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Abstract
We evaluate the utility of coefficients of variation of re-
sponse propensities (CVs) as measures of risks of survey 
variable non-response biases when monitoring survey 
data collection. CVs quantify variation in sample re-
sponse propensities estimated given a set of auxiliary at-
tribute covariates observed for all subjects. If auxiliary 
covariates and survey variables are correlated, low levels 
of propensity variation imply low bias risk. CVs can also 
be decomposed to measure associations between auxiliary 
covariates and propensity variation, informing collection 
method modifications and post-collection adjustments to 
improve dataset quality. Practitioners are interested in 
such approaches to managing bias risks, but risk indica-
tor performance has received little attention. We describe 
relationships between CVs and expected biases and how 
they inform quality improvements during and post-data 
collection, expanding on previous work. Next, given aux-
iliary information from the concurrent 2011 UK census 
and details of interview attempts, we use CVs to quantify 
the representativeness of the UK Labour Force Survey 
dataset during data collection. Following this, we use sur-
vey data to evaluate inference based on CVs concerning 
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1 |  INTRODUCTION

Methodologists no longer advocate only maximising response rates to minimise risks of survey vari-
able non-response biases (Kreuter, 2013; Olson, 2006). Such biases are not easily estimated because 
non-respondents are not sampled, so response rates are appealing indirect measures of dataset quality. 
However, they have declined in the last 30 years (e.g. de Leeuw & de Heer, 2002) and have been shown 
to be only weakly related to biases, due to differences between respondents and non-respondents even 
when response rates are high (Groves, 2006; Groves & Peytcheva, 2008). Instead, assessing variation 
in response across groups defined by subject attributes that are correlated with the survey variables 
is advised, including monitoring during data collection if interview attempt details exist. This can in-
form method modifications to target under-represented subgroups and reduce the risks of bias and/or 
minimise costs (adaptive strategies: Groves & Heeringa, 2006; Peytchev et al., 2010; Wagner, 2008). 
Practitioner interest in this more refined approach to managing survey dataset quality is increasing, 
but limited information on the performance of the proposed bias risk indicators restricts use. In this 
paper, we address this issue using survey variable data to evaluate the performance of one set of in-
dicators, coefficients of variation of response propensities (CVs), when monitoring data collection.

CVs and their counterparts, R indicators (together, representativeness indicators), are potentially 
valuable tools for assessing survey dataset quality (Schouten et al., 2012; see also Section 2.1). Both 
indicators quantify variation in sample response propensities estimated given a set of auxiliary covari-
ates observed for all subjects in the issued sample. If these covariates are correlated with the survey 
variables, low propensity variation (representativeness) implies low non-response bias risk. Overall 
indicators quantify dataset representativeness. Partial decompositions quantify propensity variation as-
sociated with the auxiliary covariates. Unconditional forms measure deviations from representativeness 
(a random sample), and conditional forms deviations from conditional representativeness (a random 
sample given the stratifying covariates). Approximate standard errors also exist, enabling statistical 
inference. When monitoring data collection, datasets with different response rates are often compared, 
for example to identify design phase capacity (PC) points after which further increases in quality are 
limited and methods should be modified or data collection ended (e.g. Groves & Heeringa, 2006). In 
such scenarios, CVs have better properties than R indicators (Moore et al., 2018a). Another useful 
functionality is that CVs predict the maximal standardised non-response bias of survey variable means 
(Schouten et al., 2011), that is, they measure dataset quality on a scale interpretable by practitioners.

The use of representativeness indicators in empirical scenarios is restricted by a lack of information 
on their performance, that is, on how well they predict non-response biases. Schouten et al. (2016) report 
that high dataset representativeness reduces biases, but Nishimura et al. (2016; see also Beaumont et al. 
(2014)) add a cautionary note, showing that excluding survey variable predictors from auxiliary covari-
ate sets can cause biases to be under-estimated. This paucity of work reflects difficulties in estimating 

survey variables with analogues measuring the same 
quantities among the auxiliary covariate set. Given our 
findings, we then offer advice on using CVs to monitor 
survey data collection.
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biases, although these may be reduced if a survey variable analogue measuring the same quantity exists 
among the auxiliary covariates (see below). A particular limitation is that CV performance when mon-
itoring data collection is not known. For example, Moore et al. (2018a) study three UK social surveys, 
using linked census auxiliary covariates to compute CVs after each attempt to interview non-respond-
ing households (the call record). They identify PC points as when the CVs first fall within numeric 
thresholds either of previous call values, useful during data collection to inform current efforts, or of 
best values over the call record, useful after collection to inform future sampling. Given their findings, 
they argue that collection can be ended earlier than currently, substantially reducing the total number 
of calls made, with little effect on the risk of bias. However, such inferences are not evaluated: overall 
CVs and PC points are not compared to those computed given survey variables. Another issue is that 
PC points are not identified using inferential methods, an alternative to the numeric methods developed 
in other work on the topic (e.g. Lewis, 2017; Rao et al., 2008; Wagner & Raghunathan, 2010).

Here, we address this knowledge gap using survey data to evaluate CV-based inference concerning 
the risk of non-response bias during data collection. We utilise a UK unique resource linking social 
survey responses and call records to census information (the 2011 Census Non-Response Link Study, 
CNRLS). We study the Labour Force Survey (LFS) individual dataset component of this resource, ex-
tending work on the household version (Moore et al. 2018a) to the sample unit. We evaluate inferences 
about survey variables with an analogue measuring the same quantity in the fully observed auxiliary co-
variate set used to compute the CVs. As we show, partial CVs make predictions about the ‘non-response 
biases’ in these analogues that, if the same quantity is measured, also hold for the survey variables.

We begin by describing the derivation and interpretation of CVs, including for the first time their 
predictions about auxiliary covariate ‘non-response biases’. Then, we outline how they can inform 
dataset improvements. We detail how partial CVs identify targets for collection method modifications, 
and also how for similar reasons they identify auxiliary covariate sets for use in post-collection bias 
adjustments, a previously unreported functionality. Moreover, we describe how CVs can be used to 
identify PC points, including introducing novel inferential methods.

