
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

RASA: Reliability-Aware Scheduling Approach for
FPGA-Based Resilient Embedded Systems in

Extreme Environments
Sangeet Saha , Xiaojun Zhai , Senior Member, IEEE, Shoaib Ehsan , Senior Member, IEEE,

Shakaiba Majeed, and Klaus McDonald-Maier , Senior Member, IEEE

Abstract—Field-programmable gate arrays (FPGAs) offer
the flexibility of general-purpose processors along with the
performance efficiency of dedicated hardware that essentially
renders it as a platform of choice for modern-day robotic systems
for achieving real-time performance. Such robotic systems when
deployed in harsh environments often get plagued by faults due
to extreme conditions. Consequently, the real-time applications
running on FPGA become susceptible to errors which call for
a reliability-aware task scheduling approach, the focus of this
article. We attempt to address this challenge using a hybrid
offline–online approach. Given a set of periodic real-time tasks
that require to be executed, the offline component generates a
feasible preemptive schedule with specific preemption points. At
runtime, these preemption events are utilized for fault detec-
tion. Upon detecting any faulty execution at such distinct points,
the reliability-aware scheduling approach, RASA, orchestrates
the recovery mechanism to remediate the scenario without jeop-
ardizing the predefined schedule. Effectiveness of the proposed
strategy has been verified through simulation-based experiments
and we observed that the RASA is able to achieve 72% of task
acceptance rate even under 70% of system workloads with high
fault occurrence rates.

Index Terms—Extreme environments (EEs), field-
programmable gate array (FPGA), partial reconfiguration,
real-time scheduling, reliability, resilient systems, single-event
upsets (SEUs).

I. INTRODUCTION

IN THE last couple of decades, field-programmable gate
arrays (FPGAs) have found widespread use in embedded

applications ranging from avionics to automotive, and object
tracking [1] to cryptography [2]. Recent research [3], [4]
shows that the FPGAs are also becoming increasingly pop-
ular in the field of robotics. Embedded systems within a robot

Manuscript received November 20, 2019; revised January 19, 2021;
accepted April 24, 2021. This work was supported by the U.K. Engineering
and Physical Sciences Research Council under Grant EP/R02572X/1, Grant
EP/P017487/1, Grant EP/V000462/1, and Grant EP/V034111/1. This arti-
cle was recommended by Associate Editor W. Shen. (Corresponding author:
Sangeet Saha.)

Sangeet Saha, Xiaojun Zhai, Shoaib Ehsan, and Klaus McDonald-Maier
are with the Embedded and Intelligent Systems Laboratory, University
of Essex, Colchester CO4 3SQ, U.K. (e-mail: sangeet.saha@essex.ac.uk;
xzhai@essex.ac.uk; sehsan@essex.ac.uk; kdm@essex.ac.uk).

Shakaiba Majeed is with the Real-Time Computing and Communications
Lab, Hanyang University, Seoul 04763, South Korea (e-mail:
shakaiba@rtcc.hanyang.ac.kr).

Digital Object Identifier 10.1109/TSMC.2021.3077697

provide advanced control techniques, environment reconstruc-
tion, interaction with humans, navigation in unknown and
dynamic environments, etc. The execution of such scenarios
often imposes stringent timeliness constraints and the robotic
system must react within precise time interval to events in
the environment [5], [6]. Hence, an FPGA-based embedded
system for a robot demands well-defined scheduling method-
ologies, feasibility criteria, and admission control mechanisms
for real-time task sets that are being executed.

Moreover, these embedded systems face reliability chal-
lenges when the robots are deployed in harsh environ-
ments, also known as extreme environments (EEs), as they
become susceptible to errors due to severe conditions, such
as high radiation levels, high temperature, etc. The deploy-
ment of robots for the exploration and inspection of an
abandoned nuclear power plant is an example scenario of
a robot system in EE. In such an environment, the operat-
ing FPGA inside the robotic systems might be affected by
the charged radiation particles that strike the silicon of the
FPGA [7] and it may cause bit flips in the architectural reg-
isters. This phenomena is commonly known as single-event
upsets (SEUs) [7]. Radiation-induced SEUs can introduce
errors within the FPGA logic and routing resources which
inadvertently alter the device outputs. Radiation-hardened
FPGA [8] provides an alternative way to mitigate this problem
but it also imposes a huge cost overhead and performance
constraints [9].

To leverage FPGA-based robotic systems in EE, the system
must operate correctly and reliably even in the presence
of transient faults. Fault-tolerant techniques, such as triple
modular redundancy (TMR) [10] and duplication with com-
pare (DWC) [10], have been employed to protect the system
from most SEUs. However, TMR-based solution demands at
least 200% area overhead for each replicated module [10].
Besides these methods, bitstream scrubbing [11], [12] tech-
niques which exploit the reconfigurability feature of the FPGA
are becoming popular, however, the improper use of such
method may impose timing overheads. This essentially means
that there is a need to develop an error detection and recovery
(DAR) mechanism to ensure that no task deadlines are missed.
Hence, the scheduler must have to incorporate a reliability
measure while generating the schedule for the tasks set.

Recently, Saha et al. [13] have proposed a reliable schedul-
ing strategy for the fully reconfigurable systems. However,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6119-4927
https://orcid.org/0000-0002-1030-8311
https://orcid.org/0000-0001-9631-1898
https://orcid.org/0000-0002-6412-8519


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

in the case of fully reconfigurable systems, the main hurdle
becomes the reconfiguration event which has to be syn-
chronous for an entire FPGA and thus, consumes huge
reconfiguration overhead and exhibits less efficiency. This
is not suitable for real time and continuous operation as
required by robots. To solve this problem, this work presents
a methodology for the reliable scheduling technique for a set
of safety-critical periodic tasks on runtime partially reconfig-
urable platforms. The proposed approach takes the advantage
of partial reconfigurability feature of the system and attempts
to increase the schedulability of tasks set in the presence of
faults. We have coined our proposed approach as reliability-
aware scheduling approach (RASA) and it follows a novel
hybrid offline–online philosophy. The offline component gen-
erates a preemptive schedule for the periodic tasks by putting
preemption events/checkpoints at appropriate intervals in such
a way so that it can be effectively accessed by the online
component. At runtime, we have illustrated how the offline
generated schedule can be jeopardized by the radiation-
induced faults. Upon detection of any unusual scheduling
activity through our proposed detection mechanism, our online
component will attempt to mitigate the faulty activity without
hampering the pregenerated schedule.

The main technical contributions of this article are as
follows.

1) An efficient preemptive, real-time, reliability-aware
scheduling mechanism for partially reconfigurable
FPGAs.

2) Analyzing the effect of radiation-induced faults on
scheduling through a novel metric.

3) Low overhead online DAR approach to take remedial
action in order to bring the system back to normalcy
(without any deadline misses), in case of any faults.

4) Define the system’s reliability through a “reliability
cost” metric for the set of preemptive periodic tasks for
specific intervals. This metric has also been utilized to
measure the effectiveness of the proposed strategy.

Conducted simulation experiments with real-life parame-
ters show the feasibility and the efficiency of the proposed
approach. In particular, experimental results show that RASA
is able to successfully schedule 72% of arrived tasks under
high system load at 70%. Moreover, comparisons with exist-
ing research reveal that RASA comprehensively outperforms
these methods (refer Section VIII).

The remainder of this article is organized as follows.
Section II provides a brief discussion on related works.
Section III discusses the system model used in this work.
The proposed RASA strategy is presented in Section IV. The
reliability analysis of the system is given in Section V. The
analysis of the overhead of the proposed strategy is provided in
Section VI. Section VII presents the experimental framework
and results along with the discussion provided in Section VIII.
Finally, conclusions are given in Section IX.

II. RELATED WORK

There is a growing concern about the increasing vulnerabil-
ity of modern embedded systems when they are employed in
the harsh environments and thus, designing efficient resilient

systems with fault-tolerant task handling strategies is the need
of the hour. The generic problem of the fault-tolerant schedul-
ing real-time tasks has branched out in different directions
primarily based on: 1) types of underlying platforms; 2) fault
model; and 3) detection mechanism. Now, we will make a
close observation on each of these directions.

Variation in Platforms: Scheduling a set of real-time tasks
in a multicore processor is an NP-hard problem and thus, var-
ious heuristic solutions have been employed to overcome this
complication [14], [15]. In order to introduce fault-tolerant
mechanisms within the scheduling strategy, hardware and
time redundancy remain the most popular techniques in time-
constrained systems [16], [17]. “Task replication” and “stand-
by-sparing” [17] strategies are common hardware redundancy
methods but, they impose considerable cost, specifically in
EEs [16]. As an alternate approach, time redundancy-based
solutions, such as “re-execution” and “recovery with check-
point” [18], are challenging for the real-time systems subject
to the stringent deadlines.

The problem of real-time task execution on FPGA-based
systems has garnered considerable attention from the research
community in recent years. Discussions on important works
and research directions in this area may be found in [19]–[22].
Implementation of nonpreemptive online scheduling schemes
like shortest job first (SJF) and first-come–first-serve (FCFS)
for reconfigurable devices have been investigated in [23].
However, it is worth mentioning that high resource utilization
cannot be achieved until the scheduling scheme is confined
to its nonpreemptive nature. Poor resource utilization can be
observed for nonpreemptive scheduling strategies if the dead-
lines or their utilizations are skewed and it can become worse
if the number of processing elements increases [24].

