

for k -means. Utilising Ward’s method is therefore the approach we adopt

in our experiments.

Given a data set X of cardinality N , Ward’s algorithm begins with a

clustering containing N single data points. It then iteratively merges the

two clusters with the lowest Ward distance, given by

dw(Sk, Sl) =
|Sk||Sl|
|Sk|+ |Sl|

d(ck, cl), (2.1)

where Sk, Sl ∈ S, with ck and cl being their centroids, respectively. The

above identifies the two clusters, the merging of which leads to the lowest

increase in within-cluster variance. This process is repeated until the data

is combined into K clusters. To select initial centroids for k -means from the

output of such a hierarchical algorithm, we simply take the component-wise

mean of each of the clusters found. The steps of this algorithm are shown

as Algorithm 3.

Algorithm 3: Milligan

Input: Data set X; number of clusters K
Output: Initial cluster centres

1. Set S = {S1, S2, ..., SN}, so that each cluster contains one data
point of X.

2. Identify Sk, Sl ∈ S, the two clusters with minimum (2.1). Merge
Sk and Sk. Repeat this step until |S| = K.

3. Return the centroids of each cluster in S.

2.2.4 Katsavounidis, Kuo & Zhang

Katsavounidis, Kuo & Zhang (KKZ) describe a “New Initialization Tech-

nique for Generalized Lloyd Iteration” [63]. This is a deterministic algorithm
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designed to maximise the minimum distance between candidate initial cen-

troids and those already selected, the motivation being that data points far

apart from each other are likely to fall into different clusters.

The algorithm begins by calculating the Euclidean2 norm

||xi||2 =

√√√√ V∑
v=1

x2iv (2.2)

of each data point, being the Euclidean distance between that point and

the zero vector. We note therefore that this algorithm implicates a data

normalisation process ensuring the component-wise mean over all xi ∈ X is

zero (which we adopt, and describe in Section 3.1.3). The data point with

the greatest norm is chosen as the first initial centroid and subsequently, for

each point xi ∈ X, the distance between xi and its closest already-chosen

initial centroid is calculated:

di = min
ck∈C

d(xi, ck). (2.3)

The data point with the greatest value of di is chosen as the next initial

centroid, and the latter step iterates until a total of K initial centroids are

found. This is what has been termed a “Maxmin” algorithm. As such, KKZ

has been compared [39] to similar algorithms such as [65], the key difference

being that the latter chooses the first centroid arbitrarily. The steps of the

algorithm are formally presented in Algorithm 4.

As can be seen, the KKZ algorithm requires no inputs or parameters

beyond the data set X and the number of clusters K, which can be con-

sidered a positive characteristic of, or even fundamental requirement for, a

k -means initialisation algorithm [51]. On the other hand, due to the Maxmin

strategy, it is known to be susceptible to influence by outlying data points

[64, 66].

In [63], the KKZ algorithm is tested against three data sets, specifically

the Baboon, Lena and Boat images from the USC-SIPI image database

[67]. Results are presented in comparison with one other algorithm, a split-

ting algorithm from [68], which is described as the “primary competitor” to

2While [63] does not explicitly specify which norm to use in Step 1, the documentation
for the R kkz() function [64] states that it uses squared Euclidean norm, so we choose
not to disagree.
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Algorithm 4: Katsavounidis, Kuo & Zhang

Input: Data set X; number of clusters K
Output: Initial cluster centres

1. Set C = ∅. Identify the data point argmax
xi∈X

||xi||2 using (2.2),

copy its values to c1 and add c1 to C

2. Identify the data point argmax
xi∈X

d(xi, c1), copy its values to c2

and add c2 to C.

3. Identify argmax
xi∈X∧xi /∈C

di using (2.3), copy its values to a new

centroid ck and add ck to C.

4. If |C| < K go to Step 3.

KKZ. The results are formalised as Mean Squared Error (MSE) and show

an improvement over the splitting algorithm in all cases. The improvement

appears to become more pronounced as either or both of the number of

clusters K and the number of data points N increases.

2.2.5 Bradley & Fayyad

Bradley & Fayyad introduce an algorithm with the intention of “Refining

Initial Points for k -means clustering” [69].

There are two main stages to this algorithm: firstly, J random sub-

samples of the data set are chosen and clustered using a slightly modified

version of k -means. The modification is simply that once the clustering is

complete, if any of the K clusters is found to have no members—which can

easily happen when clustering small subsamples of the data—the centroids

of those clusters are discarded, and the data points which are furthest from

their assigned centroids are chosen to replace them.

Once this process is complete, it is likely that more than K candidate

initial centroids have been found, indeed up to K × J candidate centroids

may be found. These candidate centroids are in turn clustered using k -means

in a step termed “smoothing”.

Due to the fact that it works on subsamples of the data, this algorithm is

claimed to be particularly applicable to very large data sets. Further, given
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a Gaussian distribution, the random subsampling will tend towards finding

data points close to the modes of the data, in other words within meaningful

clusters. That being said, Bradley & Fayyad acknowledge that the initial

subsampling may well introduce noise in the form of outlying data points,

and this is the reason for the “smoothing” procedure.

A notable aspect, and it could be argued drawback, of this algorithm

is its requirement that several parameters be set, introducing an unfortu-

nate dependency on a human being to make certain decisions. That being

said, Bradley & Fayyad do make strong recommendations for the values of

said parameters based on their experiments, which are detailed below and

corroborated by [25].

The parameters in question are: the number of subsamples J ; the size

of the subsamples n; and a set of tentative initial centroids, or “starting

point” SP . Bradley & Fayyad’s findings suggest a value of 10 for J , with

n being N
J , in other words one tenth of the data set. The starting point

can in theory be any set of K initial centroids, though Bradley & Fayyad

suggest a random initialisation, which we adopt, whilst acknowledging that

this effectively makes the algorithm non-deterministic.

Algorithm 5: Bradley & Fayyad

Input: Data set X; number of clusters K; number of subsamples
J ; sample size n; set of initial centroids SP
Output: Initial centroids

1. Set Xt to be a subsample of X such that |Xt| = n, for
t = 1, 2, ..., J .

2. Set C ′t to be the set of K centroids generated by a modified
version of k -means (see Section 2.2.5) on Xt, initialised with
SP , for t = 1, 2, ..., J .

3. Set C ′ =
⋃J
t=1C

′
t.

4. Set Ct to be the set of K centroids generated by k -means on C ′,
initialised with C ′t, for t = 1, 2, ..., J .

5. Set C to be the set of centroids Ct which has the lowest criterion
output (1.2).

In [69], the algorithm is tested against several data sets. Firstly, data sets
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including Iris from the UCI Machine Learning Repository [31] are used. The

results are reported as being “of no interest” as the data sets are “too easy”,

since they are small enough that multiple restarts of a random initialisation

are feasible and there is no need for a more scalable algorithm in these cases.

Results from synthetic data sets and larger real-world data sets, including

Image Segmentation and the Reuters Information Retrieval data set, appear

to be more promising in terms of both “information gain” and “distortion”.

However, results are compared only with a random initialisation.

2.2.6 Global k-means

Likas, Vlassis & Verbeek [70] note that at the time of their writing (2003),

despite several attempts at addressing the problem of k -means being highly

dependent on its initialisation, no technique had yet gained wider acceptance

than a random initialisation with multiple restarts.

The original authors therefore introduce an algorithm named “Global

k -means”. This is a popular and interesting algorithm with ambitious aims,

in that as well as finding K good initial centroids—as with other k -means

initialisation algorithms which we discuss—it may be able to find good initial

centroids for each of 1, 2, ...,K − 1 partitioning solutions. The algorithm is

deterministic and does not require additional parameters to be set, beyond

the usual inputs, being the number of clusters K and the data set X.

Global k -means proceeds by finding the optimal centroid for the case

where K = 1, which will clearly be the component-wise mean of the entire

data set. The second initial centroid is found by executing k -means using

each xi ∈ X as the second initial centroid. The clustering that leads to the

least value for the objective function (1.2) is deemed to be the solution for

this case. The process repeats, running k -means using the centroids from

the K − 1 solution and xi as the initialisation, until the pre-defined number

of centroids are found.

The original authors acknowledge [70, p. 452] that in its original formu-

lation, the algorithm is computationally complex, requiring N executions

of k -means for each value k = 1, ...,K, a concern echoed in the survey by

Celebi (Section 2.1.4).

To mitigate this, [70] offers two potential methods for speeding up exe-

cution, albeit whilst possibly compromising cluster recovery performance to

a small extent. These are the “fast” Global k -means algorithm, and an ini-
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Algorithm 6: Global k -means

Input: Data set X; number of clusters K
Output: Initial cluster centres

1. Set c1v = N−1
∑

x1∈X xiv for v = 1, 2, ..., V , and C = {c1}.

2. For each xi ∈ X, run k -means with initial centroids C ∪ {xi}.
Set a new centroid ck = xi for that xi leading to the lowest
(1.2). Add ck to C.

3. If |C| < K, go to Step 2. Otherwise output C.

tialisation using k -d trees. In this work, however, we concern ourselves only

with Global k -means in its initial formulation, as we are primarily interested

in cluster recovery performance.

In [70], Global k -means is tested against three data sets: real-world data

sets, namely Iris and Image Segmentation; and a synthetic data set sourced

from [71]. The results seem to show that Global k-means provided a cluster

recovery at least as successful as k -means with a random initialisation and

N restarts (where N is the number of data points) on all occasions. Further,

Likas, Vlassis & Verbeek claim the clustering solutions gained from Global

k -means to be “experimentally optimal”, seemingly implying that the global

optimum may be found. However, this has since been proven not to be the

case [25, 72].

2.2.7 Yuan et al.

Yuan et al. present “A new algorithm to get the initial centroids”, with the

intention of identifying initial centroids consistent with the distribution of

the data [73].

The algorithm works by first calculating the proximity matrix of Eu-

clidean distances between each point in the data set, and choosing the two

closest points as the initial members of a cluster Am. Subsequently, the

nearest points to the cluster Am in X are added until the cardinality of Am

reaches a pre-defined threshold. The data points in Am are removed from

X and the process repeated until K clusters have been found.

In addition to the number of clusters K, and the data set X, the algo-

rithm requires one further parameter, named α. This is used in the calcula-
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Algorithm 7: Yuan et al.