Next, we monitor LFS data collection, by computing CVs given a census auxiliary covariate set at 
each call in the record. We also identify CV PC points, using both numeric thresholds (see earlier) and 
the fore-mentioned inferential methods. Then, we evaluate CV inferences about survey variables with 
auxiliary covariate analogues, making and testing the assumption that variable—covariate pairs mea-
sure the same quantities. First, we compute logistic-regression-based estimates of auxiliary covariate 
category standardised ‘non-response biases’ and identify PC points to compare to CV-based inference. 
Second, to assess survey variable–auxiliary covariate analogue similarity, we compare category pro-
portions for survey respondents given each data source. Utilising our findings, we then advise on how 
to use CVs to monitor data collection.

2 |  METHODS

2.1 | Coefficients of Variation of response propensities (CVs) and their use

2.1.1 | Derivation

CVs measure sample-subset similarity in terms of variation in response propensities estimated given 
an auxiliary covariate set observed for all subjects (de Heij et al., 2015). The overall CV quantifies 
dataset representativeness, by dividing the propensity standard deviation by its mean: for sample size 
n and auxiliary covariate set x producing the propensity vector px,
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where p̂i is the (estimated) response propensity of subject i, p̂ is the average response propensity and the 
numerator its standard deviation (SD). The less propensities differ the smaller the CV, and the greater 
dataset representativeness. Moore et al. (2018a) advise using CVs to monitor data collection instead of 
R-indicators (R = (1 − 2SD)) because dividing SD by p̂ means the resulting indictors are less likely to 
suggest high representativeness at early calls due to low propensity variation at low response rates (see 
also Schouten et al., 2009). Partial unconditional and conditional CVs (CVus and CVcs) are derived from, 
respectively, the between and within variance decomposition components, and are bounded by the overall 
CV.

CVus quantify univariate associations between auxiliary covariates and propensity variation. The 
CVu for covariate Z with K categories is:

where nk is the number of observations in category k and p̂k the mean response propensity in category k. 
Large values suggest substantial between category variability and non-representativeness associated with 
Z. Category CVs decompose and are bounded by covariate CVs. The CVu for category k of Z is:

Values can be positive or negative, implying, respectively, over- or under-representation.
CVcs quantify associations between auxiliary covariates and propensity variation conditional on 

the other auxiliary covariates. The CVc for covariate Z is:

where p̂l is the mean propensity of the lth of L cells in a cross-classification of x excluding Z and x is the 
covariate subset for the propensity modelling. The CVc for category k of Z is:

where hi indicates whether subject i is in category k. Large CVcs imply substantial solely attributable 
non-representativeness. In addition, adjustments to correct for biases caused by estimating propen-
sities exist, as do approximate standard errors which when converted into 95% Confidence intervals 
(CV ± 1.96 × standard error) enable inference regarding (comparative) representativeness (de Heij et al., 
2015). Population-level analysis is also possible by applying weights.
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2.1.2 | CV inferences about survey variable non-response biases

Overall CVs predict the maximum absolute standardised bias of survey variable means when non-
response correlates maximally with the auxiliary covariates. Given an unknown auxiliary covariate set 
explaining response behaviour (ℵ), the Horvitz–Thompson estimate of the bias of a survey variable 
is approximated by the covariance between sample response propensities and the survey variable di-
vided by mean response propensity (Bethlehem, 1988). This value is standardised by dividing by the 
survey variable sample standard deviation (S(y), for variable y with response mean ŷr). By replacing 
the numerator covariance with its absolute maxima, which by the Cauchy Schwartz inequality is the 
product of the two variables’ standard deviations, the maximum absolute standardised bias is esti-
mated. The overall CV approximates this if the auxiliary covariates ℵ can be replaced by the utilised 
set x (de Heij et al., 2015), for example,

Whether auxiliary covariate set ℵ can be replaced by set x is untestable. In practice, including correlates 
of both response propensities and survey variables is essential, or biases may be under-estimated (see 
‘Section 1’). We note that another indicator studied by Nishimura et al. (2016), the survey variable abso-
lute maximum bias (=SDS (y) ∕p̂), is derived similarly given S (y) (Schouten et al., 2009).

In contrast, partial CV predictions about auxiliary covariate (analogue) ‘non-response biases’ are 
not described in the literature. In terms of Equation (6), response propensity–auxiliary covariate co-
variance is maximal. Hence, as they are derived from the between component of the variance de-
composition (see Section 2.1.1), CVus provide inferences about covariate category (focal vs. others 
combined) standardised mean biases.

For two-category covariates, the covariate CVu (Equation (2)) should approximate the absolute 
value of this bias (which in this case is independent of the focal category). For multi-category covari-
ates, K combinations of the focal category vs. the others exist. For these, the covariate CVu should 
approximate the maximum absolute value of the different biases that can be computed, a value that 
would be obtained if the observed degree of propensity variation were due to all category deviations 
from expected being identical except for the focal category.

Category CVus (Equation 4) concern only the deviation of the focal category from expected. 
Hence, they should approximate the minimum category bias, with under-estimation less when, due to 
category size or the deviation, its contribution to the covariate inequality is large.

To summarise,

where S
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)
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the upper bound is attained if K=2.
CVcs are derived from the within component of the variance decomposition (see Section 2.1.1). 
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where Bias

(
̂
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)

c
 is the focal category conditional bias, and again the upper bound is attained if K=2.

Inequalities (7) and (8) represent a further functionality of CVs of use when assessing dataset 
quality: if auxiliary covariate analogues measure the same quantities, partial CVs provide inferences 
about survey variable non-response biases (see also Sections 2.2.3 and 2.2.4).