Though preemptive scheduling techniques are powerful
solutions for achieving high resource utilization, the research
related to implement such techniques on FPGAs is still in
its infancy. This is mainly due to the challenges involved
in realizing the hardware task context switching on FPGAs,
which literally refers to methodology on saving the execution
state/status of the preempted task and reinitiate its execu-
tion from the saved state. However, Happe et al. [25] have
shown that the hardware context switching can be realiz-
able by bitstream read back methodology through an internal
configuration access port (ICAP) on Virtex FPGAs.

Regarding fault-tolerant mechanisms in FPGAs, researchers
have delved toward exploring spatial/hardware redundancy
such as TMR [10]. Jacobs et al. [10] applied techniques,
such as TMR and DWC, to schedule real-time tasks under
various fault occurrence scenarios. Though these approaches
consumed additional resource overhead, they did appear to
be useful under low fault rates. We have compared the
performance of our proposed RASA with these two strategies
in Section VIII.

Besides TMR and DWC, bitstream scrubbing [11] is often
used to correct errors after the FPGA suffered from SEUs.
Sari et al. [26] combined scrubbing solution with a check-
point/rollback mechanism in order to facilitate a low-cost
solution for fault-tolerant scheduling. However, these methods
have additional timing overhead due to periodic reading of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SAHA et al.: RASA FOR FPGA-BASED RESILIENT EMBEDDED SYSTEMS IN EEs 3

Fig. 1. Architecture model.

the configuration memory (CM). This article considers fault-
tolerant real-time task scheduling on FPGAs and adopted a
modified scrubbing mechanism at distinct preemption events
of the real-time task set. Psarakis and Sari [27] showed how
system utilization of FPGA-based real-time systems can be
increased by using the “scrubbing-based” fault tolerance tech-
nique. This work employed EDF scheduling for handling the
real-time tasks. We have also found this strategy proposed by
Psarakis et al. to be an appropriate state of the art and thus
experimentally compared our algorithm with this strategy.

Variation in Fault Model: In EEs, such as nuclear sites,
radiation-induced faults in FPGAs mainly appear as transient
faults [9]. Recent research has considered single and multiple
transient faults. In [9] and [28], both in multiprocessor and
FPGA domain, the Poisson distribution function is considered
as a good estimation of fault occurrence. The fault occur-
rence rate (λ) also plays a crucial role in the fault model.
This occurrence rate depends upon various environmental and
operational factors. In EEs, for the old technologies, the fault
rate lies between 10−2 and 102 per hour [28]. However,
as the modern day complex technology mainly based upon
increasing growth of transistor size, increasing numbers of
core and thus, attributed to the higher rate of faults. Recently,
Haque et al. [29] have introduced the fault burst model, where
they assume that multiple faults are occurring within a certain
interval. However, in EEs, the occurrence of faults in “burst”
is considered exceptional [30].

Fault-tolerant real-time systems mainly assume that the tran-
sient fault affects only the task running on a specific core
rather than other cores [28]. Earlier it was assumed that any
fault appeared in the specific core of a processor or in the
FPGA fabric corrupts the output of the application. However,
Burns et al. [31] have shown that these transient faults may
also cause the over or under execution of tasks by execut-
ing them repeatedly or make them halt at undesirable instant,
respectively. This article has considered multiple transient
faults occurring at different processing elements by follow-
ing Poisson distribution and each transient fault hampers the
execution of a task.

Variation in Fault Detection: The fault detection mecha-
nism plays a key role in designing a reliable and fault-tolerant
system. Depending on the underlying platform, several meth-
ods for fault detection have been proposed. These methods

can be broadly categorized into hardware and software compo-
nents of a system [30]. The most popular mechanisms include:
1) sanity check of the outcomes at user level; 2) memory range
violation or illegal instruction execution at OS level; 3) if the
tasks are represented as control flow graph then detect the
error flow; and 4) hardware duplication with comparison at
hardware level.

Each of the above-mentioned methods only detects a spe-
cific type of fault; no technique is capable of handling any
arbitrary fault. In this work, we have assumed that faults are
detected at the end of each task or at a specified checkpoint
using sanity checks.

III. SYSTEM MODEL

In this section, we formalize the adopted architecture, task
model, and fault model with the fault tolerance mechanism.

A. Architecture Model

The adopted architecture model in this article consists of a
dynamically reconfigurable FPGA platform, an embedded pro-
cessor (EP), and memory. A repository in the memory element
is used to store and maintain the task bitstream images. EP car-
ries out all the hardware reconfigurations by loading bitstreams
from the repository into CM of the FPGA through ICAP. The
internal architecture of FPGA has been assumed to be simi-
lar to that of the Xilinx Virtex series of FPGAs [32]. These
FPGAs consist of a two-dimensional array of configurable
logic blocks (CLBs) with components, such as multipliers
(MULs) blocks, block RAMs (BRAM), clocks (CLKs), I/O
blocks (IOBs), etc. The floor area of the FPGA is equiparti-
tioned into M numbers of tile, V = {V1, V2, . . . , VM}, referred
to as partially reconfigurable region (PRR) each of these PRR
can execute any task irrespective of their resource demands.
The size of each PRR is an integral multiple of the minimum
reconfigurable portion (this is FPGA specific; for example,
such a smallest region is called a frame in Xilinx and con-
sumes a height of 20 CLBs for Xilinx Virtex 5 FPGAs [32]).
Moreover, each PRR can be dynamically modified by loading
the respective bitstream file, while the other regions continue
their normal operation.

Our architecture model is shown in Fig. 1. Here, the floor
area of the FPGA is partitioned into four PRRs. In this fig-
ure, it can be observed that the RASA algorithm proposed
next, runs on the EP and as per the outcome of the schedul-
ing strategy, the “loader” module loads/extracts respective task
bitstream on a particular PRR (reconfigures the PRR) through
ICAP.

B. Application Model

Let us assume that our target application A consists of
n persistent periodic, independent real-time tasks, i.e., A =
{T1, T2, . . . , Tn} arrives for possible execution in M equisized
PRRs V = {V1, V2, . . . , VM}. The temporal resource demand
for a task Ti is given by the tuple <ei, di>, where ei time slots1

1All time values have been expressed in terms of “time slots” throughout
this article. The length of a time slot has been assumed to be 1 ms.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

denotes the execution requirement and di time slots denotes the
deadline. Without loss of generality, we represented the real-
time constraint as: “Ti must compute ei number of instructions
within di time slots.” For lucid explanation of this proposed
strategy, it is assumed that one instruction is completed in one
time slot using standard FPGA clock frequency.

C. Fault Model

FPGAs consist of a matrix of CLBs, connected by routing
resources, with additional storage and input/output elements.
It also contains a CM for storing the user implemented
design/data and control bits. Radiation-induced SEU in these
devices may produce a large number of single-event effects
(SEEs), which generate one or more bitflips in the internal
FPGA storage elements.

CM is the largest FPGA memory element and is used to
store the user design. In this article, the focus is on tran-
sient and intermittent faults that affect FPGA CM, which may
produce permanent errors in the functional logic and rout-
ing resources. The occurrence of SEUs in the time domain is
assumed to follow a poisson process with constant rate λ per
PRR. As all the PRRs are of equal size hence, the fault arrival
rate for all PRRs is assumed to be identical. As mentioned
in [27] that SEUs in the CM are the dominant failure type
in modern FPGAs. Thus, in this article, only these faults are
considered. It has been assumed that any SEUs in EP registers
(if any) or in the memory can be tackled by using low-cost
error correction codes (ECCs) mechanism.

Effect on Real-Time Processing: SEU affects the CLBs by
changing the value of lookup tables (LUTs) and it may also
alter the register contents. As a result, it will change the context
(the register values storing the intermediate execution states)
of any running hardware task. Thus, it will jeopardize the
scheduling strategy which is primarily preemptive in nature
and depends upon “context switching.” Context switching on
FPGA involves two distinct mechanisms: 1) saving the current
state of a partly completed task and 2) restoring saved states
to resume the execution. State-holding elements, such as Flip-
flops and LUT-RAMs of CLB, are responsible for storing the
“contexts” of a hardware task and get affected in EEs. It is
assumed that any SEU can upset the context and with such
affected contexts (CLB’s contents) our hardware scheduling
scheme will malfunction. More specifically, the fault within a
PRR affects only the task running on that PRR.

D. Fault-Tolerance Mechanism

Typical fault-tolerance mechanisms for scheduling schemes
conjugates two phases, that is: 1) a fault detection phase and
2) a fault repair or recovery phase. In the detection phase,
at specific scheduling instances, we conduct a bitstream read-
back procedure [33], which will extract/capture the context of
tasks that were executing in the PRR prior to preemption. By
evaluating captured context, the current execution status of the
individual running task will be verified.

Based upon the outcome of the verification, the detection
phase will be followed by a “recovery” phase. This recov-
ery phase will select a particular recovery action (discussion

in detail in Section IV-B). This recovery action will be per-
formed by the “loader” through CM scrubbing technique [27]
in order to rectify any abnormality in the execution. This
“scrubbing” will be performed by configuring the respective
PRR of the FPGA by downloading a new bitstream. The main
concept behind this recovery is to exploit the “partial recon-
figurability” feature of the FPGA. Only a PRR with a faulty
task will be repaired through the reconfiguration, while the
other PRRs will continue their operation. Bitstream extrac-
tion/loading will employ the respective in-circuit configuration
interface, such as the loader. We termed the event which
includes both detect/recovery as DAR and the corresponding
overhead associated with this event is denoted as Odar.