Input: Data set X; number of clusters K; factor α
Output: Initial cluster centres

1. Set m = 1.

2. Set Am = {xi, xj}, where xi, xj ∈ X and ∀xt, xτ ∈ X,
d(xi, xj) ≤ d(xt, xτ ). Set X = X \Am.

3. Set xι = argmin
xι∈X

min
xt∈Am

d(xι, xt). Add xι to Am, and remove xι

from X. Repeat until |Am| = αNK .

4. If m < K, set m = m+ 1 and go to Step 2.

5. Return the component-wise mean of Am (for m = 1, 2, ...,K) as
an initial centroid.

tion of the “threshold” discussed above, which is defined as α×N/K, where

N is the number of data points in X, and 0 < α ≤ 1. With the proviso

that the value of α may be dependent on the data set, the original authors

found the value of 0.75 to be a good choice, and so we adopt this in our

experiments.

The original authors run the new algorithm against four real-world data

sets: Wine, Iris, Balance Scale and Car, and results compared to “standard”

k -means—which we take to be a random initialisation—with 10 restarts,

leading to a total of 40 experimental runs. Measured using the Accuracy

Score CVI, the new algorithm is reported to display better clustering perfor-

mance in 38 of those 40 cases. Needless to say, as a deterministic algorithm,

its results are also stable.

We do note that the results are not adjusted for chance, and so in our

experiments we use an accuracy measure that is adjusted for chance, and

perform 50 restarts of all non-deterministic initialisation algorithms.

2.2.8 Hand & Krzanowski

Hand & Krzanowski [26] introduce a non-deterministic simulated annealing

based algorithm, where k -means is run repeatedly and, with each iteration,

“perturbations” are introduced. In other words, data points are moved at

random between clusters before k -means is again run.
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The intention is to introduce the possibility that the search process will

be moved to a different part of the feature space at any stage of the process,

and so may find a pathway to the globally optimum solution rather than

a locally optimum one. Accordingly, with each iteration, the probability

of perturbation is decreased as it is hoped that the algorithm begins to

approach the global optimum.

Algorithm 8: Hand & Krzanowski

Input: Dataset X; number of clusters K; probability α; learning
rate β; iterations threshold T
Output: Initial centroids

1. Run k -means on X, generating a clustering S = {S1, S2, ..., SK}
with a criterion output SSE0 measured with (1.2). Set t = 1.

2. Perturb each Sk ∈ S by moving each xi ∈ Sk to a different
(arbitrary) cluster with probability α. Repeat k -means, leading
to SSEt.

3. Set t = t+ 1, and α = αβ. Stop if either SSE stabilises, or if
t = T . Otherwise go to Step 2.

The steps of Hand & Krzanowski’s algorithm are formally presented in

Algorithm 8). It can be seen that the algorithm depends upon the setting

of three parameters. The first, α, is the probability of “perturbation” at

each iteration, in other words the likelihood of each data point being moved

to a different cluster. β is a multiplier used to reduce α on each iteration,

thereby reducing the likelihood of perturbation occurring as SSE decreases.

Finally, T is the maximum number of iterations.

Whilst the introduction of parameters may be considered a drawback,

Hand & Krzanowski unambiguously state the values chosen, and we fol-

low their recommendations, setting α = 0.3, β = 0.95, and T = 100. In

Step 3, the SSE is deemed to have stabilised (indicating the algorithm has

converged) if it is unchanged in 10 iterations.

In [26] several experiments are carried out using the S-PLUS default

initialisation, which uses the result of a group-average hierarchical clustering

as its initial centroids, as a baseline for comparison.

The first simulation investigates whether cluster recovery improvements

can be made by applying Hand & Krzanowski’s iterative refinement algo-
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rithm to the S-PLUS default implementation. Both are run against 540

synthetic data sets. In this simulation the results from the S-PLUS default

are shown to be improved upon by the iterative refinement in 284 cases, or

52.6%.

The second simulation investigates whether the cluster recovery of the

S-PLUS default can be outperformed by a random initialisation with 20

restarts. It is reported that the best of 20 random restarts outperforms the

S-PLUS default in 62.3%, an improvement on the iterative refinement.

Finally, the original authors experiment with a combination of the best

of 20 restarts plus the iterative refinement, which is found to improve upon

the default by 63.7%.

Whilst the differences in clustering performance between the two most

successful approaches do not appear to be significant, both show a marked

improvement over the S-PLUS default, and so the original authors conclude

that reliance on the default options of software packages for clustering is not

necessarily wise.

2.2.9 Intelligent k-means

Intelligent k -means, introduced by Mirkin 2005 [1], is a successful k -means

initialisation algorithm [52] which can be used to identify both the number of

clusters, K, and a set of good initial centroids deterministically. It identifies

anomalous clusters in the data, selecting their centroids as initial centroids

for k -means.

The Intelligent k -means initialisation algorithm (Algorithm 9) is com-

prised of two main routines, the Anomalous Pattern and the Iterated Anoma-

lous Pattern for Intelligent k-means. The latter seeks to find good initial

centroids, and employs the former to do so.

The Anomalous Pattern proceeds by attempting to find the group of data

furthest removed from a given reference point in the data. In its application

to clustering, the reference point is taken to be the “centre” of the data: if

the data is normalised to have zero mean—a process which we adopt in our

experimental setup (see Section 3.1.3)—this will the “origin” or zero vector,

but may otherwise be the component-wise mean of the data set, assuming

the distance measure used is Euclidean distance (1.1). The anomalous point

therefore is the data point the greatest distance from the reference point.

Since only distances from a single reference point are required to be
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calculated, the Anomalous Pattern avoids the computational overhead of

calculating a proximity matrix of the entire data set, as some k -means ini-

tialisation algorithms do, for example Single Pass Seed Selection (Section

2.2.12) and Yuan et al. (Section 2.2.7).

Algorithm 9: Intelligent k -means

Input: Data set X; number of clusters K; cardinality threshold θ.
Output: Initial centroids

1. Set C = ∅, and cc to be the component-wise mean over all
xi ∈ X,

2. Set ct to be equal to the data point xt ∈ X that is the farthest
from cc as per (1.1).

3. Run k -means on X using cc and ct as initial centroids. Do not
allow cc to move in the centroid update step of k -means. This
will form clusters Sc and St.

4. If |St| ≥ θ, add ct to C. In any case remove all xi ∈ St from X.
If there are still data points in X go to Step 2.

5. Run k -means on the original data set setting K = |C|, and using
all ck ∈ C as initial centroids.

Intelligent k -means iteratively applies the Anomalous Pattern to iden-

tify one cluster St and its centroid ct at a time, by performing alternating

minimisation using

W =
∑
xi∈X

d(xi, ct) +
∑
xi∈X

d(xi, cc),

where cc is the component-wise average over all xi ∈ X.

Besides the number of clusters K and the data set X, Intelligent k -means

accepts one further parameter, θ, being the minimum cardinality required

for a cluster to be added to C. The background for this is that, besides

identifying good initial centroids, the algorithm can be used to address the

problem of discovering the number of clusters present.

In all our experiments we make the assumption that the number of clus-

ters K is known, and in any case it would be unfair for us to provide more

information (in this case K) to the other algorithms than we do to Intelligent
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k -means. Hence, in our experiments we set θ = 1 and of the four stopping

conditions suggested in [1], we deem the algorithm to have converged when

all data has been clustered.

This approach can lead to a situation whereby the number of clusters

found by Intelligent k -means is not equal to the pre-defined K. In a several

cases, the number of clusters found was too small, and we were not able to

obtain results for these cases. This, perhaps not surprisingly, becomes more

common as K increases, and the number of instances of this occurring can

be seen in Table C.1 of Appendix C.3.

Where the number of clusters found is greater than the pre-defined K—

which is likely when setting θ = 1—we select the initial centroids in two

different ways:

1. Select the K initial centroids identified by intelligent k -means that

have the highest cardinality for St. These may be assumed to be the

K most representative initial centroids. This approach is suggested in

[74].

2. Select the first K initial centroids identified by intelligent k -means.

These could be considered to be the centroids the K most anomalous

clusters.

The former method we refer to as Intelligent k -means (Cardinality), and

the latter we refer to as Intelligent k -means (First).

2.2.10 k-means++

Arthur and Vassilvitskii introduce the k -means++ algorithm [23]. To this

day, this remains arguably the single most popular k -means initialisation

algorithm, and in fact is the default initialisation in MATLAB and Python’s

scikit-learn library. As with Random Centroids, the first initial centroid

is selected uniformly at random from X. However, further centroids are

selected with probability

P (xi) =
D(xi)

2∑
xt∈X D(xt)2

, (2.4)

where D(xi) is the shortest distance from a data point xi ∈ X to the nearest

centroid already chosen. Algorithm 10 formally describes the steps of k -
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means++.

Algorithm 10: k -means++

Input: Data set X; number of clusters K
Output: Initial centroids

1. Select a data point xi ∈ X uniformly at random, and copy its
values to c1

2. Select a further data point xi ∈ X with probability given by
(2.4), and copy its values to a new centroid ck.

3. Repeat Step 2 until a total of K initial centroids have been
chosen.

As with Random Centroids, motivations for this strategy acknowledge

that, given a Gaussian data distribution, the first centroid is relatively likely

to be found within a higher-density area of the data, ideally corresponding

to a meaningful cluster. Similarly, selecting subsequent initial centroids with

increasing probability based on their distance from already-selected points

introduces a tendency towards finding points in different clusters.

While k -means++ therefore addresses one of the shortcomings of Ran-

dom Centroids identified above, due to the probabilistic nature of the the

selection of subsequent centroids, it is of course still possible that outly-

ing data points may be selected, leading to poor clustering performance.

Therefore Arthur & Vassilvitskii perform 20 restarts per experiment. To re-

main consistent with our treatment of other non-deterministic initialisation

algorithms, we perform 50 restarts.

2.2.11 Erisoglu, Calis & Sakallioglu

Erisoglu, Calis & Sakallioglu [75] present a deterministic algorithm to find

initial centroids based on the concept of finding the two features which the

original authors believe best describe the dataset over two axes.

The first or “main” axis is taken to be the feature with the highest value

for the variation coefficient

cvv =

∣∣∣∣σvx̄v
∣∣∣∣ , v = 1, ..., V (2.5)
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where σv and x̄v are the standard deviation and mean of feature v over all

xi ∈ X, respectively. The second axis is taken to be the feature with the

lowest absolute correlation with the main axis.