2.1.3 | Using CVs to inform dataset quality improvements

Regarding modifications of collection method, CVs can be couched in terms of missing data mecha-
nisms (Schouten et al., 2012). Overall CVs quantify deviations in response from missing completely 
at random (MCAR) given the auxiliary covariate set. CVus quantify deviations from MCAR with 
respect to a given auxiliary covariate (category), and CVcs similar deviations from missing at ran-
dom (MAR), that is, the extent to which response is not missing at random (NMAR) given the other 
auxiliary covariates. Hence, CVus identify under-represented groups to target. CVcs ensure efficient 
targeting: non-significance implies an impact also associated with other auxiliary covariates. The sug-
gested strategy is to target categories with significant CVcs and some with significant CVus only if 
(non-significant) CVcs indicate correlations exist with other categories (Schouten & Shlomo, 2017).

Similar arguments underlie why CVs can also inform post-collection non-response bias adjust-
ments. Non-survey variable-specific methods, including inverse response propensity weighting (e.g. 
Roberts et al., 1987), often assume responses are MAR given an auxiliary covariate set explaining 
response behaviour. To identify such sets, Särndal and Lundström (2010; see also Särndal, 2011) use 
the coefficient of variation of the weights as a quality measure (Lundquist & Särndal, 2013; Särndal & 
Lundquist, 2014 also similarly derive ‘balance’ indicators for assessing dataset quality). If the weights 
or propensities are similarly estimated (weighting often uses an identity link, in contrast to the logistic 
link generally used for propensities), or the sample size is large, this measure is equivalent to the over-
all CV: dividing the standard deviation of a set of inverse values by their mean is equal to the same 
calculation using the raw values (see also Schouten et al., 2016). Given this, partial CVs can be used 
to identify auxiliary covariates to include in the covariate sets used in weighting adjustments. CVcs 
quantify inequalities after adjustment assuming MAR given the other auxiliary covariates, so if the 
covariates with large values are excluded from such sets their impacts will not be addressed (we note 
here that the included covariates should also be correlated with the survey variables, or adjusted vari-
able variances will be inflated; Little & Vartivarian, 2005). In fact, CVcs can be used when identifying 
modification targets to statistically select covariate set members. In contrast, Särndal and Lundström's 
methods, comparing all possible sets or covariate selection, use arbitrary thresholds for accepting 
more complex sets. This is the first time this functionality of CVs has been described.

2.1.4 | Using CVs to identify phase capacity (PC) points

Design phase capacity (PC) points are points in the data collection process after which further qual-
ity increases are limited and methods should be modified or collection ended (Groves & Heeringa, 
2006). Moore et al. (2018a) use CVs to identify PC points in household call records in three UK 
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social surveys (including the LFS, whose individual level dataset is studied in this paper). They 
identify overall CV points and CVu points for auxiliary covariates and under-represented categories: 
the former can be used to identify when to end collection, while impacts measured by CVus are 
modification targets, potentially separately. They use numeric methods, specifically two rules that re-
flect whether identification is during collection (informing current efforts) or after (informing future 
sampling): (a) if the CVs imply quality decreases or are within threshold a of the previous call CV 
(‘during’) and (b) if CVs imply quality decreases or are within a of the best call record CV (‘after’). 
No information existed on call costs or other methods, precluding optimising data collection given 
such alternatives using, for instance, the methods of Schouten et al. (2013); this is also the case for the 
dataset in this paper. Different thresholds a give comparable results. It should be noted that category 
(covariate) CVus are decompositions, so PC points should be earlier than or similar to those given 
covariate (overall) CVs, although this may not always hold as the latter combine (different) multiple 
inequalities.

An alternative to using numeric methods to identify PC points are inferential methods. Most re-
search seeks to identify points given changes in non-response adjusted survey variables over calls 
(Lewis, 2017; Rao et al., 2008; Wagner & Raghunathan, 2010). Tests assess whether variable dif-
ferences differ from zero, accounting in adjustment method specific ways for dataset dependencies 
caused by early call responses also being in later call datasets, so are not usable with CVs. CVs 
are the focus of Schouten et al. (2016), who to assess the representativeness–survey variable bias 
relationships develop a rank test that uses partial CVs given different auxiliary covariate sets and 
auxiliary covariate biases. This can be used to identify PC points, but only from multiple covariate 
CVs. Concerning identifying single CV points, ignoring dataset dependencies we suggest that one 
approach is to use CV 95% CIs. As with numeric methods, different rules can be constructed to reflect 
whether points are identified during or after data collection. A PC point is identified during collection 
if the CVs are non-significant (i.e. the 95% CIs include zero), imply quality decreases or the 95% CIs 
overlap the previous call CIs. A PC point is identified after collection if the CVs are non-significant, 
imply quality decreases or the 95% CIs overlap that for the call with the best CV. We use these rules 
for the first time below.

We note that when using inferential methods in empirical scenarios, significance levels need con-
sideration. The CV CI widths decline as response rates increase (Moore et al., 2018a), so unless such 
levels are adjusted, the statistical power to identify CV differences will vary over calls (see Lewis, 
2017 for discussion of similar with non-CV-based tests). This is perhaps a reason to use numeric 
methods: another is when decisions are optimal before CV parity, due to, for example, the costs of the 
alternative data collection methods. In the work in this paper though, a single significance level is not 
an issue: we evaluate CV performance by comparing CV PC points with those based on estimated bias 
(whose CIs similarly change: see Section 3).

2.2 | Evaluating CV-based inference for survey variables with auxiliary 
covariate analogues

2.2.1 | The Labour Force Survey (LFS) dataset

The Office for National Statistics 2011 CNRLS links January to July 2011 UK social survey samples 
and their survey responses to their 27th March 2011 census records, providing attribute information 
whether they are interviewed or not (Parry-Langdon, 2011). Linkage is via subject address and personal 
detail (name, gender and date of birth) matching. Survey call records are also appended. Our focus 
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here, the LFS, samples English and Welsh individuals aged over 15 on labour market topics (see ONS, 
2011). Simple random sampling of households (HHs) is used. ONS operatives seek to interview all HH 
occupants. Most interviews are face to face, but a telephone interview can be chosen (see also below). 
The LFS is longitudinal, but we consider wave one subjects only to avoid sample attrition effects. For 
this wave, 96.9% of HHs and 93.3% of subjects are linked to census records (Table 1). Hence, we can 
study the majority of the sample using (self-reported) census responses (see ONS, 2014) which reflect 
their attributes at the time (though we cannot rule out biases without non-linked subject data: Moore 
et al., 2018a). The call record data detail outcomes of calls to HHs (up to 20), and do not exist for tel-
ephone contacted HHs and some others (29.8% of the sample; see also below). Most HH members are 
interviewed at the same call. However, in around 1% of HHs, two members are interviewed at different 
calls. For these, we use the interview order to assign members to calls.