In our adopted system model, DAR shall be performed for
each task on a PRR at different instances. It is obvious that
it is not possible to conduct DAR simultaneously for different
PRRs due to the limitations of the unique configuration port,
ICAP. The remainder of the sections of this article will detail
how the proposed strategy can handle the ICAP constraints
along with the detailed discussion on our DAR methodology
and calculation of associated overheads.

IV. RASA ALGORITHM

RASA employs a hybrid offline–online approach to provide
a time partition-based reliable scheduling approach for a set
of n periodic tasks A = {T1, T2, . . . , Tn} on an FPGA, with a
floor area that has been equipartitioned into M PRRs. RASA
maintains time distinguished by the deadlines of the tasks.
The interval between any two consecutive deadlines [say, the
ηth and (η − 1)th task deadlines] is referred to as time win-
dow TWη, TWLη time slots denote the length of the ηth time
window TWη and can be calculated using

TWLη = dη − dη−1. (1)

As it has been assumed that the tasks are persistent, periodic
in nature and known at design time thus, it will be sufficient
to generate the scheduling information and store it for one
hyperperiod2 H of the tasks in A.

The offline component, which is detailed further in
Section IV-A (RASA-Offline) generates schedules of the peri-
odic tasks for the entire duration of their hyperperiod. Each
schedule reserves the space for checkpoints at appropriate
intervals in such a way that it can be efficiently accessed
by the online component. The online component as detailed
in Section IV-B (RASA-Online) conducts time window wise
scheduling as per the generated offline schedule. At each
reserved checkpoint within the time window, if any abnormal
scheduling activity is detected, the RASA-Online employs the
appropriate recovery mechanism. Thus, the scheduling objec-
tive remains to maximize resource utilization so that rejection
rates for the tasks may be minimized in the presence of faults
during the online task execution. Before discussing the work-
ing principle of the offline and online components in detail, we
now present a pseudocode of the entire RASA in Algorithm 1.

2Hyperperiod is given by the least common multiple (LCM) of the deadlines
/periods.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SAHA et al.: RASA FOR FPGA-BASED RESILIENT EMBEDDED SYSTEMS IN EEs 5

Algorithm 1: RASA
{Given: task set A and set of PRRs V;}
for each time-window TWη ∈ H do Offline
1. Generate Schedule for all tasks for each PRR;
2. Specify the checkpoint / DAR intervals;

for each time-window TWη ∈ H do Online
1. Execute tasks as per generated schedule;
2. At each DAR interval check for anomaly for each

task;
If faults are detected then employ recovery

mechanism;
Else
Continue task execution as per schedule;

A. RASA: Offline Component (RASA-Offline)

Each periodic task Ti in A has a stipulated execution rate
demand defined by its weight, wt = (ei/di), where ei denotes
the execution requirement and di denotes its period/deadline.
For any time window (TWη) of duration TWLη in H, each
periodic task Tj is allocated a workload quota (Quη

j time slots)
proportional to its weight and it can be calculated as

Quη
j = (�wtj × TWLη�

) ∀Tj ∈ A. (2)

It can be noted that within a time window (say, TWη) as all
the available M PRRs will operate in parallel hence, the total
system-wide capacity for that time window can be found as
TWLη×M. In order to obtain a feasible schedule, this system-
wide capacity must compensate the sum of workload quota of
all tasks, i.e., (

∑n
j=1 Quη

j ). Thus, a necessary condition for
scheduling to be feasible within TWη is

n∑

j=1

Quη
j ≤ TWLη × M. (3)

All modern FPGAs impose the constraint of full recon-
figuration before conducting partial reconfiguration. Hence,
full reconfiguration overhead (OFrg) will be consumed at the
beginning of the time window for each PRR.

1) Task Allocation: RASA-Offline selects tasks and attempts
to allocate them from first PRR V1. However, the combined
sum of task workload quota along with the extraction, DAR
overhead (ODAR) in a particular PRR, Vi should be less than
the time slice interval TWLη. Available slack ASη

i of each
PRR Vi for the ηth time window can be calculated as

ASη
i = TWLη − OFrg. (4)

According to our strategy, if the available slack (Asη
i ) of

any particular PRR Vi is able to execute half of the workload
quota (Quj/2) of a task Tj then Tj will be allocated in Vi.
Otherwise, the next immediate PRR Vi+1 (provided i < M)
will be the possible candidate for allotment. However, in the
case where Vi is the last available PRR (Vi = VM), then system
capacity is exhausted and scheduling cannot proceed in the
time window TWη.

Fig. 2. Hyperperiod and time window.

2) Selection of Checkpoint/DAR: In order to make the
scheduling approach reliable, we need to detect and repair any
fault which occurs during the execution of the tasks. Thus, we
have to judiciously select the number of DAR events for each
given task such that the associated overhead does not jeop-
ardize the deadlines. We have taken two approaches for this
purpose and we will depict these approaches in two different
cases.

Case 1: It has been assumed that if the following condi-
tion 5 becomes satisfied:

Quη
j ≥ K × ODAR ∀Tj ∈ A. (5)

DAR will be carried out after executing half of the allot-
ted workload quota, i.e., (Quj/2). After this allocation, the
available slack will become

ASη
i = ASη

i −
(

Quη
j + ODAR

)
. (6)

Note: We have empirically calculated K, the value of K lies
in between 3 and 10 (see Section VII).

Case 2: In case Quj does not satisfy the condition stated
in (5), there will be no intermediate check point. DAR will
only be conducted after the task finishes its allotted work-
load quota. Similarly, the available slack can also be updated
using (6).

The pseudocode for RASA-Offline is provided in
Algorithm 2. For each time window, RASA-offline will
calculate the workload quota. Provided the necessary condi-
tion stated in (3) is satisfied, the available slack for each PRR
will be calculated. RASA-Offline then enters into a loop until
all the tasks are scheduled, i.e., finish their allotted workload
quota. Within the loop, RASA-Offline starts allocating tasks
from the first PRR V1, as per the task allocation strategy.
Depending upon the size of the workload quota of a task (say,
Tj), RASA-Offline places the checkpoint either in middle
of Tj’s execution or at the end of the execution of Tj. This
approach is also illustrated with an example (Example 1).

Example 1: Let us assume a small hypothetical FPGA
with M = 4 PRRs V1, V2, . . . , V4. The values of OFrg
and ODAR are assumed as 6 and 2 ms. We have used
these parameter values in all the worked-out examples
presented in this article. Let us consider six real-time
periodic applications {T1, T2, . . . , T6} with the weights
(ei/di)(28/60), (28/60), (25/100), (40/100), (14/60), and
(60/100). The length of the first time window TWL1 = 60
(earliest task deadline = 60). The length of the second time
window becomes TWL2 = 100 − 60 = 40. The LCM of the
two distinct task periods/deadlines becomes 300. Thus, the
length of the hyperperiod (H) is 300. The occurrence of TW1
and TW2 is shown in Fig. 2.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Algorithm 2: RASA-Offline
Input:
1.A: The Application
2. M: Number of PRRs
3. ei: The execution time
4. di: Deadline of a task
5. OFrg: Full Reconfiguartion Overhead
6. ODAR: DAR Overhead
7. TWLη: Length of each individual time-window TWη

8. H: The hyper-period
Output:
Generate schedule for the application
for each time-window TWη ∈ H do

Calculate Quη
j for each task Tj ∈ A using equation 2;

if equation 3 NOT satisfied then RETURN;
Determine Available Slack (ASη

i ) using equation 4 for each
PRR;

while A �= NULL do
Initialise: Vi = V1;

if
Quη

j
2 ≤ ASη

i then
Select Tj for allocation in Vi;
if Quη

j ≥ K × ODAR then
Follow the approach stated in case 1;
Update Available Slack (ASη

i ) using
equation 6;

Quη
j = Quη

j − (Quη
j /2);

else
Execute Tj as per the technique stated in

case 2;
Update Available Slack (ASη

i ) using
equation 6;

Assign Quη
j = 0;

else
Move to PRR Vi+1;

Remove Tj from A if Quη
j == 0;

In this example, we have illustrated the task allocation per-
formed by RASA-Offline for the first time window only. In
this time window, the workload quota for each task can be
found out by (2) and T1 through T6 will have workload quota
as Qu1

1 = Qu1
2 = 28, Qu1

3 = 15, Qu1
4 = 24, Qu1

5 = 14, and
Qu1

6 = 36. Fig. 3 shows the schedule generated for persistent
periodic tasks by RASA-Offline in time window TW1. After
the allotment, we can observe that the V1 has available slack
(AS1

1) 8 and similarly other PRRs have some amount of slack
which varies from 3 (AS1

3) to 34 (AS1
4).

3) Avoidance of ICAP Conflict: All the modern FPGAs
contain a single configuration port commonly known as ICAP.
This ICAP port plays a crucial role while detecting and recov-
ering the fault in the FPGA’s CM. As there is only one
ICAP, it is not possible to configure two PRRs simultaneously.
Specifically, this implies that the DAR interval (ODAR) cannot
overlap on two distinct PRRs in time. RASA-Offline tackles
any such circumstances as follows.