Once the data is reduced to two axes, the first tentative initial centroid is

taken to be the data point furthest from the mean on the two axes, measured

by Euclidean distance. Each subsequent tentative centroid is chosen as the

data point with the greatest sum of distances—again, considering only the

two features identified as the main and secondary axes—from the already-

chosen tentative centroids. The intention, therefore, is to find centroids

which are well separated from each other.

The process is repeated until K such centroids are found. Finally all

data points are clustered around the tentative centroids—still considering

only two features—and the component-wise means of the resulting clusters

are deemed to be the initial centroids to be passed to k -means itself. The

steps of the algorithm are shown in Algorithm 11.

Algorithm 11: Erisoglu, Calis & Sakallioglu

Input: Data set X; number of clusters K
Output: Initial centroids

1. Identify the feature v′ as that with the highest coefficient of
variation. Set C = ∅.

2. Identify the feature v′′, as that with the lowest absolute Pearson
correlation to v′.

3. Set c1 = argmax
xi∈X

d(xiv′v′′ , (x̄v′ , x̄v′′)), and add c1 to C.

4. Set c2 = argmax
xi∈X

d(xiv′v′′ , c1v′v′′), and add c2 to C.

5. If |C| < K, set a new centroid
ck = argmax

xi∈X

∑
cl∈C d(xiv′v′′ , clv′v′′), and add ck to C. Repeat

this step as necessary.

6. Perform a clustering around C using only the features v′ and v′′.
Return the component-wise means of the resulting clusters as
the initial centroids.

A worked example is provided in [75], which we find helpful. The example

uses the well-known Iris data set, and shows clearly the steps to finding the
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initial centroids, which we were able to reproduce.

The original authors measure the cluster recovery performance of their

algorithm when run against five real-world data sets, including Iris, and

measure the outcome using three CVIs: error percentage, Rand index, and

Wilks’ lambda. In all cases the proposed algorithm is show to outperform

the mean of a Random Centroids approach with 10 restarts. Further results

are presented which appear to show the proposed algorithm to outperform

two further algorithms [47, 76], although results are presented using only

error percentage.

In our experiments, we found it necessary to make two assumptions in

order to reproduce the original authors’ experiments. Firstly, [75] presents a

equation for a correlation coefficient subtly different to Pearson’s correlation

coefficient, but we were only able to reproduce their results using Pearson’s

instead. Hence, we have adopted the latter in our experiments. Secondly,

the variation coefficient (2.5) will lead to division-by-zero errors in cases

where data sets are normalised to have zero mean, a process which we adopt

(see Section 3.1.3). Therefore, since each of our features will have the same

mean, we find it reasonable to use simply standard deviation as the variation

coefficient.

A further consideration is that, given this algorithm calculates cumu-

lative distances to all previously found centroids, it may select two nearby

data points provided they have a large cumulative distance [51]. In our

experiments, this algorithm sometimes even re-selected a previously found

centroid, particularly where K ≥ 5 (see Figure 4.9). Indeed, where K = 20

we were not able to successfully produce any partitions, with the final clus-

tering step based on just two features frequently leading to empty clusters.

The number of cases where successful clusterings were found is show in Table

C.1 of Appendix C.3.

In general, we instinctively find the approach of selecting a hard number

of features (exactly two in this case) to be somewhat fragile. We conjecture

that the original authors were probably attempting to reduce complexity.

However, there is no reason to believe exactly two features will always rep-

resent all characteristics of a given data set.
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2.2.12 Single Pass Seed Selection

Pavan et al. propose a “robust seed selection algorithm for k -means type

algorithms [66]. Single Pass Seed Selection is inspired by k -means++ and

is in fact described by the original authors as an extension thereof, the key

distinction being that the newer algorithm is deterministic, hence “single

pass”. We find it important to clarify that whilst this algorithm may be

abbreviated to SPSS, it is in no way related to the statistical software of

that name.

The key modifications are twofold. Firstly, the very first initial centroid is

not chosen uniformly at random from the data set. Rather, having calculated

the proximity matrix between all data points, the point which has the lowest

total distance to all other data points is selected. Subsequent initial centroids

are identified based on ensuring a minimum distance from previously selected

centroids.

Algorithm 12: Single Pass Seed Selection

Input: Data set X; number of clusters K
Output: Initial centroids

1. Set c1 = argmin
xi∈X

∑
xt∈X d(xi, xt)

2. For each xi ∈ X set D(xi) = min
xi∈X

∑
xk∈X d(xi, ck).

3. Set y to be the the sum of distances of the N
K nearest data

points to the last centroid added to C.

4. Find the index l, such that
∑l

t=1D(xt)
2 ≥ y >

∑l−1
τ=1D(xτ )2.

Set a new centroid ck = xl, and add it to C.

5. If |C| < K go to Step 2.

Pavan et al. run the algorithm against 10 real-world data sets, compare

the results against the output of k -means++ with 20 restarts. The original

authors present the resulting cluster recovery performance of each algorithm

measured using the Silhouette score CVI, along with the number of iterations

required by k -means itself to converge subsequent to the initial centroids

being selected.

According to the results discussed above, in most cases, Single Pass
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Seed Selection appears to perform roughly as well as the most successful

k -means++ restarts, and the results are of course stable, since the algo-

rithm is deterministic. In particular, the number of iterations required by

k -means appears noticeably reduced in cases where the data is of a higher

dimensionality.

2.2.13 Hatamlou Binary Search

Hatamlou [19] introduces a deterministic binary search algorithm with the

intention of identifying good initial centroids for k -means. In this algorithm

each centroid ck ∈ C is initially selected from a different part of the data

set X. The algorithm then optimises the location of each of these centroids,

with respect to (1.2), by exploring around them. This optimisation process

occurs iteratively until either a maximum number of iterations is reached,

or, the centroids have converged. The algorithm, which requires no extra

parameters beyond the number of clusters K and the data set X, is formally

presented as Algorithm 13.

The original author validates the algorithm by experimenting on six real-

world data sets sourced from the UCI Machine Learning Repository [31],

including the well-known Iris, Wine and Glass data sets. The results pre-

sented in [19] are compared against those of seven other algorithms sourced

from [77]. Success is measured using the output of (1.2), and the F -Measure.

The results shown on the original paper are certainly good. Hence, we find

it would be of interest to explore how this algorithm performs in a more

comprehensive set of experiments.

2.2.14 Khan’s Seed Selection Algorithm

Khan 2012 [3] presents an “initial seed selection algorithm” with two explicit

aims beyond finding better initial centroids. It is intended firstly to require

no extra parameters which would necessitate decisions being made by a

human being, and secondly, to provide replicable results—in other words to

be deterministic.

This is a relatively straightforward algorithm designed to infer a putative

initial partitioning of the data by locating the widest K − 1 Euclidean dis-

tances between data points, yet based on a single feature. The data points

delineated by these “gaps” are deemed to be members of the same initial
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Algorithm 13: Hatamlou Binary Search

Input: Data set X; number of clusters K
Output: Initial cluster centres

1. Set SSMv = max
xiv∈X

xiv and gv =

(
SSMv − min

xi∈X
xiv

)
/K, for

v = 1, 2, ..., V .

2. Set ckv = min
xi∈X

xiv + gv(k − 1), for k = 1, 2, ...,K and

v = 1, 2, ..., V .

3. Assign each xi ∈ X to the cluster Sk represented by its nearest
centroid ck, and calculate (1.2).

4. Set k = 1 and v = 1.

5. Set ckv = ckv + SSMv, and recalculate (1.2).

6. If there is no improvement: (i) if SSMv < 0, set
SSMv = −1

2SSMv, or (ii) if SSMv > 0, set SSMv = −SSMv.

7. If v < V , set v = v + 1, or if v = V and k < K, set k = k + 1. In
any of these two cases, go to Step 5.

8. If the termination criterion is not met, go to Step 4.

clusters, with the intention of increasing the distances between points in

separate clusters. The steps of the algorithm are shown here as Algorithm

14.

The decision to attempt to find an initial clustering based on a single

feature of the data set is certainly interesting. Unfortunately no method is

provided in [3] to select the feature to be used, so we conclude that this—

contrary to the first stated aim of the algorithm—constitutes a parameter

which must be supplied to the algorithm. Further, given no guidance on

how to select this value, we have little option but to select it at random,

thereby rendering the algorithm non-deterministic, contrary to the second

aim stated above. Accordingly, we treat it as such in our experiments, and

perform 50 restarts as with all other non-deterministic algorithms explored

in this work.

In [3], the algorithm is tested against four real-world data sets and one

synthetic dataset with normal distribution. Results are compared to those
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Algorithm 14: Khan’s Seed Selection Algorithm

Input: Data set X; number of clusters K; initial feature for
clustering v′

Output: Initial centroids

1. Sort the data points {xiv′ : xi ∈ X} in terms of increasing
magnitude, such that x1v′ and xnv′ have the minimum and
maximum magnitudes, respectively.

2. Set Di = x(i+1)v′ − xiv′ for i = 1, ..., n− 1.

3. Sort D in descending order without changing its indices.
Identify the K − 1 values of i related to the K − 1 highest values
of D, leading to (i1, ..., i(K−1)).

4. Sort (i1, ..., i(K−1)) in ascending order.

5. The corresponding set of indices of data points xi ∈ X which are
the lower bounds of clusters S1, S2, ..., SK are defined as
(i0, i1 + 1, ..., iK−1 + 1), where i0 = 1.

6. The centroid ck is calculated as the component-wise mean of the
xi values falling within the upper and lower bounds calculated
above.

from k -means++ (Section 2.2.10). Measured by the sum of squared dis-

tances criterion (1.2), cluster recovery performance appears to be better

than k -means++ in the cases of just two out of five data sets. That be-

ing said, the original authors concede that this is not the primary aim of

the algorithm. Running time is shown to be consistently improved over k -

means++, being reduced by up to 89.11% in the case of the well-known Iris

data set.

2.2.15 Onoda, Sakai & Yamada

Onoda, Sakai & Yamada [78] introduce two related deterministic k -means

initialisation algorithms, one based on independent component analysis (ICA)

and a second based on principal component analysis (PCA). The algorithms,

which require no further parameters beyond the number of clusters K and

the data set X, are presented formally as Algorithms 15 and 16.