In our analyses, we consider eight survey variable–census auxiliary covariate analogue pairs (Table 2).  
All impact on LFS response propensities (Durrant & Steele, 2009; Durrant et al., 2010, 2011, 2013; 

T A B L E  1  Dataset construction and content. ‘Linked to census’, ‘Face to face interview’ and ‘With call records’, 
‘Under 65’ and ‘Without item NRs’ are the number of (remaining) individuals and HHs with such characteristics, the 
last being the size of analytical dataset. ‘Interviewed’, ‘Refusal’ and ‘Non-contact’ are numbers of outcomes in the 
call 20 dataset

HHs Individuals

Eligible 26,322 64,187

Linked to Census 25,524 59,897

Face to face interview 20,123 41,668

With call records 17,760 36,611

Under 65 14,720 28,383

Without item NRs 11,491 21,150

Interviewed (response) 12,394

Refusal 2947

Non-contact 5809

T A B L E  2  Studied survey variable–census auxiliary attribute covariate analogue pairs, and their categorisations

Variable/covariate Categories

Two category

Gender 1) Male; 2) Female

Tenure 1) Owned; 2) Not owned

Located in London/SE 1) No; 2) Yes

Multi-category

Age 1) 16 to 27; 2) 28 to 39; 3) 40 to 51; 4) 52 & over

Qualifications 1) NQF 4+; 2) NQF 3; 3) Apprenticeship; 4) NQF 2; 5) <NQF 2; 6) Other; 7) 
None; 8) Not recorded (NR)

Activity last week 1) Employed; 2) Unemployed; 3) Economically inactive (EI): Student; 4) EI: 
Retired; 5) EI: Ill/impaired; 6) EI: At home/other

Ethnicity 1) White; 2) Mixed; 3) Black; 4) Asian; 5) Chinese; 6) Other; 7) NR

Household (HH) structure 1) Single adult; 2) Single adult with children; 3) Couple; 4) Couple with 
children; 5) Other
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Steele & Durrant, 2011) and are likely to be associated with other survey variables. ‘Tenure’ is a HH 
response, ‘HH structure’ a derived response, ‘Located in London/SE’ a geographical identifier and the 
others individual responses. For a number of subjects, some responses are missing. This can reflect item 
non-response, but often is due to statistical disclosure control or, as with LFS subjects aged over 64, 
not being asked some items. Often, two or more responses are missing, so to minimise correlations we 
exclude these subjects from the analysed dataset. However, ‘Age’, ‘Gender’, ‘Tenure’ and ‘HH structure’ 
remaining item non-responders are so few that disclosure issues arise. Hence, we also exclude them so 
that variables/covariates lack No response (NR) categories. We exclude 24% of the sample due to missing 
responses. Use of the methods below shows that excluding these subjects and those without call records 
(see previously) from the dataset causes under-representation of those in owned HHs or Aged ‘16 to 
27’ compared to the sample (results not shown): we outline likely impacts on findings in Section 3.1.1. 
Given these exclusions, ‘Gender’, ‘Tenure’ and ‘Located in London/SE’ have two categories. The other 
variables/covariates are multi-category. The analysed dataset contains 21,150 subjects in 11,491 HHs. 
The final survey response rate is 58.6%; 13.9% of subjects refuse interviews and 27.5% are not contacted.

2.2.2 | Quantifying LFS dataset representativeness and identifying PC points

We quantify LFS dataset representativeness by computing CVs from response propensities estimated 
using a logistic regression model with as main effects the census auxiliary covariates listed in Table 2. 
At each call in the record, we compute bias adjusted overall CVs, auxiliary covariate partial CVs and 
CV 95% CIs. We do not conduct population-level inference as some survey subjects are not studied, 
so the supplied weights are not useful. We compute the CVs using the R code of de Heij et al. (2015; 
see www.risq-proje ct.eu). We then identify CV PC points. We identify overall CV points, and CVu 
points for auxiliary covariates and selected under-represented categories, using the numeric and infer-
ential ‘during’ and ‘after’ collection identification rules described in Section 2.1.4. For the numeric 
method points, we use a threshold a of ±0.02: others give comparable results (not shown).

2.2.3 | Comparisons with census auxiliary covariate category ‘non-response 
biases’

We evaluate CV-based inference about survey variables with auxiliary covariate analogues by first 
computing logistic-regression-based estimates of census auxiliary covariate standardised ‘non-re-
sponse biases’ for comparison. We describe CV predictions about category ‘non-response biases’ in 
Section 2.1.2. To evaluate them, for the three two-category covariates and the selected under-repre-
sented multi-category covariate categories, we code new binary covariates such that 

where i = 1, …, n. We let ri be the response indicator for subject i at a given call, with ri = 0 indicating 
that they have not responded to the survey and ri = 1 that they have. Next, at each call in the record, we 
estimate non-respondent–respondent differences in the log-odds of category membership. We fit two 
statistical models. Model A estimates overall differences: 

yi =

{
1, if subject i is in the category of interest

0, if subject i is not in the category,

http://www.risq-project.eu
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where πi = Pr(yi = 1| ri) is the category membership probability, β0 is the non-respondent log-odds of 
membership and β1 is the β0 – respondent log-odds difference. Model B estimates differences conditional 
on the auxiliary covariate set d i (set x minus the covariate underlying yi): 

where β is a vector of coefficients. In model B, as yi and ri are binary, a β1 of zero implies response with 
regard to a category is MAR given the auxiliary covariates. Non-zero values quantify the extent to which 
it is NMAR (Barbosa, 2014). This provides similar information to a CVc (see Section 2.1.3). In model A, 
β1 quantifies the deviation from MCAR, providing similar information to a CVu. Then, from parameter 
estimates, we compute standardised ‘non-response biases’ for the categories of yi as: 

where m is the number of non-respondents, �r is the respondent category membership probability, �nr is 
the non-respondent probability and S�s

 is the sample probability standard deviation (see Groves & Couper, 
1998). With model A, we back-transform parameter estimates to obtain �r and �nr. Model B estimates 
are conditional, so we compute marginal category membership probabilities to obtain �r and �nr, using 
Hastie's (1992) ‘safe prediction’ method in the R package ‘effects 3.1.2’ (Fox, 2003; Fox & Hong, 2009). 
To obtain S�s

 we fit a null model and use the delta method (Oehlert, 1992) in the R package ‘msm 1.6.4’ 
(Jackson, 2011).