1) During the allocation of tasks on the first PRR, the
instance of DAR is obtained in the course of allotments.
Hence, the DAR instants are already known when the
allocation of tasks for the second PRR begins.

Fig. 3. Allocation of checkpoints and tasks by RASA-Offline.

2) If any DAR instant in the second PRR overlaps with
the DAR instants in the first PRR, then the execution
of task’s workload quota in the second PRR are min-
imally adjusted such that the overlapping situation can
be circumvented.

3) For example, we can observe in Fig. 3 that the workload
quota of T2 (Qu1

2) is 14. So the specified DAR is about to
take place at t = 20 and hence, the conflict appears with
T1 on first PRR. Thus, our adopted strategy postponed
the DAR instance for T2 on second PRR by two time
slots,3 i.e., at t = 22.

4) A similar approach should be taken while allocating
tasks on the third PRR provided the DAR instances for
the first and the second PRRs are already known. This
approach will be followed till the last PRR in FPGA.

B. RASA: Online Component (RASA-Online)

Based on the schedule generated by RASA-Offline, we
attempt to process our real-time tasks in our embedded system
in EEs. The online component of RASA consists of DAR,
i.e., the detect and recovery phase. We will now describe each
phase in detail.

1) Detection Phase: As discussed in our fault model, the
possible disruption in the FPGA’s CM affects the behavior
of the running tasks. As a consequence, it may be the case
that all tasks are not able to complete their allotted course
of execution states. In order to detect the current state of
execution of a task, the bit-stream readback procedure will
be employed at each DAR interval. Hardware task contexts
are stored in state-holding elements, such as flip-flops, LUT-
RAMs of CLBs, and other hard blocks (BRAMs, MULs,
etc.). Thus, the “read-back” operation extracts the contexts
of tasks that were executing in a PRR prior to a DAR event.
These retrieved context, i.e., the register content will reveal the
present status of task execution, it can be compared with the
prestored register values (represents expected execution out-
come). Through this comparison, it will be evaluated whether

3T2 finishes its execution at t = 20 but the reconfiguration is only taking
place at t = 22.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SAHA et al.: RASA FOR FPGA-BASED RESILIENT EMBEDDED SYSTEMS IN EEs 7

any task suffers from performance degradation due to a fault.
We have formulated this “degradation” of task’s performance
through the following metric.

Let us assume that as per our RASA-Offline strategy, prior to
any arbitrary DAR interval, task Tj has to complete Ii

j number
of program steps/instructions (refer Section III-B) on PRR Vi.
During the DAR, after reading back the bitstream, it may be
found that Tj completes Îi

j instructions on PRR Vi. Hence, we
can define a metric called “anomaly factor (AF)” for Tj on Vi

as follows:

AFi
j = Ii

j − Îi
j. (7)

During each DAR event, AFi
j will be calculated for each Tj

to verify whether the task is hampered by the fault. However,
there could be cases where no task is affected and it will be
viable when AFi

j = 0. Hence, those task(s), which will exhibit
AFi

j > 0, will be considered as affected and remedial actions
will be taken for those tasks.

2) Recovery Phase: This phase will be initiated by evalu-
ating the value of AF. If AFi

j for any task Tj is found to be
zero then it conveys that Tj has been executed satisfactorily
and no recovery measure is needed. In those cases, where the
value of AF becomes positive (AFi

j > 0), will infer that the
respective task is not able to complete the desired number of
instructions and expects the remedial action. At a particular
DAR, based upon the value of AF and AS, our strategy will
adopt different recovery actions as stated below.

As per the assumed model (discussed in Section III-B),
workload quota Quj of Tj denotes that Tj has to complete
Qu number of instructions within time window TWη. Now,
let us assume that in the time window (TWη), at an arbitrary
DAR interval, the following scenarios appeared for task Tj,
executing on Vi.

1) Scenario 1—AFi
j ≤ ASη

i : In this case, the degraded
performance of Tj, which is quantified as AFi

j, can be
overcome by consuming the available slack (ASη

i ) within
the TWη.

2) Scenario 2—AFi
j > ASη

i : If the AF of Tj becomes such
that it can no longer be compensated using the available
slack of the PRR (Vi) then RASA-Online will take one
of the following steps.

a) Check other PRRs with maximum available slack.
If there exists PRR Vj with available slack ASη

j
which can compensate AFi

j then Tj will be executed
on Vj.

b) Otherwise, RASA-Online will speed-up the execu-
tion of Tj by enhancing the clock frequency. The
frequency will be increased by a certain amount
quantified rise-up factor (RUF) such that Tj can
finish its desired execution by availing ASη

j

RUF = ASη
j

AFi
j

. (8)

Note: The clock frequency will be increased by
enhancing the clock period from the dynamic clock
management (DCM) system for that particular

Algorithm 3: RASA-Online
Input: Time-window wise schedule generated by RASA-Offline
Output: Reliable time-window wise schedule where each task

completes their alloted workload-quota
let t denotes the time-slot and initially, t = 0;
for each time-slot t do

if t is bounday of a time-window (say, TWη ∈ H) then
Conduct full reconfiguration across all PRRs;
Start executing tasks on PRRs in parallel, for the

entire duration TWLη as per RASA-Offline;

else if t is a DAR instant within TWη then
Evaluate Anomaly Factor AFi

j using Equation 7 for
each task Tj on PRR Vi;

if AFi
j==0 then

Execute Tj normaly as per pre-defined schedule;

else
if AFi

j ≤ ASη
i then

Utilize ASη
i to compensate AFi

j ;

else
Find max (ASη

i ) ∀i ∈ M;
{Say, Vj be the PRR having maximum

vailable slack, ASη
j };

if AFi
j ≤ASη

j then
Rectify the anomaly of Tj by executing on

Vj;

else
Execute Tj on Vj by enhancing clock

using RUF;

else
Continue task execution;
Simultaneously update Available Slack (ASη

i ∀i ∈ M)
for all PRRs;

PRR only where the affected task is supposed to
execute.

Algorithm 3 shows the pseudocode of our entire RASA-
Online strategy. RASA-Online executes for each time slot t
within a time window. At beginning of a time window, it con-
ducts a full reconfiguration and starts task execution as per
the schedule obtained from RASA-Offline. At each specified
DAR instant (checkpoint), RASA-Online calculates the AF
[see (7)]. Based upon the AF’s value, an appropriate recovery
action is selected as described in aforementioned scenarios 1
and 2. We will now illustrate the working principle of RASA-
Online through an example for the same task set as described
in Example 1.

Example 2: Let us consider the same scenario as discussed
in Example 1. In the first time window (TW1), schedule gen-
erated by RASA-Offline is demonstrated in Fig. 3. We will
now depict the working principle of RASA-Online through
each possible scenario and the entire scheduling scenario is
depicted in Fig. 4.

Scenario 1: Let us assume that on PRR V1 a fault occurs
while T1 is under execution after the first “DAR” interval and
as a result, at the second DAR instant, i.e., t = 36, it has
been found that T1 has completed ten instructions. However,
it should have completed 14 instructions (36–22). Thus, the AF



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 4. Reliable scheduling via RASA-Online.

for T1 on V1 can be found as AF1
1 = 14−10 = 4. The available

slack on V1 is AS1
1 = 8. Hence, the degraded performance

of T1 can be circumvent by utilizing this slack and thus, T1
completes its remaining four instructions (denoted by AF1

1)
through execution from 52 to 56 on V1

Scenario 2: Let us consider that at the second DAR instant
of V2, a fault occurs, while T3 is executing from time unit 24
to 39. At the second DAR instant, it is found that the execution
of T3 has been affected and is quantified as AF2

3 = 10. Now
on PRR V2, the available slack is 5 and it is thus not enough
to compensate T3. RASA-Online will execute T3 on V4, as it
has the maximum available slack (see Fig. 4).

At DAR instant 55 on V3, if it is found that T6 has been
affected by AF3

6 = 6. At t = 57, all the PRRs have an available
slack of amount 60 − 57 = 3 and thus, there is no such PRR
which can accommodate re-execution of T6. Hence, the only
way the remaining execution T6 (i.e., 6) can be compensated
on a PRR (say, V3) with available slack AS1

3 = 3, if the clock
frequency can be enhanced by RUF = 2 using (4), as shown
in Fig. 8. At V4, T6 successfully completes at time instant 24.

V. RELIABILITY MODELING

In this section, we attempt to address the issue of relia-
bility for periodic tasks in reconfigurable platforms. Usually,
reliability can be defined as the probability that the system
can schedule an entire task set successfully, i.e., no tasks will
miss its deadline. After analyzing the characteristics of peri-
odic tasks, we will analyze the failure characteristic of our
proposed model. A definition of reliability metric based on
periodic, preemptive tasks set will then be investigated.

It should be noted that as the system deals with persistent
periodic tasks, the particular schedule within the hyperperiod
H will keep repeating. Also, the bit upset in the configuration
frames can occur arbitrarily on a particular PRR Vi. These fail-
ures are assumed to be independent of each other and follow

a Poisson process with a constant rate λ for all PRRs. Now,
we will formulate the reliability of the system in the following
steps.