In the experiments presented in [78], the algorithms outperform Ran-
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Algorithm 15: Onoda, Sakai & Yamada ICA

Input: Data set X; number of clusters K
Output: Initial cluster centres

1. Extract K independent components IC1, IC2, ..., ICK from X.

2. Select K initial centroids c1, c2, ..., cK , selecting ck = xi ∈ X
with a minimum ICkxi

|ICk||xi|

Algorithm 16: Onoda, Sakai & Yamada PCA

Input: Data set X; number of clusters K
Output: Initial cluster centres

1. Extract K principal components PC1, PC2, ..., PCK from X.

2. Select K initial centroids c1, c2, ..., cK , selecting ck = xi ∈ X
with a minimum PCkxi

|PCk||xi|

dom Centroids, k -means++ and KKZ (for details on these algorithms, see

Sections 2.2.2, 2.2.10 and 2.2.4, respectively), when the ratio between the

number of features and the number of data points is less than 10. Also,

their initialisation seems to be faster than k -means (with 100 restarts).

Given the use of independent component analysis or principal compo-

nent analysis, it is unclear how this algorithm could produce a set of initial

centroids if V < K. In our experiments we were therefore unable to produce

results for such cases, and the number of successfully completed experimen-

tal runs may be seen in Table C.1 of Section C.3.

2.3 Summary

Whilst it would be impractical to implement and experimentally analyse ev-

ery single k -means initialisation algorithm ever proposed, we hope that those

included in this work provide a reasonable cross-section of the approaches

that have been taken over several decades. We also hope that the historical

context for this work, both as a survey and an empirical study, is clear, and

that it is not unreasonable to suggest this may be the most extensive study

of published k -means initialisation algorithms undertaken thus far.
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We now turn to our experiments. We aim to perform an unbiased com-

parison of the algorithms discussed above, and so in Section 3 we present

our experimental methodology and notes on our implementation, with the

intention that our experiments should be reproducible.
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3 Experimental Setup

In this section we detail the process employed to evaluate the k -means initial-

isation algorithms described in Section 2.2, including: the data sets against

which the algorithms were run, both synthetic and real-world; the cluster

validity index used to measure cluster recovery performance; and any further

assumptions made or decisions taken.

Each of the algorithms was run against each of an extensive collection

of 6,028 data sets, formally described in the following sections.

3.1 Data sets

We generated a total of 6,000 synthetic data sets, which are detailed in

Section 3.1.1, and sourced 28 real-world data sets, detailed in Section 3.1.2.

All data sets are labelled, allowing the use of external cluster validity indices

such as adjusted Rand index (ARI) (Section 3.2) to measure cluster recovery

performance.

3.1.1 Synthetic data sets

To provide a controlled environment for our experiments to exercise the

covered algorithms, we generated a large number of synthetic data sets, with

characteristics varying along several parameters. The exact configurations

used are shown in Table 3.1.

Parameter Value

Clusters (K) 2, 5, 10, 20
Features (V ) 2, 10, 50, 100, 1000
Data points (N) 1000
Cluster cardinality Uniform, random
Within-cluster standard deviation 0.5, 1, 1.5

Table 3.1: The configurations used to generate the synthetic data sets

Cluster cardinality is a description of how many data points belong to

each cluster: in the “uniform” case all clusters contain the same number

of data points, whilst in the “random” case the cardinality is uniformly
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Figure 3.1: Visualisation of synthetic data with V = 2, K = 2, σ = 0.5

random, except that we set a minimum constraint that no cluster will contain

fewer than 30 points, in other words 3% of the data set. Within-cluster

standard deviation is varied with the intention of allowing us to experiment

with data sets with greater or lesser overlap between clusters. Figures 3.1

to 3.4 are included to provide a visualisation of the data and its clusters in

two dimensions. In the figures, as throughout this work, K is the number

of clusters, V the number of features and σ the within-cluster standard

deviation.

The values of the parameters in Table 3.1 were chosen with the aim of

generating a wide variety of data set characteristics within practical con-

straints. Whilst many of the lower bounds are self-explanatory—for exam-

ple, cluster recovery on a data set where K = 1 would be a trivial problem

and of no interest—intervals and upper bounds are chosen on the under-

standing that it simply is not possible to run algorithms against data sets

of every conceivable size and shape.

All data sets are composed of Gaussian clusters, in other words clusters

convex in shape with density increasing towards the centroids, since this is

the clustering problem addressed by k -means [32].
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Figure 3.2: Visualisation of synthetic data with V = 2, K = 5, σ = 1.0

Figure 3.3: Visualisation of synthetic data with V = 2, K = 5, σ = 1.5
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Figure 3.4: Visualisation of synthetic data with V = 2, K = 20, σ = 1.5

Since the synthetic data generation process is effectively one of random

number generation, at least within the constraints stated, we generate 50

instances of each of the configurations, leading to a total of 4×5×2×3×50 =

6000 synthetic data sets.

The tools used to generate the synthetic data sets were written in Python

and utilised the make blobs() function from the well-known scikit-learn

library [18] to create isotropic Gaussian clusters. The tools we wrote to do

so are freely available as part of the open-source software library described

in Section 5.3.

3.1.2 Real-world data sets

We feel that our experiments would not be complete without the inclusion

of real-world data sets. Therefore, 27 data sets were sourced from the UCI

Machine Learning Repository [31], and the Chernoff Fossil data set was

sourced from [48]. This provides us with 28 real-world data sets with varying

characteristics which are detailed in Table 3.2.

The real-world data sets were specifically selected to be comprised of

only continuous, numeric data since k -means, while using SSE (1.2) as the
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Data set Data points Features Clusters

Avila 10430 10 12
Blood Transfusion 748 4 2
Breast Cancer Wisconsin (Diagnostic) 569 30 2
Breast Cancer Wisconsin (Original) 683 9 2
Breast Tissue 106 9 6
Ecoli 336 7 8
Fossil 87 6 3
Glass Identification 214 9 6
HTRU2 17898 8 2
Haberman’s Survival 306 3 2
Iris 150 4 3
Leaf 340 15 30
Letter Recognition 20000 16 26
Libras Movement 360 90 15
Musk 1 476 166 2
Musk 2 6598 166 2
Optical Recognition 3823 62 10
Page Blocks 5473 10 5
Parkinsons 195 22 2
Pen-Based Recognition 7494 16 10
Sonar all 208 60 2
Spambase 4601 57 2
Vehicle Silhouettes 846 18 4
Vertebral Column 310 6 3
Wine 178 13 3
Wine Quality (Red) 1599 11 6
Wine Quality (White) 4898 11 7
Yeast 1484 8 10

Table 3.2: The characteristics of the real-world data sets

objective function, is defined only in the context of data for which a mean

can be calculated.

In terms of data cleaning, in a small number of cases rows with missing

data were dropped, but in general we deliberately chose sets needing minimal

cleaning to reduce the number of arbitrary decisions required to be made.

The tools we wrote to download and clean the data, as well as isolate the

class labels for each data set, are made available as a further open-source

software library described in Section 5.2.
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3.1.3 Data normalisation

In data clustering, as with other exploratory data processing tasks, it is

customary to normalise all data in advance. The general point of data

normalisation is to reduce each feature to the same scale, thus preventing any

specific feature outweighing others, particularly when we come to measure

squared Euclidean distance as per (1.1).

Therefore, we adopt this approach. A detailed description of how nor-

malisation was applied to our data sets may be found in Appendix B.

3.2 Cluster validity indices

In order to evaluate the cluster recovery performance of any algorithm, we

need a way to measure that performance objectively. Numerous cluster

validity indices (CVIs) exist, and we direct interested readers to an extensive

survey of such indices found in [79].

In this work, we adopt the adjusted Rand index (ARI) [41]. This is a

corrected-for-chance version of the Rand index [80]. The ARI between the

clusterings S, S′ is given by

ARI(S, S′) =
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where Nkl = |Sk ∩ S′l|, ak = |Sk|, and bl = |S′l|.
ARI is an external cluster validity index, in that it evaluates clustering

performance based on a pre-specified structure, in this case the class labels.

This can be contrasted with an internal cluster validity index, for example

SSE (1.2) which can only evaluate clustering performance based solely on

the data itself [81]. ARI is found to be “highly recommended” by [82], [83]

and [25], and is a viable option for us as we have class labels for all data

sets used.

For completeness and interest, we additionally present the results of our

experiments using an internal CVI, inertia. CVI is the k -means criterion

itself, and the results and discussion can be found in Appendix C.1. In

brief, we find a general agreement between the results of the two separate

indices.
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3.3 Implementation and assumptions

As is typical for k -means clustering, we assume that we know the number of

clusters, K in advance. We acknowledge that this may not always be realistic

in practice, and whilst discovering K is an interesting research challenge in

itself, it is beyond the scope of this work. We direct interested readers to

the many relevant publications, for example [52, 84, 85] and the references

therein.

As some of the algorithms covered are deterministic and some non-

deterministic, we perform 50 restarts of each non-deterministic algorithm.

This may be considered generous as many practitioners often perform 20

or fewer restarts. However, in cases with fewer restarts, said practition-

ers tend to select the results from only the single restart yielding the most

successful cluster recovery performance. In our experiments all results are

recorded, allowing us to calculate the mean and standard deviation of the

cluster recovery performance of each algorithm over multiple experimental

runs.

From the summary details of each initialisation algorithm shown in Ta-

ble 4.2, it can be seen that of the 17 algorithms covered in our experiments,

six are non-deterministic with the remainder of course being determinis-

tic. Given 6,028 data sets, and that we perform 50 restarts of the non-

deterministic algorithms and a single restart of the remainder, there are a

total of (6028× 6× 50) + (6028× 11) or 1,874,708 individual experimental

runs to perform.

The experiments were run on the CentOS Linux-based high performance

computing cluster at the University of Essex [86], and the results are pre-

sented and discussed in the following section.
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4 Results and Discussion

In this section we measure the performance of each of the initialisation al-

gorithms discussed in Section 2.2 in two ways. Firstly, we measure cluster

recovery by applying the adjusted Rand index (3.1) to compare the clus-

tering produced by each algorithm on each data set against the true labels.

Secondly, we measure time performance by counting the number of itera-

tions k -means takes to converge under each initialisation. We do both of

these on the synthetic and real-world data sets we experiment with.