We also identify overall (model A) bias PC points to compare to CV points, using the same meth-
ods (see Section 2.1.4). We again utilise the delta method to estimate standard errors and 95% Cis 
for the bias. Concerning predictions, covariate level CVu points for two-category CVs and bias points 
should correspond (see Section 2.1.2). Given contributions to covariate inequalities, similarities be-
tween multi-category covariate category CVu and bias points should also exist.

2.2.4 | Survey variable–census auxiliary covariate analogue similarity

To assess survey variable–census auxiliary covariate analogue similarity, for studied categories we 
compute survey respondent proportions given each data source at each call. We compare values 
graphically and using Z tests for independent sample proportions.

3 |  RESULTS

3.1 | LFS dataset representativeness and PC points

3.1.1 | Response rate development and CVs

LFS responses accumulate at a decreasing rate over the call record, with minimal increases after call 9 
and none after call 17 (Figure 1). The overall CVs decrease, suggesting increased representativeness, 
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at a declining rate. The corresponding 95% CIs (see Table 1 in the online Appendix), which decrease 
in width over the call record (as other CV intervals also tend to do), all exclude zero, implying re-
spondents are always significantly non-representative of the sample.

We report the partial CVs in Figures 2 and 3 and the corresponding 95% CIs in Tables 1–4 in the 
online Appendix. The 95% CIs of most auxiliary covariate unconditional CV (CVu) exclude zero, 
implying significant associated inequalities. The ‘Located in London/SE’ CVus begin as the largest, 
decrease at a declining rate to call six, then increase slightly. The ‘HH structure’ CVus increase to call 
four, then decrease slightly, and are largest in the final dataset. Five covariates exhibit smaller, similar 
final inequalities. The ‘Age’ and ‘Activity last week’ CVus decrease at declining rates. The ‘Ethnicity’ 
CVus decrease slightly. The ‘Qualifications’ CVus decrease to call two, then increase slightly. The 
‘Tenure’ CVus begin non-significant, increase to call two, then decrease slightly. The ‘Gender’ CVus 
are smallest of all, increase slightly and are non-significant to call five.

The category CVus suggest ‘Located in London/SE’ and ‘Age’ inequalities are due to under-repre-
sentation of London/SE and subjects aged under 40, although many are eventually interviewed. The 
‘Activity last week’ inequality reflects similar Employed under-representation and increasing Student 
under-representation. The ‘HH structure’ inequality is due to initial under-representation of Single 
adult and Single adult with children HHs, but the latter impact declines and Other HH becomes un-
der-represented. The ‘Ethnicity’ inequality reflects under-representation of Asian, Other and NR, and 
increasing under-representation of Mixed and Chinese. The ‘Qualifications’ inequality is due to initial 
under-representation of NVQ4+, NVQ3 and NR, but the first two impacts decline and None becomes 
under-represented. The ‘Tenure’ and ‘Gender’ inequalities reflect under-representation of Not owned 
HHs and Males.

The conditional CVs (CVcs) suggest some of these impacts are independent. Only the ‘Gender’ 
and ‘Tenure’ CVcs are non-significant. Some ‘Qualifications’ and ‘HH structure’ CVcs are larger 
than the CVus, implying greater inequalities. The ‘Located in London/SE’, ‘Age’ and ‘Activity last 
week’ CVcs are smaller, suggesting inequalities partly correlated with the other auxiliary covariates. 
Of the under-represented categories, Student, NVQ3, Not owned HH, Male and most ‘Ethnicity’ im-
pacts disappear: the category CVcs are non-significant. The London/SE, Employed, Mixed ethnicity, 
‘Qualifications’ None and NR, ‘Age’ and ‘HH structure’ impacts do not. Many such impacts exist 
in the HH dataset, putatively due to groups being less contactable (Moore et al., 2018a). This likely 
also holds for (some of) those newly identified here. The Employed and not owned HH impacts are, 

F I G U R E  1  LFS dataset cumulative response rate (RR) over the call record and similar dataset overall CVs. See 
Table 1 in the online Appendix for the CV 95% CIs
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respectively, increased and reduced by including excluded subjects (those missing multiple responses, 
etc.) in the dataset (see also Section 2.2.1). Regarding improving datasets, categories with signifi-
cant CVcs are method modification targets (see also Section 2.1.3). Some with significant CVus only 
should also be included if their impacts may be correlated with those of other categories: for instance, 
Students and Not owned HHs. Similarly, all covariates except ‘Gender’ and ‘Tenure’ should be in-
cluded in auxiliary covariate sets used in post-collection bias adjustments.