Theorem 1: Reliability (�(H)) of the M tiled partially
reconfigurable system executing persistent A periodic tasks
with average K time windows within the hyperperiod H is

�(H) = exp

⎛

⎝−
K∑

η=1

M∑

i=1

⎛

⎝
n∑

j=1

λi × Quη
j × ζij

⎞

⎠

⎞

⎠ (9)

where τ is the set of tasks running on PRR Vi, and shrj denotes
the share of an individual task Tj ∈ τ .

Proof: The Poisson distribution is used for finding the prob-
ability of χ(χ ≥ 0) events occurred in a fixed time duration.
We have assumed that events occur at a constant rate λ and
their occurrences are independent. Thus, the probability of χ

events during the length of a time window (say, TWη) TWLη

is calculated as

Errχ
(
TWLη

) = e−λTWLη
(
λTWLη

)χ

χ !
. (10)

Let us assume that NErri(TWLη) is the probability that PRR
Vi running without any failure (χ = 0) within the time window.
Therefore, NErri(TWLη) can be expressed as follows:

NErri
(
TWLη

) = e−λiTWLη (11)

where λi is the failure rate of Vi.
Hence, the reliability of the entire system (for all M PRRs)

inside a time window TWη can be written as

�
(
TWLη

) =
M∏

i=1

NErri
(
TWLη

) =
M∏

i=1

e−λiTWLη

= exp

(

−
M∑

i=1

−λiTWLη

)

. (12)

Let us also assume that K is the number of time win-
dows within the hyperperiod H. Since the Poisson process
is a steady incremental process, the reliability of a system can
be investigated by measuring the reliability of a set of tasks
running in the system within the hyperperiod of the task set.
Thus, the reliability (�) of the M tiled partially reconfigurable
system executing persistent A periodic tasks for K instances
is given as follows:

�(H) = exp

⎛

⎝−
K∑

η=1

M∑

i=1

⎛

⎝
n∑

j=1

λi × Quη
j × ζij

⎞

⎠

⎞

⎠. (13)

Here, element ζij equals 1 if and only if Tj has been assigned
to Vi; otherwise, ζij = 0. Inside a time window (say, TWη) Tj

will execute for Quη
j time slots (refer Section IV-A).

We are now in a position to determine the reliability cost of
our proposed system with respect to a given set of persistent
periodic tasks. The reliability cost of a task Tj on a PRR Vi for
a time window can be defined as a product of failure rate λi of
Vi and workload quota (Quη

j ) of Tj. Thus, the reliability cost of
the entire system within a time window is the summation over



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SAHA et al.: RASA FOR FPGA-BASED RESILIENT EMBEDDED SYSTEMS IN EEs 9

reliability costs of all tasks assigned to that system (covering
all PRRs) based on a given schedule.

Definition 1: Given a set A of real-time periodic tasks run-
ning on a partially reconfigurable system with a set of M
PRRs, we compute the system reliability cost (�cost(A, M))
of the system as

�cost(A, M) =
K∑

η=1

M∑

i=1

⎛

⎝
n∑

j=1

λi × Quη
j × ζij

⎞

⎠. (14)

It can be observed that while calculating the reliability cost
(�cost), the number of time windows within the hyperperiod
(H) has an important significance. However, the length of a
time window can consume any arbitrary value depending upon
the difference between two consecutive deadlines. However, in
any case, if the length of the time window is too small and
becomes close to the DAR interval, the functional scheduling
cannot be performed. Hence, we have derived the following
definition.

Definition 2: The length of an arbitrary time window (say,
TWη) TWLη will be: TWLη = max(dη −dη−1, TWLth). Here,
TWLth is a threshold value denoting the mandatory length of
a time window and is an integral multiple of DAR interval.

VI. QUANTIFICATION OF DAR INTERVAL,
OVERHEAD ANALYSIS

This section provides a practical measure of the temporal
overhead corresponding to a DAR event for a real-life FPGA.
All the experiments have been carried out by considering this
practical measure. In order to carry out our DAR mechanism,
while reconfiguring any portion/region inside the FPGA, the
currently executing task(s) on that region is brought to halt and
then the corresponding bitstream is extracted/captured from
the CM through ICAP.

It is evident from [33] that the actual context (register status)
of a task remains within a small fraction (approximately about
8%) of its entire bitstream. Thus, at each DAR event, it will be
sufficient to read-back only that part (which contains the actual
context) of the bitstream to check the register status. This
selective read-back mechanism drastically reduces the actual
extraction overhead by (1/10)th amount compared to the read-
back of the entire bitstream [33]. Following the extraction,
the detection phase will evaluate the “AF” and based upon its
outcome, the “recovery” phase will select a recovery action
by executing Algorithm 2, RASA-Online. Then, the recovery
action will be performed by loading a new modified bitstream
in the CM, i.e., execute this scrubbing technique. Hence, in
order to estimate the overhead of DAR, overheads associated
to the following events should be considered.

1) Detection:
a) Extracting information through selective read-

back, carried out by the loader.
b) Calculation of AF, carried out by the EP.

2) Recovery:
a) Select appropriate recovery action using

Algorithm 2, carried out by EP.

b) Execute the recovery action through scrubbing,
i.e., modified bitstream loading, carried out by the
loader.

The temporal overhead corresponding to each individual
event is estimated as follows.

Extracting Information Through “Selective Read-Back”:
The time required (say, TR) for extracting/restoring that is
the loading of a particular region will be proportional to the
size of the bitstream (Bi) being extracted/loaded and will be
inversely proportional to configuration clock frequency (Cclk)
of the loader and data bus width of the configuration port
(DBW). Hence, TR can be expressed as

TR = Bi

Cclk × DBW
. (15)

For a Virtex-5 ML507 board (XC5VFX70T), which has
an area of 38 × 160 [32] CLB units, the full configuration
bitstream is 3.37 MB [32], Cclk is 100 MHz and DBW =
32 bit [32], resulting in a TR of 8.5 ms as per (15). This
value denotes the full extraction overhead for an entire FPGA.
However, via the “Selective read-back” mechanism this extrac-
tion overhead can be reduced ([1/10] × 8.5 ms = 0.85 ms ≈
1 ms) in order to extract only the part which is our actual
“region-of-interest.”

AF Calculation and Recovery Action Selection: From the
extracted context, the calculation of “AF” will be carried out
by the associated EP and, based on the value, a single recov-
ery action will be selected by using Algorithm 2. As the
frequency of the associated EP of a Virtex-5 FPGA can be
as high as 550 MHz [34], these steps will not be of signifi-
cant computation cost. Nevertheless, we have pessimistically
assumed that the overhead is equal to the 8.5 ms (the worst
case total bitstream extraction time).

Execute the Recovery Action Through Scrubbing: Based
upon the selected recovery action, the “loader” will now load
a modified bitstream as a scrubbing technique. This loading
time will be equal to TR and can be calculated as 8.5 ms as
above.

Based on the above calculation, the DAR overhead for
the entire Virtex-5 FPGA (say, OFDAR) can be calculated as
Selective Read-back (1 ms) + AF calculation and selection of
recovery action (8.5 ms) + Scrubbing (8.5 ms). Hence, OFDAR
becomes 18 ms. As the FPGA under consideration is partially
reconfigurable and contains M PRRs, the DAR overhead for
each PRR (ODAR) can thus be calculated as

ODAR = OFDAR

M
. (16)

Hence, if we partition our Virtex-5 FPGA into four equiparti-
tioned PRRs then ODAR becomes

ODAR = OFDAR

M
= 18

4
ms ≈ 5 ms.

VII. EXPERIMENTAL SETUP

Performance evaluation of the proposed algorithm RASA
has been carried out through a comprehensive set of
simulation-based experiments considering a periodic real-time



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

task system where the fault occurs at a specific rate. Task suc-
cess ratio (TSR) and reliability Cost (�cost) are the principal
metrics based on which the evaluation has been performed.
The �cost is defined in (14). TSR can be defined as the per-
centage of the total number of tasks accepted by the system
over the entire schedule length out of the total number of
appeared tasks. Mathematically, TSR can be formulated as

TSR = ν

χ
× 100% (17)

where ν and χ denote the total number of tasks accepted
and appeared, respectively. It can be inferred that the reliabil-
ity cost contributes to derive a measure of system reliability
with respect to a particular schedule. On the other hand, TSR
reflects how many tasks can be successfully scheduled and
thus, helps to exhibit the effectiveness of the algorithm.

1) Tasks Temporal Parameters: Each dataset consists of
randomly generated hypothetical tasks obtained from
distinct distribution. In order to make, our simulation
realistic, we have considered the example task sets given
in [35]. Here, the authors showed that the execution time
and deadline of “time-constrained” robotic tasks could
vary from [100, 400], [700, 1200] time units, respec-
tively. Hence, without loss of generality, the weights
(wti = [ei/di]) of the tasks have been taken from nor-
mal distribution with standard deviation σwt = 0.1 and
two different values of mean, μwt = 0.1, μwt = 0.2.
In the same way, tasks deadline have also been gener-
ated from a normal distribution with standard deviation
σd = 100 and mean μd = 800. Given the tasks weights,
we can obtain the total workload of the system (SysWL)
by summing up the weights of all the tasks. Given the
system workload, the total system utilization (Sysuti) can
be derived by

Sysuti = SysWL

M
× 100% (18)

where M denotes the number of PRRs. It may be noted
that for a given the system utilization (Sysuti), the aver-
age number of tasks (ρ) in the system can be achieved
as

ρ = Sysuti × M

100 × μwt
. (19)

2) Number of Instructions: We have chosen ITC’99
Benchmark [36] task sets, in this benchmark, an arbi-
trary task usually contains 100 to 500 instructions for
executions and in some cases even more. Without of
loss of generality, we have considered that the num-
ber of instructions of our task set also vary following
the normal distribution with mean 500 and standard
deviation = 200.