To aid reporting, we assign an identifier to each algorithm, which we use

in Figures 4.1-4.10, and throughout the text. The identifiers, along with

some summary details concerning each algorithm, as shown in Table 4.2. In

the table, D/ND is an abbreviation for “deterministic or non-deterministic”.

Name Identifier D/ND Year Source

Random Partition random p ND 1965 [15]
Random Centroids random c ND 1967 [14]
Milligan milligan D 1980 [60, 62]
Katsavounidis, Kuo & Zhang kkz D 1994 [63]
Bradley & Fayyad bradley ND 1998 [69]
Global k -means globalkm D 2003 [70]
Yuan et al. yuan D 2004 [73]
Hand & Krzanowski hand ND 2005 [26]
Intelligent k -means (Cardinality) ikm card D 2005 [1]
Intelligent k -means (First) ikm first D 2005 [1]
k -means++ kmpp ND 2007 [23]
Erisoglu, Calis & Sakallioglu erisoglu D 2011 [75]
Single Pass Seed Selection singlepass D 2011 [66]
Hatamlou Binary Search hatamlou D 2012 [19]
Khan’s Seed Selection Algorithm khan ND 2012 [3]
Onoda, Sakai & Yamada ICA onoda ica D 2012 [78]
Onoda, Sakai & Yamada PCA onoda pca D 2012 [78]

Table 4.1: Summary of algorithms used in the experiments
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4.1 Cluster recovery on synthetic data sets

Figure 4.1 shows the average cluster recovery, measured using the adjusted

Rand index (ARI) for each of the algorithms we experiment with. This

particular figure presents results broken down by the number of clusters

(i.e. synthetic data sets with 2, 5, 10, and 20 clusters). We can see that

on data sets containing two clusters, all algorithms perform similarly on

average. This in itself is an interesting result. When we increase the number

of clusters some algorithms (eg. hatamlou, khan, and singlepass) begin to

perform rather poorly, reaching average values of ARI under 0.5, which

is lower than that achieved by the random initialisations (random c and

random p).

Of course, there are reasons for this. The hatamlou binary search al-

gorithm takes centroids from K different parts of the data, with each part

calculated independently for each feature. Hence, K is proportional to the

probability of a mismatch between centroids and dense areas, which is prob-

ably the reason for the poor result. In the case of khan, centroids are

calculated using a single feature. Thus, as K increases the probability of

one feature containing information about all K clusters decreases.

The initialisations globalkm, hand, ikmeans card, ikmeans first, kkz,

kmpp, milligan, and yuan seem to be those that are the most resistant

to an increase of K. We should probably mention that ikmeans card and ik-

means first were the only initialisations producing a higher ARI for K = 20

than for K = 2. It seems likely that this is related to the fact that, as

discussed in Section 2.2.9 and shown in Table C.1, Intelligent k -means in-

creasingly struggled to find the correct number of clusters as K increased.

As we assume K to be known for all initialisation algorithms equally, we

were forced to ignore results for those cases, which intuitively seem likely to

correspond to the more challenging data sets. Thus, the results for ikm card

and ikm first may show bias in this specific case.

Figure 4.2 shows the average ARI on the same data sets but now broken

down by the number of features in each data set (i.e. 2, 10, 50, 100, and

1000). Generally speaking, the increase in the number of features usually

leads to better cluster recovery in our experiments. This is probably because

these are synthetic data sets containing Gaussian clusters, and the maximum

number of features we experiment with is 1,000. The only exceptions to this
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trend, with poor results, were hatamlou, khan, and singlepass. The reasons

for this are probably similar to those for our experiments broken down by

the number of clusters. For instance, an increase in V has a similar effect

to that of an increase in K for hatamlou. The initialisations onoda ica

and onoda pca produced the highest average ARI for V = 2, this seem to

suggest these are good initialisations for this scenario. However, onoda ica

and onoda pca are unable to produce a set of initial centroids when V < K

(see Section 2.2.15). Hence, the results shown for V = 2 only include the

scenario where K = 2. For the other values of V (i.e. 10, 50, 100, and

1000) globalkm, hand, ikmeans card, ikmeans first, kkz, kmpp, and milligan

produced the best results, followed closely by yuan.

Figure 4.1: Mean ARI over all synthetic data sets broken down by number
of clusters.

Figure 4.2: Mean ARI over all synthetic data sets broken down by number
of features.

Figure 4.3 shows the average ARI on the same data sets but now broken

down by the within-cluster standard deviation. A higher within-cluster stan-

dard deviation means clusters are more sparse, leading to a higher chance of
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Figure 4.3: Mean ARI over all synthetic data sets broken down by within-
cluster standard deviation.

Figure 4.4: Mean ARI over all synthetic data sets broken down by cardinal-
ity.

overlap. The highest ARI for a within-cluster standard deviation of 0.5 was

given by globalkm, ikmeans card, ikmeans first, and milligan—followed very

closely by hand, kkz, kmpp, and yuan. With a higher standard deviation

we can see a small lead by ikmeans card and ikmeans first.

Figure 4.4 shows the average ARI on the same data sets but broken down

by cardinality of clusters. A uniform cardinality means that each cluster had

the same number of data points. A random cardinality allows clusters to

have a uniformly random number of data points, subject to a minimum of

30 data points per cluster. Surprisingly some algorithms had very similar

(and good) results for both experiments. Again, we can see a small lead by

ikmeans card and ikmeans first.
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4.2 ANOVA effect sizes on synthetic data sets

This section presents a further statistical analysis of the cluster recovery

performance of the initialisation algorithms, as measured by ARI. These are

the results of a series of one-way ANOVA tests on the results presented in

Section 4.1. These tests are used to measure the sensitivity of each algorithm

to each of the data set characteristics shown in Table 3.1.

The results are presented using the η̂2 measure of effect size. The values

range from between 0 and 1, where larger values of η̂2 indicate that an

algorithm’s cluster recovery performance was more affected by each specific

data set characteristic.

Name Clusters Features Std. deviation Cardinality

bradley 0.1938 0.2803 0.0002 0.0029
erisoglu 0.2798 0.0569 0.0036 0.0002
globalkm 0.0277 0.4256 0.0344 0.0020
hand 0.0440 0.4847 0.0156 0.0015
hatamlou 0.5082 0.2621 0.0015 0.0001
ikm card 0.0289 0.3965 0.0232 0.0025
ikm first 0.0284 0.3845 0.0233 0.0025
khan 0.6466 0.0723 0.0002 0.0008
kkz 0.0317 0.4596 0.0293 0.0013
kmpp 0.0402 0.4451 0.0396 0.0014
milligan 0.0281 0.4269 0.0340 0.0019
onoda ica 0.4507 0.0320 0.0047 0.0005
onoda pca 0.3021 0.0126 0.0057 0.0010
random c 0.3492 0.0792 0.0004 0.0000
random p 0.3521 0.1802 0.0008 0.0018
singlepass 0.7836 0.0197 0.0051 0.0017
yuan 0.0460 0.3608 0.0223 0.0435

Table 4.2: ANOVA η̂2 scores for factor levels by initialisation

4.3 k-means iterations on synthetic data sets

In this section we discuss the impact of each initialisation algorithm on the

number of iterations k -means takes to converge, with a lower number of

iterations being desirable.

We note that for globalkm and hand, our experiments show that k -means

took a single iteration to converge, which may seem like an incredibly good
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result. However, these algorithms already incorporate k -means (without

changes) within them, and run it multiple times.

Figure 4.5: Mean k -means iterations taken to converge over all synthetic
data sets broken down by number of clusters.

Figure 4.6: Mean k -means iterations taken to converge over all synthetic
data sets broken down by number of features.

Figure 4.7: Mean k -means iterations taken to converge over all synthetic
data sets broken down by within-cluster standard deviation.
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Figure 4.8: Mean k -means iterations taken to converge over all synthetic
data sets broken down by cardinality.

Figure 4.5 shows the average number of iterations k -means took to con-

verge when initialised by each algorithm, broken down by the number of

clusters in each data set. The best results are given by ikmeans card, ik-

means first, and milligan. It is interesting to see these algorithms lead to

similar performance when the number of clusters is two. When the number

of clusters is five or ten milligan outperforms ikmeans card and ikmeans first.

However, when the number of clusters is 20 ikmeans card and ikmeans first

take the lead again. This may be because although very good, milligan is

based on hierarchical clustering. This latter, unlike k -means, does not re-

visit assignments of data points to clusters. The assignment of a data point

to a cluster is final (with the obvious exception where clusters are merged),

and future clusters are identified based on previous clusters. Figure 4.6

shows that the major difference between these algorithms happens when

the number of features is two. Figures 4.7 and 4.8 show somewhat similar

performance between these.

4.4 Results on real-world data sets

The results on real-world data sets are certainly more mixed and difficult

to read. This is expected as we do not have the ability to control the

characteristics of each data set. Having said that, we were still somewhat

surprised to see that, measured using ARI, all algorithms performed about

the same in terms of cluster recovery on average (see Figure 4.9).

In our experiments, we ran each non-deterministic algorithm 50 times.

Hence, we were able to calculate the standard deviation of an algorithm when
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applied to a particular data set. Figure 4.9 also shows the average of these

standard deviations, which were not particularly high. Additionally, we

show the proportion of incorrect number of clusters, this being the number of

times an initialisation algorithm returned a clustering S such that |S| 6= K.

In our experiments, we always make the assumption that K is known, so we

ignored such cases in our other results.

Figure 4.10 shows the average number of iterations k -means took to

converge when initialised by each of the algorithms we experiment with. It

was interesting to see hatamlou and erisoglu among the best performers,

given that they did not perform well in our other experiments. We should

probably mention the good result obtained by onoda pca. This figure shows

a small advantage of ikmeans card over ikmeans first, as does Figure 4.9.

Figure 4.9: Mean ARI over all real-world data sets, standard deviation of
ARI over each real-world data set, and the proportion of incorrect number
of clusters found by each algorithm over all real-world data sets.

Figure 4.10: Mean k -means iterations taken to converge over all real-world
data sets.
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4.5 Recommendations for practical applications

In this section we introduce a small number of brief example use cases ex-

ploring how the results presented above may potentially be used to inform

the selection of an appropriate k -means initialisation algorithm. Each ex-

ample involves a hypothetical researcher in a different field, in each case

making use of k -means clustering in their work.