3.1.2 | CV PC points

The numeric method overall CV PC points using the ‘during’ and ‘after’ rules are at calls four and 
five, respectively (Table 3). As expected, since CVus are decompositions, most auxiliary covariate 
CVu points are at the same calls or earlier. The ‘Gender’, ‘Tenure’ and ‘HH structure’ ‘during’ and 
‘after’ points are at calls two and one, respectively, and similar the ‘Qualifications’ points at calls 
three and two, because, although the CVu minima are at the earlier calls, the ‘during’ rule only detects 
later increases. The ‘Ethnicity’ points are at call two, the ‘Located in London/SE’ and ‘Age’ points 
at call four, and the ‘Activity last week’ points at call five. We identify (multi-category) auxiliary co-
variate category CVu points for the under-represented categories ‘Age’ 28 to 39, ‘Activity last week’ 
Employed, ‘Ethnicity’ Asian, and ‘HH structure’ Single adult and No qualifications. These points are 

F I G U R E  2  LFS dataset partial (a) unconditional and (b) conditional auxiliary covariate CVs over the call 
record. See Tables 1 and 2 in the online Appendix for the CV 95% CIs
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F I G U R E  3  LFS dataset partial unconditional and conditional auxiliary covariate category CVs over the call 
record: (a) age; (b) qualifications; (c) activity last week; (d) HH structure; (e) ethnicity; (f) tenure; (g) located in 
London/SE; and (h) gender. See Tables 3 and 4 in the online Appendix for the CV 95% CIs
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earlier than the CVu and overall CV points, again as expected. The 28 to 39 and Employed ‘during’ 
and ‘after’ points are at calls three and four, respectively, due to later CV decreases detected by the 
‘after’ rule. For the others, the ‘during’ points are one call later than the ‘after’ points (calls one and 
two), again due to the former rule not detecting CV minima.

The inferential method PC points follow similar patterns. The overall CV points are at call five. The 
‘Gender’ and ‘Tenure’ auxiliary covariate CVu ‘during’ points are at call one, due to CVu non-signifi-
cance (the ‘after’ points are again at the same call). The ‘Ethnicity’, ‘HH structure’ and ‘Qualifications’ 
points are mostly earlier than the ‘Located in London/SE’, ‘Age’ and ‘Activity last week’ points. Some 
are earlier than the numeric points, due to the 95% CI overlapping at CVu differences larger than 
0.02. The under-represented category Employed and 28 to 39 category CVu points are later than the 
No qualifications, Asian and Single adult points, with differences from the numeric points due to the 
non-significance of the CVu or the overlapping of CI at CVu differences less than 0.02.

3.2 | Evaluating CV-based inference for survey variables with auxiliary 
covariate analogues

3.2.1 | Census auxiliary covariate analogue category ‘non-response biases’

We report estimated biases in Figure 4, and their 95% CIs in Tables 5 and 6 in the online Appendix. 
They are mostly consistent with the CVs. As expected, since the CVs predict (conditional) biases 

T A B L E  3  Numeric threshold and statistical inference identified ‘during’ and ‘after’ rule design phase capacity 
(PC) points for selected census auxiliary covariate categories based on partial CVus and where comparable 
transformed bias model A estimates

Numeric Inferential

During After During After

CVu Bias CVu Bias CVu Bias CVu Bias

Covariate (two cat.)

‘Located in London/SE’ London/SE 4 4 4 4 4 4 3 3

‘Tenure’ Not owned 2 2 1 1 1 2 1 1

‘Gender’ Male 2 2 1 1 1 1 1 1

Covariate (multi-cat.)

‘Age’ 4 4 2 4

‘Activity last week’ 5 5 4 4

‘Ethnicity’ 2 2 2 1

‘Qualifications’ 3 2 2 1

‘HH structure’ 2 1 2 1

Category

‘Age’ 28 to 39 3 3 4 4 4 2 5 4

‘Activity Last Week’ Employed 3 5 4 6 5 4 5 4

‘Ethnicity’ Asian 2 2 1 1 2 2 3 1

‘Qualifications’ None 3 3 2 2 2 2 2 2

‘HH structure’ Single adult 2 2 1 1 2 2 1 1
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of the category means, overall (model A) and conditional (model B) (absolute) biases for the two-
category auxiliary covariates are quantitatively similar to the covariate CVus and CVcs, respectively. 
Correspondence is close for the ‘Tenure’, ‘Located in London/SE’ and ‘Gender’ overall biases: con-
ditional biases can be slightly larger than the CVcs. The 95% CI widths for bias tend to decline over 
calls, as with the CVs. Some significance differences exist: the 95% CIs for the ‘Gender’ call one 
overall bias and the later call ‘Gender’ and ‘Tenure’ conditional bias exclude zero.

Moreover, for the studied multi-category auxiliary covariate categories qualitative similarities at 
least exist between the (absolute) bias estimates and the category CVs (the CVs predict bias minima, 
with under-estimation less when contributions to the covariate inequalities are large). The Asian and 
No qualifications overall biases correspond with the CVus, with conditional biases slightly larger and 
smaller than the CVcs, respectively. The Single adult HH, Employed and 28 to 39 biases are larger 
than the CVs: the last two differences decline over the calls because contributions to the covariate 
inequalities increase. The widths of the 95% CIs for bias also tend to decline, with similar significance 
for the CVs. In addition, biases are smaller than the relevant covariate CVs, which in these cases 
predict category bias maxima, and all biases are smaller than the overall CVs, which predict (survey 
wide) category bias maxima.

3.2.2 | Census auxiliary covariate analogue category ‘non-response bias’ 
PC points

The estimated overall bias and CVu PC points also mostly correspond (Table 3). With the numeric 
identification methods, the two-category auxiliary covariate bias and covariate CVu points are at 
the same calls. The same occurs for multi-category auxiliary covariate categories, except for with 
Employed, for which the bias points are two calls later. With the inferential methods, the two-category 
auxiliary covariate bias and the covariate CVu points are at the same calls except for the ‘Tenure’ ‘dur-
ing’ point, which is at call two due to the significance of the call one estimate. For the multi-category 
auxiliary covariate categories, the points are at the same call, or the bias points are one to two calls 
earlier. Concerning the inferential points, though the statistical power issues associated with their 
identification are less problematic in our analyses (see Section 2.1.4), we note that while some of the 
bias points are earlier (the CIs are wider), correspondence between the CVu and bias points is similar 
to that reported here when subsets of the dataset with 5000 and 10,000 subjects are analysed (results 
not shown).