3) Task Spatial Parameters: Ghorbel et al. [4] have
demonstrated an FPGA-based implementation of robotic
motion technique. They have used Virtex-5 (ML507) as
their FPGA device (we have also considered the same
family of FPGA) and imported different components
(“edge detection,” “thresholding,” and “circle Hough
transform”) of their method at three reconfigurable

Fig. 5. Experimental setup.

regions. The size of each region was 50 × 38. In our
simulation experiment, we also considered PRRs of
similar size.

After considering real-life parameters (in order to make our
simulation studies more fruitful and realistic), we have gener-
ated various types of datasets by setting different values for
the following parameters.

1) Average Individual Task Weight, μwt: The average indi-
vidual task weight is given by the mean of the distribu-
tion from which task weights have been generated. Two
values of μwt, 0.1 and 0.2 have been considered.

2) System Utilization, Sysuti: We have varied the system
utilization Sysuti value from 40% to 90%.

3) Fault Rate, λ: Jacobs et al. [10] have depicted the aver-
age fault occurrence rate in FPGAs can vary up to
0.01/time unit. Thus, without loss of generality, we have
also varied the fault rate from 0.005 to 0.04

4) Value of Constant, K: We have conducted our exper-
iment by considering three distinct values of K, i.e.,
K = 3, 5, and 10. The displayed results considered the
value K = 5, if not stated otherwise.

5) Number of PRRs, M: We consider that the floor of the
FPGA (Virtex-5, ML-507, XC5VFX70T) is equiparti-
tioned into four and eight PRRs.

6) Overheads: As discussed in Section VI, ODAR is con-
sidered as 5 and 3 ms for a 4-tiled and 8-tiled system,
respectively. Full reconfiguration overhead is considered
as 18 ms.

From the implementation point of view, our entire experi-
mental setup is shown in Fig. 5. The scheduler generates the
schedule and starts executing tasks as per the generated sched-
ule. In our experimental setup, the number of PRRs remains 4
and 8. As the floor size of our considered FPGA is 38 × 160,
then the size of each PRR will be 38 × 40 and 38 × 20, if
M = 4 and M = 8, respectively. It has to be noted as included
in Section II-A, each PRR’s height is the integral multiple of
“frame” height, i.e., 20 CLBs. Each PRR is capable of accom-
modating a single task at a time instant and can be dynamically
reconfigured by allocating new tasks at runtime.

The “fault injection” module runs in parallel with the sched-
uler and selects partitions (PRRs) randomly. In a selected
PRR, it injects faults (by reducing tasks execution state) with
Poisson distribution at a specified fault rate. It has to be noted
that at this stage, affected PRR becomes faulty and tasks



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SAHA et al.: RASA FOR FPGA-BASED RESILIENT EMBEDDED SYSTEMS IN EEs 11

Fig. 6. TSR versus Sysuti; M = 4 and 8.

mapped on the PRR will halt its execution. The “fault detec-
tion” component will also run in parallel with the scheduler
in order to detect faults at specified “DAR” instant. Once a
fault is detected it will execute the remedial action by sending
commands to the scheduler.

All results are generated by running 40 different instances
of each dataset type and then taking the average over these 40
distinct runs. The total schedule length is 100 000 time slots.

VIII. RESULTS AND ANALYSIS

The performance evaluation of RASA has been carried out
by measuring the task success ratio (TSR) and reliability cost
(�cost) on the different types of datasets discussed above. We
will now discuss our experimental observations based on these
metrics in subsequent sections.

A. Evaluation of RASA-Offline

In order to evaluate the performance of the RASA-offline,
no faults have been injected in the system.

1) Task Success Ratio Versus System Utilization: Fig. 6
depicts the TSR achieved by RASA on a 4-tile and 8-tile
FPGA, respectively (M = 4 and 8) for the varying values of
system utilization (Sysuti). Three insightful observations can
be derived from this figure. First, as the system utilization
increases the number of tasks in the system also increases [see
(19), as μwt fixed] and this eventually contributes to low tasks
success rate. Second, for a given system utilization, when the
number of PRRs increases from M = 4 to M = 8, this makes
the detection overhead low [ODAR, refer (16)] and this helps to
achieve higher TSR values. Third, for a fixed PRR and system
utilization, if the average individual task weight (μwt) varies
from 0.1 to 0.2, the achieved TSR values remain compara-
ble. This phenomena exhibits the robustness of the proposed
strategy irrespective of task’s weight. In the next section, we
discussed the performance comparison between the offline and
online phases.

B. Evaluation of RASA-Online

In this section, we will evaluate the performance of RASA-
Online. In the scheduler, faults are injected at a specified rate
and the performance of the RASA-Online are studied.

TABLE I
TSR (%) VERSUS FAULT RATE (λ) (Sysuti = 70%)

Fig. 7. TSR versus λ; M = 4.

1) Task Success Ratio Versus Fault Rate: Table I and Fig. 7
depict the TSR achieved by RASA on a 4-tile and 8-tile
FPGA, respectively (M = 4 and 8) for the varying values of
fault occurrence rate (λ). The average individual task weight
remains 0.1 and 0.2, respectively, and the total system utiliza-
tion [derived from (18)] is fixed at 70%. From the depicted
table and figure, it may be observed that for a fixed Sysuti, TSR
decreases with increase in the fault occurrence rate (λ), with all
other parameters remaining the same. This is because higher
values of λ result in correspondingly more numbers of task
to be affected within the hyperperiod and thus decreasing the
possibility of achieving sufficient free slots by RASA-Online
for remedial action in the different time windows within the
hyperperiod. Insufficient free slots decrease the probability of
obtaining feasible schedules for the existing tasks.

The plots in Fig. 7 show that the TSR achieved by RASA
for task sets with average individual weight μwt = 0.1 is
comparable to that for task sets having μwt = 0.2. It may be
observed that for a given Sysuti, the average number of tasks
in sets [ρ, refer (19)] with μwt = 0.1 will be nearly double
compared to those having μwt = 0.2. This result therefore
indicates the fact that the system performs robustly against
variations in the number of tasks provided at different fault
occurrences as long as the Sysuti remains fixed.

Another interesting observation from Table I is that the
TSR increases as the number of PRRs increase from M = 4
to M = 8 when all other parameters remain the same. This
is mainly due to the fact that the DAR overhead [ODAR;
refer (16)] decreases with an increase in the number of PRRs.

Thus, it can be concluded that with an 8-tiled FPGA system
RASA can successfully tackle up to 72% of the appeared tasks
by overcoming the faults (occurred at the rate 0.005) even with
70% system load.

2) Task Success Ratio Versus System Utilization: In Table II
and Fig. 8, TSR is seen to decrease with an increase in system



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE II
TSR (%) VERSUS Sysuti (μwt = 0.1)

Fig. 8. TSR versus Sysuti; M = 8.

utilization Sysuti, for a given fault occurrence rate. This is
because higher values of Sysuti result in a correspondingly
larger number of tasks (ρ), resulting in the LHS (

∑ρ
j=1 Quη

j )
of (3) to become larger. Due to this, the probability of failure
of the condition (3) increases for a given fault rate.

It is evident from the above results that for the same value
of Sysuti, when λ increases from 0.01 to 0.03, RASA suffered
more task rejections and RASA with M = 8 produces better
results compared to RASA with M = 4 in almost all cases,
due to lower overhead (ODAR). It can be observed that if the
system is loaded with moderate task pressure (Sysuti = 50%)
then RASA can successfully handle 76% tasks with a fault
rate 0.01.

3) RASA-Offline Versus RASA-Online: From Fig. 8, a con-
clusion can be drawn with respect to performance deviation
between RASA-Offline and RASA-Online, in the presence of
the fault. It can be observed that with low fault occurrence
rate (λ = 0.01), the achieved TSR between both the strate-
gies is comparable. However, with high fault occurrence rate,
RASA-Online still maintains the reliability of the system by
reducing 10% TSR at 60% system utilization.

4) Affect of Different K Values: Fig. 9 shows the TSR
obtained by RASA over varying Sysuti with different values
of K. We have conducted our experiments by choosing a dif-
ferent range of values of K and find that K = 5 exhibits
satisfactory results in our experimental setup. In Fig. 9, the
performance of RASA on achieving TSR under varying Sysuti
can be found with different values of K.

An interesting observation is that when the value of K
becomes as small as 3 or as large as 10 then they both impose
an adverse effect on the achieved TSR. This can be attributed
to the fact that for lower value of K, the probability of the
satisfiability of (5) decreases and thus, a late detection of fault
might contribute to a lesser chance of recovery. On contrary,
if the K consumes a larger value as 10 then it becomes highly

Fig. 9. TSR versus Sysuti; M = 4; and μwt = 0.1.

Fig. 10. ˆ�cost versus Sysuti; M = 8; μwt = 0.1; and λ = 0.02.

probable that (5) becomes satisfied and large number of DAR
events exercise the adverse effect on reducing the “available
slack” and lower the chance of recovery.