The use cases presented are not exhaustive, nor are they intended to be.

Rather, we hope they provide a little insight into some ways in which the

outcomes of the research presented in this work might be of value to the

wider research community, and the thought processes that may be involved

in making use of our results.

4.5.1 Vector quantisation

Vector quantisation is a data compression technique based on clustering.

Essentially, a clustering process is applied to the data set to be compressed,

and the resulting, compressed data set consists of two elements: the final

cluster centroids and the list of cluster indices which then represent each data

point [4]. From these artefacts, a data set can be reconstructed, or in other

words decompressed. Clearly, the technique is “lossy”, in that information

is lost in the compression process and can never be recovered. Thus, vector

quantisation is applicable where the importance of reducing the size of the

data is considered to outweigh the disadvantages of the information loss.

This technique is particularly suitable, and will tend to be used most

often, in situations where the data set consists of many points which are

highly similar to each other. In other words, where points within each

cluster have a lower distance from their centroid. This is because in such

cases the quantity of information lost in compression is reduced. Therefore,

a researcher might select a k -means initialisation algorithm providing good

cluster recovery performance on data sets with low within-cluster standard

deviation. From Figure 4.3 we see that Intelligent k -means (ikm card and

ikm first) consistently shows excellent performance (in other words, mean

ARI scores close to or at 1.0) where within-cluster standard deviation is low,

as do Global k -means (gkm), Hand & Krzanowski (hand), KKZ, k -means++

(kmpp), Milligan, and Yuan.

Of course, data compression in general is most likely to be desirable in
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cases where the data set is very large. A researcher might therefore find

it preferable to select an initialisation which results in a low number of

k -means iterations being required for convergence, thus reducing the time

taken to cluster the data. From Figure 4.7 we see that, of the algorithms

identified above, Global k -means and Hand & Krzanowski show excellent

performance by this criterion, typically requiring a single k -means iteration

for convergence. This is very closely followed by Intelligent k -means and

Milligan.

Where data sets are large, and all other factors being equal, it seems

reasonable for a researcher to prefer a deterministic k -means initialisation

algorithm over a non-deterministic one, as the former requires only a single

run, whereas the latter would require numerous restarts, with the researcher

having to make the arbitrary decision of how many restarts are sufficient.

For this reason the researcher may choose not to select Hand & Krzanowski.

The computational performance of algorithms is generally beyond the

scope of this work. However, where data sets are large enough to justify

compression in the first place, it is impossible to ignore the fact that the

sheer speed of an algorithm is likely to be of great importance to the re-

searcher. Global k -means is known to be slow1, and in fact computationally

prohibitive for large data sets, requiring N(K − 1) runs of k -means on the

entire data set [39]. Indeed, even its original authors explicitly acknowledge

the computational performance of Global k -means to be problematic [70].

For this reason, it is not possible to recommend that the researcher select

Global k -means.

From the above analysis we feel it is reasonable to conclude that, for the

researcher using k -means as the clustering algorithm for vector quantisation,

both Intelligent k -means and Milligan remain viable and in fact very strong

recommendations as the choice of k -means initialisation algorithm.

4.5.2 Regression analysis

Regression analysis is a group of statistical methods used to determine the

mathematical relationship between a dependent variable and one or more in-

dependent variables. As such, a regression model can be used to predict the

effects of changes in the independent variables upon the dependent variable.

1Our informal observations do appear to confirm this. We direct interested readers to
Appendix C.2 (“Computational performance of algorithms”), in particular Figure C.6
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Since regression has quadratic time complexity of O(N2) (where N is

the number of data points), it is computationally prohibitive for large data

sets. One approach to managing this problem involves data clustering: once

the data set has been clustered, the regression analysis may be performed

upon the resulting centroids [4].

In general, the accuracy of the regression analysis will be improved by

a greater number of centroids and a higher accuracy of clustering [4]. A

researcher using k -means as the clustering algorithm for regression analysis

will therefore wish to select an initialisation algorithm which displays strong

cluster recovery performance where the number of clusters K is high.

For the synthetic data sets used in our experiments, the number of clus-

ters ranges from 2 to 20, and we acknowledge that this maximum may in

some cases be significantly less than required in the case of regression anal-

ysis. That being said, we hope that our results provide some insight into

how well the cluster recovery performance of each algorithm scales as K

increases2.

From the results shown in Figure 4.1, we can immediately disregard cer-

tain initialisation algorithms for this use case. As noted in Section 2.2.11,

the Erisoglu, Calis & Sakallioglu algorithm (erisoglu) was unable to suc-

cessfully cluster the data in any experimental run where K = 20. Further,

the ARI values returned by Hatamlou, Khan and Single Pass Seed Selection

(singlepass) degrade markedly as K increases.

By contrast, both versions of Intelligent k -means actually show better

cluster recovery performance at K = 20 than at lower values, although as

discussed in Sections 2.2.9 and 4.1, the results in those cases may not be

truly representative. In many experimental runs of Intelligent k -means we

were not able to produce results (see Table C.1), and so the performance of

this algorithm at K = 20 remains unknown.

The remaining algorithms showing relatively strong cluster recovery per-

formance for higher values of K are Global k -means, Hand & Krzanowski,

KKZ, k -means++ (kmpp), Milligan and Yuan, so we might consider these

to be a shortlist for recommendation.

As established above, we are concerned here only with situations whereby

2We note in passing that our hypothetical researcher would no doubt be capable of
using linear regression to predict more accurately how performance would scale to larger
values of K, the independent variable in this case.
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the data sets upon which regression analysis is to be performed are large

enough to require the use of clustering in the first place. Thus, we must now

consider the implications of the selection of a specific k -means initialisation

with regard to the timescales involved.

In the vector quantisation example discussed in Section 4.5.1, it was

agreed that Global k -means is computationally prohibitive for large data

sets, and so it is impossible to recommend its use here. Similarly, we

acknowledged that for performance reasons, assuming all other factors to

be equal, a deterministic algorithm is considered to be preferable to a

non-deterministic one, and so the researcher may choose not to employ k -

means++.

Whilst Hand & Krzanowski is non-deterministic, we must now consider

the number of iterations required for k -means itself to converge. From Figure

4.5 we can see that, of the four algorithms remaining under consideration,

Hand & Krzanowski (hand) consistently requires a single k -means iteration

to converge in all cases and, whilst this is yet to be demonstrated in our

experimental results, it does not seem unreasonable to extrapolate this be-

haviour to higher values of K. Milligan shows the second best performance

here, although the number of iterations required can be seen to increase as

K increases. This is also the case for KKZ and Yuan, but their performance

is visibly worse than for Milligan.

Based on the above analysis, Hand & Krzanowski appears to be the most

suitable choice of algorithm for the regression analysis use case. However,

our informal timing statistics (see Figure C.7) show that the speed of Hand

& Krzanowski does decrease as K increases, whereas Milligan seems to show

relatively consistent performance.

If we imagine the timing statistics to be credible, it seems impossible to

choose between Hand & Krzanowski and Milligan based on the information

available. In such situations we would recommend that the researcher con-

sider both algorithms and perform experimental runs of each against samples

of their real data, so that a choice of k -means initialisation algorithm may

be made empirically, based on their specialised findings.
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4.6 Summary

This chapter presented the results of our experiments in two ways. Firstly,

we showed the cluster recovery performance of each algorithm broken down

by the various characteristics of the data sets used in the experiments. Sec-

ondly, we explored how a hypothetical researcher might make use of the

results in order to inform the choice of a k -means initialisation algorithm to

be used in their own work. It is hoped that this shows to some extent the

potential value of this research.

In the following chapter we turn to the practical details of the software

developed in order to perform our experiments, which is a key deliverable

of this project, and introduce the three new open source software libraries

which resulted from this work.
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5 Software Libraries

As previously mentioned, a key deliverable for this project is a suite of

software libraries comprising implementations of all the algorithms covered

in our experiments, along with a small framework to run these algorithms

against the many data sets used, and various utilities for data generation

and processing. Our approach ensures that the experiments described in

Section 3 are reproducible. We hope that the development work involved

in this project may be of value to subsequent researchers and developers,

and so make all the software freely available and open source, and welcome

contributions from the wider community.

The software in question comprises three libraries, the primary one of

these being named pykmeans. This includes the implementations of the

k -means initialisation algorithms covered in Section 2.2, along with the sup-

porting framework used to run the experiments and capture the output.

The pykmeans library is discussed in Section 5.1.

We make available two further open source libraries which emerged from

the pykmeans project. These are named pycleandata (see Section 5.2) and

pygendata (Section 5.3), both of which were used extensively in performing

our experiments. The former downloads and pre-processes real-world data

sets, including those described and discussed in Section 3.1.2, while the

latter was used in the generation of our 6,000 synthetic data sets which are

described and discussed in Section 3.1.1.

The remainder of this section is intended to provide a description of the

three libraries, including a brief overview of how they may be used and the

structure of the output generated by each.

5.1 pykmeans

This is the primary software library used to perform the experiments de-

scribed in this work. It is implemented in Python 3, and comprises: an
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example implementation of the k -means algorithm itself1; implementations

in Python 3 of the k -means initialisation algorithms covered in Section 2.2;

and the supporting framework code used to run the experiments and capture

the output.

The framework makes use of parallel processing where this is available,

using Python’s concurrent.futures.ProcessPoolExecutor class, and cap-

tures and saves output from each experimental run, handling errors grace-

fully where possible.

While many of the initialisations are full Python implementations based

on the algorithms published in the original literature, several make use of

built-in scikit-learn functions where these are available, for example the

Ward hierarchical algorithm used in Milligan (Section 2.2.3). In such cases

we implement a lightweight wrapper around the existing functionality, thereby

providing a consistent interface across all algorithms.

5.1.1 File overview

In this section we present a brief overview of the file structure of the pyk-

means library. This is not intended to be comprehensive, rather to provide

a brief introduction to what is included in the library.