3.2.3 | Survey variable–census auxiliary covariate analogue similarity

We report the category proportions for the survey respondents in the two data sources in Figure 5. The 
values are as expected regarding the implied biases (the census sample values are mostly higher) and 

F I G U R E  4  Partial CVs and model (A = overall, B = conditional) estimated standardised ‘non-response biases’ 
for the auxiliary covariate categories: (a) ‘Located in London/SE’ Yes; (b) ‘Tenure’ Not owned; (c) ‘Gender’ Male; 
(d) ‘Age’ 28 to 39; (e) ‘Activity Last Week’ Employed; (f) ‘Ethnicity’ Asian; (g) ‘Qualifications’ None; (h) ‘HH 
structure’ Single adult. The first three covariates have two categories, so the covariate CVs are comparators, with (as 
CVs are constrained to be positive) the model bias estimate absolute values reported. The other covariates are multi-
category, so category CVs are comparators. With these, the CVc is constrained to be positive, so model B based bias 
estimate absolute values are reported. See Tables 5 and 6 in the online Appendix for the bias estimate 95% CIs
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the changes over calls: they increase for categories becoming less under-represented and decrease for 
those becoming more so. They are also consistent with the survey variable–census auxiliary covari-
ate analogue similarity. The Male, London/SE, Not owned HH and 28 to 39 proportions in the two 
sources are indistinguishable in the plots. Minor differences exist (mainly at early calls) for Single 
adult HH, Employed, No qualifications and Asian. For the first five categories, the Z tests for differ-
ences are all non-significant at the 0.05 level (see Table 7 in the online Appendix). For the rest, the 
differences are significant after calls three to four: given the point estimates, as mentioned when iden-
tifying the PC points (see Section 2.1.4), this is due to the increasing size of the respondent dataset.

4 |  DISCUSSION

We evaluate the performance of the Coefficients of Variation of the response propensities (CVs) 
when monitoring the risks of survey variable non-response biases during survey data collection. CVs 
quantify dataset representativeness in terms of variation in sample response propensities estimated 
given a fully observed auxiliary attribute covariate set correlated with the survey variables: high rep-
resentativeness implies low bias risk. Practitioners are interested in using CVs to monitor survey 
data collection, but little research exists on how well they predict observed biases. We extend work 
on CV predictions concerning biases and how they inform dataset improvements. Next, we use CVs 
to quantify (changes in) UK Labour Force Survey (LFS) dataset representativeness over data collec-
tion, utilising linked survey sample census responses as auxiliary covariates. Then, we evaluate CV 

F I G U R E  5  Survey variable (dashed lines) and census auxiliary covariate analogue (thick solid lines) category 
survey respondent proportions over the call record for: (a) ‘Gender’ Male and ‘Located in London/SE’ Yes; (b) 
‘Tenure’ Not owned and ‘Age’ 28 to 39; (c) ‘Activity Last Week’ Employed and ‘HH structure’ Single adult. We also 
present census auxiliary covariate sample category proportions (thin solid lines) 
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inferences about survey variables with analogues estimating the same quantities among the auxiliary 
covariates.

Regarding bias prediction, overall CVs approximate the maximal absolute standardised bias of 
survey variable means when non-response correlates maximally with the auxiliary covariates (de 
Heij et al., 2015). We show that partial unconditional and conditional covariate CVs (CVus and CVcs, 
respectively), which decompose overall CVs to measure (conditional) deviations in response with 
respect to auxiliary covariates, also predict similar absolute standardised ‘non-response biases’ of 
category means for two-category auxiliary covariates. For similar multi-category covariates, category 
(focal vs. others) bias maxima are predicted. Category CVs predict category bias minima, with less 
under-estimation when contributions to covariate inequalities are large. These predictions have not 
previously been reported, and potentially increase the utility of CVs when assessing survey datasets 
(and others with missing data, for example linked datasets; e.g. Moore et al., 2018b). If the survey 
variables and auxiliary covariate analogues measure the same quantities, partial CVs can be used to 
make inferences about survey variable biases. Our empirical work, which we discuss below, tests this 
contention in the LFS.

Concerning informing dataset improvements, CVus and CVcs also measure deviations with regard 
to covariates from, respectively, MCAR and MAR given the other auxiliary covariates (Schouten 
et al., 2012). With statistical inference possible, they hence identify targets for collection method mod-
ifications: under-represented categories with significant CVus and CVcs (i.e. independent impacts), 
although categories with impacts also correlated with other covariates, as indicated by significant 
CVus but non-significant CVcs, should be considered as well. We show that for similar reasons CVs 
can help select auxiliary covariates to use in post-collection bias adjustments. Such adjustments gener-
ally assume response is MAR given a set of auxiliary covariates. To select the auxiliary covariate sets, 
Särndal and Lundström (2010) use the coefficient of variation of the weights (larger is better). This 
is equivalent to the overall CV when the weights and response propensities are similarly estimated 
(e.g. by logistic regression) or the sample size is large, so significant CVc identify covariates with 
independent impacts. Recognising this functionality also increases the utility of CVs when assessing 
dataset quality.

Our empirical work demonstrates the accuracy of CV-based inference during data collection. We 
quantify LFS dataset representativeness by computing the overall CVs and auxiliary covariate CVus 
and CVcs after each attempt to interview non-respondents (the call record). We also identify phase 
capacity (PC) points after which further quality increases are limited and methods should be modified 
or data collection ended (e.g. Groves & Heeringa, 2006). We consider stability of the CVs compared 
to previous call values (of use during collection to inform current sampling), and best values over the 
call record (of use after collection to inform future efforts). We use both numeric methods (do the CVs 
fall within a threshold of relevant values), and novel inferential methods (are the CVs non-significant 
or do the 95% CIs overlap) that we describe in Section 2.1.4. Then, we evaluate CV-based inference 
about the survey variables with auxiliary covariate analogues measuring the same quantities. First, we 
compare auxiliary covariate partial CVs to logistic-regression-based estimates of covariate category 
standardised ‘non-response biases’. Second, we assess the survey variable–auxiliary covariate similar-
ity by comparing the survey respondent category proportions given each data source. Pertinent to the 
performance of the CVs (we discuss other findings below), inference matches that from estimates of 
bias. The two-category auxiliary covariate CVs and estimated biases (and the PC points) correspond. 
The multi-category auxiliary covariate category CVs are smaller than the estimated biases (the PC 
points are mostly similar), and the covariate and overall CVs are larger. Moreover, the differences 
in the category proportions for the survey respondents between the data sources are slight, implying 
generalisability of inferences.
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These findings indicate CVs are of utility as tools for monitoring survey data collection. Valid 
inference about the non-response biases of survey variables enables informed decisions about the 
methods to use to maximise final dataset quality. We hence recommend them to practitioners, and 
Table 4 provides guidance on using them to monitor data collection in empirical scenarios in the form 
of a set of steps that should be included in the analyses (see Schouten et al., 2012 for similar advice on 
assessing final dataset quality). Depending on the aims of monitoring, not all steps will be relevant. 
We note though that such aims are likely to depend on analysis findings: for example, without a PC 
point existing, practitioners may not have the resources to modify collection methods. We also note 
that if the aim is to modify methods to improve the dataset, after implementing modifications the CVs 
can be computed again to quantify their impact.