Clearly, there is a tradeoff between small or large K values.
Thus, optimal values of K will be platform specific (depending
upon ODAR, task’s deadline, length of time window).

5) Reliability Cost Versus Number of Tasks: Using (14),
we have calculated the reliability cost. However, for better
clarity in observing the trend of the result, we have shown
the variation between normalized reliability cost (denoted as
�̂cost) and number of tasks (ρ). After normalising the value of
reliability cost remains within [0, 1] and each value is obtained
by dividing �cost by max{�cost}. Fig. 10 depicts that �̂cost for
a certain hyperperiod increases with the increase in ρ while
the number of PRRs and the fault rate remain fixed. This trend
of result can be evident from (14) where the increased number
of tasks will contribute to its higher value.

This can also be supported by the trend of the results
obtained in the previous section. As we have already observed
that the increase in the number of tasks decreases the success
ratio of tasks (see Table II). Thus, the system will become less
reliable and the corresponding reliability cost will be higher.

6) Comparison With Existing Works: Fig. 11 compares
the performance of RASA with an existing EDF-based fault-
tolerant scheduling as per [27]. Originally, this work considers
much lower fault rate (“one transient fault per core per hyper-
period at random time”), low DAR overhead. It also considered
fixed number of tasks (eight tasks) for all set of simulations.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SAHA et al.: RASA FOR FPGA-BASED RESILIENT EMBEDDED SYSTEMS IN EEs 13

Fig. 11. TSR versus Sysuti; M = 4; RASA versus existing technique [27].

However, for a fair comparison we have considered fault rate
(λ) as 0.01, DAR overhead as 5 ms and number of tasks were
varied with varying utilization [refer (19)].

It is evident from Fig. 10 that RASA comprehensively out-
performs the EDF-based scrubbing scheduling technique. For
example, at Sysuti = 60%, while RASA can successfully
schedule nearly 70% of arrived tasks, the EDF-based technique
can only manage approximately 50% of tasks. This is due to
RASA maintaining proportional fairness, while scheduling the
task set by executing them for a certain workload quota within
a time window and thus, efficiently use all the PRRs. Moreover
within the time window, it maintains the bitstream scrubbing
(by avoiding ICAP conflicts) as a fault-tolerant method among
all PRRs at a certain instant. This essentially contributes to
achieving high resource utilization for RASA. On the other
hand, being fixed priority-based scheme, EDF selects tasks
with the closest deadlines for execution. However, if a task
finishes its execution, then until its next appearance, EDF may
leave some PRRs empty. However, these PRRs might be used
for execution of tasks that needed to be executed earlier after
recovery. Hence, EDF exhibits low resource utilization.

Fig. 11 exhibits further comparison result of the proposed
RASA with strategy [13] designed for fully reconfigurable
platforms. We have simulated the approach in our current
experimental scenario (considering full reconfiguration over-
head as 18 ms). It may be observed that, due to much
lower DAR overheads (ODAR = 5 ms), and the ability to
asynchronously reconfigure individual PRRs, RASA is able
to achieve much higher TSR as compared to the technique
proposed in [13].

RASA has also been compared with the fault scheduling
approaches as mentioned in [10]. For this comparison, we kept
the number of PRRs as six (M = 6) to enable flexibility in
placing TMR and DWC tasks. The effect on TSR values with
respect to various fault rates is shown in Fig. 12. It can be
observed that at a lower fault rate, the performance of TMR
and DWC is comparable to RASA, however as the fault rate
increases, RASA appears to maintain more reliability.

This observation can be attributed to the fact that for both
TMR and DWC approaches, tasks are non preemptive in nature
(hence, cannot migrate between PRRs) and are allocated into
a particular PRR, until the completion of their execution time.
Faults in tasks are detected by comparing or voting on the out-
put of the replica of each task. The faulty tasks are rescheduled

Fig. 12. RASA versus TMR and DWC.

by executing them from the beginning. Thus at higher fault
rate, when more number of tasks are affected, there are not
sufficient resources for handling the tasks. On the other hand,
being a preemptive scheduling strategy and with a unique
recovery strategy, that does not re-execute the entire task, but
executes only the affected portions via scrubbing, RASA can
achieve higher success rate.

C. RASA-Online Overhead Analysis

From Algorithm 3, it can be observed that for each time
boundary, almost the entire part of RASA-Online runtime
overhead may be considered to be consumed at time window
boundary and during DAR interval. Now, we will analyze the
overheads at these intervals, individually.

1) At Time Window Boundary: At each time window
boundary, RASA-Online starts tasks execution as per
the generated offline schedule. As RASA-Online runs
on separate EP (refer Section III-A), this event takes on
average 400 μs. Now, it may be noted that the FPGA
is bound to incur mandatory full reconfiguration over-
heads of the order of 18 ms (refer Section VII) at every
time window boundary. The scheduling overhead of less
than half a millisecond, i.e., ≈ 400 μs may be consid-
ered to be negligible with respect to the mandatory full
reconfiguration overhead.

2) During DAR Interval: Within a time boundary, at each
DAR interval, RASA-Online calculates “AF” and selects
an appropriate recovery action. This event on average
consumes ≈ 600 μs. However, the worst case overhead
for this event is already included in the DAR overhead
calculation (refer Section VI) and it should also be noted
that the FPGA is bound to incur mandatory overheads
(ODAR) of the order of 5 ms at every DAR interval.

In both cases, RASA-Online runs on the external EP at
the same time when the FPGA undergoes through a full
reconfiguration at a time window boundary and a partial
reconfiguration during the DAR interval. Thus, RASA-Online
utilizes the mandatory preemption events (i.e., while the FPGA
reconfigures) within a time boundary and does not impose any
additional runtime overhead in the scheduling.

IX. CONCLUSION

In this work, we presented a methodology for the reli-
able scheduling of periodic hard real-time tasks on partially



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

reconfigurable systems deployed in EEs. Using a combined
offline–online approach, the proposed methodology, called
RASA, provides scheduling mechanisms with an objective of
maximizing resource utilization, while keeping intermediate
preemption events (checkpoints) within acceptable limits, thus
favoring online detection. At design time, our strategy gener-
ates “time window” wise preemptive schedule for the arrived
tasks. We have utilized these preemption points at runtime,
to detect and recover any fault that occurs during execution.
Simulation-based experimental results reveal that RASA is
able to achieve a high task acceptance rate even under high
system workloads in various fault scenarios.

REFERENCES

[1] J. Jin, S. Lee, B. Jeon, T. T. Nguyen, and J. W. Jeon, “Real-time multiple
object centroid tracking for gesture recognition based on FPGA,” in
Proc. 7th Int. Conf. Ubiquitous Inf. Manag. Commun., 2013, p. 80.

[2] S. Bhasin, S. Guilley, A. Heuser, and J.-L. Danger, “From cryp-
tography to hardware: Analyzing and protecting embedded Xilinx
BRAM for cryptographic applications,” J. Cryptogr. Eng., vol. 3, no. 4,
pp. 213–225, 2013.

[3] J. J. Rodríguez-Andina, M. D. Valdes-Peña, and M. J. Moure, “Advanced
features and industrial applications of FPGAs—A review,” IEEE Trans.
Ind. Informat., vol. 11, no. 4, pp. 853–864, Aug. 2015.

[4] A. Ghorbel, M. Jallouli, N. B. Amor, and L. Amouri, “An FPGA based
platform for real time robot localization,” in Proc. Int. Conf. Individual
Collective Behav. Robot. (ICBR), 2013, pp. 56–61.

[5] N. Gobillot, F. Guet, D. Doose, C. Grand, C. Lesire, and L. Santinelli,
“Measurement-based real-time analysis of robotic software architec-
tures,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2016,
pp. 3306–3311.

[6] L. Jin and S. Li, “Distributed task allocation of multiple robots: A control
perspective,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 5,
pp. 693–701, May 2018.

[7] P. Maillard, J. Arver, C. Smith, O. Ballan, M. J. Hart, and Y. P. Chen,
“Test methodology & neutron characterization of Xilinx 16 nm Zynq R©
UltraScale+TM multi-processor system-on-chip (MPSoC),” in Proc.
IEEE Nuclear & Space Radiat. Effects Conf. (NSREC), 2018, pp. 1–4.

[8] M. Wirthlin, “High-reliability FPGA-based systems: Space, high-energy
physics, and beyond,” Proc. IEEE, vol. 103, no. 3, pp. 379–389,
Mar. 2015.

[9] R. Santos, S. Venkataraman, and A. Kumar, “Scrubbing mechanism
for heterogeneous applications in reconfigurable devices,” ACM Trans.
Design Autom. Electron. Syst. (TODAES), vol. 22, no. 2, p. 33, 2017.

[10] A. Jacobs, N. Wulf, and A. D. George, “Task scheduling for reconfig-
urable systems in dynamic fault-rate environments,” in Proc. IEEE High
Perform. Extreme Comput. Conf. (HPEC), 2013, pp. 1–6.

[11] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of radi-
ation effects in SRAM-based FPGAs for space applications,” ACM
Comput. Surveys, vol. 47, no. 2, p. 37, Jan. 2015.

[12] A. Sari and M. Psarakis, “Scrubbing-aware placement for reliable
FPGA systems,” IEEE Trans. Emerg. Topics Comput., vol. 8, no. 3,
pp. 564–576, Jul.–Sep. 2020.