• runner.py: loads data sets from disk, executes the experimental runs

in parallel, and saves the resulting output to disk

• kmeans.py: the example implementation of k -means itself

• dataset.py and cluster.py: Python classes used throughout pyk-

means

• initialisations/: the implementations of the k -means initialisation

algorithms

• datasets/: storage for data sets, including several example data sets

for testing purposes, both real-world and synthetic

• metrics/: implementations of and wrappers for cluster validity indices

(CVIs)

1We must clarify that our implementation of k -means is included only for refer-
ence purposes and is not used in the experiments, since scikit-learn provides a well-
tested and optimised implementation. However, certain of its functions—in particular
distance table()—are used by some of the initialisation algorithms.
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• preprocessors/: implementations of and wrappers for data prepro-

cessing methods, such as normalisation

• tests/: the unit tests for the entire library

• output/: an empty directory for storing the output from experimen-

tal runs, including recovered cluster labels

• verify.sh a simple shell utility to monitor progress of experimental

runs

5.1.2 Usage

All operations for pykmeans—and indeed pygendata and pycleandata—are

triggered at the command line. To invoke an experimental run, the command

is as follows:

$ python3 runner . py <algor ithm> <data d i r> <r e s t a r t s>

The parameters which must be supplied to runner.py as above are:

1. algorithm: the identifier for the initialisation algorithm to be run,

each of which can be found in Table 4.2

2. data dir: the relative path to the directory containing the data sets

for the experimental run

3. restarts: the number of restarts to be performed per data set, which

will typically be 1 for deterministic initialisation algorithms and more

for non-deterministic algorithms

Within the specified <data dir> directory, each individual data set must

be located with its own subdirectory, which in turn must contain the files

data.csv and labels.csv. The former of these must contain the data set

itself, and the latter the target class labels (which are used to calculate

adjusted Rand index (ARI) as per Section 3.2). This layout is consistent

with the data sets output by both pygendata and pycleandata.

Where available, it is recommended to run runner.py within the nohup

wrapper, since execution time for the experimental runs of some algorithms

can extend to a matter of hours when applied to thousands of data sets.

The pykmeans library includes a reasonably thorough suite of unit tests,

which can be invoked using the command:
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$ python3 −m u n i t t e s t d i s c o v e r

Of course, unit test coverage can always be extended, and we acknowledge

this as one of our items for future work under Section 5.1.5.

5.1.3 Output

All output from the experimental run is placed under output/. Within

that, a subdirectory is created, with its name identifying the algorithm,

specifically using the string provided as the <identifier> parameter above.

This in turn contains a subdirectory named exactly as the <data dir> pa-

rameter. Within the latter subdirectory a further directory is created for

each data set processed. This will contain files of two types, following the

naming conventions labels-*.csv and output-*.csv. One of each of these

files is created for each individual restart of the algorithm, and the wildcard

is replaced by a counter identifying each restart.

The “labels” files contain a comma-separated list of the class labels re-

trieved for the data set, while the “output” files contain all the information

needed to identify the specific restart, the algorithm and the data set, along

with the calculated ARI and number of k -means iterations required to con-

verge. It is these exact files which are concatenated and used to generate

the charts shown in Section 4.

5.1.4 Requirements

The pykmeans library has a small number of dependencies on widely-available

Python-based libraries:

• Python 3

• scikit-learn >= 0.20

• SciPy >= 1.3.1

• NumPy >= 1.15.4 [87]

5.1.5 Future work

It is anticipated that the pykmeans library should be an ongoing project,

and as such there is plentiful scope for further development. We note in

particular:
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• There are numerous proposed k -means initialisations in the literature

which are not yet included in the library due to practical limitations.

We anticipate further algorithms to be added in time, and welcome

contributions from the wider community.

• Whilst the requirement of additional parameters for k -means initiali-

sation algorithms may be considered undesirable, we acknowledge that

they are a fact of life. In our experiments we consistently use fixed

values as recommended by original authors, however it may be help-

ful to subsequent researchers to provide a more flexible mechanism by

which to vary these.

• Whilst a reasonably complete set of unit tests is included, we acknowl-

edge that test coverage for any project can always be improved.

The pykmeans library is open source under the terms of the MIT License,

and is available via GitHub at:

https://github.com/simonharris/pykmeans.

5.2 pycleandata

This is the tool used to automate the download and cleaning of the real-world

data sets used in these experiments, as detailed in Section 3.1.2. Whilst

pycleandata was not strictly one of the original deliverables specified for

this work, we make it available as an open source project in the hope that

it may be of use to further researchers or developers.

The tool downloads data sets—typically from the UCI Machine Learning

Repository, though this is not mandated—and automates several common

data cleaning tasks. Such tasks are configured by the user and examples

include: the dropping of any data columns which are not required, such as

an index column; removal of data points with missing data; and the isolation

of class labels.

We acknowledge that certain data sets require further ad hoc pre-processing

steps such as decompression, concatenation of files, or file format conver-

sions which are—at least currently—beyond the scope of pycleandata. In

such cases we performed the work manually and make available the resulting

pycleandata-compatible data files by hosting them in the project’s GitHub

account.
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The library is written in Python and makes use of the pandas library

[88] for data manipulation.

5.2.1 File overview

This section is not an exhaustive listing of every file comprising the pyclean-

data library, rather it is intended to provide a brief overview of the codebase.

Some key files include:

• cleandata.py: the main Python file which coordinates the data clean-

ing process

• dataset.py: a Python class encapsulating the properties and be-

haviour of an abstract data set, such as the data itself, the class labels,

and the functionality for downloading and saving to disk

• data.yml: the main YAML configuration file

• cache/: local cache for downloaded data files

• offline data/: the directory in which any manually pre-processed

data files are hosted

5.2.2 Usage

The details of the data sets to be processed by pycleandata must be specified

in the data.yml file. The library comes pre-configured for the 28 data sets

used in these experiments. This section will not detail each configuration

directive in detail as this is the responsibility of the library’s own documen-

tation. However, by way of examples, such directives include: the ability to

specify which column separator is used in the data; which, if any columns

are to be dropped; whether the data set contains an index column or header

row; and the characters or strings which signify missing data.

Each data set must be assigned a unique key as an identifier, as this is

used throughout the process, and identifies the resulting processed data set

which is stored locally.

The command to execute the downloading and processing of all config-

ured data sets is rather simple:

$ python3 c l eandata . py
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To download and process a single data set, a further optional argument

exists. This must be the data set key as it appears in data.yml, as discussed

above. For example, to retrieve and process the well-known Iris data set:

$ python3 c l eandata . py i r i s

For users with access to GNU make, a Makefile is also provided, containing

targets i) the default target go, to run workhorse.py for all data sets as

above; ii) cacheclean; to remove locally-cached data sets from cache/; and

iii) dataclean to remove all locally-stored processed data sets. These last

targets instinctively feel dangerous, however a fundamental design decision

behind pycleandata is that its operation should be both repeatable and

reasonably fast. In this way, restarting the entire process is not typically an

onerous matter.

5.2.3 Output

All cleaned data is saved into a directory named cd data/, which will be

created if it is not present. Within cd data/ a subdirectory is created for

each data set processed, each of which in turn contains two files:

• data.csv: the data set itself

• labels.csv: the class labels of the data points

The tool also creates a report file name cd report.csv, with details of

the data sets processed in the latest run. This is, incidentally, the file used

to populate the fields of Table 3.2.

5.2.4 Requirements

The pycleandata library has dependencies on a small number of widely-

available Python libraries:

• Python 3

• NumPy >= 1.15.4

• pandas >= 0.23

• PyYAML >= 3.13
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5.2.5 Future work

As with the pykmeans library, pycleandata is deliberately an ongoing project,

and there is scope for further development. Features and improvements

which may be considered include:

• the facility to maintain more than one configuration file, and perhaps

specify this at the command line

• greater flexibility in terms of the normalisation of data, as this is cur-

rently either “on” or “off”, and at the time of writing only the approach

specified in (B.1) is supported

The pycleandata library is open source under the terms of the MIT

License, and is available via GitHub at:

https://github.com/simonharris/pycleandata.

5.3 pygendata

This is the tool used to generate the synthetic data sets, as described in

Section 3.1.1. It therefore has configuration options covering each of the

parameters detailed in Table 3.1. The library is written in Python and

makes use of scikit-learn’s make blobs() function to generate data sets con-

taining Gaussian clusters. Where parallel processing is available, this is

implemented using Python’s concurrent.futures.ProcessPoolExecutor

class.

5.3.1 File overview

The structure of the codebase for pygendata is minimal, and consists pri-

marily of:

• generate.py: the main data generation script

• output/: empty directory for generated data sets

5.3.2 Usage

All configuration options are currently defined and documented within generate.py,

although it is intended that the configuration directives will be moved to ex-
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ternal configuration files in future versions. Once the configuration options

are set, data can be generated using the following command:

$ python generate . py

For users with access to GNU make, a Makefile is also provided, containing

targets i) data, to run generate.py as above; and ii) clean; to remove

generated data sets from output/. The latter should probably be used with

care.

5.3.3 Output

Under output/, each generated data set is placed inside its own directory,

with a naming convention based on its configuration. So for a data set

named 2 10 1000 r 0.5 004, in order:

• number of clusters = 2

• number of features = 10

• number of samples = 1000

• cardinality (uniform or random) = random

• within-cluster standard deviation = 0.5

• index, in other words a counter, as we can generate multiple data sets

for each configuration = 4

For manageability, generated data sets are grouped into subdirectories

based on the number of clusters, that is to say the current value from iter-

ating OPTS K. Each dataset subdirectory then contains:

• data.csv: the data set itself

• labels.csv: the class labels of the data points

We mention in passing that the structure of data sets generated by py-

gendata is entirely consistent with the structure of data sets output by pycle-

andata (Section 5.2). Contents of output/ are protected by a .gitignore

file as it is not anticipated that users will commit them to this project on

purpose.
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5.3.4 Requirements

• Python 3

• scikit-learn >= 0.20

• NumPy >= 1.15.4

5.3.5 Future work

As with all other libraries presented here, pygendata is an ongoing project,

and there is certainly scope for further development work. Features that

may be considered desirable include:

• the ability to run from separate configuration files, for example YAML

• support for more flexible normalisation, for example pluggable nor-

malisation strategies which can be specified during the configuration

process

The pygendata library is open source under the terms of the MIT License,

and is available via GitHub at:

https://github.com/simonharris/pygendata.
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6 Conclusion and Future Work

In this work we considered the highly popular k -means data clustering al-

gorithm and acknowledged that it is not without its shortcomings. We

primarily concerned ourselves with the sensitivity of k -means to its initiali-

sation in the form of a set of initial centroids, and its resulting tendency to

find local optima rather than global. Many algorithms have been proposed

with the intention of achieving better cluster recovery by providing k -means

with an improved initialisation.

