
Nicholas Clark, PhD, MCSP, MMACP, CSCS.
School of Sport, Rehabilitation, and Exercise Sciences.
University of Essex, Colchester, Essex, United Kingdom.
n.clark@essex.ac.uk
@DrNickCC

Elaine M. Mullally, MSc, GSR.
Faculty of Sport, Allied Health, and Performance Science.
St Mary’s University, Twickenham, London, United Kingdom.
@MullallyElaine

University of Worcester, England, United Kingdom.

Background

- Asymmetry and effects on human performance
 - Side-to-side comparison of the quantity of a variable = between-limb symmetry analysis
 - (Clark & Mullally 2019; Clark & Clacher 2020)
 - Symmetry: when the variable is equal in magnitude in both limbs
 - (Clark & Mullally 2019; Clark & Clacher 2020)
 - Asymmetry: when the variable is unequal in magnitude in both limbs
 - (Clark & Mullally 2019; Clark & Clacher 2020)
Background

- Asymmetry and effects on human performance
 - Gait (walking) between-limb asymmetry has been studied for decades - amputees
 - (Lamoreux 1971)
 - Lower-limb motor performance asymmetry in sports medicine has also been studied for decades – knee ligament injury
 - (Daniel et al 1982)
 - Lower-limb asymmetry and athletic performance in uninjured individuals – linear running efficiency
 - (Belli et al 1995)

Background

- Asymmetry and effects on human performance
 - Side-to-side asymmetry of single-leg motor performance (e.g. strength, dynamic balance, power) linked to deterioration of running change-of-direction performance in uninjured games-players
 - Most performance asymmetry research to date in elite male and female athletes
 - No performance asymmetry research in uninjured amateur adult female games-players
Aim and Null Hypothesis

- **Aim**
 - To determine the relationships between:
 - Triple hop for distance (THD) absolute-asymmetry (THD-AA) and Illinois agility test (IAT) performance in amateur adult female netball players
 - Single hop for distance (SHD) absolute-asymmetry (SHD-AA) and IAT performance in amateur adult female netball players

- **Null Hypothesis**
 - There would be no significant relationship between the THD-AA and IAT or between the SHD-AA and IAT

Methods

- **Cross-sectional study**
 - One English amateur club
 - London and South East Regional League
 - Surrey County League

- **23 adult female players volunteered**
 - Age 28.7±6.2yr; height 171.6±7.0cm; mass 68.2±9.8kg

- **Data collected in one session**
 - Outdoor training site (concrete netball court)
Methods

- **Triple hop for distance:** sagittal plane single-leg repeated deceleration-acceleration performance

- **Single hop for distance:** sagittal plane single-leg power and dynamic balance performance

Clark & Mullally 2019; Noyes et al 1991

Methods

- **Illinois agility test:** running repeated change-of-direction

Getchell 1979; Vescovi et al 2011
Methods

- Data management
 - Triple hop for distance, single hop for distance: cm
 - Limb symmetry index (LSI, %)
 - (right mean ÷ left mean) × 100
 - Absolute-asymmetry (%)
 - 100 – LSI (-ve signs removed)
 - Illinois agility test: s

- Data analysis
 - Normality assessment
 - Histogram inspection, Shapiro-Wilk
 - Spearman’s correlation (r_s)
 - Coefficient of determination (r_s^2)
 - Alpha set a priori at 0.05

Results

- Raw data and relationships
 - Absolute-asymmetry variables not normally distributed ($P < 0.01$)

- THD absolute-asymmetry vs. Illinois Agility Test
 - $r_s = 0.54$
 - $r_s^2 = 0.29$ (29%)
 - $P = 0.01$

- SHD absolute-asymmetry vs. Illinois Agility Test
 - $r_s = 0.31$
 - $r_s^2 = 0.10$ (10%)
 - $P = 0.07$

| Table 1. Descriptive Statistics ($n = 23$) |
|--|---------------------------------|-----------------|
| Illinois Agility Test | Triple Hop for Distance | Single Hop for Distance |
| Test (s) | A-A (%) | A-A (%) |
| Minimum | 17.8 | 0.2 |
| Maximum | 22.9 | 15.8 |
| Median | 19.6 | 3.3 |
| Mean | 19.5 | 4.4 |
| Standard Deviation | 1.4 | 3.9 |

$s =$ seconds
A-A = absolute-asymmetry
SD = standard deviation
Results – Sensitivity Analysis

- THD absolute-asymmetry vs. Illinois Agility Test \((n = 23)\)
 - \(r_s = 0.54\)
 - \(r_s^2 = 0.29\) (29%)
 - \(P = 0.01\)
- THD absolute-asymmetry vs. Illinois Agility Test \((n = 19)\)
 - \(r_s = 0.62\)
 - \(r_s^2 = 0.38\) (38%)
 - \(P = 0.00\)

Conclusion

- As triple hop for distance absolute-asymmetry increased, Illinois agility test performance deteriorated (i.e. performance time also increased)
- To enhance repetitive running change-of-direction performance in amateur adult female netball players, training efforts may need to consider mitigating right-left asymmetries in sagittal plane single-leg repeated deceleration-acceleration performance as represented by the triple hop for distance

Thank You