[13] S. Saha, S. Ehsan, A. Stoica, R. Stolkin, and K. D. McDonald-Maier,
“Real-time application processing for FPGA-based resilient embed-
ded systems in harsh environments,” in Proc. NASA/ESA Conf. Adapt.
Hardw. Syst. (AHS), 2018, pp. 299–304.

[14] A. Gammoudi, A. Benzina, M. Khalgui, and D. Chillet, “Energy-efficient
scheduling of real-time tasks in reconfigurable homogeneous multicore
platforms,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 12,
pp. 5092–5105, Dec. 2020.

[15] X. Wang, Z. Li, and W. M. Wonham, “Optimal priority-free
conditionally-preemptive real-time scheduling of periodic tasks based
on DES supervisory control,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 47, no. 7, pp. 1082–1098, Jul. 2017.

[16] P. Eles, V. Izosimov, P. Pop, and Z. Peng, “Synthesis of fault-tolerant
embedded systems,” in Proc. Conf. Design Autom. Test Europe, 2008,
pp. 1117–1122.

[17] A. Ejlali, B. M. Al-Hashimi, and P. Eles, “A standby-sparing technique
with low energy-overhead for fault-tolerant hard real-time systems,” in
Proc. 7th IEEE/ACM Int. Conf. Hardw. Softw. Codesign Syst. Synth.,
2009, pp. 193–202.

[18] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design optimization of
time-and cost-constrained fault-tolerant embedded systems with check-
pointing and replication,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 17, no. 3, pp. 389–402, Mar. 2009.

[19] Q.-H. Khuat and D. Chillet, “Communication cost reduction for hard-
ware tasks placed on homogeneous reconfigurable resource,” in Proc.
Conf. Design Archit. Signal Image Process. (DASIP), 2013, pp. 265–270.

[20] W. Lakhdhar, R. Mzid, M. Khalgui, Z. Li, G. Frey, and A. Al-Ahmari,
“Multiobjective optimization approach for a portable development of
reconfigurable real-time systems: From specification to implementation,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 3, pp. 623–637,
Mar. 2019.

[21] T.-Y. Lee, N.-Y. Lin, W.-C. Chen, and H. Wu, “An efficient task place-
ment method for reconfigurable FPGA systems,” in Proc. 7th Int. Conf.
Complex Intell. Softw. Intensive Syst. (CISIS), 2013, pp. 451–455.

[22] T. Marconi, “Online scheduling and placement of hardware tasks with
multiple variants on dynamically reconfigurable field-programmable gate
arrays,” Comput. Electr. Eng., vol. 40, no. 4, pp. 1215–1237, 2014.

[23] H. Walder and M. Platzner, “Online scheduling for block-partitioned
reconfigurable devices,” in Proc. Conf. Design Autom. Test Europe,
vol. 1, 2003, Art. no. 10290.

[24] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surveys, vol. 43, no. 4, p. 35,
2011.

[25] M. Happe, A. Traber, and A. Keller, “Preemptive hardware multitask-
ing in ReconOS,” in Proc. Int. Symp. Appl. Reconfig. Comput., 2015,
pp. 79–90.

[26] A. Sari, M. Psarakis, and D. Gizopoulos, “Combining checkpointing and
scrubbing in FPGA-based real-time systems,” in Proc. IEEE 31st VLSI
Test Symp. (VTS), 2013, pp. 1–6.

[27] M. Psarakis and A. Sari, “A scrubbing scheduling approach for reliable
FPGA multicore processors with real-time constraints,” in Proc. IEEE
Int. Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst. (DFT), 2017,
pp. 1–4.

[28] M. H. Mottaghi and H. R. Zarandi, “DFTS: A dynamic fault-tolerant
scheduling for real-time tasks in multicore processors,” Microprocess.
Microsyst., vol. 38, no. 1, pp. 88–97, 2014.

[29] M. A. Haque, H. Aydin, and D. Zhu, “Real-time scheduling under fault
bursts with multiple recovery strategy,” in Proc. IEEE 20th Real-Time
Embedded Technol. Appl. Symp. (RTAS), 2014, pp. 63–74.

[30] A. Vega, P. Bose, and A. Buyuktosunoglu, Rugged Embedded Systems:
Computing in Harsh Environments. Cambridge, MA, USA: Morgan
Kaufmann, 2016.

[31] A. Burns, R. I. Davis, S. Baruah, and I. Bate, “Robust mixed-criticality
systems,” IEEE Trans. Comput., vol. 67, no. 10, pp. 1478–1491,
Oct. 2018.

[32] Xilinx. (2017). Virtex-5 FPGA Configuration User Guide. [Online].
Available: https://www.xilinx.com/support/documentation/user_guides/
ug191.pdf

[33] K. Jozwik, H. Tomiyama, M. Edahiro, S. Honda, and H. Takada,
“Comparison of preemption schemes for partially reconfigurable
FPGAs,” IEEE Embedded Syst. Lett., vol. 4, no. 2, pp. 45–48, Jun. 2012.

[34] Xilinx. (Dec. 2014). Virtex FPGA Data Sheet. [Online]. Available:
https://www.xilinx.com/support/documentation/data_sheets/ds202.pdf

[35] Y. Khaluf, “Task allocation in robot swarms for time-constrained tasks,”
Ph.D. dissertation, Dept. Design Distribut. Embedded Syst., Univ.
Paderborn, Paderborn, Germany, 2014.

[36] S. Davidson, “ITC’99 benchmark circuits-preliminary results,” in Proc.
Int. Test Conf., 1999, pp. 1125–1125.

Sangeet Saha received the B.Tech. degree in
information technology, the M.Tech. degree in com-
puter science and engineering, and the Ph.D. degree
in information technology from the University of
Calcutta, Kolkata, India, in 2011, 2013, and 2018,
respectively.

In 2018, he was a Research Fellow with
Tata Consultancy Services, Kolkata. He has been
appointed as a Senior Research Officer with the
Embedded and Intelligent Systems Research Group,
University of Essex, Colchester, U.K., since May

2018. His current research interests include real-time scheduling, scheduling
for reconfigurable computers, real-time and fault-tolerant embedded systems,
and cloud computing. He published several of his research contributions in
conferences, such as CODES+ISSS, ISCAS, and NASA AHS and in jour-
nals, such as ACM Transactions on Design Automation of Electronic Systems,
IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, Journal
of Supercomputing (Springer), and IEEE SENSORS JOURNAL.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SAHA et al.: RASA FOR FPGA-BASED RESILIENT EMBEDDED SYSTEMS IN EEs 15

Xiaojun Zhai (Senior Member, IEEE) received the
Ph.D. degree in electrical and electronic engineering
from the University of Hertfordshire, Hatfield, U.K.,
in 2013.

He is currently a Lecturer with the Embedded
Intelligent Systems Laboratory, University of Essex,
Colchester, U.K. He has authored/coauthored over
80 scientific articles in international journals and
conference proceedings. His research interests
include the design and implementation of the dig-
ital image and signal processing algorithms, custom

computing using FPGAs, embedded systems, and hardware/software co-
design.

Dr. Zhai is a member of BCS and a Fellow of HEA.

Shoaib Ehsan (Senior Member, IEEE) received
the B.Sc. degree in electrical engineering from the
University of Engineering and Technology, Taxila,
Pakistan, in 2003, and the Ph.D. degree in com-
puting and electronic systems (with specialization
in computer vision) from the University of Essex,
Colchester, U.K., in 2012.

He has an extensive industrial and academic expe-
rience in the areas of embedded systems, embedded
software design, computer vision, and image pro-
cessing. His current research interests are in intru-

sion detection for embedded systems, local feature detection and description
techniques, and image feature matching and performance analysis of vision
systems.

Dr. Ehsan was a recipient of the University of Essex Post Graduate Research
Scholarship, the Overseas Research Student Scholarship, and the prestigious
Sullivan Doctoral Thesis Prize awarded annually by the British Machine
Vision Association.

Shakaiba Majeed received the M.S. degree in elec-
tronics engineering with thesis on interval type-2
fuzzy systems and the Ph.D. degree in computer and
software engineering contributing additional knowl-
edge in testing and debugging of event-based soft-
ware from Hanyang University, Seoul, South Korea,
in 2010 and 2018, respectively.

Her current research interests include real-time
embedded software design and analysis, real-
time operating systems/middleware, and open-source
software.

Klaus McDonald-Maier (Senior Member, IEEE)
received the Dipl.-Ing. and M.S. degrees in electri-
cal engineering from the University of Ulm, Ulm,
Germany, and CPE-Lyon, Villeurbanne, France, in
1995, and the Doctorate degree in computer sci-
ence from the Friedrich-Schiller-University, Jena,
Germany, in 1999.

He is currently the Head of the Embedded and
Intelligent Systems Laboratory, University of Essex,
Colchester, U.K. He is also the Chief Scientist with
UltraSoC Technologies Ltd., Cambridge, U.K., the

CEO of Metrarc Ltd., Cambridge, and a Visiting Professor with the University
of Kent, Canterbury, U.K. His current research interests include embed-
ded systems and system-on-chip design, security, development support and
technology, parallel and energy-efficient architectures, computer vision, data
analytics, and the application of soft computing and image processing tech-
niques for real-world problems.

Dr. McDonald-Maier is a member of VDE and a Fellow of BCS and IET.