We do though make several comments about our evaluations and their implications. First, one 
limitation is that we do not evaluate CV-based inferences about survey variables without auxiliary 
covariate analogues. Often, but not always (e.g. the LFS is used to estimate UK employment rates; 
see ONS, 2014), these are the main focus of a survey. We will be undertaking these evaluations in 
the following research. Second, it should be noted that auxiliary covariate analogue partial CVs will 
perform best in predicting biases in survey variables when data sources do measure the same quan-
tities. Dissimilarities may occur due to non-contemporary sources, or if the information requested or 
reported differs: the latter, caused by the LFS interviewers eliciting more accurate responses than the 
self-reported census, explains the slight differences found in our work between survey and census 
‘Ethnicity’ Asian and No ‘Qualifications’ survey respondent category proportions (see Moore et al., 
2018c). Hence, if possible survey variable–auxiliary covariate analogue similarity should be assessed 
before using CVs for this purpose.

T A B L E  4  The steps in an analysis utilising CVs to monitor survey data collection. Depending on the aim of 
monitoring, not all will be relevant in a given scenario, though these aims will likely depend on analysis findings (see 
also ‘Section 4’)

1. Select a set of auxiliary covariates observed for all sample subjects. Covariates should be correlated with 
(explain as much variation as possible in) the survey variables. An issue is likely to be availability: common 
sources of covariates such as administrative records and population registers tend to be limited in scope. 
We also note that given the impact of covariate categorisation on partial CV predictions, for key auxiliary 
covariate inequalities and especially when making inferences about biases in survey variables with auxiliary 
covariate analogues, binary coding (focal category vs. others) should be utilised (see also Section 2.1.2)

2. Given the auxiliary covariate set, compute overall and auxiliary covariate partial CVs over collection as in 
Section 2.2.2. We study a call record, but methods can be adapted, for instance to assess whether offering 
non-respondents another response mode improves the dataset

3. If aiming to identify whether collection can be ended early, select methods (during or after collection, numeric 
[threshold] or inferential [significance level]) from those outlined in Section 2.1.4 and seek to identify the 
overall CV PC point. If a survey variable with an auxiliary covariate analogue is the focus, use the same 
methods and the relevant CVu

4. If aiming to identify auxiliary covariates to use in post-collection bias adjustments, check covariate CV 
significance at the overall CV PC point (if one exists) or in the final dataset. Exclude from sets covariates 
with non-significant CVus, and those with non-significant CVcs unless correlated with other similar 
covariates (see also Section 2.1.2)

5. If aiming to identify targets for method modifications, identify auxiliary covariate categories with major 
(addressing large impacts most reduces the overall CV) independent impacts, that is, those with large, 
significant CVus and CVcs, notwithstanding correlations between those with non-significant CVcs (see also 
Section 2.1.2). CVs at the overall CV PC point (if it exists) should be used, though if categories are separately 
targetable it may be possible to implement modifications at (earlier) relevant covariate/category CVu points
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Regarding our other findings, we study the LFS individual dataset, extending work on the household 
dataset (Moore et al., 2018a) to the sample unit. The overall CVs imply dataset non-representativeness 
decreases at a declining rate over calls, and is substantial when collection ends. The partial CVs suggest 
inequalities (biases) associated with six of the eight auxiliary covariates, with a range of under-repre-
sented categories (see Section 3.1 for details and causes). Some impacts decline, others do not, and they 
are often independent. Regarding improving datasets, such categories are targets for data collection 
method modification (similarly, covariates should be used in post-collection adjustments). The identi-
fied PC points inform on when modifications should take place. The overall CV points are at calls four 
to five. The partial CV points, of use if separate targeting is possible, vary depending on category from 
calls one to six: similar variation in when estimate stabilise is found in other studies monitoring survey 
data collection (e.g. Petychev et al., 2009). The ‘during’ and ‘after’ rule points exhibit some differences, 
as do the points identified by the numeric and inferential methods. The latter have received little atten-
tion in the context of CVs: as found in research using other estimators (Lewis, 2017), our work, utilising 
simple 95% CI based tests, suggests that selecting significance levels suitable over all respondent data-
set sizes is an issue with their use in empirical scenarios (see also Section 2.1.4).

We lack information on alternative collection methods, so cannot advise further on improvements 
to the LFS dataset. What is useful though is to utilise overall CV points to identify when to end current 
data collection, so resources can be otherwise invested to improve quality or make cost savings. The 
identified points are slightly earlier than the LFS household dataset points (see Moore, et al., 2018a), 
in part due to us excluding subjects aged over 64 (who do not answer some survey items) from anal-
yses, and represent reductions in calls made of 12%–19%. Substantial savings are likely from such 
reductions. Similar CV-based results are also found for other European and UK surveys (Correa et al., 
2016; Lundquist & Särndal, 2013; Moore et al., 2018a). Hence, we end by recommending that more 
attention is paid to whether the number of calls currently made to social survey non-respondents are 
needed to maintain dataset quality.
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