Research Repository

MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA.

Lin, Hong Ting and Bavro, Vassiliy N and Barrera, Nelson P and Frankish, Helen M and Velamakanni, Saroj and van Veen, Hendrik W and Robinson, Carol V and Borges-Walmsley, M Inês and Walmsley, Adrian R (2009) 'MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA.' The Journal of Biological Chemistry, 284 (2). 1145 - 1154. ISSN 0021-9258

[img]
Preview
Text
MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion pr.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (507kB) | Preview

Abstract

Gram-negative bacteria utilize specialized machinery to translocate drugs and protein toxins across the inner and outer membranes, consisting of a tripartite complex composed of an inner membrane secondary or primary active transporter (IMP), a periplasmic membrane fusion protein, and an outer membrane channel. We have investigated the assembly and function of the MacAB/TolC system that confers resistance to macrolides in Escherichia coli. The membrane fusion protein MacA not only stabilizes the tripartite assembly by interacting with both the inner membrane protein MacB and the outer membrane protein TolC, but also has a role in regulating the function of MacB, apparently increasing its affinity for both erythromycin and ATP. Analysis of the kinetic behavior of ATP hydrolysis indicated that MacA promotes and stabilizes the ATP-binding form of the MacB transporter. For the first time, we have established unambiguously the dimeric nature of a noncanonic ABC transporter, MacB that has an N-terminal nucleotide binding domain, by means of nondissociating mass spectrometry, analytical ultracentrifugation, and atomic force microscopy. Structural studies of ABC transporters indicate that ATP is bound between a pair of nucleotide binding domains to stabilize a conformation in which the substrate-binding site is outward-facing. Consequently, our data suggest that in the presence of ATP the same conformation of MacB is promoted and stabilized by MacA. Thus, MacA would facilitate the delivery of drugs by MacB to TolC by enhancing the binding of drugs to it and inducing a conformation of MacB that is primed and competent for binding TolC. Our structural studies are an important first step in understanding how the tripartite complex is assembled.

Item Type: Article
Uncontrolled Keywords: Cell Membrane, Macrolides, Erythromycin, Bacterial Outer Membrane Proteins, Escherichia coli Proteins, Membrane Transport Proteins, ATP-Binding Cassette Transporters, Microscopy, Atomic Force, Biophysics, Protein Binding, Adenosine Triphosphatases, Protein Multimerization
Divisions: Faculty of Science and Health > Life Sciences, School of
Depositing User: Elements
Date Deposited: 28 Jun 2021 10:30
Last Modified: 28 Jun 2021 11:15
URI: http://repository.essex.ac.uk/id/eprint/30227

Actions (login required)

View Item View Item