We performed an extensive side-by-side study comparing the perfor-

mance of 17 such algorithms by using them to initialise the k -means clus-

tering of 6,000 synthetic data sets with varying characteristics, and 28 real-

world data sets.

We measured the cluster recovery of each algorithm by calculating the

widely-used adjusted Rand index (ARI) between each clustering produced

by k -means on each data set, and the respective set of correct labels. The use

of this particular measure means that the results we present are corrected-

for-chance. We also investigated the number of iterations k -means itself

required to converge when intialised with the centroids generated by each of

the algorithms we experimented with.

Our experiments showed that it is not possible to declare one single algo-

rithm to outperform all others in all cases, as algorithms often fared better

or worse when compared using datasets displaying different characteristics.

For example, whilst in general algorithms showed a decline in ARI when

recovering higher a number of clusters, some showed markedly more consis-

tent performance than others. We also found that certain algorithms simply

were not suitable for certain data set configurations, for example sometimes

finding the incorrect number of clusters, or being unable to even run in cases

where the number of features was smaller than the number of clusters.

We also introduced a suite of novel software libraries which we hope

may be of interest and use to subsequent researchers and developers in fields

related to this work.

With regard to possible future work, it was not practicable to implement

and analyse every published k -means algorithm, and so future studies might
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choose to implement and incorporate further algorithms.
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Appendices
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A Conventions

Throughout this work we attempt to adhere to consistent naming and nota-

tional conventions for key concepts related to k -means, clustering, and data

in general. These are listed here for reference.

• The number of clusters is denoted by K. It is upper case because it is

constant.

• “Row” indices are denoted by i, while column indices are v.

• Regarding data, X denotes the whole data set. Thus xi denotes an

individual data point while xiv denotes an individual “cell”.

• Subscript t is used to denote “another one”, for example. xt for “some

other data point”.

• “Rows” are termed data points, while columns are termed features.

• The number of features in the data set supplied to an initialisation

algorithm is V , while the number of data points is N . These are again

upper case since they are constant.

• A set of clusters is S = {S1, S2, ..., SK}, and the individual clusters

are upper case because clusters themselves are sets.

• We use the term “centroids” for cluster centroids/prototypes, and “ini-

tial centroids” for the output of initialisation strategies, prior to k -

means itself being run.

• A set of centroids is C = {c1, c2, ..., cK}.

• The Euclidean (or other) distance measure is d(...) as per [79] and

(1.1).
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B Data Normalisation

All of our data sets, both synthetic and real, were range normalised using

xiv =
xiv − x̄v

max(xv)−min(xv)
, (B.1)

where x̄v is the mean of feature v, given by N−1
∑

xi∈X xiv. This approach

provides us with data sets whereby all features have a mean of 0 and a range

of 1. To help visualise this, Table B.1 shows a small food nutrient data set

taken from Hartigan’s 1975 presentation of k -means [89, Chapter 4], while

Table B.2 shows the same data once normalised as per (B.1), rounded to six

decimal places.

Food Energy (cal) Protein (g) Calcium (mg)

Beef, braised 11 29 1
Hamburger 8 30 1
Beef, roast 13 21 1
Beef, steak 12 27 1
Beef, canned 6 31 2
Chicken, broiled 4 29 1
Chicken, canned 5 36 1
Beef, heart 5 37 2

Table B.1: The Hartigan food nutrient data set prior to normalisation

Food Energy (cal) Protein (g) Calcium (mg)

Beef, braised 0.333333 -0.0625 -0.25
Hamburger 0.0 0.0 -0.25
Beef, roast 0.555556 -0.5625 -0.25
Beef, steak 0.444444 -0.1875 -0.25
Beef, canned -0.222222 0.0625 0.75
Chicken, broiled -0.444444 -0.0625 -0.25
Chicken, canned -0.333333 0.375 -0.25
Beef, heart -0.333333 0.4375 0.75

Table B.2: The Hartigan food nutrient data set after normalisation
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We have opted for (B.1) rather than the popular z-score [90] normalisa-

tion procedure because the latter is biased towards unimodal distributions.

To explain this, if the hypothetical features v1 and v2 are unimodal and mul-

timodal respectively, the standard deviation of v2 will be higher than that

of v1. Hence, the z-scores for v2 will be lower than those of v1. However, in

clustering we are more interested in the information most likely present in

the multiple modes of v2 rather than that contained in the single mode of

v1.
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C Supplementary Results Data

C.1 Results by inertia

In this section we present the results of the experiments using an additional

cluster validity index (CVI), named inertia or the within-cluster sum-of-

squares criterion.

By contrast with the adjusted Rand index (ARI) described in Section

3.2, inertia is an internal CVI, in that it requires no a priori information—

specifically cluster labels in this case—to determine cluster validity.

Figure C.1: Mean inertia over all synthetic data sets broken down by number
of clusters.

Figure C.2: Mean inertia over all synthetic data sets broken down by number
of features.
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Figure C.3: Mean inertia over all synthetic data sets broken down by within-
cluster standard deviation.

Figure C.4: Mean inertia over all synthetic data sets broken down by cardi-
nality.

This is a non-normalised index. The minimum inertia is 0 and there

is no maximum. Since Euclidean distance becomes inflated the greater the

number of features, inertia can increase vastly the higher the dimensionality

of the data. This can clearly be seen from Figure C.2, where the subtleties

at lower dimensionality are almost completely lost. In comparing algorithms

by other data set characteristics, we see a general correlation with the ARI-

based results presented in Section 4.1. Thus, we reproduce these results here

purely for interest and completeness, not least because k -means itself seeks

to minimise this criterion.

C.2 Computational performance of algorithms

Whilst this topic is stated to be beyond the scope of this work, it seems in-

evitable that questions will be asked about the computational performance,
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or more specifically speed, of the k -means initialisation algorithms included

in the experiments.

Since we did record timing data for each experimental run, we include

it here for the interested reader, although we do so with certain caveats.

Firstly, the numbers presented are entirely unscientific, since measurements

were not taken under what would be considered controlled laboratory con-

ditions: the experiments were run on a server farm on which many other

processes may be running at any one time. Inevitably, the timings captured

will be affected by the relative load on the servers at the time of running.

Secondly, this is not a like-for-like comparison between the speed of each

algorithm: some implementations are very thin wrappers over library func-

tions supplied by scikit-learn, which can be assumed to be highly optimised

and thoroughly tested. Other implementations are hand-coded, interpreted

Python 3 programs written by a single developer to project deadlines, with

computational performance not being a high priority.

All timings are the output of Python 3’s time.perf counter() func-

tion1, and are measured in fractional seconds.

Figure C.5: Mean execution time per algorithm.

It is rather clear from Figure C.5 that the implementation of Hatamlou

suffers from significant performance issues. This is not unexpected, partly

because it is indeed a relatively involved algorithm, but moreover because

we acknowledge it to be a naive implementation, involving many nested pro-

grammatic loops. Improvement of the implementation’s speed is certainly

to be considered future work, perhaps involving vectorisation of as many

operations as possible.

1https://docs.python.org/3/library/time.html#time.perf_counter
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Figure C.6: Mean execution time per algorithm excluding Hatamlou.

Figure C.7: Mean execution time per algorithm excluding Hatamlou, Global
k -means and Yuan.

With Hatamlou removed (Figure C.6) a little more detail becomes vis-

ible. Here we clearly see the performance issues which are known to be

characteristic of Global k -means [39, 70].

Removing Global k -means and Yuan allows a great deal more detail to

be seen regarding the faster algorithms. This is shown in Figure C.7.

C.3 Unsuccessful experimental runs

We were not able successfully to find results for every experimental run:

for a variety of reasons, not all algorithms were able to converge for every

data set. The explanations for this are given in the algorithms’ respective

descriptions in Section 2.2. Table C.1 shows the number of experimental runs

which were successfully completed for all algorithms. Where the number of

clusters K = 2, all experiments successfully completed, so these cases are

omitted from the table.
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Algorithm K = 5 K = 10 K = 20 Real-world

bradley 1500/1500 1500/1500 1500/1500 28/28
erisoglu 1220/1500 26/1500 0/1500 16/28
globalkm 1500/1500 1500/1500 1500/1500 28/28
hand 1500/1500 1500/1500 1500/1500 28/28
hatamlou 1500/1500 1500/1500 1500/1500 28/28
ikmeans card 1377/1500 1092/1500 895/1500 27/28
ikmeans first 1377/1500 1092/1500 895/1500 27/28
khan 1500/1500 1500/1500 1500/1500 28/28
kkz 1500/1500 1500/1500 1500/1500 28/28
kmpp 1500/1500 1500/1500 1500/1500 28/28
milligan 1500/1500 1500/1500 1500/1500 28/28
random c 1500/1500 1500/1500 1500/1500 28/28
random p 1500/1500 1500/1500 1500/1500 28/28
singlepass 1499/1500 1499/1500 1500/1500 28/28
onoda-ica 1200/1500 1200/1500 900/1500 23/28
onoda-pca 1200/1500 1200/1500 900/1500 23/28
yuan 1500/1500 1500/1500 1500/1500 28/28

Table C.1: Number of successful experimental runs per algorithm

We note that generally speaking, the number of unsuccessful experimen-

tal runs tends to increase as the number of clusters in the data set increases.
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[51] P. Fränti and S. Sieranoja, “How much can k-means be improved by

using better initialization and repeats?,” Pattern Recognition, vol. 93,

pp. 95–112, 2019.

[52] M. M.-T. Chiang and B. Mirkin, “Intelligent choice of the number of

clusters in k-means clustering: an experimental study with different

cluster spreads,” Journal of Classification, vol. 27, no. 1, pp. 3–40,

2010.

[53] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means cluster-

ing algorithm,” Journal of the Royal Statistical Society. Series c (Ap-

plied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

82



[54] M. Astrahan, “Speech analysis by clustering, or the hyperphome

method,” Stanford Artificial Intelligence Project Memorandum AIM-

124, 1970.

[55] M. B. Al-Daoud, “A new algorithm for cluster initialization,” in

WEC’05: The Second World Enformatika Conference, 2005.
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